
University of Huddersfield Repository

Zubac, Kristina

Analysis and Evaluation of Inter-Core Communication Based on a Multi-Core Automotive
Software and Hardware

Original Citation

Zubac, Kristina (2016) Analysis and Evaluation of Inter-Core Communication Based on a Multi-
Core Automotive Software and Hardware. Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/28687/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

ANALYSIS AND EVALUATION OF INTER-CORE
COMMUNICATION BASED ON A MULTI-CORE
AUTOMOTIVE SOFTWARE AND HARDWARE

KRISTINA KRISTIANA ZUBAC

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree

of Master of Science by Research

The University of Huddersfield in collaboration with Frankfurt University of Applied Sciences

March 2016

2

Copyright statement

i. The author of this thesis Kristina Kristiana Zubac owns any copyright in it (the “Copyright”)
and s/he has given The University of Huddersfield the right to use such copyright for any
administrative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the
regulations of the University Library. Details of these regulations may be obtained from the
Librarian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and all other intellectual property
rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of
copyright works, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property Rights and Reproductions cannot and must not be made available for
use without the prior written permission of the owner(s) of the relevant Intellectual Property
Rights and/or Reproductions.

3

Abstract

The vehicles have become increasingly computerized in order to satisfy the strict safety requirements and
to provide better driving experiences. Growing complexity of vehicle functionality requires higher
performance and increases complexity of electronic control units (ECUs) software.

As a result, the AUTOSAR standard was established by several major vendors and manufactures in
2003. This foundation introduced a standard with the main goal to define a uniform ECU software
architecture, which reduces the software complexity.

The standardisation of software along with the increasing requirements for resources brought the single
core processors to their limit of performance. Hence, new techniques had to be introduced to increase
computational power. A solution to this problem is a multi-core processor.

It is expected that the main focus for the automotive industry in the next decade will be to implement the
existing single-core software to a multi-core architecture. One of the key challenges is to reduce the
execution time of inter-core communication in order to maintain the response time in safety critical
systems such as the electronic brake system.

As the need for multi-core processors became apparent in the automotive industry, AUTOSAR introduced
the initial release of multi-core support in 2012 with version 4.0. The specification provides guidelines for
implementing multi-core architecture. One of the key elements is the Inter OSApplication Communication
(IOC), which provides the cross-core communication between applications located in different cores on a
single ECU. The current multi-core software implementation is still in development and there are
performance limitations that offer scope for improvement.

This thesis addresses the challenge of multi-core software in automotive systems and proposes possible
approaches for inter-core communication. In order to identify possible improvements, a number of
software benchmarking experiments were designed for intra-core and inter-core communication and
implemented on an universal ECU to validate the performance in term of execution time and memory
consumption. The results demonstrate that there are significant overheads caused by the design of the
communication functions.

4

Table of contents

Abstract ... 3

Table of contents ... 4

List of tables .. 9

List of figures ... 10

List of codes ... 13

Dedications and acknowledgements .. 14

List of abbreviations .. 15

1. Introduction ... 17

 Aim and objectives ... 18 1.1.

 Structure of the thesis .. 18 1.2.

2. Fundamentals .. 20

 The requirements embedded real time ... 20 2.1.

 Electronic control units .. 20 2.2.

 AUTOSAR the approach of the automotive sector ... 23 2.1.

 The AUTOSAR OS ... 24 2.1.1.

 AUTOSAR methodology .. 26 2.1.2.

 Multi-core microcontroller ... 26 2.2.

3. Literature review .. 27

 Multi-core challenge .. 27 3.1.

 Challenges of inter-core communication ... 28 3.2.

 Introduction to AUTOSAR 4.0 ... 29 3.3.

 Mechanism to improve inter-core communication .. 30 3.4.

 Synchronization strategy ... 31 3.4.1.

 Resource management ... 32 3.4.2.

 Notification .. 32 3.4.3.

 Conducted studies related to inter-core communication ... 33 3.5.

5

 Evaluation of previous work and gap in knowledge ... 34 3.6.

4. Design of experiments according to automotive systems .. 36

 SingleCoreV1_0 .. 38 4.1.

 SingleCoreV2_0 .. 40 4.2.

5. Test and development environment .. 42

 Verification of possible targets ... 42 5.1.

 Hardware environment .. 44 5.2.

 VC121-12 ECU ... 44 5.2.1.

 The emulator IC5000 on-chip analyser ... 47 5.2.2.

 STK600 development board .. 47 5.2.3.

 Software environment ... 48 5.3.

 VC121-12 software .. 48 5.3.1.

 AUTOSAR development tool ... 49 5.3.2.

 Wind River Diab compiler 5.8 .. 49 5.3.3.

 Analysis tool WinIDEA ... 50 5.3.4.

5.3.4.1.1. Program trace .. 50

5.3.4.1.2. Real- time debugger .. 51

5.3.4.1.3. Execution coverage .. 51

6. Implementation of experiments .. 52

 Hardware setup ... 52 6.1.

 Switch simulations... 53 6.1.1.

 Connecting the VC121-12 ECU .. 53 6.1.2.

 Connecting the STK600 ... 55 6.1.3.

 Connecting the IC5000 .. 56 6.1.4.

 Software development tool chain ... 57 6.2.

 Generated source code .. 58 6.3.

6.3.1.1. SingleCoreV1_0 ... 61

6.3.1.2. SingleCoreV2_0 ... 67

7. Evaluation of experiments .. 71

 Scheduling analysis .. 71 7.1.

 Scheduling analysis methodology ... 71 7.1.1.

 Verified requirements ... 72 7.1.2.

7.1.2.1. Requirements number 1 test description and results ... 73

6

7.1.2.2. Requirements 2 and 3 test description and results .. 84

7.1.2.2.1. Verification of requirement 2 and 3 on SingleCoreV1_0 ... 85

7.1.2.2.2. Verification of requirement 2 and 3 on SingleCoreV2_0 ... 87

 Validation of the scheduling process .. 90 7.1.3.

 Performance analysis ... 91 7.2.

 Performance measurement methodology .. 91 7.2.1.

 Performance analysis results .. 94 7.2.1.

 Verification of the performance analysis .. 99 7.2.2.

 Memory consumption .. 100 7.3.

 ROM consumption .. 100 7.3.1.

7.3.1.1. Task level and notification level .. 101

7.3.1.2. Write process level .. 103

 RAM consumption ... 105 7.3.2.

 Verification of the analyses of the memory consumption .. 106 7.3.3.

8. Summary and conclusion .. 108

9. Future work .. 111

10. References .. 112

11. Appendix .. 116

 STK600 source code .. 116 11.1.

 Python source code .. 118 11.1.

 User manual for DaVinciDeveloper.. 122 11.2.

 Project Assistant .. 122 11.2.1.

 Configure SWCs and RTE ... 123 11.2.2.

11.2.2.1. Create SWCs .. 123

11.2.2.2. Create Ports ... 125

11.2.2.2.1. Define Data Types .. 125

11.2.2.2.2. Define Application Port Interfaces (Ports) ... 126

11.2.2.3. Define runnables ... 127

11.2.2.4. Communication with external signals ... 128

11.2.2.5. Tasks and Task Mapping .. 129

11.2.2.6. Code Generation with DaVinci Developer ... 129

 Automotive microcontroller .. 130 11.3.

 VC121-12 ECU component diagram ... 131 11.4.

7

 System program flow chart ... 132 11.5.

 Start up and initialisation of VC121-12 ... 132 11.5.1.

 SchM_AsyncTask part 1... 133 11.5.2.

 SchM_AsyncTask part 2... 134 11.5.3.

 SchM_AsyncTask part 3... 135 11.5.4.

 SchM_AsyncTask part 4... 136 11.5.5.

 Performance analyses of SingleCoreV1_0 V1_0_1111 .. 137 11.6.

 V1_0_1111 write-process 0 to 6 ms .. 137 11.6.1.

 V1_0_1111 notification process 0 to 6 ms .. 138 11.6.2.

 V1_0_1111 read-process 0 to 6 ms ... 139 11.6.3.

 V1_0_1111 write-process 7 to 12 ms .. 140 11.6.4.

 V1_0_1111 notification process 7 to 12 ms .. 141 11.6.5.

 V1_0_1111 read-process 7 to 12 ms ... 142 11.6.6.

 V1_0_1111 write-process 13 to 18 ms .. 143 11.6.7.

 V1_0_1111 notification process 13 to 18 ms .. 144 11.6.8.

 V1_0_1111 read-process 13 to 18 ms ... 145 11.6.9.

 V1_0_1111 write-process 19 to 25 ms .. 146 11.6.10.

 V1_0_1111 notification process 19 to 25 ms .. 147 11.6.11.

 V1_0_1111 read-process 19 to 25 ms ... 148 11.6.12.

 Performance analyses of SingleCoreV2_0 V1_0_1111 .. 149 11.7.

 V2_0_1111 write-process 0 to 3 ms .. 149 11.7.1.

 V2_0_1111 notification process 0 to 3 ms .. 150 11.7.2.

 V2_0_1111 read-process 0 to 3 ms ... 151 11.7.3.

 V2_0_1111 write-process 4 to 7 ms .. 152 11.7.4.

 V2_0_1111 notification process 4 to 7 ms .. 153 11.7.5.

 V2_0_1111 read-process 4 to 7 ms ... 154 11.7.6.

 V2_0_1111 write-process 8 to 11 ms .. 155 11.7.7.

 V2_0_1111 notification process 8 to 11 ms .. 156 11.7.8.

 V2_0_1111 read-process 8 to 11 ms ... 157 11.7.9.

 V2_0_1111 write-process 12 to 15 ms .. 158 11.7.10.

 V2_0_1111 notification process 12 to 15 ms .. 159 11.7.11.

 V2_0_1111 read-process 12 to 15 ms ... 160 11.7.12.

 V2_0_1111 write-process 16 to 19 ms .. 161 11.7.13.

 V2_0_1111 notification process 16 to 19 ms .. 162 11.7.14.

 V2_0_1111 read-process 16 to 19 ms ... 163 11.7.15.

 V2_0_1111 write-process 20 to 23 ms .. 164 11.7.16.

 V2_0_1111 notification process 20 to 23 ms .. 165 11.7.17.

 V2_0_1111 read-process 20 to 23 ms ... 166 11.7.18.

8

 V2_0_1111 write-process 24 to 25 ms .. 167 11.7.19.

 V2_0_1111 notification process 24 to 25 ms .. 168 11.7.20.

 V2_0_1111 read-process 24 to 25 ms ... 169 11.7.21.

26 824 words

9

List of tables

Table 5-1: Comparison of different hardware environments .. 43

Table 6-1: Pin assignment of VC121-12 ECU to other devices ... 53

Table 6-2: Task characteristics of SingleCoreV1_0 Implementation ... 61

Table 6-3: Task characteristics of SingleCoreV2_0 implementation ... 67

Table 7-1: Results the scheduling validation of both implementations .. 90

Table 7-2: Intra-task versus inter-task communication time ... 95

Table 7-3: Time that was spent to execute the write process of the intra-task versus inter-task

communication ... 96

Table 7-4: Time that was spent to execute the read process of the intra-task versus inter-task

communication ... 97

Table 7-5: Time that was spent to execute the read process of the intra-task versus inter-task

communication ... 98

Table 7-6: ROM consumption of both communications types .. 100

Table 7-7: Overview of the write-process and its ROM consumption for both implementations 103

Table 11-1: Check- list for defining a runnable... 127

Table 11-2: This overview is a section out of (Freescale Semiconductor, 2014)..................................... 130

10

List of figures

Figure 2-1: CAN network, (Vector, 2010) ... 22

Figure 2-2: AUTOSAR ECU software architecture, (AUTOSAR, 2003) .. 23

Figure 2-3: Task states of extended and basic tasks, (AUTOSAR, 2014a) ... 25

Figure 3-1: Intra-core and inter-core communication in AUTOSAR 4.0 ... 29

Figure 4-1: Graphical illustration of software components mapped to tasks of SingleCoreV1_0 37

Figure 4-2: Graphical illustration of software components mapped to tasks of SingleCoreV2 40

Figure 5-1: Block diagram of the VC121-12 ECU (Vector, 2011) .. 44

Figure 5-2: Block diagram of SPC56EC64B3 microcontroller .. 45

Figure 5-3: Overview of the software architecture of VC121-12 ECU, (Vector, 2012)............................... 48

Figure 5-4: WindRiver Diab Compiler workflow.. 49

Figure 5-5: Abstract visualisation of the call - timeline ... 50

Figure 5-6: Coverage Statistic of function Rte_Write_SwcEvent04 ... 51

Figure 6-1: Layout of the test environment... 52

Figure 6-2: VC121-12 ECU pin connectors .. 53

Figure 6-3: Pin assignment of the STK600 board, (Atmel, 2010) .. 55

Figure 6-4: The IC5000 analyser and its connectors ... 56

Figure 6-5: Illustration of the connection of the ground wire with the ECU .. 56

Figure 6-6: Overview of the software development tool chain ... 57

Figure 6-7: Program flow chart for the explicit communication in SingleCoreV1_0 63

Figure 6-8: Program flow chart for the implicit communication in SingleCoreV1_0 65

Figure 6-9: Program flow chart for the explicit communication of the writing task in SingleCoreV2_0 69

Figure 6-10: Program flow chart for the explicit communication of the reading task in SingleCoreV2_0 .. 69

Figure 6-11: Program flow chart for the implicit communication of the writing task in SingleCoreV2_0 70

Figure 6-12: Program flow chart for the implicit communication of the reading task in SingleCoreV2_0 .. 70

Figure 7-1: Task calling sequence for the first 25 ms of SingleCoreV1_0 for the case when each switch is

closed ... 73

Figure 7-2: Task calling sequence for the first 25 ms of SingleCoreV1_0 for the case when each switch 1

is open .. 74

Figure 7-3: Task calling sequence for the first 25 ms of SingleCoreV1_0 for the case when only switch 1

is open .. 74

Figure 7-4: Task calling sequence for the first 25 ms of SingleCoreV1_0 for the case when only switch 1

is close .. 75

Figure 7-5: Task calling sequence for the first 25 ms of SingleCoreV2_0 for the case when each switch is

closed ... 76

Figure 7-6: Task calling sequence for the first 25 ms of SingleCoreV2_0 for the case when all switches

are open.. 77

file:///C:/Users/Admin/Documents/My_Documents_23_02_16/Finale/Finale_end/End/MScRes_Kristina_Zubac_March_2016.docx%23_Toc446951643

11

Figure 7-7: Task calling sequence for the first 25 ms of SingleCoreV2_0 for the case when switch 1 is the

only open switch ... 78

Figure 7-8: Task calling sequence for the first 25 ms of SingleCoreV2_0 for the case when switch 1 is the

only closed switch ... 78

Figure 7-9: QTaskActivation queue .. 80

Figure 7-10: Insert process of task SchM_Sync to the QTaskActivation queue .. 81

Figure 7-11: QHighPrio ored with priotiy mask of task SchM_Sync .. 82

Figure 7-12: Dequeue process of task Task_Period_Expl_Swc2to1_Out out of QTaskActivation queue 83

Figure 7-13: QTail queue with its maximum activation .. 83

Figure 7-14: QTail queue with its maximum activation .. 83

Figure 7-15: Runnable, write and read level scheduling for the case when each switch is closed from

SingleCoreV1_0 ... 85

Figure 7-16: Runnable, write and read level scheduling for the case when each switch is open from

SingleCoreV1_0 ... 85

Figure 7-17: Runnable, write and read level scheduling for the case when only switch 1 is closed from

SingleCoreV1_0 ... 86

Figure 7-18: Runnable, write and read level scheduling for the case when only switch 1 is open from

SingleCoreV1_0 ... 87

Figure 7-19: Runnable, write and read level scheduling for the case when all switches are closed from

SingleCoreV2_0 ... 88

Figure 7-20: Runnable, write and read level scheduling for the case when all switches are open from

SingleCoreV2_0 ... 88

Figure 7-21: Runnable, write and read level scheduling for the case when switch 1 is the only close switch

from SingleCoreV2_0 ... 89

Figure 7-22: Runnable, write and read level scheduling for the case when switch 1 is the only open switch

from SingleCoreV2_0 ... 89

Figure 7-23: Performance measurement methodology of explicit write of SingleCoreV2_0 92

Figure 7-24: Performance measurement methodology of the explicit notification process of

SingleCoreV2_0 ... 92

Figure 7-25: Performance measurement methodology of the implicit write process of SingleCoreV2_0 .. 93

Figure 7-26: Performance measurement methodology of the implicit notification process of

SingleCoreV2_0 ... 93

Figure 7-27: Intra-task communication versus inter-task communication graphical overview 94

Figure 7-28: Intra-task write process versus inter-task write process .. 96

Figure 7-29: Intra-task read-process versus inter-task read process .. 97

Figure 7-30: Intra-task notification versus inter-task notification .. 98

Figure 7-31: ROM consumption of SingleCoreV1_0 vs. SingleCoreV2_0 ... 100

Figure 7-32: RAM consumption of SingleCoreV1_0 vs. SingleCoreV2_0 ... 105

Figure 7-33: Sequence diagram of SingleCoreV1_0 implicit communication with focus on the copy

process ... 107

12

Figure 7-34: Sequence diagram of SingleCoreV2_0 implicit communication with focus on the copy

process ... 107

Figure 11-1: Drag and Drop of software components .. 124

Figure 11-2: Right-click on data type .. 125

Figure 11-3: Insert S/R Port Interface .. 126

Figure 11-4: Selection of data element .. 126

Figure 11-5: VC121-12 ECU component diagram ... 131

Figure 11-6: Program flow chart for the start up and initialisation of VC121-12 132

Figure 11-7: Program flow chart for the SchM_AsyncTask part 1 ... 133

Figure 11-8: Program flow chart for the SchM_AsyncTask part 2 ... 134

Figure 11-9: Program flow chart for the SchM_AsyncTask part 3 ... 135

Figure 11-10: Program flow chart for the SchM_AsyncTask part 3 ... 136

file:///C:/Users/Admin/Documents/My_Documents_23_02_16/Finale/Finale_end/End/MScRes_Kristina_Zubac_March_2016.docx%23_Toc446951695
file:///C:/Users/Admin/Documents/My_Documents_23_02_16/Finale/Finale_end/End/MScRes_Kristina_Zubac_March_2016.docx%23_Toc446951696
file:///C:/Users/Admin/Documents/My_Documents_23_02_16/Finale/Finale_end/End/MScRes_Kristina_Zubac_March_2016.docx%23_Toc446951697
file:///C:/Users/Admin/Documents/My_Documents_23_02_16/Finale/Finale_end/End/MScRes_Kristina_Zubac_March_2016.docx%23_Toc446951698

13

List of codes

Source code 6-1: SchM task example .. 59

Source code 6-2: Implementation of an extended task in SingleCoreV1_0 ... 62

Source code 6-3: Implementation of the basic task of the write process in SingleCoreV2_0 68

Source code 6-4: Implementation of the basic task of the read process in SingleCoreV2_0 68

Source code 7-1: Source code of the Task_Event_Expl_Swc4to3 function of SingleCoreV1_0 with its

ROM memory consumption .. 102

Source code 7-2: Source code of the write and read task of the communication between SWCEvent04

and SWCEvent03 of SingleCoreV2_0 with its ROM memory consumption .. 102

Source code 7-3: Source code of the Rte_Write of SWCIoHwPeriod06 in SingleCoreV1_0 with its ROM

memory consumption ... 104

Source code 7-4: Source code of the Rte_Write of SWCIoHwPeriod06 in SingleCoreV2_0 with its ROM

memory consumption ... 104

Source code 11-1: STK600 CAN messages .. 117

14

Dedications and acknowledgements

I would like first and foremost to thank my supervisors Dr Violeta Holmes and Prof. Dr. Karsten Schmidt

for the useful comments, remarks and engagement and they believe into my skills to provide me the

opportunity to study in United Kingdom.

I would also like to thank my whole family for they strong believe that woman are dedicated for

engineering.

Finally I would like to thank my new and old friends:

Silvia Stojćeva, Desika Divković, Elena Zänglein, Younes El Ouarti, Philipp Brocar,

Karina Zala, Rudo Nomhle, Emina Brown, Sree Nirjhor Kaysthagir ,Isuru Sendanayake, Savith

Sendanayake, Noukhez Ahmed, Fajer Mohamed, Aadil Rafiq, Hardy Punglia, Joshua Higgins, Joseph

Bradford and Matthew Newall for always being there when I needed to talk through ideas or just rant

about my day.

Also I would like to say a big thank you to all supporters:

Dr. Colin Venters, Mrs Gwen Wood, Mr Chris Sentence, Miss Nicola Williams and Mrs Liz Rees.

15

List of abbreviations

A Amper

ABS Anit-lock braking systems

AMALTHEA Advances of machine learning in theory and applications

AUTOSAR Automotive open system architecture

BCM Brake control module

BSW Basic software

CAN Controller area network

CANH Controller area network High

CANL Controller area network Low

CAS Compare-and swap

DINx Digital input number x

ECU Electronic control unit

FIFO First-in-first-out

Func Function

GPRs General purpose registers

IDE Intergrated development environment

IOC Inter- OS-application communication

IPO Input-process-output

ITEA 2 International test and evaluation association

KB Kilo byte

Kbit/s Kilobits per second

KHz Kilo Herz

KΩ Kilo Ohm

L1 First level cache

L2 Second level cache

LIN Local Interconnect Network

M Master

MB Mega byte

Mbit/s Megabits per second

MCU Microcontroller

Mictor Matched Impedance Connector

MIPs Million instructions per second

MMU Memory protection unit

MPCP Multi-core priority ceiling protocol

ms Millisecond

MSRP Multi-core stack resource policy

ns Nanoseconds

16

ORTI OSEK run time interface

OS Operating system

OS-Application Operating system application

OSEK Open Systems and their interfaces for the electronics in motor vehicles

PC Personal computer

PCM Powertrain control module

PCP Priority ceiling protocol

RAM Random-access memory

ROM Read-only memory

RTE Runtime environment

S Slave

SBC System basis chip

SC Safety controller

SchM Basis software scheduler

SingleCoreV1_0 Single-core version 1.0

SingleCoreV2_0 Single-core version 2.0

SR Share resource

SRAM Static aandom-access memory

SWC Software component

V Volt

VDX Vehicle distributed executive

VLE Variable-length encoding

WCRT Worst-case response time

s Microseconds

17

1. Introduction

The vehicles have become increasingly computerized in order to satisfy the strict safety requirements and

to increase the driving comfort. It is the complexity of various requirements such as active driving safety

and new powertrain concepts, that increase the need for controlling and programming additional

electronic systems vehicles. Each of these innovations requires a platform to execute such software, the

electronic control unit (ECU).

