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Highlights 

1. The spray drying process produced polymorphic transformations in (piroxicam) PXM 

2. Glucosamine (GLU) improved dissolution in spray dried samples 

3. GLU generally exhibited lower charge densities as compared to PXM 

4. GLU improved the handling of PXM as it significantly reduced its charge in all the spray dried 

formulations. 

5. Technique could be used to determine appropriate formulations that improve handling  

 

 

 

Abstract 

This work explores the use of both spray drying and D-glucosamine HCl (GLU) as a hydrophilic 

carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic 

charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were 

prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging was also 

conducted. The results showed that the spray dried PXM alone, without GLU produced some 

PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. 

XRPD results also showed the spray drying process to decrease the crystallinity of GLU and 

solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray 

dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process 

generally yielded PXM-GLU spherical particles of around 2.5 µm which may have 

contributed to the improved dissolution.  PXM showed a higher tendency for charging in 

comparison to the carrier GLU (- 3.8 versus 0.5 nC/g for untreated material and -7.5 versus 3.1 

nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge 

densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all 

spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1 – 0.3 
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nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders 

with practically no charge and thereby improving handling as well as dissolution behaviour of 

PXM.  

Keywords: Solid dispersions; Piroxicam; D-glucosamine HCl; Dissolution; Electrostatics; Spray 

drying. 

 

Abbreviations: GLU, D-glucosamine hydrochloride; DSC, differential scanning calorimetry; XRPD, X-ray powder 

diffraction; FTIR, Fourier transform infra-red; BCS, biopharmaceutical classification system; CBZ, carbamazepine; 

PXM, piroxicam; NSAID, non-steroidal anti-inflammatory drug; DE, dissolution efficiency; MDT, mean dissolution 

time; MDR, mean dissolution rate; ATR, attenuated total reflection; PSD, particle size distribution; USP, United States 

pharmacopoeia; PM, physical mixture. 

 

1. Introduction 

The physiochemical properties of a drug can influence the choice of dosage form in which it is 

delivered. Properties such as stability, pKa, partition coefficient and salt forms are all taken into 

consideration during pre-formulation studies [1]. In addition, it is important to assess the aqueous 

solubility, dissolution rate and intestinal permeability of a drug. These three factors have been used 

to classify drugs in the Biopharmaceutical Classification System (BCS) into four different classes  

[2]. BCS class II drugs are characterized by high membrane permeability but low aqueous solubility 

therefore; there is a low drug concentration gradient between the gut and the blood vessels limiting 

drug transport and oral bioavailability. The poor solubility of drugs has always been a major 

problem in pharmaceutical development and this problem is now more prevalent with more than 40 

% of the new chemical entities being practically insoluble in water or lipophilic in nature [3-7]. As 

dissolution rates are typically the rate-limiting step for bioavailability, especially for poorly soluble 

drugs, enhancement of solubility is vital to attaining suitable systemic concentrations for therapeutic 

effect [8]. 
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Despite the recent advances in particle engineering, one of the most common method employed to 

aid the improvement of the dissolution rate of poorly soluble drugs is particle size reduction using 

high shear milling methods [9, 10]. This enhancement of dissolution rate by size reduction is due to 

the fact that solubility of drugs in intrinsically related to particle size of the drug [7]. As the particle 

size of the drug is reduced, the surface area available for solvation also increases. Particle size 

reduction is a safe method of increasing drug dissolution without altering the chemical nature of the 

drug. However, although particle size reduction leads to an increase in the effective surface area of 

the drug available to interact with the solvent, it does not increase equilibrium solubility of the drug  

[11] unless the size of particles are reduced to below 1 micrometre [12]. In addition, micronization 

may cause agglomeration and thus may negatively impact on the solubility and bioavailability 

during the storage of the final product [13]. Moreover, milled particles usually exhibit a high level 

of electrostatic charge; such high level of charge can increase the inter-particle cohesive forces 

leading to poor product performance [14-16].  