In order to define a standard for the development of new embedded software for automotive industry, a

foundation called “AUTomotive Open System ARchitecture” (AUTOSAR) was founded by core partners,

automobile manufacturers, suppliers, and tool developers in the year 2003, (AUTOSAR, 2003). The main

goal of AUTOSAR is the definition of an uniform ECU software architecture, which separates hardware

and software, (Fons & Fons, 2012). This decoupling reduces the software complexity by improving the

reusability of software components as well as saving resources, time and costs.

The standardisation of software and the increasing requirements for resources brought the single core

processors to their limit of performance. Hence, new techniques had to be introduced for increasing

computational power in ECUs. One possible solution is to increase the frequency of the single-core

microcontroller. However, this strategy caused high power consumption. The additional power leads to

power dissipation that not only decreased the reliability, it also became too expensive for the automotive

industry, (Freescale Semiconductor, 2009). Hence, the automotive industry decided to use multi-core

processors, which provide the ability to reduce the design complexity of automotive control systems.

Although the multi-core systems have become the norm for desktop computers, the development of multi-

core real-time solutions in automotive is still in the nascent stages. When the need for multi-core

processors became apparent in the automotive industry, AUTOSAR introduced the first version of multi-

core support in version 4.0, released in 2012. This version describes a new approach for handling

microcontrollers with multiple cores especially the communication of applications among cores (inter-core

communication). Although AUTOSAR released the latest version of AUTOSAR 4.2 in year 2015, the

additional overhead that is caused by the inter-core communication, could not be limited.

Moreover, multi-core systems provide speedup gain through parallel coding. As the legacy code was

written for a single- core system, as a sequential code. Even if fractions of this code are able to run in

parallel, they are still requiring synchronization through communication over the cores in a multi-core

system. Furthermore, embedded systems have strong requirements regarding the safety, reliability and

real time constraints. To meet these conditions, the execution time of inter-core communication should be

reduced as much as possible to maintain the response time in safety critical systems such as the

electronic brake system.

18

This project is exploring the current state of inter-core communication on multi-core ECUs. It was

discovered that no inter-core communication implementation is available for academic use. In order to

ascertain possible approaches for inter-core communication, a number of experiments were designed to

evaluate software for intra-core as well as inter-core communication. These experiments were

implemented and validated on the universal ECU VC121-12 from Vector assessing the performance and

memory consumption of software.

 Aim and objectives 1.1.

This Master project is investigating the current state of inter-core communication on multi-core ECUs.

Therefore, the aim of the project is to analyse and evaluate the intra-core communication software

implemented in current AUTOSAR single-core architecture regarding the performance in terms of

execution time and memory consumption.

In order to meet the overarching project goal, the following objectives were identified:

1. Investigate current solution for inter-core communication

2. Identify appropriated hardware and software used in automotive industry for real-time systems

3. Design suitable experiments for intra-core and inter-core communication in ECUs by using the

two different communication technics (explicit and implicit) defined in AUTOSAR

4. Implement these experiments by using the AUTOSAR methodology

5. Evaluate the experiments regarding the performance and memory consumption

6. Propose possible improvements in multi-core software design, especially for intra and inter-core

communication software, in order to improve execution time and memory consumption

 Structure of the thesis 1.2.

This thesis presents the body of work, which has been carried out for this research study, and is

organised as follows:

 Section 2 provides the fundamentals of multi-core systems deployed in automotive industry. It

describes the requirements of embedded real-time systems and presents the platform on which

this research is based, the Electronic Control Units. Furthermore, it introduces the AUTOSAR

architecture and the multi-core microcontrollers used in automotive.

 Section 3 explains the challenges of multi-core microcontroller in automotive with a focus on

inter-core communication. It also presents related work and possible mechanism to improve the

inter-core communication for multi-core systems in automotive industry.

 Section 4 describes the experiments, which were designed, implemented and evaluated in this

work.

19

 Section 5 presents the test and development environment on which the experiments were

conducted.

 Section 6 explains implementation procedure of the experiments. It provides a brief overview of

the hardware setup and the software development tool set. In addition, it describes the outcome

of the implementation, and the generated source code.

 Section 7 contains the evaluation of the generated source code regarding the scheduling,

performance and memory consumption.

 Section 8 concludes with the research findings providing a summary of the achievements. This

section also discusses possible improvements that were determined the evaluation. It also

proposes possible directions for future developments of inter-core communication software.

20

2. Fundamentals

This section explains fundamentals that are necessary to understand the scope of this work. First, the

requirements of embedded real-time systems are described. Secondly, the electronic control unit and the

AUTOSAR standard are presented. Finally, the multi-core microcontroller is introduced.

 The requirements embedded real time 2.1.

An Embedded system is a programmable computer device with specific functions, it has a minimum of

one processor that implements a desired hardware function, (Noergaard, 2005). Real-time embedded

systems are extremely dependent on time and costs. Each cent has to be justified according to

functionality, production and reliability. Real-time systems operate in the real world and are therefore

limited by the physical conditions of the controlled system.

Scheduling

In comparison with personal computers; real-time systems have to control many devices simultaneously,

For instance, the requests of multiple users of a database, (Gallmeister, 1995 p. 13). To accomplish these

challenges, these processes have to be scheduled in a way that each time constraint is fulfilled.

Resource management

The resources of embedded real-time systems have to be shared between tasks that are executed on the

microcontroller (MCU). The need to share resources is due to the limited budget that influences the price,

(Gallmeister, 1995). A shared resource such as memory has to be managed otherwise deadlocks can be

caused. This is then the case, if a less important task gets the resource first and therefore blocks other

more important tasks to access this resource. This would then lead to long latency, deadlocks.

Compatibility

To hold the selling price of a real-time system as low as possible the device should be portable through

innovations, which means updates in software should be backwards compatible, (Gallmeister, 1995).

Reliability

During the execution of a movie at a personal computer some fails of sound can be tolerated, but a real-

time system has to be reliable at every time, (Gallmeister, 1995 p. 13-15) .

 Electronic control units 2.2.

Software is no longer just represented in computing systems such as PCs. The amount of software

implemented in vehicles increase since the introduction of the engine control unit in the 1970s (Ribbens,

21

2013 p. 178) . The estimation of (Scott, 2004) from General Motors illustrates that software that is

implemented in a vehicle consists approximately 100 code lines in 1970. This amount of software

increased to 100 000 code lines in 1990. It is the number of functionality such as active driving safety

(e.g. anti-lock braking systems), new powertrain concepts (e.g. hybrid engines) and new infotainment

functions (e.g. navigation system) that increase the electronic amount in vehicles. Each of these

functionalities requires a platform to execute such software, the electronic control unit.

An ECU is a microprocessor-based system and uses the input-process-output (IPO) model to control

electronic subsystems in a vehicle, (Ciulla, 2000) . Some of the ECUs are the Powertrain Control Module

(PCM) and Brake Control Module (BCM), (Instruments, 2009). The PCM monitors and controls, for

instance, the speed of the vehicle. Moreover, the BCM regulates the braking system. It optimises the

braking mechanism by providing software solutions (funtionality) for safe driving. One of such funtionality

is the anti-lock braking system (ABS), which provides full tractability while braking (Instruments, 2009).

The communication between such ECUs and sensor as well actuators are performed over the field bus.

CAN, FlexRay and LIN are three of the most used field bus systems within the automotive domain. The

following section is providing a brief overview of the CAN network, due to that this network is relevant for

this work.

The Controller Area Network (CAN) is a serial communication technology, which is used to transfer data

between ECUs, (Vector, 2010). It was introduced by Bosch in 1983 and standardised in 1994 (Standard,

1993). This CAN network connects maximal 32 CAN nodes, e.g. ECUs, through a physical transmission

medium (CAN bus) with each other. The CAN bus consists of a unshielded twisted two-wire lines, CAN

High (CANH) and CAN Low (CANL) to reduce the effect of external magnetic field. Furthermore, on each

ends is a termination resistors (95 Ohm - 140 Ohm) set to avoid transient reactions by absorbing the

energy of the data signals, ISO 11898-6 (ISO, 2013). CAN communication is gained through a CAN

interface based on CAN-transceiver and CAN-Controller as seen in Figure 2-1. The CAN transceiver

protects the CAN controller from overvoltage and handles the bus connection. The CAN controller

contains all the necessary communication functions. A CAN Controller is often implemented as an on-

chip module, therefore the communication between MCU and CAN controller is more reliable and faster

(Vector, 2010).

22

Figure 2-1: CAN network, (Vector, 2010)

CAN consists of two interfaces, high-speed CAN and low-speed CAN. High-speed CAN supports a data

rate up to 1 Mbit/s and is used in safety critical applications like engine control unit. While Low-speed

CAN supports a data rate up to 125 kbit/s and is used in non-safety critical applications like comfort

services e.g. air conditioner. In additional the low-speed CAN does not require a specific termination

resistor due to the reduced data rate data rate (Vector, 2010). The transmission of data between the CAN

nodes is based on different voltages, which are distinguished by a dominant and recessive bus level. If

therefore more than one CAN node sends CAN messages simultaneously through the CAN bus, the one

with a dominant bus interface will overwrite the recessive bus levels. In the CAN network system every

CAN node is authorized to place CAN messages on the bus and every CAN message is available for

every CAN node. The CAN network provides three types of frames. Each CAN message is sent in a data

frame. An error is acknowledged in an error frame and if a CAN node request data a remote frame is

send.

23

 AUTOSAR the approach of the automotive sector 2.3.

The first software controlled application in vehicles, where written mostly in assembly language on a

single microprocessor, (Knutsson, 2010). Therefore both hard- and software were tightly connected

together. Also the hard- and software were provided from the same vendor supplier. Moreover, each

function was implemented on its own ECU, (Knutsson, 2010). This ECU implementation strategy has led

to increased software complexity. In addition, the number of ECUs increased as more and more

functionalities had to be implemented on ECUs. Due to the high consumption of space and an increased

fault rate, automotive manufacturers begin to merge functionalities from two ECUs into one to reduce the

number of ECUs.

With the demand for more structure and reusability became apparent in the automotive industry,

standardisation consortiums such as OSEK/VDX were introduced. OSEK/VDX was established 1994

from two joint projects, OSEK and VDX, to standardise embedded real-time operating systems for ECUs,

(OSEK/VDX, 2005). This aim is continued and expended to the whole ECU software by “AUTomotive

Open System Architecture” (AUTOSAR). Automobile manufacturers, suppliers and tool developers

founded AUTOSAR in order to manage the software complexity in vehicles in the year 2003, (AUTOSAR,

2003). The main goal of AUTOSAR is the definition of uniform ECU software architecture and

methodology.

The following section is first presenting the software architecture of AUTOSAR 3.2 for single-core ECUs.

Furthermore, it describes briefly the AUTOSAR OS and illustrates the AUTOSAR methodology. Finally,

the major communication mechanisms of the RTE are described.

Figure 2-2: AUTOSAR ECU software architecture, (AUTOSAR, 2003)

The AUTOSAR software architecture is divided into four main layers, which are executed on a

microcontroller, as shown in Figure 2-2, and described as follows:

http://www.dict.cc/englisch-deutsch/reusability.html

24

Application software

The first layer is the application layer, which includes a set of ECU functionalities that are abstracted in

software components (SWC). Each SWC contains one or more runnable. Runnables are small code

fragments that call the standardised communication interfaces provided by the RTE. A runnable can be

triggered through events or periodically.

Runtime environment

The second layer, the runtime environment (RTE), provides communication interfaces to the application

layer, (Francisco & Fons, 2012). The isolation software application from the hardware dependent basic

software, through the RTE ,provides the flexibility to exchange SWC without the consideration on the

ECU hardware.

Basic software

Beneath the RTE is the basic software (BSW). The basic software contains BSW modules such as:

 the operating system (OS)

 services that handle different background e.g. memory and flash management

 communication that includes the communication via CAN and other networks

 microcontroller abstraction layer that abstracts hardware dependant features to avoid the direct

access to the hardware

ECU hardware

At the bottom is the ECU hardware, which abstracts the MCU and some standard hardware peripherals,

(AUTOSAR, 2003).

The layered architecture and defined interfaces between these layers reduces the software complexity by

separated the hardware dependent component from the software, hardware independent, (Fons & Fons,

2012). In addition, it also provides the ability to reuse soft- and hardware components between different

vehicle platforms.

 The AUTOSAR OS 2.3.1.

The Operating system of desktop PCs schedules each process of the BSW. In comparison to such

operating systems, the operating system for automotive architecture provides only the services to

schedule tasks, manage resources and events, (AUTOSAR, 2014a). Furthermore, the scheduling of the

whole BSW is managed by the BSW scheduler, which will be explained on a practical example in section

6 on page 52, (AUTOSAR, 2008b). The following section describes briefly some major aspects of the

AUTOSAR OS.

A task is the smallest schedulable framework of the AUTOSAR OS in which context the runnables are

called (AUTOSAR, 2012a p. 81). Runables represents the implementation of a function in a SWC in the

25

Application layer. The AUTOSAR OS follows the static priority scheduling policy, where each task is

assigned with static priorities, (AUTOSAR, 2014a). Furthermore, tasks can be classified as pre-emptive

or non pre-emptive. AUTOSAR OS handles concurrent access to shared resources through the priority

ceiling protocol (PCP), (Sha, 1990). This means that the task that operates with the shared resource is

provided with the highest priority of all running tasks. In this way no other task is able to get the CPU to

occupy the share resource, (Sha, 1990). AUTOSAR OS provides two different types of tasks: basic task

and extended task, (AUTOSAR, 2014a). A basic task terminated after completion, whereas an extended

task is able to wait for an event without termination in the state “WAIT”. Figure 2-3 on page 25 illustrates

the possible states of both tasks types.

RUN

SUSPENDED

READY

WAIT

wait

release activate

terminate

startpreemt

Figure 2-3: Task states of extended and basic tasks, (AUTOSAR, 2014a)

RUN The task is currently being executed.

READY The task has completed preparations for running and is ready to be executed

WAIT The context of the task is saved and it waits until it is released to be transferred to

the state “READY”.

SUSPENDED The task is inactive in this state.

Tasks and therefore the included runnable calls can be activated periodically of by an event. The

runnables contains the different communication interfaces that are provided by the RTE. Two of these

communication interfaces are explicit and implicit communication. The explicit communication provides

function that allows direct access, write and read, to the shared resource, here data. Whereas, in the

implicit communication the data is modified from the RTE after the writing process is completed,

(AUTOSAR, 2011). An implementation of these two communication types is demonstrated in section

section 6.3 on page 58.

26

 AUTOSAR methodology 2.3.2.

Not only the ECU software architecture was standardized, also the process to implement the software is

defined through AUTOSAR. The implementation of the ECU software is defined in a work product flow,

the methodology. This methodology is divided into three configuration layouts: System configuration, ECU

configuration and Component configuration, (AUTOSAR, 2008a). Each of these layouts begins with a

configuration description in XML format and each configuration layout provides the necessary input for

the upcoming layout.

The system configuration contains information about which software components are distributed on which

ECU. The ECU configuration contains the configuration of the BSW and RTE. Furthermore, the software

configuration contains the implementation of the runnables. These configurations are used to generate

the source code that is executed on the ECU. The generation is provided by AUTOSAR development

tool, see section 5.3.2 on page 49.

 Multi-core microcontroller 2.4.

The increase of functionalities that have to be implemented on a single-core ECU not only leads to an

increase of software complexity, it also increased the need for more performance. This performance need

was achieved through the improvement of the clock frequency of the processor, which caused an

increase of power consumption. The additional power is generating heat that decreases the reliability and

shortens the longevity of the ECU. Therefore, this mechanism to gain more performance got too

expensive, (Freescale Semiconductor, 2009).

A solution to this problem is the multi-core processor, which reduce the design complexity of ECUs,

(Senthilkumar & Ramadoss) . In addition, the design costs for an microcontroller with multiple number of

cores is lower than to develop strategy to improve the performance of single-core microcontrollers,

(Grave, Embedded Multi-Core Conference). In general multi-core microcontrollers has two types

homogeneous and heterogeneous multi-core microcontroller, (Freescale Semiconductor, 2009).

Homogenous multi-core microcontroller has identical processors with the same features and instruction

sets. Whereas, heterogeneous multi-core microcontroller has multiple processors with a set-up of

different features and instruction sets, (Freescale Semiconductor, 2009). Heterogeneous multi-core

microcontrollers provide the ability to merge functionalities that require less performance onto the

processor that has less features.

Therefore, the automotive industry preferences the heterogeneous microcontroller, because of their

efficient coverage of workload demand, (Wei, Qiu, Young, & Chang, 2011).

27

3. Literature review

This section highlights the challenges of multi-core in automotive with a focus on inter-core

communication. It also presents related work and possible mechanism to improve inter-core

communication for multi-core systems in automotive.

 Multi-core challenge 3.1.

Although the multi-core systems have become the norm for desktop computers, the development of multi-

core real-time solutions in automotive is still in the early stages. As (Grave, Embedded Multi-Core

Conference) presented at the Embedded Multi-Core Conference 2015 is the automotive industry at least

five to eight years behind the technology used in IT systems. One possible reason for this regression are

the requirements of embedded systems such as safety, reliability and real-time behaviour, see section 2.1

on page 20. Hence, the amount of performance improvement from the use of multi-core system is

strongly dependant on the ability to run the legacy code parallel (Rudolf Grave 2014), the identification of

possible parallel running code sections (tasks) is one of the main challenges for the automotive sector.

(Siebert, 2010) pointed out that source code that has 25 % of sequential code would decrease the

performance gain of multi-core systems by a factor of four. Furthermore, new features such as advanced

driver assistance systems increase the number of instructions and the complexity of the ECU software.

Therefore, it became essential to develop automated partitioning and mapping tools. Several studies

were conducted to avoid the manual migration from single-core software to multi-core platform. Even

projects such as the AMALTHEA platform (Amalthea, 2016), which is funded from a Europe-wide

research and development inter-governmental network initiative the ITEA 2 (ITEA, 2016) was established

in 2011 to face the challenge of parallelism in embedded multi-core systems by developing an open

source tool platform for automotive embedded-system engineering.

One of the conducted criteria to gain an efficient task mapping to the additional core is the identification of

the frequency and quantity of data transfer between the tasks (Höttger, Krawczyk, & Igel, 2015). These

two aspects are significant, because an inefficient task allocation could require a high amount of data

transfer, which would have an effect on the performance so that in the worst-case, the task would miss

their time constraints.

28

 Challenges of inter-core communication 3.2.

The automated analysis tools are one possible way to face the time overhead of data transfers between

processor cores (inter-core communication). Another possible solution would be to improve the inevitable

inter-core communication.

To be able to improve such communication, it is necessary to analyse the possible obstacles first. Inter-

core communication that is realized through shared memory could cause concurrency issues. In a system

where two tasks have access to a shared resource, it is necessary to prevent a task from reading this

shared resource (SR), when the SR is still being modified by another task (mutual exclusion) to avoid

data inconsistencies,(Lakshmanan, Bhatia, & Rajkumar, 2011).

Furthermore, operating in a system with a static priority scheduling policy such as AUTOSAR conform

operating systems could result to deadlocks. Deadlocks can occur in a system that uses lock-based

mechanism to avoid data inconsistencies, (Lakshmanan et al., 2011). For example, a deadlock could

occur if a high prioritised task interrupts a lower priority task, before the lower priority task is able to

realises the lock of the SR. A request for the SR from the higher priority task would lead to an endless

waiting loop (starvation), because the SR is still hold by the low priority task, (Lakshmanan et al., 2011).

Such remote blocking is caused through inefficient resource management and a not existing

synchronisation strategy. The consequence of such implementations are time overhead that could lead to

not obey the time constraints, which is not acceptable for safety critical systems such as electronic

braking systems.

29

 Introduction to AUTOSAR 4.0 3.3.

As the need for multi-core microcontrollers became apparent in the automotive industry, AUTOSAR

introduced the first version of multi-core support in version 4.0 released in 2012. (AUTOSAR, 2012b)

AUTOSAR 4.0 is differentiating between two communication types for SWCs running on the same core

(intra-core communication) and the communication between SWCs running on different cores (inter-core

communication).

Figure 3-1: Intra-core and inter-core communication in AUTOSAR 4.0

Both communications are sharing particular resources between the tasks. In intra-core communication,

the RTE is responsible to guarantee data consistency as described in section 2.3 on page 23. Figure 3-1

shows an abstraction of a possible implementation of intra-core communication according to AUTOSAR

4.0.

The multi-core OS in AUTOSAR is defined under the same configurations like AUTOSAR OS, but it

operates on a different data structure (OS-Application) for each core with one operating system for all

cores. An OS-Application is a collection of OS objects, e.g. task, resources, interrupt service routines and

it is statically assigned to a core. Each of these objects has its own ID, which has to be unique across all

cores (AUTOSAR, 2012c).

The inter-core communication is provided by the Inter- OS-Application Communication (IOC) and used by

RTE. This way the upper layers of the software architecture will remain hardware independent by

replacing the RTE communication buffer with the IOC buffer (AUTOSAR, 2011). AUTOSAR proposes to

implement the IOC buffer as a share memory between the cores. Thereby, the IOC has to guarantee the

30

data consistency, and is responsible for the notification for the other cores that new data is available after

a successful write process.

Compared to intra-core communication could the PCP (priority ceiling protocol), see section 2.3 on page

23, not prevent deadlocks or mutual executions in multi-core processors since the highest priority just

affects the task on the same core. For that reason, AUTOSAR recommends to use the so-called

Spinlocks wrapped by a suspend-all-interrupt function. Spinlock is a lock mechanism, which polls a lock

variable and performs a busy-wait
1
 until it becomes available to enter the critical section

2
 (AUTOSAR,

2014a).

Alternative to the PCP for intra-core communication is AUTOSAR suggesting several other mechanisms.

Other possible mechanisms that guarantee data consistency are:

Sequential scheduling strategy

The write- and read-process will be executed in different time slots, so that no intervention is possible.

Task blocking strategy

This mechanism should avoid mutual pre-emption of tasks. Therefore, no task that has access to the

critical section is allowed to pre-empt another task with the same access rights.

Copy strategy

In this mechanism each Buffer has an identical copy Buffer. In this case concurrent access for different

tasks are possible (AUTOSAR, 2011).

The latest standard of AUTOSAR was released in 2015, AUTOSAR 4.2.1 and contained no new

suggestions for inter-core communication. Moreover, it introduces new concepts for the data transfer

through CAN, extended features for the infotainment systems and an extension for the basis software

partitioning as presented from Mohamed Salah at the webinar “Migrating to AUTOSAR 4.2” (Salah,

2016).

 Mechanism to improve inter-core communication 3.4.

As AUTOSAR only provides a guideline for multi-core ECU developers, it is necessary to consider also

other possible mechanism to avoid data inconsistencies, and still meet the time constrains as well as the

ability to priorities safety critical functions over low priority tasks.

The following section is related to the possible bottlenecks of inter-core communication, such as

synchronization strategy, resource management, notification and memory access.

1
 A time slot in which the processor is being busy without doing useful work

2
 The critical section is the piece of code, which produce incorrect result when executed concurrently

31

 Synchronization strategy 3.4.1.

The implementation of inter-core communication requires protection of shared resources to guarantee

data consistency. (Zeng & Natale, 2011) discussed several protection mechanism by defining and

evaluating the worst-case response time (WCRT) for each mechanism. The protection mechanism

described in (Zeng & Natale, 2011) are:

Lock-based mechanisms

In a lock-based mechanism a task will block the SR through a lock as soon the SR is available. In case

where the lock is hold by another task the requested task can be transferred to a waiting list or spin until

the lock is released (Zeng & Natale, 2011), e.g. Spinlock defined in AUTOSAR.

Multi-processor extension of the Priority Ceiling Protocol

This mechanism is the multi-core extension of the Priority Ceiling Protocol (MPCP) defined in (Rajkumar,

1990). When a task fails to lock a SR, it will be added to a prioritized queue and ether be suspended, so

that a lower prioritise task can be executed until the lock is released, or the task will continue spinning

until the SR is available. When the task receives the lock for the SR, its scheduling priority will be raised

to the sum of a priority higher than all normal tasks in the same core, and the highest priority of any task

that has access to the SR.

Multi-processor stack resource policy

This lock-based mechanism is the multi-processor extension of Stack Resource Policy (MSRP)

(Rajkumar, 1990), presented in (Gai, Lipari, & Natale, 2001), which is setting the task that holds the lock

to non pre-emptive. Each task that fails to access the lock will be added to a FIFO queue and keeps

spinning until the SR is available.

Wait-free mechanism

The wait-free mechanism is using a replication from the original communication buffer, which is

comparable with the copy strategy mechanism from AUTOSAR. Through the replication a concurrent

access is possible without causing data inconsistency (Zeng & Natale, 2011).

Evaluation of MCPC and MSRP

The evaluation in (Zeng & Natale, 2011) work is based on a theoretical scenario, where each core from a

dual-core homogeneous system, executes three tasks with different priorities and shares two global SR.

For the evaluation of the WCRT some parameters were defined such as a critical section that takes 0.5

millisecond to be executed.

The time analyse of H. Zeng showed that the MCPC mechanism was causing long remote blocking times

because of the long critical section and 4 out of 6 tasks were not schedulable. While the results for MSRP

mechanism show an improvement in remote blocking time, the application was not schedulable with this

32

synchronisation strategy. Whereby, the wait-free mechanism did not lead to any remote blocking

behaviour, but therefore it caused memory overhead through the additional buffer.

 Resource management 3.4.2.

In the previous section, we discussed several mechanisms to deal with failed requests for SR. In this

section, we will focus on possible implementation to avoid data incoherence.

One of this mechanism is the explicit synchronization, which avoid data incoherence by executing the

write- and read-process in different time slot (Zeng & Natale, 2011), which is compatible with the

sequential scheduling strategy presented by AUTOSAR.

Compare-and swap

Another possibility is the compare-and swap (CAS) operation, which was used in the wait-free

mechanism of (Zeng & Natale, 2011). This method uses atomic operation to compare the existing data in

SR with an expected value. If the current data equals the expected value, then the current value will be

updated with the new value . The atomic operation ensures that the body of the CAS function will be

executed without any pre-emption from other tasks (Siebert, 2010).

Semaphore

Another method to CAS is a method called Semaphore designed by Edsger W. Dijkstra (Dijkstra, 1968),

which is used in the MPCP and MSRP synchronisation strategy. A semaphore represents an operation,

which locks the critical section for other tasks to modify the shared data in the critical section or to

execute the same code segment (StMicroelectronics, 2013a).

Semaphore could be implemented as a shared counter, which content will be read whenever the shared

resource has to be locked. If the value of the counter is positive (greater than zero), then the task will be

able to execute the critical section and decrement the value. However, if the value of the semaphore

equals to zero then the task has to wait until the task which hold the semaphore decreases the counter

and therefore releases the lock (Alekseev, 2012).

 Notification 3.4.3.

The next possible optimization point for inter-core communication is the notification to acknowledge the

read process that new data is available. A list of notification methods are discussed by E. W. Dijkstra

(Dijkstra, 2001):

Non-blocking polling

One possible notification method is the non-blocking polling method, where the read process checks if

new data is available. If new data was not written into the SR, the execution of the read process will be

continued, (Devika K., 2013).

33

Blocking polling method

In contrast to the non-blocking polling method is the blocking polling method in which the receiver will be

blocked until new data is available, (Devika K., 2013).

Interrupt-based notification

Whereby by the Interrupt-based notification the receiver will only be executed when it gets acknowledged

through an interrupt that new data is available.

 Conducted studies related to inter-core communication 3.5.

With the introduction of the new version of AUTOSAR 4.0 several research studies have been conducted

with a focus on inter-core communication.

One of these studies is the master thesis from A.S Moghaddam (Moghaddam, 2013). In his thesis, A.S

Moghaddam investigates the possible overhead between intra-core communication and inter-core

communication according to AUTOSAR 4.0 by implementing test scenarios on a heterogeneous

microcontroller. The mutual exclusion was handled by using Spinlocks. It suggests a method to suspend

all interrupts before requiring the SR, where for the notification an IVOR (Interrupt Vector Offset Register)

was used. This study concluded that the inter-core communication is (56%) more expensive than intra-

core communication.

The impact of intra-core and inter-core task communication on multi-core embedded systems is provided

by Feljan (Feljan & Carlson, 2013). The focus of this research is the investigation of what kind of impact

the allocation of software modules on the cores of a multi-core system has on the communication time.

For this purpose J. Feljan and J. Carlson implemented a test scenario on an Intel Core 2 Duo E6700

processor (Intel, 2014), where each dual-core processor has a local L1 cache and a L2 cache shared

between the two cores. The test scenarios consisted of two allocations using various data access pattern

and several data sizes. The data size ranges from a size that fits into L1 cache, to a size that is too large

for both L1 and L2 caches. The allocations include two tasks communicating on one core and two task

distributed on different cores. In order to represent different data access patterns, the data was read from

the buffer sequentially, non-sequentially and non-sequentially.

The results of this paper on one hand supports the conclusion of A.S Moghaddam (Moghaddam, 2013),

that inter-core communication is 3 times slower than intra-core communication when the shared data fits

into the local cache (L1) and when data is not read sequentially. On the other hand, it shows that if the

transferred data is bigger than the cache size and therefore not fits in the local cache by reading it

sequentially, that there is no significant difference between both communication types. These results

were predictable by considering the fact that data which does not fit into the local cache has to be fetched

through shared memory (L2 or RAM) and the access of RAM is slower compared to the access to L1.

Shared L2 has a two or three times larger latency than L1 (Intel, 2014). This outcome proves that the

34

number of available local caches and the way data is accessed has an important influence on the

communication time.

 Evaluation of previous work and gap in knowledge 3.6.

It is evident that several methods can be used to improve the inter-core communication. However, the

improvement of inter-core communication is not only dependent on one bottleneck. It is a combination of

methods, which are optimally matched to one another for a particular purpose. The investigation of the

related work has shown that MPCP and MSRP synchronisation with semaphore as lock-based method

caused unacceptable time overheads and the wait-free mechanism with compare-and-swap method is

favoured for the use for homogeneous embedded multi-core systems with the limitation of increased

memory usage (Zeng & Natale, 2011).

Also, the AUTOSAR mechanism to avoid data corruption are not completely beneficial. The sequential

scheduling strategy, for example, requires full understanding of the software, which is more than

challenging since the ECU software got more and more complex since it was invented3. Also the task

blocking strategy has its disadvantages as soon as safety-critical tasks occur that need to get access to

SR. However, the copy strategy would require the largest amount of RAM memory compared to the other

mechanism.

The main advantage of using multi-core microcontroller in ECUs is to join vehicle functionalities into less

electronic control units. Processor manufacturers produce processors specialized for specific functions

such as computationally-intensive operations or large amounts of signal processing, (Freescale

Semiconductor, 2009). It would not be appropriate to execute a non-critical function on a processor

designed for critical safety functions. A heterogeneous multi-core microcontroller can offer specialized

cores for different applications, for example, to offload non-critical functions to less capable cores

(Freescale Semiconductor, 2009). This ensures the most effective use of available resources. Therefore,

it is questionable whether the same wait-free method presented by (Zeng & Natale, 2011) would have a

positive impact on the communication time. Even if a practical implementation of the theoretical example

would result in less time overhead of the wait-free method, the high amount of memory consumption

would still lead to a rejection from ECU developer. Only implementations that satisfy the need for

performance by reducing the costs at low power consumption will be produced.

Another bottleneck, which would influence the communication time, is the memory access. As presented

by (Feljan & Carlson, 2013) a local cache on each core reduces the communication time difference

between intra-core and inter-core communication. Hence, the test scenario of (Feljan & Carlson, 2013)

was executed on a system that resembles processors for modern embedded systems, e.g. smartphones,

but not for real-time systems like ECUs.

3
 Bosch released 1989 a hybrid control the ABS 2E generation (R. B. GmbH, 2008)

35

Therefore, it would be beneficial to put the theory analysed mechanism in (Zeng & Natale, 2011) into

praxis and investigate the cause of possible high consumption of memory or low performance. In addition,

the analyses of (Zeng & Natale, 2011) should be performed on test scenarios that are leaned on the real

use case in automotive with a heterogeneous multi-core microcontroller. Heterogonous multi-core

microcontroller provides the benefit to merge non-critical function on the additional core that is

customized for such functionalities and is therefore performed to its full potential. In addition, these test

scenarios should still be AUTOSAR conform or expand the suggested mechanism of AUTOSAR in a way

that lead to improvements.

To be able to conclude possible speed up gain of a heterogonous multi-core ECU, it is necessary first to

investigate the bottlenecks of AUTOSAR conform intra-core communication.

Therefore the aim of this project is to explore the current state of inter-core communication on multi-core

ECUs. The analysis includes the design of test-scenarios (experiments) that are leaned on use cases in

automotive. In additional, these experiments are not only suitable to evaluate inter-core communication,

they also are designed to investigate the potential of intra-core communication.

The results that are gained after the implementation and execution of such experiments on a

heterogonous multi-core ECU could then be evaluated according to their performance and memory

consumption to assess whether the used methods fulfil the real-time requirements.

This contribution addresses the challenges of software for multi-core microcontrollers in automotive

systems with the analysis of the methods used in intra-core communication.

36

4. Design of experiments according to automotive
systems

The following section introduces the experiments, which are used to verify the intra-core

communication regarding to performance and memory consumption. Firstly, a brief introduction into

the automotive specific conditions are given. This introduction is then followed by the presentation of

the experiments and their specific task mapping for each implementation.

The design of the experiments is based on the following conditions:

 Tasks trigger time constraint

In their paper (Jena & Srinivas, 2012) verified the suitability of multi-core processors on the

example of the Anit-Lock Braking Systems (ABS) . This paper demonstrates that the ABS

functionality for single-core ECUs are divided into high, middle and low priorities. It also

demonstrates that the tasks with the highest priority occur every millisecond, the tasks with a

middle priority value occur every 5 milliseconds and the tasks with the lowest priority get

called every 10 milliseconds.

 The different event types

The AUTOSAR Specification of Timing divides events introduces three different categories:

periodic triggered events, sporadic triggered events and events that are triggered through a

pattern of different characteristics (length, minimum of occurrences) (AUTOSAR, 2014b p.

74 - 78). The experiments designed in this work focuses on the first two event types. The

periodic events occur periodically. The events with a sporadic occurrence are used for

example, to signify that the engine is overheated and the ECU should begin with the cooling

process.

 The scheduling policy for two tasks with the same priority

The AUTOSAR specification of the operating systems defines that tasks with the same

priority should be called in order of their activation, (AUTOSAR, 2014a p. 82 - 83). This

requirement is valid for the single-core as well as multi-core ECUs.

37

SWCPeriod01 SWCPeriod02

Task_Period_Expl_Scw2to1

Pre-emptive

Priority 3

Task_Period_Impl_Scw1to2

Pre-emptive

Priority 3

Implicit

Explicit

SWCEvent03 SWCEvent04

Task_Event_Expl_Swc4to3

Non pre-emptive

Priority 5

Task_Event_Impl_Swc3to4

Non pre-emptive

Priority 5

Implicit

Explicit

DIN1/

Switch1

DIN0/

Switch0

trigger

SWCIoHwPeriod05 SWCIoHwPeriod06

Task_IoHw_Period_Expl_Swc6to5

Non pre-emptive

Priority 4

Task_IoHw_Period_Impl_Swc5to6

Non pre-emptive

Priority 4

Implicit

Explicit

DIN3/

Switch3

DIN2/

Switch2 status

status

A
p

p
lic

a
ti
o

n

la
y
e

r
R

T
E

B
S

W

trigger

Figure 4-1: Graphical illustration of software components mapped to tasks of SingleCoreV1_0

As Figure 4-1 illustrates, the experiments of this work. These experiments consist 6 software components (SWC) and are realised in two implementations,

SingleCoreV1_0 and SingleCoreV2_0. Two of these software components are communicating with each other whether through the implicit or the explicit

communication, see section 2.3.1 on page 24. Each communication that begins from a software component, which is named with an odd number, communicates

through the implicit communication. Whereby, each communication that begins from a software component, which is named with an even number, communicates

through the explicit communication.

38

In the following, a description is giving for each pair of software components:

SwcEvent03 to SwcEvent04 and SwcEvent04 to SwcEvent03

SwcEvent03 and SwcEvent04 are exchanging a structure defined of three members of type integer

and 8 members of type char. The communication between these software components is only

executed when switch 0 for the communication between SwcEvent03 to SwcEvent04 and switch1 for

the communication between SwcEvent04 to SwcEvent03 is closed. The overhead of the engine in a

vehicle is simulated through the closed switch that triggers the communication.

SwcIoHwPeriod05 to SwcIoHwPeriod06 and SwcIoHwPeriod06 to SwcIoHwPeriod05

SwcIoHwPeriod05 and SwcIoHwPeriod06 are exchanging the status of the switch between each other

with a data of type Boolean. The communication between these two software components simulates

the reading process of a sensor and is not so safety critical as the previous case.

SwcPeriod01 to SwcPeriod02 and SwcPeriod02 to SwcPeriod01

SwcPeriod01 and SwcPeriod02 are exchanging the same data struct as SwcEvent03 and

SwcEvent04 and are simulating an internal communication inside the ECU.

These communications are implemented as code segments inside the software components on the

application layer, runnables. These runnables are called from the operating system through tasks.

Therefore, it is mandatory to map these runnable to tasks of the operating system and to define the

priority and scheduling policy of each task.

 SingleCoreV1_0 4.1.

The first implementation, SingleCoreV1_0, is designed for the single-core use, see Figure 4-1 on page

37. As a result, both read- and write-processes are mapped to the same tasks as followed:

Task_Event_Expl_Swc4to3 and Task_Event_Impl_Swc3to4

The task Task_Event_Expl_Swc4to3 contains the explicit write- and read-process of SwcEvent04 and

SwcEvent03. Whereby, the task Task_Event_Impl_Swc3to4 includes the implicit write- and read-

process of SwcEvent03 and SwcEvent04. Both tasks are non pre-emptive, because they are handling

safety relevant mechanism. Due to the fact that an overheated engine represents a safety critical

event, this event has to be handled immediately. Therefore, the communication between these

software components not only has the highest software priority (5), the communication is triggered

with the highest frequency of 1 ms.

39

Task_IoHw_Period_Expl_Swc6to5 and Task_IoHw_Period_Impl_Swc5to6

The task Task_IoHw_Period_Expl_Swc6to5 contains the explicit write- and read-process of

SwcIoHwPeriod06 and SwcIoHwPeriod05. Whereby the task Task_IoHw_Period_Expl_Swc6to5

includes the implicit write- and read-process of SwcIoHwPeriod06 and SwcIoHwPeriod05. Both tasks

are non pre-emptive. In addition, these tasks have a priority of 4 and are triggered each 5

milliseconds.

Task_Period_Expl_Scw2to1 and Task_Period_Impl_Scw1to2

The task Task_Period_Expl_Scw2to1 and Task_Period_Impl_Scw1to2 contains the implicit write- and

read-process of the software components SwcPeriod02 and SwcPeriod01. These tasks are pre-

emptive, because they contains the communication with the lowest priority. The communication

between these software components have the lowest safety critical aspect and have therefore the

lowest priority of 3 and are triggered each 10 milliseconds.

Such communication, where write- and read-process is combined in one task is also named as intra-

task communication.

40

 SingleCoreV2_0 4.2.

SWCPeriod01 SWCPeriod02

Task_Period_Expl_Scw2to1_Out

Pre-emptive

Priority 3

Task_Period_Impl_Scw1to2_Out

Pre-emptive

Priority 3

Implicit

Explicit

A
p

p
lic

a
ti
o

n

la
y
e

r
R

T
E

B
S

W

Task_Period_Expl_Scw2to1_In

Pre-emptive

Priority 3

Task_Period_Impl_Scw1to2_In

Pre-emptive

Priority 3

SWCEvent03 SWCEvent04

Task_Event_Expl_Swc4to3_Out

Non pre-emptive

Priority 5

Task_Event_Impl_Swc3to4_Out

Non pre-emptive

Priority 5

Implicit

Explicit

DIN1/

Switch1

DIN0/

Switch0

trigger
trigger

Task_Event_Expl_Swc4to3_In

Non pre-emptive

Priority 5

Task_Event_Impl_Swc3to4_In

Non pre-emptive

Priority 5

SWCIoHwPeriod05 SWCIoHwPeriod06

Task_IoHw_Period_Expl_Swc6to5_Out

Non pre-emptive

Priority 4

Task_IoHw_Period_Impl_Swc5to6_Out

Non pre-emptive

Priority 4

Implicit

Explicit

DIN3/

Switch3

DIN2/

Switch2 status

status

Task_IoHw_Period_Expl_Swc6to5_In

Non pre-emptive

Priority 4

Task_IoHw_Period_Impl_Swc5to6_In

Non pre-emptive

Priority 4

Figure 4-2: Graphical illustration of software components mapped to tasks of SingleCoreV2

The second implementation, SingleCoreV2_0, is designed for multi-core use as illustrated in Figure 4-2. This implementation contains the same defined

communication as the first implementation. SingleCoreV2_0 only differs from SingleCoreV1_0 in the fact that each read- and

write-process is mapped to a separate task.

The AUTOSAR 4.0 specification of the operating system requires that OsApplications are distributed to processor cores instead of the tasks itself, (AUTOSAR,

2014a). Therefore are the write- and read-processes separated in individual tasks as followed:

41

Task_Event_Expl_Swc4to3_Out and Task_Event_Expl_Swc4to3_In

The write- and read-process of task Task_Event_Expl_Swc4to3 is separated in task

Task_Event_Expl_Swc4to3_Out and task Task_Event_Expl_Swc4to3_In.

Task_Event_Expl_Swc4to3_Out includes the explicit write-process, which is triggered each

millisecond with a priority of 5 and non pre-emptive. Whereby, Task_Event_Expl_Swc4to3_In contains

the explicit read process, which is triggered as soon as new data is available.

Task_Event_Impl_Swc3to4_Out and Task_Event_Impl_Swc3to4_In

The write- and read-process of task Task_Event_Expl_Swc3to4 is separated in task

Task_Event_Expl_Swc3to4_Out and task Task_Event_Expl_Swc3to4_In.

Task_Event_Expl_Swc3to4_Out includes the implicit write-process, which is triggered each

millisecond with a priority of 5 and non pre-emptive. Whereby, Task_Event_Expl_Swc3to4_In contains

the implicit read-process, which is triggered as soon as new data is available.

Task_IoHw_Period_Expl_Swc6to5_Out and Task_IoHw_Period_Expl_Swc6to5_In

The write- and read-process of task Task_IoHw_Period_Expl_Swc6to5 is separated in task

Task_IoHw_Period_Expl_Swc6to5_Out and task Task_IoHw_Period_Expl_Swc6to5_In.

Task_IoHw_Period_Expl_Swc6to5_Out includes the explicit write-process, which is triggered each 5

millisecond with a priority of 4 and non pre-emptive. Whereby, Task_IoHw_Period_Expl_Swc6to5_In

contains the explicit read-process, which is triggered as soon as new data is available.

Task_IoHw_Period_Impl_Swc5to6_Out and Task_IoHw_Period_Impl_Swc5to6_In

The write- and read-process of task Task_IoHw_Period_Impl_Swc5to6 is separated in task

Task_IoHw_Period_Impl_Swc5to6_Out and task Task_IoHw_Period_Impl_Swc5to6_In.

Task_IoHw_Period_Impl_Swc5to6_Out includes the implicit write-process, which is triggered each 5

millisecond with a priority of 4 and non pre-emptive. Whereby, Task_IoHw_Period_Impl_Swc5to6_In

contains the implicit read -rocess, which is triggered as soon as new data is available.

Task_Period_Expl_Scw2to1_Out and Task_Period_Expl_Scw2to1_In

The write- and read-process of task Task_Period_Expl_Scw2to1 is separated in task

Task_Period_Expl_Scw2to1_Out and task Task_Period_Expl_Scw2to1_In.

Task_Period_Expl_Scw2to1_Out includes the explicit write-process, which is triggered each 10

millisecond with a priority of 3 and pre-emptive. Whereby, Task_Period_Expl_Scw2to1_In contains the

explicit read-process, which is triggered as soon as new data is available.

Task_Period_Impl_Scw1to2_Out and Task_Period_Impl_Scw1to2_In

The write- and read-process of task Task_Period_Impl_Scw1to2 is separated in task

Task_Period_Impl_Scw1to2_Out and task Task_Period_Impl_Scw1to2_In.

Task_Period_Impl_Scw1to2_Out includes the explicit write process, which is triggered each 10

millisecond with a priority of 3 and pre-emptive. Whereby, Task_Period_Impl_Scw1to2_In contains the

explicit read-process, which is triggered as soon as new data is available.

42

Such communication, where write- and read-process is distributed in separated tasks is also named

as inter-task communication.

5. Test and development environment

The following section describes the development environment of this project. The first section presents

the requirements for the development environment and the verification of possible targets. The second

part includes a detailed description of the software and hardware environment.

 Verification of possible targets 5.1.

In order to analyse the bottlenecks of AUTOSAR conform intra-core communication, suitable software

and hardware are required.