Other methods used to improve drug solubility include complexation [17], liquisolid techniques 

[18, 19] and salt formation   [20, 21]. Several authors have classed the solid dispersion approach as 

one of the most effective method of improving dissolution of drugs [5, 8, 22]. It involves the 

dispersion of one or more active ingredients in an inert excipient or carrier, where the active 

ingredients could exist in a finely crystalline, solubilised or amorphous state [23, 24]. Solid 

dispersion also enhances the absorption and efficacy of drugs in a dosage form, despite limitations 

such as cost, scale up and physicochemical instabilities of the dispersions under normal storage 

conditions [25-27]. Al-Hamidi and co-workers have studied the rate of carbamazepine (CBZ), 

ibuprofen (IBU) and PXM (PXM) in solvent evaporated and co-ground solid dispersions [3, 22, 28, 

29]. Asare-Addo et al [8], also studied the effect of GLU on indomethacin (IND) dissolution and 

charging properties using a solvent evaporation process. All these authors showed that 

incorporation of GLU in PXM, IBU, CBZ and IND using either the solvent evaporation or grinding 

method significantly increased the dissolution rates of these drugs. They attributed the increased 
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solubility and dissolution rate of drugs observed to be due to particle size reduction to sub-micron 

levels, change in polymorphic forms and the improved wettability of the drug particle by the 

dissolved hydrophilic carrier [28, 30].  

PXM (4-hydroxy-2-methyl-N-(2-piridyl) 2H-1,2-benzothiazine-3-carboxamide-1, 1-dioxide) is one 

of the most potent non-steroidal anti-inflammatory and analgesic drugs used in treatment of various 

acute and chronic musculoskeletal and joint disorders [31]. This drug was used as the model BCS 

class II drug. In addition, GLU was the preferred hydrophilic carrier due to its popular use as a 

nutritional supplement for humans in decreasing pain and improving mobility in osteoarthritic joints 

of humans when administered orally [32, 33]. The limited solubility of PXM leads to a delayed 

onset of therapeutic effect. Oral absorption is slow and gradual with maximum absorption occurring 

3 – 5 hours after administration and a long half-life of elimination [34].  

Spray drying of poorly soluble drugs could potentially enhance their solubility [35]. The state of the 

final spray dried product depends on the nature of the drug as the process may result in the 

amorphous, partially crystalline, metastable crystal forms [36]. The ability of a pure drug substance 

to convert into its amorphous form during spray drying depends mainly on its inherent glass 

forming ability and crystallization tendency [37] and to a lesser extent on the preparation methods 

[38, 39]. In the amorphous state, the drug exhibits high levels of super-saturation in aqueous media 

compared to the crystalline drug, thereby achieving higher apparent solubility [40]. Spray drying 

works by providing a large surface area where heat transfer and atomization of the solution or 

suspension into small droplets can occur. It is also good at producing a uniform product that is 

spherical in shape [41]. By spraying the substance into a steam of hot air, the droplet will dry to 

form individual solid particles at a fast drying rate within milliseconds to a few seconds as a result 

of the high surface to volume ratio, which prevents phase separation between the drug and polymer 

components [42].  

In pharmaceutical development field, characterization of the electrostatic properties of powders has 

become a subject of extensive research [43]. Electrostatic charging within powders is generated 
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from inter-particulate contacts and collisions (particle-particle and particle-surface collisions) in a 

gaseous environment; i.e. two different materials brought to contact and then separated [44]. To 

date, there are no pharmacopoeial methods for charge characterization [45]. Although bipolar charging 

commonly takes place in industrial processes of pharmaceutical particulates [46], the most prevalent 

assessment of tribocharging is gained from the Faraday pail method, which provides only limited 

information in the form of net charge-to-mass ratio [47]. In this work, a novel instrument recently 

developed in the Wolfson Centre [48] (Figure 1a) to characterise the charge properties of the 

particulate materials under investigation in the form of charge distribution is used. The major 

advantages of this method of charge sensing include its high sensitivity (charges on the particles 

equal or more than to 30×10
-15

 C are detectable), quick measurement (< 1 min) and the lack of the 

particle flow disturbance. Kaialy et al. [16] applied the latter method to characterize the charge 

distribution of several size fractions of spray dried mannitol. In this study, the efficiency of the 

spray drying process in enhancing the dissolution rate of the PXM using GLU as a hydrophilic 

carrier is investigated. Recently, Adebisi et al (2016) [49], also utilized this methodology in 

determining the charge distribution in co-ground solid dispersions. The charging propensity of the 

solid dispersions produced as a result of the spray drying process is also assessed to determine its 

effect on the handling of these dispersions. To the best of our knowledge, there is no reported work 

that has investigated the use of GLU in spray dried solid dispersions and the charge distributions 

from resulting samples. 

 

2. Materials and Methods 

2.1. Materials 

PXM was purchased from TCI Chemicals (Japan). GLU was purchased from Sigma-Aldrich (UK). 