For this project, the following aspects are essential:

The hardware has to:

 be equipped with a heterogonous multi-core microcontroller, which provide features

as used in the automotive sector. Such features are summarised in section 11.3 on

page 130.

 the development board on which the multi-core is integrated on, should be as similar

as possible to the ECUs used in industry with network connection such as CAN, see

section 2.2 on page 20.

 be versatile that many automotive projects could be carried out on it.

The software has to be at least AUTOSAR 3.2 and ideally, AUTOSAR 4.2.

43

 Experiment setup of

(Moghaddam, 2013)

Experiment setup of

(Feljan & Carlson, 2013)

Experiment setup of the

current project

Hardware requirements

Microcontroller

MPC5510EVB evaluation

board with an

MPC5517E

microcontroller

(Semiconductors, 2014)

Intel Core 2 Duo E6700

processor (Intel, 2014)

VC121-12

(Vector, 2014a)

Heterogonous multi-

core microcontroller   

ECU similarities
1
2⁄

 

Versatility
  

Software requirement

AUTOSAR 3.2   

AUTOSAR 4.0
1
2⁄

 

Table 5-1: Comparison of different hardware environments

Table 5-1 shows the experimental setup of (Feljan & Carlson, 2013), which is the most inefficient

hardware environment for the analysis of intra-core communication of automobile systems. The

hardware used in (Feljan & Carlson, 2013) is provided with a homogenous microcontroller that is

designed for the desktop PC. However, the hardware environment of (Moghaddam, 2013) seems

more suitable for the work of this thesis. On the one hand it provides an heterogonous multi-core the

MPC5517E microcontroller (Semiconductors, 2014) with several network connections (CAN, LIN) on

the evaluation board MPC5510EVB (Semiconductors, 2007), as seen in Table 5-1. On the other hand,

it only provides an AUTOSAR 3.1 and partial AUTOSAR 4.0 operating system.

The functionalities of version AUTOSAR 4.0 such as inter-core communication were “provided from

Ecore” (Moghaddam, 2013 p.18) and are therefore not available for public use. In addition, the

evaluation board MPC5510EVB does not provide analogue inputs or digital outputs to read signals, for

example, from pressure sensors. Therefore, in limits its use in possible automotive projects. In

comparison with the two presented environments is the universal ECU VC121-12 from Vector the

device that is most similar to ECUs. It provides 20 digital inputs and 22 analogue inputs that can be

used for several automotive projects, (Vector, 2014a). In addition, it features a dual-core heterogonous

microcontroller with an AUTOSAR 3.2 operating system, which supports intra-core communication.

The VC121-12 is chosen for the investigation of intra-core communication based on the previous

evaluation of possible development environment. The compatibility to the VC121-12 ECU is the

decisive factor for the selection of appropriate AUTOSAR, compiling, debugging and analysis tools.

44

 Hardware environment 5.2.

The following sub section describes the hardware devices that are used through the project. These

hardware devices are the universal VC121-12 ECU, the emulator IC5000 on-chip analyser and the

development board STK600.

 VC121-12 ECU 5.2.1.

VC121-12 is a universal ECU for the automotive development sector. It contains a main controller, a

system basis chip (SBC) and a safety controller (SC) as well as several communication ports such as

inputs and outputs as seen in Figure 5-1.

Input and output ports

The VC121-12 ECU provides following input and output

ports:

 6 CAN interfaces

 1 Ethernet interface

 2 LIN interfaces

 1 FlexRay interface

 8 analog inputs to measure voltage between 0

and 5 V

 6 analog impedance inputs for measuring

resistances between 103 and 107 kΩ

 8 analog inputs for measuring voltages

between 0 and 18 V

 20 digital inputs for switches

 4 frequency inputs for digital signals, this

signals may be high or low active and support

frequencies up to 20 kHz

 4 frequency inputs for reluctance sensors with a

frequency up to 20 kHz

 40 high-side outputs with differing current and PWM capabilities

 Four of the digital inputs (DIN0 – DIN3) are used for the conducted experiments in this project as

described in section 6.1.4 on page 56. These digital inputs have a threshold of 4 V. If a switch is

connected to one of these four digital inputs, then every voltage that is above 4 V will be accepted as

“high” (switch is closed) and each voltage above 4 V up to 3.7 V is interpreted as “low”

(switch is open). More information to the input and output ports can be found in (Vector, 2014b).

Figure 5-1: Block diagram of the VC121-12
ECU (Vector, 2011)

45

The main controller

The VC121-12 is equipped with a heterogeneous dual-core microcontroller SPC56EC64B3

(StMicroelectronics, 2013b) from StMicroelectronics as the main controller. The SPC56EC64B3

microcontroller is made for the main use in automotive vehicle body (StMicroelectronics, 2013a). It is a

dual-core microcontroller with an e200z4d and an e200z0 processor as shown in Figure 5-2.

Figure 5-2: Block diagram of SPC56EC64B3 microcontroller

The e200z0 processor is one of the licensable e200 core of Freescale that had been open for

licensing to other manufactures in April 2007 (JOSE, 2007). This processor is designed for embedded

control application that does not require maximum performance. Therefore it is only able to execute

one instruction per instruction cycle (single-issued) by 75 million instructions per second (MIPs).

Additionally, it provides a 32-bit Power Architecture variable-length encoding (VLE) instruction set with

32-bit (GPRs) (F. Semiconductor, 2008).

By contrast, the e200z4d contains 64-bit general-purpose register, a double-issued architecture with

an instruction cache of 4 KB, 200 MIPs and a Memory Management Unit (MMU), which is primary

performing the translation of virtual memory addresses to physical addresses, (F. Semiconductor,

46

2008). As a result, the e200z4 processor is ideally suited for application that requires high

performance.

Furthermore, both processors have two master (m) ports to the crossbar, one for instructions and one

for data. The crossbar provides the ability to concurrently access modules, for instance, the peripheral

bridge or memory through the slave (s) ports. Therefore, each master port has a unique priority

through the registers of the Memory Protection Unit (MMU). The MMU evaluates each request,

whereby the master port with the highest priority will get access to the slave ports.

Each slave port is assigned to a module. One of these modules is the memory, which is divided into

SRAM and ROM (flash memory). The main controller is equipped with 256 KB SRAM in total, which is

separated into 128 KB blocks. The flash memory is partitioned into two 1.5 MB code flash memory

models and one 64 KB data flash memory. The access to these flash memory modules are controlled

by the flash memory controller. Whereas, the access to the output pins of the main controller is

guaranteed through the peripheral bridge (F. Semiconductor, 2008).

The main controller represents the head of the VC121-12 ECU. It executes the application and

handles all inputs, outputs and communication channels (CAN, LIN, FlexRay and Ethernet). Some of

this communication channels are connected straight to the main controller and other communicates

with the main controller over a Serial Peripheral Interface (SPI) interface. The SPI interface is used to

communicate between two microcontrollers or such as in this case, between a microcontroller and one

or more peripheral devices, (ISO, 2004). This work will only focus on the CAN network as this

communication channel is needed for power management.

Safety controller

The safety controller, STM8AF62 from StMicrocontrollers (StMicroelectronics, 2016) is a 8-bit

controller that monitors the main controller and redundantly checks the input signals to verify their

values. It also supervises the supply voltage and is able to set the output ports of the ECU to the state

‘”off” (Vector, 2011) .

System basis chip

To reduce the power consumption in vehicles, for instance when the vehicle is parking, it is necessary

to turn the unused ECUs “off”. Therefore, it is essential to define power modes for ECUs such as

“sleep” mode or “wake-up” mode. For this reason, a System Basis Chip had been switched between

the voltage supply of 12 V and the main microcontroller to control the voltage supply to the main

microcontroller as seen in Figure 5-1 on page 44. In general, when the VC121 ECU is in “sleep” state,

only the SBC is powered on to be able to observe all “wake-up” sources, (V. I. GmbH, 2011b). If a

“wake-up” event occurs through an external interrupt such as CAN messages, the information of the

“wake-up” reason are saved from the SBC and the main microcontroller will be supplied with 5 V.

47

The main microcontroller monitors this “wake-up” reason and switches to “sleep” mode as soon as the

“wake-up” signal expires (Vector, 2011 p.21). A “wake-up” event is only valid if a particular pattern is

recognized by the SBC. In order to wake-up the main controller a series of three dominant pulses with

a duration longer than 500 ns in a time slot of 120 s (N. Semiconductor, 2014 p. 57) has to be

detected. A “wake-up” with a validation of the CAN pattern will only occur when the ECU has

previously entered the “sleep” mode., which does not occur during the experiments. Therefore, it is not

necessary to generate such patter for this work. Furthermore, the flashing process via a debugger

requires permanent communication on the port CAN0. As a result, CAN messages must be provided

during the flash process. A detailed description of procedure can be seen in section 6.1.4 on page 56.

 The emulator IC5000 on-chip analyser 5.2.2.

After the software has been designed and implemented, it is necessary to verify its correct or incorrect

execution through debugging. Debugging is the ability to verify executive software by for instance,

break pointing or single stepping through the application (Rouse, 2007). The debug mechanism is

implemented as a program for software that is written for the use on PC. This dubug mechanism runs

on the same PC on which the software has been implemented. Due to the limited resources of

embedded systems, embedded real-time systems requires different debugging procedures compared

to desktop PCs. Therefore, embedded systems are debugged by using remote debugging, where the

debugging software is running on a host PC which controls the target through hardware (Rath, 2008).

Traditionally, an in-circuit emulator (ICE) is used to debug the developed software application. This

ICE is plugged to the target MCU and it emulate all integrated functionality of the target MCU in real-

time (Soffel, 2004). Today’s modern microcontroller integrate the debug functionality, on the chip itself

so that the emulators are replaced by on-chip debuggers.

One of such on-chip debugger is the IC5000 analyser provided by iSystem, which supports the main

controller used in VC121-12 ECU. The IC5000 analyser represents the interface between the analysis

tool WinIDEA (on the PC) and the target VC121-12 ECU. The WinIDEA software provides not only the

ability to upload (flash) the compiled software application into the target MCU, but it also supports real-

time debugging and memory access as well as functionalities to trace the execution time of each

running function with an accuracy of 10 ns (timestamps) and execution coverage (iSystem, 2009) . A

detailed description of these functionalities can be found in section 5.3.4 on page 50.

 STK600 development board 5.2.3.

The STK600 is a development starter kit from Atmel for 8-bit and 32-bit AVR microcontroller and it is

used in this work to generate the necessary CAN messages for the power management. It is set up

with the STK600-TQFP64 socket (Atmel, 2016) and the 8-bit microcontroller AT90CAN128 (Atmel,

48

2008) . A detailed description of how this device is used in this work can be found in section 6.1.4 on

page 56.

 Software environment 5.3.

This sub section describes the tools used to implement and evaluate the designed software. It begins

with a description of the VC121-12 software, followed by the AUTOSAR development tools with which

the source codes of the experiments have been generated. Afterwards, the compiler is presented,

followed by the analyse tool WinIDEA. Finally, the software tool chain is illustrated.

 VC121-12 software 5.3.1.

The software of the VC121-12 ECU consists not only of the basis software of Vectors (MICROSAR)

that is based on AUTOSAR 3.2 architecture; it also provides an input and output function library (I/O

Function Library) to control all the communication ports of the hardware as seen in Figure 5-3. One

component of the I/O library is the VC_IoHwAb, which provides interfaces to read and write out of the

provided pins of the VC121-12 ECU, which has been used through this project to read the status of

digital inputs. All these components of the VC121-12 ECU are generated through AUTOSAR

development tools, which will be described in more detail in section 5.3.2 on page 48.

Figure 5-3: Overview of the software architecture of VC121-12 ECU, (Vector, 2012)

49

 AUTOSAR development tool 5.3.2.

The AUTOSAR methodology described in section 2.3 on page 23 is generated in three configuration

tools. DaVinciDeveloper, DaVinciConfigurator and Geny.

The DaVinciDeveloper is used to design and generate the source code of the application layer and the

RTE (.c and .h files) such as software components and runnables.

Whereas, the tool DaVinciConfigurator Pro is used to configure and generate all non-communication

modules of the basic software layer.

The Geny tool supports the configuration of all the communication BSW modules such as FlexRay,

LIN and CAN and defines the communication port for the “wake-up” mechanism. Through this project,

two different configurations and implementation of the AUTOSAR RTE and application layer have

been generated with all these three tools. A detailed description of these AUTOSAR development

tools are can be found in section 6.1.4 on page 56.

 Wind River Diab compiler 5.8 5.3.3.

Figure 5-4: WindRiver Diab Compiler workflow

The WindRiver Diab compiler is an embedded cross-compiler that supports the main microcontroller of

the VC121-12 ECU. Figure 5-4 shows the WindRiver Diab compiler workflow. It includes the pre-

processor, assembler and linker in addition to the C compiler. Each stage of the processes provides

the necessary input for the upcoming process. The pre-processor, for instance, parses the source

code for macros and replaces them with the statements defined in the header files. The C compiler

then translates the output files of the pre-processed source to assembly code (object files) that is

transferred into machine code as the output from the assembler.

50

Before the final executable file *.elf is produced, the linker reads the defined sections out of the object

files and maps those sections to memory space based on the instructions in the linker file. The linker

file includes all information of the available RAM and ROM memory and where each section has to be

placed (WindRiver, 2010 p. 311) . It is the responsibility of the programmer to create such linker file.

The output file of the linker .map subsequently includes detailed information of the RAM and ROM

consumption of each defined variable and function in the program .The memory consumption is based

on this .map file and is evaluated in section 7.3 on page 100.

 Analysis tool WinIDEA 5.3.4.

WinIDEA is an Intergrated Development Environment (IDE) and debugger software by iSystem,

(iSystem). It is provided along with the IC5000 hardware platform, see section 5.2.2 on page 47 from

iSystem. Throughout this project, the WinIDEA is used for both for debugging and analysing the

experiments that are described in section 4 on page 36.

5.3.4.1.1. Program trace

Figure 5-5: Abstract visualisation of the call - timeline

The performance analysis in section 7.2 on page 91 was based on the execution profiling (program

trace) through the on- chip debugger IC5000. This program trace provides the ability to identify not

only the execution time deviations, but also the program functions. To gain such a program trace, the

profiler of WinIDEA records the executions of all instructions during runtime by recording the

instruction address and the time of its execution (entry and exit point), (iSYSTEM, 2012).

The WinIDEA software will stop recording data manually (on user demand) or after the profiler buffer

of the hardware component IC5000 becomes full. All of this information is then visualised in a call-

timeline, where each function execution is visualised as bars that get interrupted when sub functions

are called. Figure 5-5 shows the abstraction of a typical trace timeline. To be able to identify the entry

and exit point of a function, it is necessary to know all sub function calls inside the measured function

(Func1). Only with this knowledge, it is possible to identify task switches or occurred interruptions.

Such interruptions should not be included into the execution time of Func 1.

Function

Func 1 Suspend Suspend

Func 2

Func 3 Exit point

Return

Time line in sec

Entry point

Return

51

The example in Figure 5-5 does not include a task switch or interrupt, so that each sub function

(Func2 and Func3) of Func1 is called and the execution time of Func 1 can be defined as the time

between the entry and exit point. If an interrupt or task switch occurs during the execution of Func 1,

then it is illustrated in the trace as a function call to an unexpected function for example, a function call

to an interrupt-service routine. The time that is spent to call and execute the unexpected function has

to be taken of the execution time of Func 1. Such approach guarantees to measure the exact

execution time of Func 1.

5.3.4.1.2. Real- time debugger

Functions that are implemented as macros (inline function), as in section 6.3 on page 58, cannot be

detected through a program trace. For this case, the high-level debugger of WinIDEA is used. Through

the features such as assembler, memory and variable inspections, it is possible to observe if data was

written into the memory space.

5.3.4.1.3. Execution coverage

The execution coverage of the real-time analyser provides the ability to detect which memory

addresses have been gathered and executed by the microcontroller, (iSYSTEM, 2012). Therefore, it

records all addresses that are executed and can be visualised line by line.

Figure 5-6: Coverage Statistic of function Rte_Write_SwcEvent04

Figure 5-6 shows such visualisation, where the column statement (object) represents the statement

coverage on object code level in memory accessible units, (ISystem, Coverage). The first number

defines the number of addresses that are executed, and the second number defines the number of

addresses that are detected. This real-time analyse feature is used to detect the parts of a function,

which has a main impact on the memory consumption, as seen in section 7.3 on page 100.

52

6. Implementation of experiments

This section describes the experimental procedures used to implement and evaluate the designed

experiments. The experimental procedure is divided into two parts, the hardware setup and the

software procedure. The hardware setup of the experimental procedures is presented first, followed by

the software procedure and the generated source code. The details of the equipment used are

described in section 5 on page 42.

 Hardware setup 6.1.

The following sub section represents the hardware setup of the test and development environment,

which is illustrated in Figure 6-1.

 IC5000

USB

Power

VC1212-12

ECU

Mictor 38 interface

USB Bus

Car battery

-+DIN3

DIN2

DIN1

DIN0

5.5V

Power suply

Multi-meter alligator

crocodile clip wire

Car

fuses

S
T

K
6
0
0

Ground wire

Figure 6-1: Layout of the test environment

53

 Switch simulations 6.1.1.

The switches that are required for the designed experiments in section 4 on page 36, are simulated

through four pin-female-male jumper wires and a power supply. The female connection of those four

wires is connected to the VC121-12 ECU according to Table 6-1 on page 53. The power supply

provides the necessary 5.5 V to simulate a close switch and is connected to the male connector of the

jumper wires through a multi-meter wire with crocodile clip. This wire is connected to the positive

output of the power supply. Moreover, the negative output of the 5.5 V power supply has to be

connected to common ground, provided by the car battery that is used to power up the VC121-12

ECU.

 Connecting the VC121-12 ECU 6.1.2.

Figure 6-2: VC121-12 ECU pin connectors

Pin Function Colour Connected to

1 Ground Blue Power supply (12 V)

4 Supply Red Power supply (12 V)

5 Supply Red Power supply (12 V)

23 CAN0 Low Green STK600

24 CAN0 High Yellow STK600

38 Sensor ground Blue STK600

41 Sensor ground Blue STK600

48 DIN2 Violet Switch2

49 DIN0 Violet Switch0

67 DIN3 Violet Switch3

68 DIN1 Violet Switch1

114 Ground Blue Power supply (12 V)

119 Supply Red Power supply (12 V)

120 Supply Red Power supply (12 V)

121 Supply Red Power supply (12 V)

Table 6-1: Pin assignment of VC121-12 ECU to other devices

54

The VC121-12 ECU possesses 5 power supply pins as illustrated in Figure 6-2 on page 53 and Table

6-1 on page 53 in order to be powered up by a the 12 V power system in a car (car battery). It is

recommended to connect 4 car fuses of 10 A between the power supply and the VC121-12 ECU. To

power on the ECU it is require to connect pin (4), pin (5), pin (119), pin (120) and pin (121) to the

positive output of a 12 V power supply and pin (1), pin (114) to the negative output of the same power

supply. Due to the fact that the sensor ground pins (38) and pin (41) are thinner than the pins

connected to the positive power supply, it is recommended to connect pin (38) and pin (41) to the

ground output of the STK600 board, see section 6.1.3 on page 55.

Moreover, to be able to flash the compiled software onto the main microcontroller of the VC121-12

ECUs, it is required that the ECU is in debug mode. Therefore, it is recommended by the user manual

of the VC121 ECU (Vector, 2011 p.26) to set the SBC into debug mode. This mode is entered if a

jumper is plugged into the X500 jumper, see section 11.4 on page 131 . It allows to flash and debug

an application without causing a reset to be triggered. Furthermore, the communication on CAN0 is

necessary to avoid that the SBC deactivates the supply voltage of the main controller (Vector, 2011

p.68). For this reason, the STK600 board is programmed with the required CAN messages, on which

the pin (23) and pin (24) of the VC121-12 ECU are connected as described in the following section.

The switches that are used in the designed experiments, see section 4 on page 36, are connected

here with male-female jumper wires to the digital inputs DIN0 to DIN3 as shown in Table 6-1 on page

53.

55

 Connecting the STK600 6.1.3.

Due to the fact that the flashing process of the ECU requires permanent communication on the port

CAN0, communication through the CAN network has to be provided. As a result, the STK600

development board is setup with the STK600-TQFP64 socket (Atmel, 2016) and the 8-bit

microcontroller AT90CAN128 (Atmel, 2008).

The following pins have to be connected according to Figure 6-3. In order to be able to program the

AT90CAN128 and to generate the necessary CAN messages, the following steps must be performed:

 Set “TERM” jumper

 Set “SLOPE CTRL” jumper

 Set “VTARGET” jumper

 Set “RESET” jumper

 Set “VBUS” jumper

 Connect the two-pins tx (yellow)

and rx (green) with pin PD6

(green) and PD5 (yellow) of port

D through two four-pin-female-

male jumper wires

 Connect ISP Pins with STK600

ISP to be able to program the

device with the one 6-wire cable

for In-System programming

 Set the quartz crystal

 Connect the pins of the CAN

HEADER according to Table 6-1

on page 53 with the VC121-12-

ECU through four-pin-female-

male jumper wires

 Connect the STK600 board with

the USB bus to power on the

system

Figure 6-3: Pin assignment of the STK600 board, (Atmel,
2010)

56

 Connecting the IC5000 6.1.4.

The ECU provides two options to flash an executable file onto the main controller: flashing via a

debugger, for example, with the analyzer IC5000, see section 5.2.2 on page 47 , and flashing via

CAN. This project is using the first flashing option, which enables the ability to debug and to profile

communication. For the flashing process via debugger it is mandatory to set the VC121-12 into debug

mode by setting a jumper at connector X500, as described in section 6.1.2 on page 53.

The communication between the host PC and the analyser IC5000 is established via the USB

interface, see Figure 6-4. In this work the VC121-12 ECU is provided with a soldered Matched

Impedance Connector (Mictor) 38 interface, (Arm), and is therefore connected with the IC5000

analyser through the Mictor 38 NEXUS connector provided from iSystem. Moreover, to avoid ground

potential difference between the VC121-12 ECU and the analyser, it is recommended to connect both

with a grounding wire as shown in Figure 6-5.

Figure 6-4: The IC5000 analyser and its connectors Figure 6-5: Illustration of the connection of
the ground wire with the ECU

57

 Software development tool chain 6.2.

This section provides a brief explanation of the complete software development tool chain as

illustrated in Figure 6-6.

WindRiver

Diab

Compiler

WinIDEA

Design of

the

experiments

SWC.c / .h

RTE.c / .h

BSW.c / .h

BSW.c / .h

communication

AUTOSAR

development tools

DaVinci

Developer

DaVinci

Configurator

GENy

Source code

Binary

*.elf

Linker

*.map

Upload

Trace

VC1212-12

ECU

Figure 6-6: Overview of the software development tool chain

The complete software development tool chain includes the following steps:

1. The STK600 board is programmed to send CAN messages every 200 ms, which is connected to

the CAN High and CAN Low pins of the ECU. The source code to this program can be found in

section 11.1 on page 116.

2. The source code of the defined experiments, in section 4 on page 36, are generated with the

AUTOSAR development tools, see section 5.3.2 on page 49. The source code of all non-

communication modules, such as the operating system, is generated through the

DaVinciConfigurator Pro. The source code for the RTE layer is generated by the

DaVinciDeveloper. A detailed description how to configure software components can been found

in section 11.2 on page 122. Furthermore, all configurations for the modules related to

communication such as the communication network CAN are configured and generated with the

AUTOSAR development tool GENY.

3. The WindRiver Compiler translates the generated source code to an executable file (*.elf) as

described in section 5.3.3 on page 49.

4. The executable file is uploaded and evaluated with the debugger IC5000, as described in section

5.3.4 on page 50.

The documentation of this work is inspired by (Silverio Miyashiro, Ferreira, & Sant'Anna, 2015).

58

 Generated source code 6.3.

This section describes the generated source code of the VC121-12 ECU. The source code is gained

through the software and hardware described in section 5.2 on page 44 and section 5.3 on page 48.

This source code includes the three main parts: initialisation process, BSW system and the

application. This section begins with the description of the initialisation process, followed by the

explanation of the scheduling of the BSW system. Finally, the application of both implementations are

presented and the main differences between both implementations are highlighted.

Each execution of an application on the VC121-12 ECU starts with the execution of the start-up code.

This code segment provides not only the entry point (start address) for the application, it also initialise

the MMU and the RAM memory. The RAM areas are initialised with pre-defined values that are stored

in the ROM memory and copied to RAM during the start-up. A detailed description of the start-up code

can be found in section 0 on page 132 and in the technical reference, (Reinl, 2014).

The initialisation process follows the start-up procedure. The initialisation process initialise all BSW

modules, the RTE and OS. The initialisation process starts with the execution of the Ecum_init

function and ends with the execution of the dispatcher, as seen in section 0 on page 132. The function

dispatcher is elemental for the execution it:

 checks the activation queue of the scheduler

 saves the old context of the actual running task and

 starts the next task that has the highest priority and is in state “READY”.

The whole ECU software consists of several tasks. The defined tasks in section 4 on page 36 are

implemented as application tasks that are scheduled through the operating system. Whereby, each

BSW module has its main function. These main functions check for pending events and execute its

specific functions, if the corresponding event occurs. Each BSW main function has its own cycle time.

The calling frequency of such main functions ranges from 1 ms to 100 ms in this work, as seen in

section 11.5.2 on page 133 to section 11.5.5 on page 136. These main functions are scheduled from

the BSW Scheduler (SchM). It is mandatory to consider that the dependencies between the BSW

components and to choose the appropriate scheduling frequency for each BSW main function by

configuring the SchM module through the GENy tool. The description of the specific cycle time of each

main function can be found in the technical references of the individual modules that are delivered with

the VC121-12 ECU (TechnicalReference_Asr_BSWmodule.pdf). In addition to the cycle time, also an

activation offset can be configured to delay the initial triggering of a main function.

Both implementations in this work have the same system configuration. The SchM in both

implementations have 5 offsets that are signified through the name of the time variable and are

illustrate in the detailed program flow chart in section 11.5.2 on page 133 to section 11.5.5 on page

136.

59

The BSW Scheduler is implemented as two extended tasks, SchM_SyncTask and SchM_AsyncTask.
SchM_SyncTask includes all BSW main functions that are dependant of the FLexRay network and
therefore has to be executed in a specific point in the FlexRay cycle. All the BSW main function that
are independent of the FlexRay network are implemented in the Sch_AsyncTask , (Vector, 2007) .

SchM_Task

{

 SchM_Timer_SchM_AsyncTask_1_0_10ms =10;

 SchM_Timer_SchM_AsyncTask_1_0_5ms =5;

 for(; ;)

 {

 WaitEvent(CyclicEvent);

 GetEvent(&ev);

 ClearEvent(ev);

 If (0 == SchM_Timer_SchM_AsyncTask_1_0_10ms)

 {

 Can_MainFunction;

 Spi_MainFunction;

 }

 If (0 == SchM_Timer_SchM_AsyncTask_1_0_5ms)

 {

 Lin_MainFunction;

 }

 SchM_Timer_SchM_AsyncTask_1_0_10ms - -;

 SchM_Timer_SchM_AsyncTask_1_0_5ms - -;

 }

}

Source code 6-1: SchM task example

Each cycle time is implemented with a time variable that indicates the cycle period, such as

SchM_Timer_SchM_AsyncTask_1_0_10ms. The time variable, in this case, is initialised with 10 with

an offset of 0. Source code 6-1 illustrates an example of such SchM extended task. The SchM task is

implemented as an endless for-loop. This task is set to the state “WAIT” with the execution of the

WaitEvent function until the event CyclicEvent occurs. When the expected event occurs, the task is

then transferred to the state “RUN”. The occurred event is then stored in the variable ev through the

function GetEvent and disabled through the execution of the function ClearEvent. Both SchM tasks

have a CyclicEvent that occures each millisecond. That means that each millisecond the task is set

back to the state “RUN” and all time variables are checked if the initialised value equals zero. Each

time variable is decremented after each execution of the SchM_Task. The decrementation of the time

variables ensure that each BSW main functions is executed at its cycle period.

60

Each application task is represented as an entry in several variables. This variables defines the

characteristics of tasks, such as:

 base priority, which represents the home priority before the execution of the priority ceiling

protocol. Software-wise, is the lowest priority defined as zero, every value greater than zero

will be declined as a higher priority, where 255 is the highest priority (AUTOSAR, 2014a p.

126-127). Conversely, in hardware the highest priorities is defined as zero and priorities

greater then zero will be declined as lower priories.

 actual priority, which is used to store necessary priority changes during the priority ceiling

protocol

 state, which defines the state of the task, see section 2.3.1 on page 24

 stack, which references to the starting address of the task stack. Each task has its own stack

to store all local data, return addresses and the task context. The task context is a register in

which all the information of a pre-emptive task is stored when it is transferred to the state

“WAIT”. If the task is transferred back to state “RUN”, then the task can be executed on the

point where it stopped previous (V. I. GmbH, 2011a p. 25)

 task type, which describes whether the task is extended or basic

 scheduling policy, it describes whether a task is pre-emptive or non-pre-emptive

 activation counter and the maximum amount of possible activations of the task

 events on which extended task are transferred to the state “READY” or in the state “WAIT”. Is

the task from type basic then this characteristic is set to zero.

This characteristics are available in the OSEK Run Time Interface (ORTI) file (<oil
4
_filename.>.ort),

which contains debug information generated from the generator of the AUTOSAR tool, see section

5.3.2 on page 49. The characteristics for the application tasks can be found in section 6.3.1.1 on page

61 for SingleCoreV1_0 and in section 6.3.1.2 on page 67 for SingleCoreV2_0.

4
 OSEK Implementation Language (OIL)

61

6.3.1.1. SingleCoreV1_0

The first implementation SingleCoreV1_0, contains 6 application task of type extended, which include the write- and read-process as required from the designed

experiments, see section 4 on page 36. Table 6-2 illustrates the characteristics of each application task and the two SchM tasks with the additional characteristic,

priority mask. The priority mask is used to identify the hardware priority of each task in the scheduling process of the operating system, see section 7.1.2.2.2 on

page 87. Whereby, the leading zeros of the priority mask is defining the hardware priority.

Name

Entry

number/

identify

number

Base

software

priority

Hardware

priority

Priority

mask

Task

type

Scheduling

policy

Task_Event_Expl_Swc4to3 0

5 1

0x4000 0000

Extended

Non-pre-emptive

Task_Event_Impl_Swc3to4 1

Task_IoHw_Period_Expl_Swc6to5 2

4 2

0x2000 0000

Task_IoHw_Period_Impl_Swc5to6 3

Task_Period_Expl_Swc2to1 4

3 3

0x1000 0000

Full-pre-emptive
Task_Period_Impl_Swc1to2 5

SchM_AsyncTask_1 6 2 4 0x0800 0000
Non-pre-emptive

SchM_SyncTask_1 7 1 5 0x0400 0000

Table 6-2: Task characteristics of SingleCoreV1_0 Implementation

62

The extended application tasks of SingleCoreV1_0 are implemented with an endless loop such as the

extended SchM tasks. In contrary to the SchM tasks are the extended application tasks here waiting

for two events, an event for the writing process and an event for the reading process as illustrated in

Source code 6-2. The event for the writing process occurs depending on the period that is defined for

each task, see section 4 on page 36. Whereby, the reading process is evoked only if the

corresponding event occurs.

(1) Task_

(2) {

(3) for(; ;)

(4) {

(5) EventMaskType ev;

(6) WaitEvent(EvRunnableOut | EvRunnableIn);

(7) GetEvent(&ev);

(8) ClearEvent(ev);

(9) If (ev == EvRunnableOut)

(10) {

(11) RunnableOut();

(12) }

(13) If (ev == EvRunnableIn)

(14) {

(15) RunnableIn();

(16) }

(17) }

(18) }

Source code 6-2: Implementation of an extended
task in SingleCoreV1_0

63

ApplicationTask()

 Defintion of the event variable ev.

This function waits until EvRunnableOut ot

EvRunnableIn occurs and if this is the

case set the application task to the status

“RUN“

GetEvent(ev)

This function saves the occured event in ev.

ClearEvent(ev)

This function disables the occured

event, which is saved in ev.

Does event

EvRunnableOut

occurred?

 RunnableOut()

TRUE

Rte_Call_SwitchInput_DIN1_Get_SwitchInValue(&SwitchValue)

This function reads the status of

DIN1 and stores it in

SwitchValue.

 RunnableOut()

Is Switch 1 closed?

Rte_Write(&varOut)

Explicit write process

This function writes the value of varOut into Rte-Buffer.

SetEvent(EvRunnableIn)

TRUE

This function sets the event

EvRunnableIn.

Schedule()

This function checks if a higher-priority task is ready, if so the current

task is put into the ready state, its context is saved and the higher-

priority task is executed,

Does a higher-

prioritiy task in ready

state exits?

GetEvent(ev)

This function saves the occured event in ev.

FALSE

Does event EvRunnableIn

occurred?

RunnableIn()

TRUE

This function reads the value of the Rte-Buffer

and stores Ist conent to varIn.

Rte_Read(&varIn)

RunnableIn()

Explicit read process

ClearEvent()

This function disables

the occured event,

which is saved in ev.

FALSE

WaitEvent(EvRunnableOut | EvRunnableIn)

NO

FALSE

Figure 6-7: Program flow chart for the explicit communication in SingleCoreV1_0

64

The program flow, see Figure 6-7 on page 63, illustrates the explicit communication of the

SingleCoreV1_0 implementation. Each application task in SingleCoreV1_0 is implemented as an

extended task to manage the write and read-process in with the same task, as seen in Table 6-2 on

page 61. The following section describes the procedure of the explicit communication, which is

illustrated in Figure 6-7 on page 63.

 Each application task is executed, firstly, with the occurrence of the event for the writing

process (EvRunnableOut) through the functions WaitEvent, GetEvent and ClearEvent.

Afterwards, the writing runnable (RunnableOut) is called.

 The software components, which are dependent on the status of the digital inputs (DIN0 to

DIN3) are then calling the function Rte_Call_SwitchInput_DIN1_GetSwitchValue. This function

saves the status of the corresponding switch, here switch1, into its parameter (SwitchValue). If

switch 0 or switch 1 is closed then the writing process of SWCEvent03 and SWCEvent04 is

executed. Whereby, the status of switch 2 or switch 3 is exchanged between the software

components SWCIoHwPeriod05 and SWCIoHwPeriod06.

 The writing process for the explicit communication is implemented through the Rte_Write

function. This function copies the content of its function parameter, here data into the

RteBuffer. The RteBuffer represents a memory space that is allocated for the communication

process.

 The notification process is responsible to acknowledge the reading process that new data is

available. This process begins with the execution of the function SetEvent in the writing

function Rte_Write and contains the following functions:

o SetEvent(EventMask): This function sets the event corresponding to the EventMask,

here the event for the reading process is set.

o Schedule(): This function checks if a higher-task is in status “READY”. If this is the

case the actual task will be transferred to the status “WAIT”, its context is saved and

the higher-priority task is executed. In this work a rescheduling through the function

Schedule is not taken place.

o GetEvent(Event): This function copies the current occurred event to its parameter

Event.

 The execution of the reading process (RunnableIn) is ensured, firstly, through the function

SetEvent in the writing process and secondly, through the second GetEvent after

RunnableOut is completed. The second GetEvent saves the occurred read event

(EvRunnableIn) to its variable and enable the execution of the reading process. The explicit

reading process is executed through the function Rte_Read that copies the content of the

RteBuffer into its paramerter (Ivar).

65

ApplicationTask()

 Defintion of the event variable ev.

This function waits until EvRunnableOut ot

EvRunnableIn occurs and if this is the

case set the application task to the status

“RUN“

GetEvent(ev)

This function saves the occured event in ev.

ClearEvent(ev)

This function disables the occured

event, which is saved in ev.

Does event

EvRunnableOut

occurred?

 RunnableOut()

TRUE

Rte_Call_SwitchInput_DIN0_Get_SwitchInValue(&SwitchValue)

This function reads the status of

DIN1 and stores it in

SwitchValue.

 RunnableOut()

Is Switch 1 closed?

Rte_IWrite(&varOut)

Implicit write process

This function writes the value of varOut into the implicit

buffer ImplBuffer.IN

SetEvent(EvRunnableIn)

TRUE

This function sets the event

EvRunnableIn.

Schedule()

This function checks if a higher-priority task is ready, if so the current

task is put into the ready state, its context is saved and the higher-

priority task is executed,

Does a higher-

prioritiy task in ready

state exits?

FALSE

Does event EvRunnableIn

occurred?

RunnableIn()

This function reads the value of the implicit read
buffer ImplBuffer.In and stores it into varIn

Rte_IRead(&varIn)

RunnableIn()

Implicit read process

ClearEvent()

This function disables

the occured event,

which is saved in ev.

FALSE

WaitEvent(EvRunnableOut | EvRunnableIn)

NO

FALSE

Copy process from implicit Buffer

ImplBuffer.IN to Rte-Buffer

Copy process from Rte-Buffer to the implicit read

buffer ImplBuffer.In

Figure 6-8: Program flow chart for the implicit communication in SingleCoreV1_0

66

The implementation of the implicit communication differs from the implementation of the explicit

communication in the generated communication functions and the notification process.

The implicit communication functions Rte_IWrite and Rte_IRead are generated as macros that will be

replaced with their identical copy of the RteBuffer (ImplBuffer.In and ImplBuffer.Out). Each implicit

communication function, write and read, has its own RteBuffer, which is realised as a struct variable

(ImpBuffer) with two members (In and Out), as seen in Figure 6-8 on page 65.

These three buffers are synchronised through a copy process to guarantee that each buffer contains

the newest data. In addition, the implicit write function Rte_IWrite does not contain the notification

function SetEvent. This function is called after the write process is completed and is therefore

independent of whether the write process occurs or not. In addition, it is mandatory to acknowledge

that the second GetEvent function is missing before the execution of the second if-statement, which

can be seen in Figure 6-8 on page 65. Due to this missing GetEvent, the functions WaitEvent,

GetEvent and ClearEvent have to be executed to acknowledge that the reading event (EvRunnableIn)

occurred.

67

6.3.1.2. SingleCoreV2_0

In comparison with the previous implementation is the write- and read-process split into two separated tasks that are generated as basic tasks as seen in Table

6-3.

Name

Entry

number/

identify

number

Base

software

priority

Hardware

priority
Priority mask Task type Scheduling policy

SchM_AsyncTask_1 0 2 4 0x0800 0000 Extended

Non-pre-emptive

SchM_SyncTask_1 1 1 5 0x0400 0000 Extended

Task_Event_Expl_Swc4to3_In 2

5 1

0x4000 0000

Basic

Task_Event_Expl_Swc4to3_Out 3 0x4000 0000

Task_Event_Impl_Swc3to4_In 4 0x4000 0000

Task_Event_Impl_Swc3to4_Out 5 0x4000 0000

Task_IoHw_Period_Expl_Swc6to5_In 6

4 2

0x2000 0000

Task_IoHw_Period_Expl_Swc6to5_Out 7 0x2000 0000

Task_IoHw_Period_Impl_Swc5to6_In 8 0x2000 0000

Task_IoHw_Period_Impl_Swc5to6_Out 9 0x2000 0000

Task_Period_Expl_Swc2to1_In 10

3 3

0x1000 0000

Full-pre-emptive
Task_Period_Expl_Swc2to1_Out 11 0x1000 0000

Task_Period_Impl_Swc1to2_In 12 0x1000 0000

Task_Period_Impl_Swc1to2_Out 13 0x1000 0000

Table 6-3: Task characteristics of SingleCoreV2_0 implementation

68

Each application task in SingleCoreV2_0 is generated as a basic task as seen in Source code 6-3 and

Source code 6-4 . The basic tasks are not including any endless loops, due to the fact that basic tasks

are not able to be transferred into the state “WAIT”. As a result, the basic tasks have to be terminated

after its execution through the function TerminateTask.

(1) Task_Out

(2) {

(3) RunnableOut();

(4) TerminateTask();

(5) }

(1) Task_In

(2) {

(3) RunnableIn();

(4) TerminateTask();

(5) }

Source code 6-3: Implementation of the basic
task of the write process in SingleCoreV2_0

Source code 6-4: Implementation of the basic
task of the read process in SingleCoreV2_0

The explicit communication of the SingleCoreV2_0 implementation begins with the occurrence of the

periodical event of the writing process. This event is the trigger to execute the writing task Task_Out,

see Figure 6-9 on page 69.

 The writing task calls the RunnableOut, which differs from the explicit RunnableOut in only

one aspect, the notification process.

 The notification process begins with the execution of the function ActivateTask instead of

SetEvent as in SingleCoreV1_0. This function transfers the task with the task id (TaskID) to

the state “READY”.

 The function TerminateTask transfers the actual task to the status “SUSPENDED” and

identifies the next high prioritised task in status “READY” through the function SchedulePrio

and and it calls the identified task through the functions Dispatcher.

 The function Dispatcher then activates the task for the reading process, if this task is the

highest prioritised task in status “READY”.

 The reading task executes the reading process and is transferred into the state

“SUSPENDED” after its execution through the function TerminateTask as seen in Figure 6-10

on page 69.

The implicit communication of the SingleCoreV2_0 includes the same IWrite and IRead function as the

implicit communication of the SingleCoreV1_0. Also in SingleCoreV2_0 are two synchronisation points

necessary to guarantee that each Rte-Buffer has the newest value. But the two implicit buffers of the

write- and read-process are here generated as separate variables, ImplWriteBuffer and

ImplReadBuffer. in comparision to the first implementation as seen in Figure 6-11 and Figure 6-12 on

page 70.

69

Task_Expl_Out()

This function saves the context of

the actual running task and calls

the high priority task in state

“READY“.

osDispatcher()

Task_Expl_Out()

 RunnableOut()

Rte_Call_SwitchInput_DIN1_Get_SwitchInValue(&SwitchValue)

This function reads the status of DIN0 and
stores it in SwitchValue.

 RunnableOut()

Is Switch 1

closed?

Rte_Write(&swc04_datastruct_expl_out)

Explicit write process

This function writes the value of
swc04_datastruct_expl_out into Rte-Buffer.

ActivateTask(Task_In)

TRUE

This function sets the event for

Task_In.

FALSE

TerminateTask()

This function terminates the calling task. The
calling task is transferred from the State “RUN“
state into state “SUSPENDED“.

osCheckInterruptEnabled()

This function enables all interrupts.

osSchedulePrio()

This function identfy the task with the highest

priority in state “READY“ and it stores the task

id of the identified task into a global variable

osDispatcher()

This function saves the context of the actual

running task and calls the high priority task in

state “READY“.

TerminateTask()

Task_Expl_In()

This function saves the context of

the actual running task and calls

the high priority task in state

“READY“.

osDispatcher()

Task_Expl_In()

 RunnableIn()
 RunnableIn()

Rte_Read(&swc03_datastruct_expl_in)

Explicit read process

This function reads the content of the Rte-Buffer and
saves it to swc03_datastruct_expl_In.

TerminateTask()

This function terminates the calling task. The
calling task is transferred from the State “RUN“
state into state “SUSPENDED“.

osCheckInterruptEnabled()

This function enables all interrupts.

osSchedulePrio()

This function identfy the task with the highest

priority in state “READY“ and it stores the task

id of the identified task into a global variable

osDispatcher()

This function saves the context of the actual

running task and calls the high priority task in

state “READY“.

TerminateTask()

Figure 6-9: Program flow chart for the explicit communication of the writing
task in SingleCoreV2_0

Figure 6-10: Program flow chart for the explicit communication of the reading
task in SingleCoreV2_0

70

Task_Impl_Out()

This function saves the context of

the actual running task and calls

the high priority task in state

“READY“.

osDispatcher()

Task_Impl_Out()

 RunnableOut()

Rte_Call_SwitchInput_DIN1_Get_SwitchInValue(&SwitchValue)

This function reads the status of DIN0

and stores it in SwitchValue.

 RunnableOut()

Is Switch 1 closed?

Rte_IWrite(&swc04_datastruct_expl_out)

Implicit write process

This function writes the value of

swc04_datastruct_expl_out into ImplWriteBuffer.

ActivateTask(Task_In)

TRUE

This function sets the event for

Task_In.

FALSE

TerminateTask()

This function terminates the calling task. The

calling task is transferred from the State

“RUN“ state into state “SUSPENDED“.

osCheckInterruptEnabled()

This function enables all interrupts.

osSchedulePrio()

This function identfy the task with the highest

priority in state “READY“ and it stores the task

id of the identified task into a global variable

osDispatcher()

This function saves the context of the actual

running task and calls the high priority task in

state “READY“.

TerminateTask()

Copy process from

ImplWriteBuffer to

Rte-Buffer

Task_Impl_In()

This function saves the context of

the actual running task and calls

the high priority task in state

“READY“.

osDispatcher()

Task_Impl_In()

 RunnableIn() RunnableIn()

Rte_IRead(&swc03_datastruct_expl_in)

Implicit read process

This function reads the content of the

ImpReadBuffer and saves it to

swc03_datastruct_expl_In.