The solvent used (acetone) was obtained from Fischer Scientific (UK) was of analytical grade and 

was used as obtained. The dissolution medium (pH 1.2) was prepared according to the USP 2003 

method using the following materials: KCl (Sigma, UK) and concentrated HCl (Fisher, UK).  
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2.2. Preparation of PXM-GLU physical mixtures 

Physical mixtures (PM) of PXM were prepared by mixing PXM and GLU in a Turbula
®
 blender 

(Type T2 C, Switzerland) for 10 min. Different PXM:GLU ratios (2:1, 1:1 and 1:2) were prepared 

for comparison. The powders were stored in screw-capped glass vials in a desiccator at room 

temperature until required after the mixing process. 

 

2.3. Preparation of spray dried solid dispersions of drug-carrier 

The spray drier (SD-06AG laboratory spray dryer, LabPlant UK) was set up in a closed mode 

configuration with an inlet temperature of 70 °C, a feed flow rate set to 10 mL min
-1

 and a nozzle 

size of 0.5 mm. Suspensions of PXM and GLU were made at three different drug:carrier ratios: 1:1 

(Sample A) 1:2 (Sample B) and 2:1 (Sample C). When making the 1:1 ratio, 1.5 g of PXM was 

dissolved in a beaker containing 600 mL of acetone whereas 1.5 g of GLU was dissolved in a 

beaker containing 600 mL of deionised water under stirring conditions. The two solutions were then 

mixed together to form sample A. In the case of the 1:2 ratios, 1.5 g of PXM was dissolved in a 

beaker containing 600 mL of acetone and 3 g of GLU was also dissolved in a beaker containing 600 

mL of deionised water. The two solutions were mixed together and that constituted sample B. For 

the 2:1 ratio, 3 g of PXM was dissolved in a beaker containing 600 mL of acetone and 1.5 g of GLU 

was also dissolved in a beaker containing 600 mL of deionised water. The two solutions were 

mixed together to form sample C. PXM (1.5 g PXM dissolved in 600 mL acetone) and GLU (1.5 g 

GLU dissolved in 600 mL deionised water) were also spray-dried separately as control samples. 

The suspensions were under constant stirring (200 rpm) throughout the feeding process into the 

spray dryer to ensure uniformity. The solid dispersions obtained were stored in a desiccator until 

required. 
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2.4. Particle Size Analysis (PSD) 

A Sympatec laser diffraction particle size analyser (Clausthal-Zellerfeld, Germany) was used for the 

determination of the particle size distribution of the spray-dried formulations. The mean particle 

size (D10%, D50% and D90%) was calculated automatically using the software provided. The 

procedure was as follows: about 2–3 g of each sample was transferred into the funnel of the VIBRI 

(vibrator feeder). The sample container was cautiously tapped against the funnel to ensure all the 

content was transferred. A test reference measurement was performed with the HELOS sensor using 

WINDOX software followed by a standard measurement. In this technique a laser beam is passed 

through the sample, and different size particles diffract the light at different angles to produce 

a particle size distribution [3]. 

 

2.5. Scanning electron microscopy (SEM) 

Electron micrographs of PXM, spray dried PXM, GLU, spray dried GLU and all the spray 

dried solid dispersion in the various ratios were obtained using a scanning electron microscope 

(Jeol JSM-6060CV SEM) operating at 10 kV. The samples were mounted on a metal stub with 

double-sided adhesive tape and were sputter-coated with using a Quorum SC7620 Sputter Coater 

under vacuum with gold in an argon atmosphere prior to observation. Micrographs with different 

magnifications of 500x, 100x, 3000x and 5000x were taken to facilitate the study of the 

morphology of the solid dispersions. 

 

2.6. Differential scanning calorimetry (DSC) 

Samples of spray-dried solid dispersions or PM of drug:carrier (3 - 6 mg) were placed in standard 

aluminium pans (40 µL) with a vented lid. The crimped aluminium pans were heated from 20 to 
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250 °C at a scanning rate of 10 °C/min using nitrogen gas as a purge gas in a DSC 1 (Mettler-

Toledo, Switzerland). The enthalpy, onset temperatures and melting points of the samples were 

obtained using the STAR
e
 thermal analysis software. 