TerminateTask()

This function terminates the calling task. The

calling task is transferred from the State

“RUN“ state into state “SUSPENDED“.

osCheckInterruptEnabled()

This function enables all interrupts.

osSchedulePrio()

This function identfy the task with the highest

priority in state “READY“ and it stores the task

id of the identified task into a global variable

osDispatcher()

This function saves the context of the actual

running task and calls the high priority task in

state “READY“.

TerminateTask()

Copy process from

Rte-Buffer to

ImplReadBuffer

Figure 6-11: Program flow chart for the implicit communication of the writing
task in SingleCoreV2_0

Figure 6-12: Program flow chart for the implicit communication of the reading
task in SingleCoreV2_0

71

7. Evaluation of experiments

This section is intended to evaluate both implementations of the designed experiments. Once the

defined experiments had been implemented, the correct execution of both applications, the

communication time and memory consumption can be conducted. To verify the correct execution of

both implementations a scheduling analysis was performed. This scheduling analyses includes the

question, if the defined time constraints in section 4 on page 36 are fulfilled and whether switch 0 and

switch 1 have an impact on the communication of SWCEvent03 and SWCEvent04 as expected. The

second part of this section verifies the time that is spent to execute the intra-task and inter-task

communication, which results provide the ability to form a statement regarding to the performance of

both communication types. Furthermore, the memory consumption of both communication types were

analysed and evaluated to conclude the advantages and disadvantages of both communication types.

 Scheduling analysis 7.1.

The following sub section verifies the implemented experiments SingleCore_V1_0 and

SingleCore_V2_0 regarding to their scheduling process.

 Scheduling analysis methodology 7.1.1.

For the scheduling analysis of both implementations, the real-time analyser winIDEA from ISystems,

see section 5.3.4 on page 50, has been used to trace the calling sequence of the defined tasks.

The function execution is recorded for the first 25 ms of the application, for all possible switch

combinations. However, the scheduling process has been analysed for only the possible status

combinations of switch 0 (SW0) and switch 1 (SW1). As described in section 4 on page 36 should only

SW0 and SW1 have an impact on the scheduling of the write processes.

These were

 both, switch 0 and switch 1, open (Vx_0_0000),

 both closed (Vx_0_1111),

 switch 0 closed (Vx_0_1011) and

 switch 1 closed (Vx_0_0100).

The missing number x represents the number related to the implementation, where 1 stands for

SingleCoreV1_0 and 2 stands for SingleCoreV2_0.

The execution time of each function is recorded in a text format and summarized in Excel tables. The

data collection of Vx_0_1111 is illustrated in section 11.6 on page 137 for SingleCoreV1_0 and in

72

section 11.7 on page 149 for SingleCoreV2_0. This summary includes only the necessary

communication functions, such as tasks, runnables, read and write functions and functions. Based on

this data; charts were generated to illustrate the execution sequence of the application.

 Verified requirements 7.1.2.

The following is a list of verified requirements for the scheduling analysis of both implementations,

indicated with an ID for each requirement.

1. The write-process should be triggered periodically. It is required that the write-process from

SwcEvent03 to SwcEvent04

SwcEvent04 to SwcEvent03
is invoked each millisecond.

SwcIoHwPeriod05 to SwcIoHwPeriod06

SwcIoHwPeriod06 to SwcIoHwPeriod05

SwcPeriod01 to SwcPeriod02
is invoked each 5 millisecond.

SwcPeriod02 to SwcPeriod01

2. The runnable, which is responsible for the read-process of each communication, should be

invoked as soon as new data is available.

3. Switch 0 and switch 1 should have an influence on the calling sequence of write- and read-

process of the communication between SWCEvent03 and SWCEvent04. It is expected that

the communication between SWCEvent3 and SWCEvent4 only occur when the

correspondent switch is open.

73

7.1.2.1. Requirements number 1 test description and results

Due to the fact that write- and read-processes are included in one extended task for each communication in SingleCoreV1_0, the invocation time of the task is

equal to the invocation time of the writing process
5
. Therefore, the verification of the calling sequence of the writing processes is taken on a task level.

Figure 7-1: Task calling sequence for the first 25 ms of SingleCoreV1_0 for the case when each switch is closed

Figure 7-1 shows the task calling sequence per millisecond for the first 25 ms for the case when each switch is closed (V1_0_1111) of SingleCoreV1_0. As it can

be seen the first task starts around the 20
th

 millisecond after the initialisation process
6
 of SingleCoreV1_0. The figure shows that the tasks and therefore the write-

processes, are called as expected; Task_Event_Expl_Swc3to4, Task_Event_Impl_Swc3to4, Task_IoHw_Period_Expl_Swc6to5 and

Task_IoHw_Period_Impl_Swc5to6 were called each millisecond and Task_Period_Expl_Swc2to1 and Task_Period_Impl_Swc1to2 every fifth millisecond for the

case when each switch is closed. This time constraint for the periodic calling sequence is also met for the cases when all switches are open, for the case when

switch 1 is the only open switch and for the case when switch 1 is the only closed switch. The measurements of these cases can be seen in, Figure 7-2 and

Figure 7-3 and Figure 7-4 on the following page.

5
 A detailed explanation of the implementation of extended task can be found in section 6.3 on page 54.

6
 More information about the initialisation process of SingleCore_V1_0 is presented in chapter 6.3 on page 54.

(1 ms) Task_Event_Expl_Swc4to3

(1 ms) Task_Event_Impl_Swc3to4

(1 ms) Task_IoHw_Period_Expl_Swc6to5

(1 ms) Task_IoHw_Period_Impl_Swc5to6

(5 ms) Task_Period_Expl_Swc2to1

(5 ms) Task_Period_Impl_Swc1to2

osIdleLoop

20.05 25.05 30.05 35.05 40.05 45.05 time in ms

tasks V1_0_1111_25ms Scheduling

74

Figure 7-2: Task calling sequence for the first 25 ms of SingleCoreV1_0 for the case when each switch is open

Figure 7-3: Task calling sequence for the first 25 ms of SingleCoreV1_0 for the case when only switch 1 is open

(1 ms) Task_Event_Expl_Swc4to3

(1 ms) Task_Event_Impl_Swc3to4

(1 ms) Task_IoHw_Period_Expl_Swc6to5

(1 ms) Task_IoHw_Period_Impl_Swc5to6

(5 ms) Task_Period_Expl_Swc2to1

(5 ms) Task_Period_Impl_Swc1to2

osIdleLoop

19.01 24.01 29.01 34.01 39.01 44.01 time in ms

tasks
V1_0_0000_25ms Scheduling

(1 ms) Task_Event_Expl_Swc4to3

(1 ms) Task_Event_Impl_Swc3to4

(1 ms) Task_IoHw_Period_Expl_Swc6to5

(1 ms) Task_IoHw_Period_Impl_Swc5to6

(5 ms) Task_Period_Expl_Swc2to1

(5 ms) Task_Period_Impl_Swc1to2

osIdleLoop

20.04 25.04 30.04 35.04 40.04 45.04
time in ms

tasks

V1_0_1011_25ms scheduling

75

Figure 7-4: Task calling sequence for the first 25 ms of SingleCoreV1_0 for the case when only switch 1 is close

The requirement for SingleCoreV1_0 is also valid for the second implementation SingleCoreV2_0. Contrary to the first implementation, the write- and read-

processes in SingleCore_V2_0 are mapped to two tasks. Hence, the following observation of the invocation of the writing process is carried out on the task-level,

with a focus on the tasks ending with OUT that include the write process. Figure 7-5 illustrates the task calling sequence per millisecond for the first 25 ms for the

case when each switch is closed (V2_0_1111).

(1 ms) Task_Event_Expl_Swc4to3

(1 ms) Task_Event_Impl_Swc3to4

(1 ms) Task_IoHw_Period_Expl_Swc6to5

(1 ms) Task_IoHw_Period_Impl_Swc5to6

(5 ms) Task_Period_Expl_Swc2to1

(5 ms) Task_Period_Impl_Swc1to2

osIdleLoop

19.26 24.26 29.26 34.26 39.26 44.26time in ms

tasks
V1_0_0100_25ms scheduling

76

Figure 7-5: Task calling sequence for the first 25 ms of SingleCoreV2_0 for the case when each switch is closed

This figure proves that each writing task is called within their time constraints:

Task_Event_Expl_Swc4to3_Out

Task_Event_Impl_Swc3to4_Out
is invoked each millisecond

Task_IoHw_Period_Impl_Swc5to6_Out

Task_IoHw_Period_Impl_Swc6to5_Out

Task_Period_Impl_Swc1to2_Out
I invoked each 5 millisecond

Task_Period_Impl_Swc2to1_Out

These time constrains are also fulfilled when all switches are open (V2_0_0000), when switch 1 is the only open switch (V2_0_1011) and when switch 1 is the

only closed switch (V2_0_0100). These measurements are detailed in Figure 7-6 on page 77, Figure 7-7 and Figure 7-8 on page 78 respectively. Each of these

figures represent the calling sequence of the write and read task with one millisecond. In addition the figures show that the task scheduling process begins after

the initialisation process of the system, and therefore within the 19
th
 and 20

th
 millisecond of the software run time. All writing tasks are called within the first

(1ms) Task_Event_Expl_Swc4to3_Out
(1ms) Task_Event_Impl_Swc3to4_Out

Task_Event_Expl_Swc4to3_In
Task_Event_Impl_Swc3to4_In

(1ms) Task_IoHw_Period_Impl_Swc5to6_Out
(1ms) Task_IoHw_Period_Expl_Swc6to5_Out

Task_IoHw_Period_Impl_Swc5to6_In
Task_IoHw_Period_Expl_Swc6to5_In

(5ms) Task_Period_Impl_Swc1to2_Out
(5ms) Task_Period_Expl_Swc2to1_Out

Task_Period_Impl_Swc1to2_In
Task_Period_Expl_Swc2to1_In

osIdleLoop

19.01 24.01 29.01 34.01 39.01 44.01 time in ms

tasks V2_0_1111_25ms Scheduling

77

millisecond of the scheduling process. Moreover, the writing tasks that have to be called each fifth millisecond are actually called in every fife millisecond from the

last time of their execution. Also, each writing task that needs to be executed every one millisecond is performed within this time constraint. Therefore, the

implementation SingleCore_V2_0 satisfies the requirement that each write process is triggered within their periodical call sequence.

Figure 7-6: Task calling sequence for the first 25 ms of SingleCoreV2_0 for the case when all switches are open

(1ms) Task_Event_Expl_Swc4to3_Out

(1ms) Task_Event_Impl_Swc3to4_Out

Task_Event_Impl_Swc3to4_In

(1ms) Task_IoHw_Period_Impl_Swc5to6_Out

(1ms) Task_IoHw_Period_Expl_Swc6to5_Out

Task_IoHw_Period_Impl_Swc5to6_In

Task_IoHw_Period_Expl_Swc6to5_In

(5ms) Task_Period_Impl_Swc1to2_Out

(5ms) Task_Period_Expl_Swc2to1_Out

Task_Period_Impl_Swc1to2_In

Task_Period_Expl_Swc2to1_In

osIdleLoop

20.05 25.05 30.05 35.05 40.05 45.05 time in ms

tasks V2_0_0000_25ms Scheduling

78

Figure 7-7: Task calling sequence for the first 25 ms of SingleCoreV2_0 for the case when switch 1 is the only open switch

Figure 7-8: Task calling sequence for the first 25 ms of SingleCoreV2_0 for the case when switch 1 is the only closed switch

(1ms) Task_Event_Expl_Swc4to3_Out

(1ms) Task_Event_Impl_Swc3to4_Out

Task_Event_Expl_Swc4to3_In

Task_Event_Impl_Swc3to4_In

(1ms) Task_IoHw_Period_Impl_Swc5to6_Out

(1ms) Task_IoHw_Period_Expl_Swc6to5_Out

Task_IoHw_Period_Impl_Swc5to6_In

Task_IoHw_Period_Expl_Swc6to5_In

(5ms) Task_Period_Impl_Swc1to2_Out

(5ms) Task_Period_Expl_Swc2to1_Out

Task_Period_Impl_Swc1to2_In

Task_Period_Expl_Swc2to1_In

osIdleLoop

19.20 24.20 29.20 34.20 39.20 44.20time in ms

tasks V2_0_1011_25ms Scheduling

(1ms) Task_Event_Expl_Swc4to3_Out

(1ms) Task_Event_Impl_Swc3to4_Out

Task_Event_Expl_Swc4to3_In

Task_Event_Impl_Swc3to4_In

(1ms) Task_IoHw_Period_Impl_Swc5to6_Out

(1ms) Task_IoHw_Period_Expl_Swc6to5_Out

Task_IoHw_Period_Impl_Swc5to6_In

Task_IoHw_Period_Expl_Swc6to5_In

(5ms) Task_Period_Impl_Swc1to2_Out

(5ms) Task_Period_Expl_Swc2to1_Out

Task_Period_Impl_Swc1to2_In

Task_Period_Expl_Swc2to1_In

osIdleLoop

19.20 24.20 29.20 34.20 39.20 44.20 time in ms

tasks V2_0_1011_25ms Scheduling

79

In addition to the correct calling pattern of the writing process in each case, it can be observed that in all four cases of task scheduling (V2_0_0000, V2_0_1111,

V2_0_1011, V2_0_0100), the first reading task was executed after two successive write tasks. This calling pattern results from the implementation of scheduler of

the operating system, which is used in both implementations.

80

In order to understand the scheduling mechanism from Vector, it is necessary to examine how the

tasks are implemented in the source code as described in section 6.3 on page 58.

The scheduling mechanism from Vector is based on three queues: QTaskActivation, QTail and

QHead. The main queue, QTaskActivation[number of priorities] [queue position], is implemented as a

two dimensional array, where the identify number of tasks in status “READY” are placed in the order of

their activation (first-in-first-out FIFO).

To simply illustrate the QTaskActivation queue, it can be represented as a two dimensional matrix.

The rows represent priority queues, and the columns represent the position in the priority queue.

Based on the information in Table 6-2 on page 61 the first row has no possible task identifier, because

no task with a hardware priority of zero is available. The second row could be filled with the task with

the task identifier (2), (3), (4) and (5) and so on. The QTaskActivation queue is filled with a ready task

from the tail, which is defined through the QTail queue. The tasks are called from the head of the

QTaskActivation queue, which is defined through the QHead queue.

A detailed description how those three queues are used is described in the following section. In case

of the SingleCoreV2_0 implementation, which has six priorities, the main queue QTaskActivation is

defined into 6 rows and 6 columns as seen in Figure 7-9 .

Position
0 1 2 3 4 5

Hardware priority 0

0 0

 1

0 0

0 0

0 0 (2), (3), (4), (5)

 2

0 0

0 0

0 0 (6), (7), (8), (9)

 3

0 0

0 0

0 0 (10), (11), (12), (13)

 4

0 0 (0)

 5

0 0

Figure 7-9: QTaskActivation queue

During the RAM initialisation, in the initialisation process of the application (in function OsStartOs see

section 11.5.1 on page 132) all queues are initialised with zero. The queue will be then modified

through the same function in the initialisation process. All tasks that autostart are activated, they will

be first set to the state “READY” and then added into the QTaskActivation queue through the function

osSysActivateTask(TaskIndex). Every other task, for which autostart mechanism is not activated, will

be added into the QActivationqueue as soon as the corresponding alarm to each task occurs. The

task alarms are set during the execution of the function Rte_Start , see section 11.5.1 on page 132.

In case of SingleCore_V2_0 is the autostart mechanism from task SchM_Sync and SchM_Async

activated. These two tasks are added first into the QTaskActivation queue.

81

Two arrays are used to determine the start and end of each priority queue inside the QTaskActivation

queue. QTail[number of priority] signifies the end of the QTaskActivation queue for each priority and is

used to add task identifiers to the QTaskActivation queue. QHead[number of priority] signifies the start

of each priority queue and is used to get the task in state “READY” with the highest priority to be

executed next. Both queues are initialised with zero at the beginning.

As soon as a task has to be add into the QTaskActivation queue its state will be transformed into the

state “READY” and the QTail queue will be parsed for the position in which its task index will be insert

into the QTaskActivation queue.

For example, when task SchM_Sync with the task index of 1 and the hardware priority of 5 has to be

added into the QTaskActivation queue, then the QTail queue will be searched for the right position in

QTaskActivation queue. The priority of SchM_Sync not only defines in which element of QTail queue

the right position for the QTaskActivation queue is contained, it also defines in which row of

QTaskActivation queue it will be added. In this case SchM_Sync with the priority of 5 will be added

into the QTaskActivation queue in the fifth row in the first column (“zero”) as seen in Figure 7-10 on

page 81, because the QTail queue fifth element contains the number zero. Before SchM_Sync is

inserted into the queue QTaskActivation at the defined position, the value at the fifth element of QTail

will be incremented.

0 1 2 3 4 5

0 1 2 3 4 5

QTail 0 0 0 0 0 0 QHead 0 0 0 0 0 0

QTail 0 0 0 0 0 1 + 1

Position
0 1 2 3 4 5

Hardware priority 0

0 0

 1

0 0

0 0

0 0

 2

0 0

0 0

0 0

 3

11 13 10 12

0 0

 4

0 0

 5

0 0

 1

Figure 7-10: Insert process of task SchM_Sync to the QTaskActivation queue

Afterwards, the variable (QHighPrio) is modified. QHighPrio defines the highest priority of all tasks

which are in state “READY” and it is initialised with zero. After each insert into the QTaskActivation

queue through the QTail queue, the content of QHighPrio is bitwise OR with the priority mask of the

task, which is added in the QTaskActivation. The priority mask of each task can be seen in Table 6-2

on page 61 for SingleCoreV1_0 and in Table 6-3 on page 67 for SingleCoreV2_0. The result of this

operation is then stored in QHighPrio. With this method, only the highest priority will be stored in

82

QHighPrio. Therefore, the amount of leading zeros of each priority mask signifies the corresponding

hardware priority of each priority mask.

For instance, Figure 7-11 illustrates the modification of QHighPrio after adding task SchM_Sync into

the QTaskActivation queue. The priority mask of SchM_Sync has the value of 0x040000000. This

priority mask is ORed OR with the QHighPrio and the result is stored back into QHighPrio. In this

example, the new value of QHighPrio is 0x04000000 in hexadecimal, which represents 0000 0100

0000 0000 0000 0000 0000 0000 in binary. The new QHighPrio has 5 leading zeros, therefore priority

5 is the highest priority of all tasks in state “READY”.

QHighPrio 0x 0 0 0 0 0 0 0 0

Priority mask of
SchM_Sync 0x 0 4 0 0 0 0 0 0

QHighPrio 0x 0 4 0 0 0 0 0 0

0x = hexadecimal
b = binary

Figure 7-11: QHighPrio ored with priotiy mask of task SchM_Sync

If it is required to call the task that is in state READY with the highest priority, firstly, the highest priority

of all tasks in state “READY” will be identified through the content of QHighPrio.

For example,

Figure 7-12 shows the calling process if the priority mask, which is stored in QHighPrio, has three

leading zeros. This means that three is the highest priority in this example. Therefore, the third

element of the QHead queue will be considered to identify which task with the priority of three has to

be called next.

The zero of the third element of QHead queue signifies the start position of the QActivationTask

queue. The next task that will be executed is placed in the third row and column zero of

QActivationTask. In this example, the task Task_Period_Expl_Swc2to1_Out with the task index 11 will

be called next. Before the OS system (Dispatcher) sets this task to the state “RUN”, the third element

of QHead queue is incremented to point to the next task as the start of the priority queue.

83

 0 1 2 3 4 5

 QHead 0 0 0 0 0 0

 1

Position
0 1 2 3 4 5

Hardware priority 0

0 0

 1

3 5

2 4

0 0

 2

0 0

0 0

0 0

 3

11 13 10 12

0 0

 4

0 0

 5

0 0

Figure 7-12: Dequeue process of task Task_Period_Expl_Swc2to1_Out out of QTaskActivation queue

To avoid adding a task index in a non-existing column, each element of QTail queue, as well as in

QHead queue, has a maximum activation as seen in Figure 7-13 and Figure 7-14. After each

modification, the content of the modified queue (QTail or QHead queue) will be checked if the

maximum activation for each element is reached. If this is the case, the element with the maximum

value will be reset to zero.

Priorities 0 1 2 3 4 5

QTail 0 0 0 0 0 0

Max.

activation
1 4 4 4 1 1

Figure 7-13: QTail queue with its maximum activation

Priorities 0 1 2 3 4 5

QHead 0 0 0 0 0 0

Max.

activation
1 4 4 4 1 1

Figure 7-14: QTail queue with its maximum activation

To avoid the condition where the tail and head queue overlap each other, the element with the same

number as the highest priority QHighPrio of both queues are compared with each other before a new

task is executed. If both elements contain the same value, both pointer (head and tail) are pointing to

the same column and row in the queue QActivationQeue, which means that this row of the

QActivationQueue is empty and both queues have to be reset to zero.

84

With this implementation of the scheduling, the AUTOSAR requirement that tasks, which have the

same priority will be executed in their activation order, see section 4 on page 36 can be easily fulfilled.

In case of SingleCoreV2_0 have for example the tasks:

 Task_Event_Expl_Swc4to3_Out (task index = 3)

 Task_Event_Expl_Swc4to3_In (task index = 2)

 Task_Event_Impl_Swc3to4_Out (task index = 5) and

 Task_Event_Impl_Swc3to4_In (task index = 4)

the same hardware priority of 1 as illustrated in Table 6-3 on page 67.

Due to the fact that both writing tasks are firstly inserted into the queue as seen in Figure 7-12 on page

83, the triggered read tasks of both writing tasks are only able to be added after both writing tasks.

7.1.2.2. Requirements 2 and 3 test description and results

The verification to test if the read processes were triggered after new data is available was first

observed on the task level of each implementation. Due to the fact that the write- and read-processes

are included in their runnables of both implementations, the verification of the read-process for

SingleCoreV1_0 and SingleCoreV2_0 had to be conducted at runnable and read function level instead

of on task level.

The following figures in this subsection illustrate the calling sequence of runnables and communication

functions. The main purpose of these figures is to provide an overview of the function calling

sequence. For this reason, the squares in these figures are not representing the real execution

duration of each function.

In addition, the implicit communication could not be captured in the program trace, since this

communication type is generated as macros, as described in section 6.3. on page 58. For this reason,

it was necessary to debug line-by-line through the first millisecond of the application with the debugger

of WinIDEA, see section 5.3.4.1.2 on page 51. This method made it possible to investigate whether

the implicit communication functions were executed. If data was written to and read out of the memory

(RteBuffer), then the execution of the implicit write- and read-process were successful. The execution

of the implicit write- and read-process are represented as yellow diamonds, and the corresponding

implicit runnable are surrounded with a yellow rectangle in the following figures.