 

2.7. X-ray powder diffraction (XRPD) 

The untreated PXM, GLU and PXM-GLU solid dispersions were characterised by X-ray powder 

diffraction (XRPD) according to the methodology reported by Laity et al 2015 [50] using a D2 

Phaser diffractometer (Bruker AXS GmbH, Karlsruhe, Germany), with a sealed microfocus 

generator operated at 30 kV and 10 mA, producing CuKa (λX = 0.1542 nm) radiation and a Lynxeye 

‘silicon strip’ multi-angle detector. The samples were scanned in Bragg-Brantano geometry, over a 

scattering (Bragg, 2θ) angle range from 5 to 100°, in 0.02° steps at 1.5° min
− 1

. 

The XRPD patterns of were obtained using a Bruker D2 Phaser XRPD diffractometer. The samples 

were scanned from 5° to 10°
 
2  at a rate of 1.5° min

−1
. 

 

2.8. Solubility studies 

Excess amount of the powder formulations were added to glass vials containing 10 mL of buffer 

(pH 1.2). The vials were sealed and placed into a Wise Bath WSB-18, where they were agitated at 

37 °C ± 0.5 °C for 48 h. The solutions were then filtered using a 0.45  m membrane filter 

(Whatman, UK) and the filtrates were diluted with buffer (pH 1.2) before the absorbance of these 

solutions were measured using a UV spectrophotometer (UV-160, Shimadzu, Nakagyo, Japan) at 

333 nm. The drug concentration in the samples was determined by applying a calibration curve 

which had a correlation coefficient of 1. The effects of GLU on the solubility of PXM were also 
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investigated and this was achieved by the addition of an excess of PXM to 10 mL buffer (pH 1.2) 

containing GLU at 1, 5, 10 and 15 % w/v.  

 

2.9. Dissolution studies 

USP dissolution apparatus I (DT700, ERWEKA, Heusenstamm, Germany) was used to monitor the 

dissolution profiles of PXM, PXM-GLU PMs and spray-dried solid dispersions. All formulations 

for the dissolution process contained the same amount of PXM (20 mg of PXM content was used 

regardless of the carrier quantity). The powder samples, after weighing, were introduced into the 

dissolution basket. Circular paper discs were used to cover the base of the baskets. This was to 

prevent the drug powder falling through the bottom pores. The dissolution medium was at pH 1.2 

(900 mL) equilibrated to 37 °C ± 0.5 °C with the baskets rotated at 50 rpm. Samples were 

withdrawn at selected time intervals (5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 90, 105 and 120 min) 

using a peristaltic pump. The concentrations of PXM in the samples were determined by UV 

spectrophotometer at 333 nm. All dissolution tests were carried out in triplicate. 

 

2.10. Dissolution parameters 

As an independent metric, the mean percentage of drug dissolved in the first 10 min (Q10min) and 30 

min (Q30min) were used to represent the dissolution rate from various preparations. The dissolution 

efficiency (DE) of a pharmaceutical dosage form is defined as the area under the dissolution curve 

up to the time, t, expressed as the percentage of the area of the rectangle [51] as detailed elsewhere 

[52, 53]. 
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where y is the percentage of drug dissolved at time t. 

Another approach to obtain a parameter that describes the dissolution rate is the mean dissolution 

time (MDT). This parameter is the most likely time taken for a molecule to be dissolved from a 

solid dosage form. In other words, MDT is the mean time for the drug to dissolve under in vitro 

dissolution conditions and is calculated using the following equation: 

MDT (min) = 
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where j is the sample number, tj is the midpoint of the jth time period (calculated with ((t + t-1)/2) 

and Mj is the additional amount of drug dissolved between tj and t-1. 

 

The mean dissolution rate (MDR) can be calculated according to the following equations: 

MDR (%min
-1

) = 
n

tM
n

j

j



1

/

   

where n is the number of dissolution sample times, t is the time at the midpoint between t and t-1 

(easily calculated with [t + (t-1)/2]. 

 

2.11. Similarity factor 
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Similarity between the drug release profiles was determined using similarity factor f2 

according to the equation below [54-57]  

         {[  
 

 
∑  (     )

 

 

   

]

    

     } 

where n is the number of pull points for tested samples;    is the optional weight factor;    is 

the reference assay at time point t;    is the test assay at time point t. 

Similarity factor was calculated using the drug release profile of the untreated piroxicam as 

the reference. f2 values ranging from 50-100 indicate similarity between the two profiles. The 

closer the f2 value is to 100, the more similar or identical the release profiles. Values of f2 less 

than 50 indicate dissimilarity between two dissolution profiles [58, 59]. 

 

2.12. Triboelectric assessment of spray dried solid dispersions 

The charge properties of powders were analysed using a recent novel approach developed at the in 

the Wolfson Centre at the University of Greenwich. In brief, a triboelectric device electrostatic 

inductive sensor was used to investigate the triboelectrification of powders under investigation [48]. 

Such novel method allows the detection and measurement of charge distribution on the charge sign 

basis in a population of particles. The experimental apparatus consists of a single non-contact 

electrostatic inductive sensor (probe), a charge amplifier unit, a national instrument (NI) data 

acquisition equipment and personal computer for data recording and processing. A sample of each 

powder was fed in the cylindrical sensor with the help of vibratory feeder and conveyed toward the 

sensor by gravity in a vertical direction. Special care was taken by considering the adhesion 

property of particles with the wall of the sensor. After each experiment, the inner tube was replaced 

in order to remove any deposits, impurities or surface charge that may have been present on the 
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surface from a previous test. A fresh sample was used for each test experiment. Each sample was 

analysed six times (humidity and temperature controlled laboratory: 50% RH, 22 ºC). A typical 

example of processed charge signal obtained as a result of the untreated PXM particles moving 

through the sensor using vibratory orifice feeder under gravity is shown in Figure 1b. The direction 

of each peak shows the polarity of charged particles and amplitude from baseline and represents the 

amount of charge on moving particle. The positive charge is the sum of positive charges whereas 

the negative charge is the sum of negative charges. The net charge is the sum of positive charges 

and negative charges. The charge–to–mass ratio (CMR or charge density) was defined as the charge 

(negative charge for N–CMR, positive charge for P–CMR, net charge for net–CMR) per unit mass, 

in nC/g. 

 

3. RESULTS AND DISCUSSION 

Untreated PXM showed a DE of only 21.2 % over the 120 min interval (Table 1) demonstrating the 

reported poor solubility of PXM, which in turn affects its bioavailability. PXM is a drug 

administered via the oral route and it will have to pass through the first pass metabolic pathway, 

which further lowers its bioavailability. In order to achieve the desired therapeutic effect a high 

dose of the drug will have to be administered [22]. The poor dissolution characteristics of PXM 

may be due to poor wettability, where the dissolution media is unable to spread efficiently over the 

solid surfaces to bring about dissolution [29]. In addition, agglomeration of the drug particles could 

also limit solubility. The results from the spray-dried PXM and PMs indicated no significant 

difference in PXM dissolution regardless of PXM:GLU ratio (Figure 2a, Table 1) . In order words, 

the dissolution of the spray-dried PXM and the PM over the 120 min interval was similar to that of 

the untreated PXM (f2 = 74-93). However, when the untreated PXM was mixed with spray-dried 

GLU in the ratios 1:1, 1:2 and 2:1 (Figure 2b), the results of the 1:1 and 1:2 PMs showed DE to 

increase from 21.2 % as observed in untreated PXM to 33.2 % and 38.0 %, respectively. f2 values 
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using the untreated PXM as the reference showed dissimilarity to occur for the 1:1 and 1:2 

ratios (f2 = 46 and 39 respectively) thereby confirming the DE observations. These results 

showed that, in contrast to commercial GLU, mixing spray-dried GLU with PXM could enhance the 

dissolution of PXM. This may potentially be as a result of the change in morphology in the SEM 

images (Figure 3 and supplementary materials figure 1) of the spray dried GLU (smaller and less 

crystalline) and how the PXM may have attached on to them. This however was not true for the 2:1 

PXM and spray-dried GLU (f2 = 70). This sample had a DE value lower (DE120min of 16.4 %) than 

that of the untreated PXM (DE120min of 21 %) (Table 1). This may be due to the increased content of 

PXM in the formulation. 

Generally, fine particulates tend to charge negatively, whereas large particles tend to charge 

positively. Lacks and Levandovsky, 2007 [60] provided a hypothetical mechanism for particle size 

dependent charging. Assuming that the surface density of trapped electrons is initially the same on 

all particles, it has been argued that the collisions allow electrons trapped in high-energy states on 

one particle to transfer to the vacant low-energy states on another particle. This has been recently 

discussed in a review [61]. Triboelectric charge analyses showed that all materials investigated 

demonstrated bipolar charge behaviour, i.e., contained both electropositive and electronegative 

charge particles. Untreated PXM showed an overall electronegative charge density (net-CMR = - 