85

7.1.2.2.1. Verification of requirement 2 and 3 on SingleCoreV1_0

Figure 7-15: Runnable, write and read level scheduling for the case when each switch is closed from
SingleCoreV1_0

Figure 7-15 shows the runnable, write and read functions when each switch was closed per

millisecond for the first millisecond of the application SingleCoreV1_0. It can be observed that after the

execution of each Runnable_.._Out (green squares), the execution of the Runnable_In with the read

process is followed. The displayed execution sequence represents the correct scheduling of the

communication process of each software component, where after each writing process the

corresponding read process is followed. Moreover, each communication between the software

components occur as expected when all switches are closed.

Figure 7-16: Runnable, write and read level scheduling for the case when each switch is open from
SingleCoreV1_0

Figure 7-16 represents the case when each switch is open. In this case, it is required that the

communication between SWCEvent03 and SWCEvent04 does not occur, since the corresponding

86

switches (switch 0 and switch 1) are open. By comparing the read process in Figure 7-16 with the

correct scheduling provided in Figure 7-15 on page 85, it can be observed that the write- and read-

process of the explicit communication between SWCEvent04 and SWCEvent03:

 Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Expl_DataStruct,

 Runnable_Swc03_Odr_Expl_DataStruct_In and

 Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_Expl_DataStruct

did not occur as expected. The implicit read process in Figure 7-16 with the

Runnable_Swc04_Odr_Impl_DataStruct_In occurred, even if the write process had not been executed

since switch 0 had not been closed. It also can be observed that the implicit write- and read-process

between SWCIoHwPeriod05 and SWCIoHwPeriod06 occurred. This communication is expected,

because the communication between these software components was design to exchange the status

of switch 2. That means that the communication is independent of the status of switch 2.

Figure 7-17: Runnable, write and read level scheduling for the case when only switch 1 is closed from
SingleCoreV1_0

This incorrect execution of the implicit read process is also illustrated in the cases where switch 1 is

the only closed switch as seen in Figure 7-17. It can be observed that although switch 0 is open the

implicit reading process still occurs. However, in this case; the explicit communication between

SWCEvent04 and SWCEvent03 occurred, since switch 1 is closed, which is represented through the

following functions:

 Runnable_Swc04_Event_Expl_DataStruct_Out

 Rte_Wrtie_SwcEvent04_P_Swc04_DataStruct_Event_Expl_DataStruct

 Runnable_Swc03_Odr_Expl_DataStruct_In and

 Rte_Read_SwcEvent03_R_Swc03_R_Swc03_DataStruct_Odr_Expl_DataStruct.

87

Figure 7-18: Runnable, write and read level scheduling for the case when only switch 1 is open from
SingleCoreV1_0

In the case where only switch 1 is open as illustrated in

Figure 7-18, it is expected that the implicit communication between SWCEvent03 and SWCEvent04

occurred. Therefore, in this case, there is no incorrect scheduling to observe.

In all of these four cases, the status of switch 1 has an influence on the calling sequence of the read

and write process. But the status of switch 0 only has a correct impact on the implicit write process

itself but not on the read process. The read process of the implicit read in SWCEvent04 is called

without any impact of the status of switch 0. This incorrect execution of the implicit read process is due

to the generated SetEvent outside the implicit write function as seen in section 6.3.1.1 on page 61.

Therefore, the requirement that runnables, which include the read process, are called when new data

is available is fulfilled for each explicit communication, but not for the implicit communication. Also, this

scheduling analysis of SingleCore_V1_0 illustrates that only switch 1 has an influence on the calling

sequence of the explicit write and read process between SWCEvent04 and SWCEvent03. Switch 0

has only an impact on the implicit write process between SWCEvent03 and SWCEvent04, but not an

impact on the implicit read process. However, the scheduling of the communication between the

SWCPeriod01 and SWCPeriod02 such as between SWCIoHwPeriod05 and SWC0IoHwPeriod06

remained constant as expected.

7.1.2.2.2. Verification of requirement 2 and 3 on SingleCoreV2_0

The same conclusion from SingleCore_V1_0 is observed in the runnable and communication process

scheduling of SingleCoreV2_0, where the explicit read process is called only when new data is

available and the implicit read process is called independent of the execution of the implicit write-

process.

88

Figure 7-19: Runnable, write and read level scheduling for the case when all switches are closed from
SingleCoreV2_0

It is expected when all switches are closed that all writing processes as well the reading processes

occur. Figure 7-19 shows the correct write and read execution on runnable and communication level

from SingleCoreV2_0 when each switch is closed.

Figure 7-20: Runnable, write and read level scheduling for the case when all switches are open from
SingleCoreV2_0

Figure 7-20 on page 88 shows that the read process in Runnable_Swc04_Odr_Impl_DataStruct_In for

the case when each switch is open is called independent of the status of switch 0.

89

Figure 7-21: Runnable, write and read level scheduling for the case when switch 1 is the only close
switch from SingleCoreV2_0

Figure 7-22: Runnable, write and read level scheduling for the case when switch 1 is the only open
switch from SingleCoreV2_0

This failed behaviour was not just observed for the case when none switches are closed, it also

occurrs for the cases where switch 1 is the only opened switch as seen in Figure 7-21. It also occurs

when switch 1 is the only close switch. The incorrect read that is observed in each implicit

communication can be drawn back to the incorrect placement of the notification function ActivateTask

outside the implicit write function as shown in section 6.3.1.2 on page 67. Therefore, the status of

switch 1 has the only influence on the calling sequence of the explicit write- and read-process, where

switch 0 has just an influence on the implicit write process. Therefore, requirement number 2 is not

fulfilled, because the implicit read process is still triggered when the write process did not occur.

90

 Validation of the scheduling process 7.1.3.

 SingleCoreV1_0 SingleCoreV2_0

1111 0000 0100 1011 1111 0000 0100 1011

Does the communication between

SWC03 and SWC04 and the

communication between SWC06

and SWC05 occurs every

millisecond and the communication

between SWC01 and SWC02

every fifth milliseconds?

       

Are the Runnables, which include

the read process, only triggered

when new data is available/was

written?



1
2⁄

Only explicit

communication

1
2⁄

Only explicit

communication

 

1
2⁄

Only explicit

communication

1
2⁄

Only explicit

communicatio

n


Does switch 0 and switch 1 has an

influence on the write and read

process?



1
2⁄

Only on the write

and explicit read

process

1
2⁄

Only on the

write and

explicit read

process
 

1
2⁄

Only on the write and

explicit read process

1
2⁄

Only on the

write and

explicit read

process


Table 7-1: Results the scheduling validation of both implementations

91

In conclusion, Table 7-1 on page 90 shows that the write process of both implementation are called in

their time constraints. However, runnables only invoke when new data is available for the cases each

switch is closed or when switch 1 is the only opened switch. Switch 0, which is in the second case

closed, triggers the implicit communication between SWCEvent03 and SWCEvent04 as expected.

Nevertheless, if switch 0 is open, for instance for the cases 0100 and 0000 in Table 7-1 on page 90 ,

the implicit read process still takes place.

This unexpected execution of the read process is caused from the incorrect placement of the

notification function SetEvent (in SingleCoreV1_0) and ActivateTask (in SingleCoreV2_0). The whole

software source code is generated through the configured AUTOSAR development tools, see section

5.3.2 on page 49. The incorrect call of the notification function is therefore caused through the

implementation of the AUTOSAR generator, which translate the entered configurations into source

code. Therefore, switch 1 that triggers the explicit communication has an influence on the

communication process of both communications. Whereby, switch 0 only has an impact on the implicit

write processes, but not on the implicit read processes.

It might be assumed that with this unnecessary read process old data could be read. A closer look at

the implicit writing and reading processes in section 6.3 on page 58 shows that the synchronisation

process (copy process) takes place before the read process was notified. Afterwards the content of

this RteBuffer is then copied in the implicit read buffer. This synchronisation process of the implicit

read buffer and the RteBuffer guarantee that only the newest value is read. If non write processes

occur, then the default value will be read. This default value is set in the configuration phase, see

section 11.5.1 on page 132 with a value that would not cause any damage.

 Performance analysis 7.2.

This sub section explains the validation of both implemented communications, intra-task

(SIngleCoreV1_0) and inter-task (SingleCoreV2_0) communication, regarding to their execution time.

Firstly the methodology is explained with which the performance analyse was conducted. The results

of this performance validation are then linked to the literature review.

 Performance measurement methodology 7.2.1.

The analysis of the communication execution time in both implementations is based on the same data

that has been used for the scheduling analysis. An example of such data is given in section 11.6 on

page 137 and in section 11.7 on page 149. This data has been gained from tracing all executed

functions for the first 25 ms of the application with the real-time analyser winIDEA from ISystems, see

section 5.3.4.1.1 on page 50. In contrast to the scheduling analyses, the performance analysis is

focused on the communication functions, and the functions, which notify the read process to be

executed (notification), rather than the calling pattern of the task functions. This communication

92

consists of three parts, write process, read process and notification. A detailed overview of the

functions that form this communication and their descriptions can be seen in section 6.3 on page 58.

The following performance analysis begins with the description of the performance measurement

methodology for the explicit and implicit communication.

Figure 7-23: Performance measurement methodology of explicit write of SingleCoreV2_0

Figure 7-23 illustrates the execution time of the explicit write process that comprises the time that is

spent in the Rte_Write function minus the time that was needed to execute the ActivateTask function

by SingleCoreV2_0 and the SetEvent function for the SingleCoreV1_0.

Figure 7-24: Performance measurement methodology of the explicit notification process of
SingleCoreV2_0

The notification process of the explicit communication was measured from the beginning of the

execution of ActivateTask function to the entry point of the Rte_Read function as demonstrated in

Figure 7-24. The measurement of the notification process follows from the measurement of the read

process, which determines the execution time of the Rte_Read function.

93

As the implicit write and read functions were generated as macros, it is not possible to apply the same

performance measurement methodology as used for the explicit communication.

Figure 7-25: Performance measurement methodology of the implicit write process of SingleCoreV2_0

Therefore, the implicit write process execution time was inferred through the execution time of the

RunnableOut function minus the execution time for the Rte_Call_Switch function as seen in Figure

7-25 .

Figure 7-26: Performance measurement methodology of the implicit notification process of
SingleCoreV2_0

The measurement of the execution time of the implicit notification process begins with the entry point

of the ActivateTask function, but in contrast to the explicit notification process it ends with the entry

point of the read-process. Whereas, the read-process is defined as the execution time of RunnableR,

because the inline function RteIRead is the only instruction of the function RunnableR.

This performance analysis represents the worst case scenario when all switches are closed (1111) for

both implementations. For comparison, the average of the measured communication execution time

was taken by running the Python code, see section 11.1 on page 118, was implemented by Josh

Higgins, and the results are demonstrated in the following charts.

94

 Performance analysis results 7.2.1.

Figure 7-27: Intra-task communication versus inter-task communication graphical overview

Figure 7-27 demonstrates the time that is spent for the intra-task communication of all software components in SingleCoreV1_0 (V1_1111) and the inter-task

communication of all software components in SingleCoreV2_0 in milliseconds. The graphical illustration of the time measurements already illustrate that the inter-

task communication of SingleCoreV2_0 (V2_0_1111) takes more time to execute the required communication between the software components.

0.000000

0.002000

0.004000

0.006000

0.008000

0.010000

0.012000

0.014000

0.016000

0.018000

0.020000

Swc03toSwc04_Impl Swc05toSwc06Impl Swc01toSwc02Impl Swc04toSwc03_Expl Swc06toSwc05_Expl Swc02toSwc01_Expl
V1_1111 0.010700 0.008112 0.005776 0.007050 0.005147 0.002622

V2_1111 0.018396 0.015668 0.015769 0.019124 0.015542 0.015070

time in ms

communication

SingleCore_V1_0 vs. SingleCore_V2_0 communication

V1_1111

V2_1111

95

Table 7-2 provides a detailed overview of the exact differences of both implemented communication

types, where the communication between each software component is summarised in microseconds.

Communication Communication Time (µs) Normalized

Intra-task (SingleCoreV1_0) 39.407 1

Inter-task (SingleCoreV2_0) 99.569 99.569
39.407

= 2.527

Table 7-2: Intra-task versus inter-task communication time

To be able to compare the measurements of this thesis with the master thesis of (Moghaddam, 2013),

the same procedure for the calculation of the percentage difference between both implementations

were used. The execution time of intra-task communication was declared as the normal value with

which the execution time of the inter-task communication is compared. As can be seen in the last

column of Table 7-2 by setting the inter-task communication over intra-core communication time, the

inter-task communication takes 153 % more time than for the intra-task communication.

A closer look at the execution time of the write, read and notification process could clarify the reason

for this large difference between both communication types.

96

Figure 7-28: Intra-task write process versus inter-task write process

Figure 7-28 illustrates that the write-process of the SingleCoreV1_0 takes less time than the execution time for the write-process in SingleCoreV1_0 with the

exception of the implicit communication between SWCIoHwPeriod05 and SWCIoHwPeriod06. Table 7-3 supports this statement by summarising the executed

time for each implementation in the second column and calculate the difference between the two communication types.

Write process Communication Time (µs) Difference (µs)

Intra-task (SingleCoreV1_0) 3.188
3.618 - 3.188 = 0.430

Inter-task (SingleCoreV2_0) 3.618

Table 7-3: Time that was spent to execute the write process of the intra-task versus inter-task communication

Both illustrations demonstrate that the write-process is not the main reason for the 153 % longer communication of inter-task communication versus intra-task

communication. Moreover, this result shows that the write-process of intra-task communication takes 0.430 µs less than the write process of inter-task

communication.

0.000000

0.000200

0.000400

0.000600

0.000800

Swc03toSwc04_Impl Swc05toSwc06Impl Swc01toSwc02Impl Swc04toSwc03_Expl Swc06toSwc05_Expl Swc02toSwc01_Expl
V1_1111 0.000735 0.000322 0.000491 0.000953 0.000292 0.000395

V2_1111 0.000788 0.000321 0.000592 0.001095 0.000272 0.000550

time in ms

wrtie process

SingleCore_V1_0 vs. SingleCore_V2_0 write

V1_1111

V2_1111

97

A closer look at the read process in Figure 7-29 also illustrate that the read-process of SingleCoreV2_0 could not cause the great difference of 60.126 µs
between both communications.

Figure 7-29: Intra-task read-process versus inter-task read process

Table 7-4 shows that the read process of SingleCoreV1_0 differs 0.159 µs from the read-process in SingleCoreV2_0. The difference of the write process (0.430

µs) added to the difference of the read process forms only a small fraction of the whole communication.

Read process Communication Time (µs) Difference (µs)

Intra-task (SingleCoreV1_0) 2.257
2.416 – 2.257= 0.159

Inter-task (SingleCoreV2_0) 2.416

Table 7-4: Time that was spent to execute the read process of the intra-task versus inter-task communication

0.000000

0.000200

0.000400

0.000600

0.000800

Swc03toSwc04_Impl Swc05toSwc06Impl Swc01toSwc02Impl Swc04toSwc03_Expl Swc06toSwc05_Expl Swc02toSwc01_Expl
V1_1111 0.000522 0.000073 0.000468 0.000655 0.000093 0.000446

V2_1111 0.000468 0.000082 0.000504 0.000652 0.000098 0.000612

time in ms

read process

SingleCore_V1_0 vs. SingleCore_V2_0 read

V1_1111

V2_1111

98

Finally Figure 7-30 shows that the notification process of SingleCoreV2_0 is the significant reason for the expensive inter-task communication.

Figure 7-30: Intra-task notification versus inter-task notification

Table 7-5 provides the exact numbers for the notification process of both implementations. It shows that the notification process of SingleCoreV2_0 takes 60.162

µs more time than the notification process of SingleCoreV1_0.

Notification process Communication Time (µs) Difference (µs)

Intra-task (SingleCoreV1_0) 33.961
93.536 – 33.961= 60.162

Inter-task (SingleCoreV2_0) 93.536

Table 7-5: Time that was spent to execute the read process of the intra-task versus inter-task communication

0.000000

0.005000

0.010000

0.015000

0.020000

Swc03toSwc04_Impl Swc05toSwc06Impl Swc01toSwc02Impl Swc04toSwc03_Expl Swc06toSwc05_Expl Swc02toSwc01_Expl
V1_1111 0.009443 0.007717 0.004817 0.005442 0.004761 0.001781

V2_1111 0.017141 0.015265 0.014673 0.017377 0.015172 0.013908

time in ms

notification

SingleCore_V1_0 vs. SingleCore_V2_0 notification

V1_1111

V2_1111

99

 Verification of the performance analysis 7.2.2.

But these results also illustrate that the missing GetEvent function in each implicit communication of

SingleCoreV1_0, see section 6.3.1.1 on page 61, has a smaller impact on the notification process

than the incorrect scheduling of the write and read tasks of SingleCoreV2_0. The missing GetEvent

function in each implicit communication of SingleCoreV1_0 leads to a longer notification process

compared to the notification process of the explicit communication in SingleCoreV1_0. This increase in

the execution time of the notification process in SingleCoreV1_0 is not as great as the increase of

execution time of the notification process in SingleCoreV2_0. The incorrect scheduling of

SingleCoreV2_0 can be seen in Figure 7-5 on page 76, where two sequential write process are

executed until the first read process occurs. This misbehaviour and the calculation of the notification

process lead to that the execution time of the second write function has be included into the

calculation of the notification process of the first write-read communication. This disorder of the write

process in SingleCoreV2_0 causes 153 % higher inter-task communication time than the intra-task

communication.

The measured 153% difference between intra-/inter-task communication differs from a previous study

conducted by Moghaddam, 2013, which measured 56% difference between intra-/inter-core

communication. This disparity of almost 100% can be assumed to be due to the scheduling of the

SingleCoreV2_0 component, and improving the scheduling mechanism here could reduce the

difference between the results of these investigations. A sensible approach would be to improve the

scheduling mechanism to ensure that the read process is only invoked after its corresponding write

process, to eliminate or reduce the not corresponding write operation, which were observed previously

in the performance analysis of SingleCoreV2_0.

100

 Memory consumption 7.3.

The memory consumption of both implementations was detected through the .map file that was

generated from the linker of the WindRiver compiler, see section 5.3.3 on page 49.

The memory consumption of an application is one of the criteria to decide if a product will get to

production. If an application requires more memory space than expected, the costs for the production

will increase simultaneously. This section therefore analyse the need of memory of both

implementations. Firstly, the amount of ROM is verified that is needed to store the static instructions of

the application. The second part of this sub section focuses on the amount of RAM memory, where

variables are stored, which content is modified during runtime.

 ROM consumption 7.3.1.

Figure 7-31: ROM consumption of SingleCoreV1_0 vs. SingleCoreV2_0

Figure 7-31 illustrates the ROM memory consumption in byte that were gained through the .map file. It

can be observed that on the one hand the read functions of both implementations are taking the same

amount of ROM space for their execution. On the other hand Figure 7-31 shows that the

communication of SingleCoreV1_0 takes 674 Bytes more ROM space for the tasks, write process and

notification process than the communication in SingleCoreV2_0.

Communication type ROM (Byte) Difference (Byte)

Intra-task (SingleCoreV1_0) 2656
2656 – 1982= 674

Inter-task (SingleCoreV2_0) 1982

Table 7-6: ROM consumption of both communications types

To identify the cause of the different amount of ROM that is needed to execute the functions, the

execution coverage of WinIDEA was used as described in section 5.3.4.1.3 on page 51 and the tasks,

write and notification level were analysed regarding to their memory consumption.

0

200

400

600

800

1000

1200

1400

Task total Write process Read process Notification
SingleCoreV1_0 780 241 173 1462

SingleCoreV2_0 566 235 173 1008

Byte

ROM consumption

SingleCore_V1_0 vs. SingleCore_V2_0 ROM consumption

101

7.3.1.1. Task level and notification level

Source code 7-1 and Source code 7-2 on page 102 shows an exemplary ROM consumption of the

implemented explicit tasks of both implementation. The comparison of the ROM consumption of both

implementations shows that the difference of 214 Bytes on task level is caused through the following

aspects:

 The write and read process is generated in one extended task in SingleCoreV1_0. This type of

task leads to a greater number of executed instruction caused firstly through the ability to

suspend the task to wait for an event and to continue it if the event occurs. The mechanism to

wait for an event is realised with the first three functions in line 1 to 3 of Source code 7-1 and

one if- statement to distinguish the occurred event, which are not needed in the basic task of

SingleCoreV2_0 as seen in Source code 7-2 on page 102.

 Secondary, the notification process of SingleCoreV1_0 includes the functions: Schedule,

GetEvent and ClearEvent, where in SingleCoreV2_0 only the execution of TerminateTask is

needed, see Source code 7-2 on page 102. The greater amount of functions that has to be

executed to complete the notification process in SingleCoreV1_0 leads to the higher amount

of ROM (454 more bytes) that is needed compared to SingleCoreV2_0.

Whereby the additional 8 bytes that are added on the ROM consumption of SingleCoreV2_0 through

the additional task function, as seen in Source code 7-2 on page 102, is not significant compared to

the amount of instructions that are needed for the notification and wait mechanism.

102

 ROM

[Byte]

 ROM

[Byte]

0: Task_Event_Expl_Swc4to3func 0: Task_Event_Expl_Swc4to3_Outfunc

1: { 8 1: { 8

2:
(void)WaitEvent(Rte_Ev_Run_SwcEvent04_Runnable_Swc04_Event_Expl_DataStr

uct_Out);

6

2:
Runnable_Swc04_Event_Expl_DataStruct_Out()

;

4

3: (void)GetEvent(Task_Event_Expl_Swc4to3, &ev); 10 3: (void)TerminateTask(); 4

4:
(void)ClearEvent(ev &

(Rte_Ev_Run_SwcEvent04_Runnable_Swc04_Event_Expl_DataStruct_Out));

10

4:
} 8

5:
if ((ev & Rte_Ev_Run_SwcEvent04_Runnable_Swc04_Event_Expl_DataStruct_Out)

!= (EventMaskType)0)

10

Total: 24

6: Runnable_Swc04_Event_Expl_DataStruct_Out(); 4 5: Task_Event_Expl_Swc4to3_Infunc

7: (void)Schedule(); 4 6: {

8: (void)GetEvent(Task_Event_Expl_Swc4to3, &evRun); 10 7: Runnable_Swc03_Odr_Expl_DataStruct_In(); 4

9:

if ((evRun &

Rte_Ev_Run_SwcEvent03_Runnable_Swc03_Odr_Expl_DataStruct_In) !=

(EventMaskType)0)

8

8:

(void)TerminateTask(); 4

10: Runnable_Swc03_Odr_Expl_DataStruct_In(); 4 9: } 8

11:
(void)ClearEvent(evRun &

Rte_Ev_Run_SwcEvent03_Runnable_Swc03_Odr_Expl_DataStruct_In);

10

Total: 24

12: } 2

13: } 8

 Total: 94 Total: 48

Source code 7-1: Source code of the Task_Event_Expl_Swc4to3 function of SingleCoreV1_0
with its ROM memory consumption

Source code 7-2: Source code of the write and read task
of the communication between SWCEvent04 and
SWCEvent03 of SingleCoreV2_0 with its ROM memory
consumption

103

7.3.1.2. Write process level

To understand the cause of the 6 bytes difference at the write-process level in Figure 7-31 on page

100, a closer look at the executed write functions is needed.