3.8 ± 0.9 nC/g) (Figure 4a). Such charging may result in several problems attributed to particle 

agglomeration, segregation and/or material adhesion on the processing equipment. In contrast, 

untreated GLU showed a very slight tendency towards electropositive charge (net-CMR = 0.5 ± 0.4 

nC/g) (Figure 4b). As seen in Figures 4a and b, PXM demonstrated a considerably higher absolute 

charge than GLU carrier. This may be due to differences in the inherent charging properties 

between PXM and GLU as well as the small size of PXM in comparison to GLU (Supplementary 

materials table 1) as it is known that electrostatic forces increase when particle size is decreased 

[16]. Both the electronegative charge density of PXM and the electropositive charge density of 
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GLU increased following spray drying (~ 2.0 fold-increase in the case of PXM drug ~ 5.9 fold-

increase in the case of GLU carrier) (Figures 4a, b). Triboelectric charge analyses showed spray 

dried PXM:GLU solid dispersions to have considerably lower charge density (-0.1 ± 0.1 – 0.3 ± 0.4 

nC/g, p > 0.05) than untreated PXM (- 3.8 ± 0.9 nC/g) and untreated GLU (0.5 ± 0.4 nC/g) (Figure 

5a). This shows the spray drying method applied reduced the charge of pure PXM and thus 

improves powder handling. 

Figure 5b shows the dissolution of spray-dried PXM and GLU (samples A - C) and the results show 

an enhancement in dissolution as compared to the untreated PXM. The increase in dissolution of the 

spray dried solid dispersion samples is likely due to the formation of small particle sizes, increased 

surface area and potentially reduced inter-particle cohesive forces as indicated by a net charge 

density of less than 0.4 nC/g (Figure 5a). SEM images (Figure 3 and supplementary materials table 

1) showed the appearance of the spray-dried samples to be very different from that of the parent 

drug and carrier. The spray drying process yielded spherical particles of around 2.5 µm but showed 

some agglomeration in Sample A, B and C with sample B showing some of the needle-like 

characteristics of PXM form II [62]. The needle form of PXM may have contributed to the poor 

dissolution of sample B as it has been reported that the form II PXM polymorph is less soluble than 

the Form I polymorph [63]. However, this was in contrast to the observations by other researchers 

who report an increase in solubility with the Form II polymorph [64, 65]. This contrasting 

difference may be due to differences in in the preparation method as well as the contribution 

of the polymorphic form to the solubility. Lai et al. [65] reasoned that the cavitation forces as 

well as the collision and shear forces during the homogenising they conducted determines the 

breakdown of drug particles to the nanometre range. They deduced further that these high 

energetic forces can also induce a change in the crystal structure and/or partial or total 

amorphisation of the sample, which could cause further enhancement in solubility[66]. 
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The dissolution results suggest that when PXM and GLU were spray-dried together, the 2:1 ratio 

(sample C) was the best in achieving the optimum level of dissolution enhancement. Sample C 

increased the dissolution of PXM by over 30 % in comparison to untreated PXM. Samples A - C 

(DE120min of 31- 57 %) all had improved dissolution efficiency over that of the untreated PXM 

(DE120min of 21 %). 

With regards to solubility, Table 2 shows untreated PXM to have a solubility of 20.7 mg/L. Spray-

dried PXM had a solubility of 17.7 mg/L which explained why the spray drying process did not 

improve dissolution. When the solubility tests were conducted with PXM in the presence of GLU at 

different concentrations, the solution containing 1 % w/v GLU had a solubility of 17.4 mg/L. This 

was also lower than the untreated PXM, which had a solubility of 20.7 mg/L. The solution 

containing 5 % w/v GLU also had solubility (20.1 %) slightly lower than that of the untreated PXM, 

however, this was an improvement from the 1 % w/v GLU. The solutions containing 10 % w/v and 

15 % w/v GLU both experienced solubility enhancement in comparison to that of the untreated 

PXM (20.7 %) with solubilities of 22.8 and 23.4 % respectively. The results therefore suggested 

that solubility could be improved by increasing the proportion of GLU in the solutions. However, 

the same conclusion could not be made regarding the results from the dissolution test as there was 

no correlation (Table 1). Al-Hamidi et al  2010 [3] concluded that an improvement in dissolution 

rate cannot be correlated to solubility and that parameters such as particle size, type of polymorph 

and hydrophobicity of particle surfaces are responsible for enhancement in dissolution. 

 Untreated PXM had a melting point of 201.53 ˚C signifying the form I PXM polymorph 

(Supplementary materials figure 2) [67]. However after spray drying, the DSC scan of spray-dried 

PXM exhibited two peaks; one at 196.47 ˚C and the other at 199.72˚C. This may be due to the fact 

that the spray drying process led to the re-crystallization of some PXM molecules in the Form II 

(lower melting point) polymorph of PXM [63]. This observation can be confirmed in the SEM 

image of spray-dried PXM (Supplementary materials figure 1) as needle-shaped PXM particles that 
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are characteristic of Form II PXM were also observed [68]. GLU appears as a single endothermic 

peak on the DSC trace (Supplementary materials figure 2) with a melting point at 210.27 ˚C. After 

spray drying however, it seems the characteristics of GLU were altered with the spray-dried GLU 

showing two distinct endothermic peaks on the DSC scans different from the peak observed from 

the untreated GLU. After further investigation, it was noticed that the untreated GLU DSC trace had 

a shoulder at the position of 222 - 225 ˚C. This was around the same position where the new peak 

appeared in spray-dried GLU and this suggests that the GLU also underwent some physical changes 

after spray drying. The DSC traces of the PM showed the PXM and GLU peaks to overlap 

(Supplementary materials figure 3). The melting points of the two materials are similar making the 

resultant peak of the PM to merge. It was observed that the intensity of the peaks varied as the ratio 

of each material varied in proportion. The DSC traces where PXM was mixed with SD GLU, 

(Supplementary materials figure 4), showed an overlap between PXM and GLU. The phenomenon 

was also seen in the DSC traces of the spray-dried formulations, Figure 6a, where peaks 

overlapping and changes in peak intensities with respect to the drug:carrier ratio were observed.  

The intense yellow colour observed in spray-dried Samples A - C has been attributed to the 

presence of amorphous PXM and this could be attributed to zwitterionic PXM molecules which are 

formed by an inter-molecular proton transfer in the amorphous form of the drug [69]. This was also 

confirmed by the low intensity of XRPD peaks for samples A-C. This indicates that the spray 

drying process in the presence of glucosamine HCl can induce some amorphous PXM in the 

samples. The XRPD diffractograms of PXM (Supplementary material figure 5) exhibited 

characteristic peaks at 8.64˚, 14.51˚, 17.70˚, 21.71 and 27.72˚ on the 2  scale which is similar to 

reported peak positions observed in the cubic Form I polymorph of PXM [68]. The XRPD 

diffractograms of spray-dried PXM was similar to that observed in untreated PXM indicating no 

change in the PXM as a result of the spray drying process. However, since the SEM images 

(Supplementary materials figure 1) and DSC (Supplementary materials figure 2) of spray-dried 
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PXM indicated the presence of needle shaped Form II PXM, it could be that the amount of Form II 

PXM recrystallized after spray drying was very small making it undetectable on the XRPD 

diffractograms. The characteristic peaks for GLU appeared at 16.73˚, 17.42˚, 27.19˚ and 31.94˚ 

[22]. However, after spray drying the position of these peaks changed. In addition, the peak 

intensities reduced significantly and this can be attributed to the process of spray drying. The 

significant reduction in the peak intensity of samples A-C was also attributed to the spray drying 

process (Figure 6b). This phenomenon has been observed by several authors where crystalline 

materials have reduced peak intensities or become amorphous after the spray drying process 

[70, 71]. 

 

4. CONCLUSIONS 

This study showed that spray-drying PXM alone was not sufficient to enhance the dissolution or 

solubility of PXM. This may be attributed to increased cohesive forces between spray dried PXM 

particles as compared to untreated PXM due to increased level of electrostatic charge. However, in 

the presence of a carrier such as GLU, spray drying proved to be effective at enhancing dissolution, 

therefore demonstrating glucosamine to be an efficient hydrophilic carrier for this process. This 

may be due to the relatively lack of cohesive electrostatic charge for spray dried solid dispersion 

particles allowing better particle wettability during dissolution.  The PXM underwent some 

polymorphic changes during the spray drying process and this was confirmed by the SEM images 

and DSC traces. The dissolution rate of PXM in the solid dispersions could be optimised by varying 

the drug:carrier ratio to achieve the desired rate. The charge results also proved GLU to improve the 

handling of PXM as it significantly reduced its charge in all the spray dried formulations. 
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Figure captions 

Figure 1. Schematic of experimental setup used in the determination of the formulations charge (a), 

a typical example of filtered data generated when untreated PXM particles are travelling through the 

sensor (b) 

Figure 2. Dissolution profile of PXM, spray-dried PXM and physical mixtures with different ratios 

of drug:carrier (a), dissolution profile of PXM, physical mixtures of PXM with spray-dried 

glucosamine (b) (SD, n=3) 

Figure 3. SEM images of spray dried solid dispersions of PXM: GLU in a 1:1 ratio (Sample A) (a), 

PXM: GLU in a 1:2 ratio (Sample B) (b) 

Figure 4. Positive charge-to-mass ratio (P-CMR), negative charge-to-mass ratio (N-CMR) and net 

charge-to-mass ratio (Net-CMR) for untreated PXM, spray dried PXM (a); untreated GLU and 

spray dried GLU (b) (SD, n=3) 

Figure 5. Positive charge-to-mass ratio (P-CMR), negative charge-to-mass ratio (N-CMR) and net 

charge-to-mass ratio (Net-CMR) for untreated PXM, untreated GLU and spray-dried solid 

dispersions (a) dissolution profiles of PXM and spray-dried solid dispersions (b) (SD, n=3) 

Figure 6. DSC thermograms of spray-dried solid dispersions of PXM: GLU in a 1:1 ratio (Sample 

A), PXM: GLU in a 1:2 ratio (Sample B) and PXM: GLU in a 2:1 ratio (Sample C) (a), XRPD 

patterns of spray-dried dispersions of PXM: GLU in a 1:1 ratio (Sample A), PXM: GLU in a 1:2 

ratio (Sample B) and PXM: GLU in a 2:1 ratio (Sample C) (b) 
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Tables 

Table 1. Effects of spray drying and carrier type on dissolution parameters of PXM (SD, n=3) 

Piroxicam 

(PXM):carrier 

Carrier DE120min (%) MDT(min) MDR(%min
-1

) Q10min (%) Q20min (%) Q30min (%) 

Untreated PXM - 21.2±0.5 7.8±0.6 0.18±0.02 8.5±0.4 11.9±0.2 17.5±1.8 

SD PXM - 20.6±5.8 7.7±0.8 0.2±0.08 10.3±1.2 15.4±2.5 19.0±4.9 

PM1:1  21.6±5.2 3.6±0.3 0.12±0.06 8.1±1.4 10.7±2.2 13.4±3.1 

PM1:2  21.2±0.5 6.98±0.2 0.17±0.01 8.5±1.0 12.3±0.5 17.4±0.8 

PM2:1  19.1±3.4 4.22±0.1 0.13±0.03 7.6±0.4 10.3±1.8 12.8±1.7 

1:1 SD GLU SD GLU 33.2±9.4 7.5±1.4 0.33±0.1 9.9±0.7 21.1±4.7 27.5±8.1 

1:2 SD GLU SD GLU 38.0±10.3 6.8±1.5 0.37±0.1 13.1±2.4 22.4±8.5 29.6±11.1 

2:1 SD GLU SD GLU 16.4±2.0 4.8±0.4 0.12±0.01 7.4±0.04 10.1±0.2 12.4±0.5 

Sample A (1:1)  38.9±3.8 5.6±1.7 0.38±0.10 26.3±3.2 31.7±5.7 37.8±6.8 

Sample B (1:2)  31.1±3.4 3.7±0.7 0.25±0.05 15.3±1.3 19.9±2.5 22.2±3.4 

Sample C (2:1)  56.7±4.7 6.0±2.6 0.53±0.13 25.4±3.6 32.0±2.9 43.6±7.2 
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Table 2. Solubility of PXM in the formulations. PXM in the presence of a carrier at different 

concentrations and PXM before and after spray drying (SD, n=3). 

Samples Amount of drug in solution (mg/L) 

Sample A (1:1) 32.6 ± 1.8 

Sample B (1:2) 15.5 ± 1.6 

Sample C (2:1) 19.5 ± 1.3 

Untreated PXM 20.7 ± 0.9 

Spray-dried PXM 17.7 ± 1.2 

1% GLU 17.4 ± 0.6 

5% GLU 20.1 ± 0.5 

10% GLU 22.8 ± 0.7 

15% GLU 23.4 ± 0.5 
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Figure 1 

 

 

 



31 
 

 

Figure 2  
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Figure 3  
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Figure 4  
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Figure 5  
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Figure 6 
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