Write function V1_0

Size in

Byte

V2_0

Size in

Byte

Difference

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_... 80 78 2

Rte_IWrite_Runnable_Swc03_Event_Impl_DataStruct_Out_... 22 22 0

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Period_... 36 34 2

Rte_IWrite_Runnable_Swc05_Period_Impl_DataDIN2_Out_... 01 01 0

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Period_... 80 78 2

Rte_IWriteRef_Runnable_Swc01_Period_Impl_DataStruct_... 22 22 0

Write process 241 235 6

Table 7-7: Overview of the write-process and its ROM consumption for both implementations

Table 7-7 provides such detailed overview of the write-process and its ROM consumption for both

implementations. It shows that the explicit write function in SingleCoreV1_0 needs more ROM memory

to be executed compared to the amount of memory that is needed for SingleCoreV2_0. Whereby,

Source code 7-3 and Source code 7-4 on following page illustrate that the need of more ROM memory

is caused from the generated notification function in line 3. SingleCoreV1_0 calls the SetEvent

function to start the notification process, while in SIngleCoreV2_0 the function ActivateTask, is used.

The implementation of the function SetEvent (422 bytes) takes more memory space than the

implementation of ActivateTask (408 bytes). The higher ROM consumption of the function

ActivateTask can be traced/drawn back to the fact that by fetching the this task more ROM memory is

needed.

104

 ROM

size

in

byte

 ROM

size

in

byte

0: Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Expl_DataStruct 0: Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Expl_DataStruct

1: { 8 1: { 8

2:
Rte_SwcEvent04_P_Swc04_DataStruct_Event_Expl_DataStruct =

*(data);

54
2:

Rte_SwcEvent04_P_Swc04_DataStruct_Event_Expl_DataStruct =

*(data);

54

3:
(void)SetEvent(Task_Event_Expl_Swc4to3,

Rte_Ev_Run_SwcEvent03_Runnable_Swc03_Odr_Expl_DataStruct_In);
8

3:

(void)ActivateTask(Task_Event_Expl_Swc4to3_In);
6

4: return ret; 2 4: return ret; 2

5: } 8 5: } 8

 Total: 80 Total: 78

Source code 7-3: Source code of the Rte_Write of SWCIoHwPeriod06 in
SingleCoreV1_0 with its ROM memory consumption

 Source code 7-4: Source code of the Rte_Write of
SWCIoHwPeriod06 in SingleCoreV2_0 with its ROM memory
consumption

105

 RAM consumption 7.3.2.

The RAM consumption of both implementations differs in only one aspect. Figure 7-32 shows that the RAM consumption has an additional write buffer compared

to SingleCoreV1_0.

Figure 7-32: RAM consumption of SingleCoreV1_0 vs. SingleCoreV2_0

0

20

40

60

80

100

120

140

Swc variable Function
parameter

Rte buffer Implicit read buffer Implicit write buffer

SingleCoreV1_0 90 90 90 45 0

SingleCoreV2_0 90 90 90 45 45

Byte

ROM consumption

SingleCore_V1_0 vs. SingleCore_V2_0 RAM consumption

106

 Verification of the analyses of the memory consumption 7.3.3.

The analysis of the memory consumption indicates that the intra-task communication in

SingleCoreV1_0 takes 674 Bytes more ROM space than the inter-task communication of

SingleCoreV2_0. This large amount of ROM difference between both implementations can be traced

back to the implementation of both communication types. In SingleCoreV1_0 is the write and read

process implemented in one extended task. Whereas, in SingleCoreV2_0 the write and read process

were generated in two separated basic tasks. Not only has the extend task of SingleCoreV1_0 a

greater amount of instructions, which is caused through the fact that it includes both communication

processes, it also has more instructions because of its ability to transfer into the state “WAIT”. The

ability of an extended task to wait for an event to get executed again lead to a longer (more

instructions) notification process compared to the notification process of inter-task communication in

SingleCoreV2_0. As a result, the implemented intra-task communication of SingleCoreV1_0 takes 674

more bytes of ROM than the inter-core communication in SingleCoreV2_0.

However, a closer look at the RAM consumption shows that in contrast to the previous ROM

consumption the intra-task communication in SingleCoreV1_0 takes 45 bytes less of RAM than the

inter-task communication of SingleCoreV2_0. This result can be drawn back to the implementation of

the implicit inter-task communication of SingleCoreV2_0. This communication is generated under the

approach of “Copy strategy” as described in section 3.3 on page 29. This approach includes that each

implicit write and read-process is provided with its identical copy of the RteBuffer. Figure 7-34 on page

107 demonstrates this implementation. A comparison of the implementation of inter-task

communication in Figure 7-34 with the intra-task communication of SingleCoreV1_0 in Figure 7-33

shows that both communication types are implemented with the same approach. The only difference

between both implementations is that in intra-task communication a struct variable (ImpBuffer) with

two members, member Out for the write and member IN for the read process, is used as the identical

copy of the RteBuffer. While in inter-task communication, due to two separated tasks, two separate

variables are used, which cause the additional 45 more Bytes in RAM.

The previous conducted studies, see section 3.5 on page 33, do not provide any information of the

memory consumption. Therefore, with the analysis of the memory consumption a new aspect is

introduce to analyse communication between tasks.

107

4.

Task_Out SCW_W

RunnableOut

RTE

Rte_Call_Switch

Switch status

Rte_IWrite(data)

OS

OsSetEvent(TaskID)

1.

SCW_R

Schedule

E_OK
OsGetEvent(TaskID,Event)

E_OK

Rte_IRead(lvar)

Lvar = ImplBuffer.In

2.
Copy from

ImplBuffer.Out

to RteBuffer

E_OK

OsWaitEvent(Mask)

E_OK

OsGetEvent(TaskID,Event)

E_OK
ClearEvent(Mask)

E_OK

3.
Copy from

RteBuffer

to ImplBuffer.In
RunnableR

ImplBuffer.Out = data

SingleCoreV1_0_Implicit_Communication

Figure 7-33: Sequence diagram of SingleCoreV1_0 implicit communication
with focus on the copy process

Task_Out SCW_W

RunnableOut

RTE

Rte_Call_Switch

Switch status

Rte_IWrite(data)

OS

1.

Task_In

StartTask

SCW_R

RunnableR

3.Copy from

RteBuffer

to ImplReadBuffer

2.Copy from

ImplWriteBuffer

to RteBuffer

OsActivateTask(TaskID)

E_OK

TerminateTask()
Enable Interrupts

osSchedulePrio

osDispatcher

Rte_IRead()

SingleCoreV2_0_Implicit_Communication

ImplWriteBuffer = data

Figure 7-34: Sequence diagram of SingleCoreV2_0 implicit communication
with focus on the copy process

108

8. Summary and conclusion

This section provides a summary of this work by addressing each objective and how these were archived.

1. Objective: To be able to conclude possible speed up gain of a heterogonous multi-core ECU, it is

necessary first to investigate the current solution for inter-core communication.

The literature review in section 3 on page 27, presented conducted studies in this field and highlighted the

possible bottlenecks of inter-core communication such as synchronization strategy, resource

management and notification. Moreover, possible mechanism to tackle these challenges were presented

and analysed. The investigation of current solution for inter-core communication also pointed out that it

would be beneficial to put the theory of analysed mechanism into practice in the real use case study in

automotive industry using a heterogeneous multi-core microcontroller.

2. Objective: The implementation of the mechanism to improve the inter-core communication requires

appropriated hardware and software.

Therefore, the requirements for an appropriated system and the most suitable hardware were presented

in section 5 on page 42. The investigation of possible hard- and software concluded that the hardware

supplied already provided multi-core ECUs, but the software only supported AUTOSAR 3.2, supporting

the single-core software architecture. The universal ECU VC121-12 from Vector featuring a

heterogeneous dual- core microcontroller was used in this project. This ECU provided the opportunity to

investigate the current state of intra-core communication regarding to synchronization strategy, resource

management and notification.

3. Objective: For the investigation of the intra-core communication suitable experiments for intra-core

and inter-core communication should be design. In addition, these experiments should represent

software that is used in automotive industry and includes two different communication technics

(explicit and implicit) defined in AUTOSAR standard.

These experiments were designed based on the finding from the review of existing systems, and

information on ECU software in the automotive industry. These resources and the design of the

experiment were presented section 4.

4. Objective: Before any possible improvements could be conducted the designed experiments has to be

implemented by using the AUTOSAR methodology.

109

Therefore, the implementation and the detailed procedure of the hardware setup as well as the software

tool sequence are provided in section 6. In addition, the output of the implementation is described and

visualized.

5. Objective: The evaluation of the implemented experiments is mandatory to achieve improvements

regarding to performance and memory consumption.

The implemented experiments were evaluated in section 7. The results of the evaluation are as follows:

Scheduling

- The implicit read process of SingleCoreV1_0 is executed regardless of whether new data was

written by the writing process. This incorrect scheduling of the implicit reading process is due to

that the notification process (SetEvent function) is placed outside the implicit write function.

Therefore, the implicit reading process in SingleCoreV1_0 is invoked regardless of whether the

writing process was executed or not.

- The evaluation of the scheduling process of SingleCoreV2_0 also showed an unexpected

behaviour. Two write processes are called sequentially before one read process is triggered. An

analyses of the scheduling mechanism resulted in that this behaviour is caused due to the fact

that both writing tasks that have the same priority have to be called in the order of their activation,

(AUTOSAR, 2014a p. 82 - 83).

Performance analyses

The results of the conducted scheduling analysis have also an impact on the performance of both

communication types, intra-task communication and inter-task communication. The results of the

performance analysis are as follows:

- In addition to the missing SetEvent function in the implicit write process of SingleCoreV1_0, the

performance analysis highlighted that also each implicit communication is missing the second

GetEvent function after the writing runnable was executed, as show in Figure 6-8 on page. Such

an implementation lead to the implicit notification process structure so that is consists of the

functions: WaitEvent, GetEvent, CleaEvent. That means the implicit notification process includes

two more functions (WaitEvent and the first GetEvent) then the explicit notification process.

- Nevertheless, the execution time of the notification process in SingleCoreV1_0 is not as great as

the execution time of the notification process in SingleCoreV2_0. The incorrect scheduling of

SingleCoreV2_0, which was identifies in the scheduling analysis, caused the execution time of

the second write function to be included in the calculation of the notification process of the first

write-read communication. Finally, the disorder of the write process in SingleCoreV2_0 causes

153 % higher inter-task communication time than the intra-task communication of

SingleCoreV1_0.

110

Memory consumption

The analysis of the memory consumption indicates that the implementation of SingleCoreV1_0, has a

higher ROM consumption compared to the implementation of SingleCoreV2_0. The write and the read

process are implemented in one extended task in SingleCoreV1_0, whereby the write and read process

of SingleCoreV2_0 are implemented in two separate basic tasks. The extended task has the ability to wait

for an event and to continue its execution as soon as the corresponded event occurs. Therefore, the

extended task needs more instructions to perform this function. Furthermore, the number of instructions

that are needed to execute the notification process of the intra-task communication in SingleCoreV1_0

are higher compared to SingleCoreV2_0. Therefore, the intra-task communication of SingleCoreV1_0

takes 674 Bytes more ROM space than the inter-task communication of SingleCoreV2_0.

In contrast to the ROM consumption, the intra-task communication in SingleCoreV1_0 takes 45 Bytes

less of RAM than the inter-task communication of SingleCoreV2_0. This result is due to the fact that the

implicit communication of the inter-task communication in SingleCoreV2_0 is implemented with an implicit

Buffer.

6. Objective: Propose possible improvements in multi-core software design, especially for intra and

inter-core communication, in order to improve execution time and memory consumption.

Possible improvements are presented in the following section 9 Future work.

It can be concluded that initial aim and objectives for this project are achieved. However, it is clear that

further investigation is necessary to fully profile intra-core and inter-core communication software for

multi-core processors applications in automobile industry, using future releases of AUTOSAR software.

111

9. Future work

The conducted work in this thesis is proving that the implementation of intra-core communication still offer

scope for improvements especially regarding to the upcoming challenge inter-core communication.

For instance, it would be essential to subtract the execution time of the second write process from the

execution time of the notification of SingleCoreV2_0. This would require to re-write the python code in

section 11.1 in a way that it identifies the entry and exit point of the second write process automatically. A

manual procedure would consume to much time and would lead to faults.

In addition, it would be beneficial to implement the designed experiments of this work on the updated

version of the VC121-12 ECU software to AUTOSAR 4.2.1. The availability of the BSW software for

AUTOSAR 4.2.1 was announced on 17
th
 of February 2015 by Vector, (Vector, 2015). This means that the

VC121-12 ECU software for AUTOSAR 4.2.1 will be released in the near future. The implementation of

the designed experiments would enable comparison of the provided solution of Vector for inter-core

communication with their current solution for intra-core communication.

112

10. References

Alekseev, Prof. Dr. (2012). Script out of the module operating system.

Amalthea. (2016). AMALTHEA An Open Platform Project for Embedded Multicore Systems. Retrieved

09/03/16, from http://www.amalthea-project.org/

Arm. Mictor 38. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0499d/BEHHIEGG.html

Atmel. (2008). 8-bit Microcontroller with 32K/64K/128K Bytes of ISP Flash and CAN Controller. 428.

http://www.atmel.com/images/doc7679.pdf

Atmel. (2010). STK600 User Guide. 42.

https://webcache.googleusercontent.com/search?q=cache:BXYYwmj6aDQJ:https://eewiki.net/do
wnload/attachments/27295747/AVRStudio%2520-
%2520STK600%2520User%2520Guide%255B1%255D.pdf%3Fversion%3D1%26modificationDa
te%3D1382578574333%26api%3Dv2+&cd=1&hl=de&ct=clnk&gl=de

Atmel. (2016). STK600-TQFP64. Retrieved 13/03/16, from http://www.atmel.com/tools/STK600-

TQFP64.aspx

AUTOSAR. (2003). AUTOSAR Development Partnership. Retrieved 02/05/15, 2015, from

http://www.autosar.org/

AUTOSAR. (2008a). AUTOSAR Methodology. 38.

AUTOSAR. (2008b). Specification of BSW Scheduler. http://www.autosar.org/fileadmin/files/releases/3-

1/software-architecture/system-services/standard/AUTOSAR_SWS_BSW_Scheduler.pdf

AUTOSAR. (2011). Specification of RTE. 621. http://www.autosar.org/fileadmin/files/releases/4-

0/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf

AUTOSAR. (2012a). AUTOSAR Glossary. 87. http://www.autosar.org/fileadmin/files/releases/3-

2/main/auxiliary/AUTOSAR_Glossary.pdf

AUTOSAR. (2012b). AUTOSAR Release 4.0. http://www.autosar.org/specifications/release-40/

AUTOSAR. (2012c). Specification of Operating System 230.

http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/system-
services/standard/AUTOSAR_SWS_OS.pdf

AUTOSAR. (2014a). Specification of Operating System. 144.

http://www.autosar.org/fileadmin/files/releases/3-2/software-architecture/system-
services/standard/AUTOSAR_SWS_OS.pdf

AUTOSAR. (2014b). Specification of Timing Extensions. http://www.autosar.org/fileadmin/files/releases/4-

2/methodology-and-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf

Ciulla, Vincent T. (2000). Electronic control unit (ECU). Autorepair.about.com, 1, 1-1.

Devika K., Syama R. (2013). An Overview of AUTOSAR Multicore Operating System Implementation.

International Journal of Innovative Research in Science, Engineering and Technology.

Dijkstra, Edsger W. (1968). A constructive approach to the problem of program correctness. BIT

Numerical Mathematics, 8(3), 174-186.

Dijkstra, Edsger W. (2001). Solution of a problem in concurrent programming control Pioneers and Their

Contributions to Software Engineering (pp. 289-294): Springer.

http://www.amalthea-project.org/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0499d/BEHHIEGG.html
http://www.atmel.com/images/doc7679.pdf
http://www.atmel.com/tools/STK600-TQFP64.aspx
http://www.atmel.com/tools/STK600-TQFP64.aspx
http://www.autosar.org/
http://www.autosar.org/fileadmin/files/releases/3-1/software-architecture/system-services/standard/AUTOSAR_SWS_BSW_Scheduler.pdf
http://www.autosar.org/fileadmin/files/releases/3-1/software-architecture/system-services/standard/AUTOSAR_SWS_BSW_Scheduler.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_Glossary.pdf
http://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_Glossary.pdf
http://www.autosar.org/specifications/release-40/
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/3-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/3-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-and-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf

113

Feljan, Juraj, & Carlson, Jan. (2013). The impact of intra-core and inter-core task communication on
architectural analysis of multicore embedded systems. Paper presented at the The Eighth
International Conference on Software Engineering Advances (ICSEA).

Fons, F, & Fons, M. (2012). FPGA-based automotive ECU design addresses AUTOSAR and ISO 26262

standards. Xcell journal, 78, 20.

Francisco, & Fons, Mariano. (2012). FPGA-based automotive ECU design addresses AUTOSAR and ISO

26262 standards. EETimes, 1, 13-13.

Freescale Semiconductor, Inc. (2009). Embedded Multicore: An Introduction.

http://www.funkschau.de/fileadmin/media/whitepaper/files/111_embmcrm.pdf

Freescale Semiconductor, Inc. (2014). Automotive MCUs and MPUs. (27/04/15).

http://cache.nxp.com/files/microcontrollers/doc/roadmap/BRAUTOPRDCTMAP.pdf

Gai, Paolo, Lipari, Giuseppe, & Natale, Marco Di. (2001). Minimizing memory utilization of real-time task

sets in single and multi-processor systems-on-a-chip. Paper presented at the Real-Time Systems
Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE.

Gallmeister, Bill. (1995). POSIX. 4 Programmers Guide: Programming for the real world: " O'Reilly Media,

Inc.".

GmbH, Robert Bosch. (2008). Mobility Solutions. 10/07/08, from http://www.bosch-

presse.de/presseforum/details.htm?txtID=3645&locale=en

GmbH, Vector Informatik. (2011a). TechnicalReference_Mircrosar_Os (Unpublished). Vector Informatik

GmbH.

GmbH, Vector Informatik. (2011b). User Manual VC121-12 (Unpublished). Vector Informatik GmbH.

Grave, Rudolf. (Embedded Multi-Core Conference, 17/06/15). Software integration challenge multi-core -

experience from real world projects, Munich.

Höttger, Robert, Krawczyk, Lukas, & Igel, Burkhard. (2015). Model-based automotive partitioning and

mapping for embedded multicore systems. International Journal of Computer, Control, Quantum
and Information Engineering, 9(1), 268-274.

Instruments, National. (2009). ECU Designing and Testing using National Instruments Products.

http://www.ni.com/white-paper/3312/en/

Intel. (2014). Intel Core2 Duo Processor E6700. Intel Web side.

ISO. (2004). ISO/IEC 14776-115:2004.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38217

ISO. (2013). ISO 11898-6. http://www.iso.org/iso/catalogue_detail.htm?csnumber=59165

iSystem.). winIDEA. Retrieved 06/03/15, from http://www.isystem.com/products/software/winidea

ISystem.). winIDEA help section. (9.12.270).

iSystem. (2009). Collect Trace Information on MCUs without Trace Port. 6.

http://www.isystem.com/files/downloads/Articles/Collect%20Trace%20Information%20on%20MC
Us%20without%20Trace%20Ports.pdf

iSYSTEM. (2012). winIDEA's help section. Retrieved 13/02/15, from

http://www.isystem.com/downloads/winIDEA/help/index.html?iC5000OnchipAnalyzer.html
ITEA. (2016). ITEA 3. from https://itea3.org/

http://www.funkschau.de/fileadmin/media/whitepaper/files/111_embmcrm.pdf
http://cache.nxp.com/files/microcontrollers/doc/roadmap/BRAUTOPRDCTMAP.pdf
http://www.bosch-presse.de/presseforum/details.htm?txtID=3645&locale=en
http://www.bosch-presse.de/presseforum/details.htm?txtID=3645&locale=en
http://www.ni.com/white-paper/3312/en/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38217
http://www.iso.org/iso/catalogue_detail.htm?csnumber=59165
http://www.isystem.com/products/software/winidea
http://www.isystem.com/files/downloads/Articles/Collect%20Trace%20Information%20on%20MCUs%20without%20Trace%20Ports.pdf
http://www.isystem.com/files/downloads/Articles/Collect%20Trace%20Information%20on%20MCUs%20without%20Trace%20Ports.pdf
http://www.isystem.com/downloads/winIDEA/help/index.html?iC5000OnchipAnalyzer.html

114

Jena, Santosh Kumar, & Srinivas, MB. (2012). On the suitability of multi-core processing for embedded
automotive systems. Paper presented at the Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 2012 International Conference on.

JOSE, SAN. (2007). Freescale Opens Licensing of Power Architecture(TM) e200 Core Family Through

IPextreme. http://www.design-reuse.com/news/15544/freescale-opens-licensing-power-
architecture-e200-core-through-ipextreme.html

Knutsson, Sven. (2010). PowerPoint-version av Autosar - Automotive Open System Architecture.

Götenburg University.

Lakshmanan, Karthik Singaram, Bhatia, Gaurav, & Rajkumar, Ragunathan. (2011). Autosar extensions

for predictable task synchronization in multi-core ECUs: SAE Technical Paper.

Moghaddam, Abdollah Safaei. (2013). Performance Evaluation and Modeling of a Multicore AUTOSAR

system. (Master of Science Thesis), Chalmers Unicersity of Technology. Retrieved from
http://publications.lib.chalmers.se/records/fulltext/193956/193956.pdf

Noergaard, Tammy. (2005). Embedded systems architecture: a comprehensive guide for engineers and

programmers. Amsterdam;London;: Newnes.

OSEK/VDX. (2005). OSEK/VDX. Operating System, 86. http://portal.osek-

vdx.org/files/pdf/specs/os223.pdf

Rajkumar, Ragunathan. (1990). Real-time synchronization protocols for shared memory multiprocessors.

Paper presented at the Distributed Computing Systems, 1990. Proceedings., 10th International
Conference on.

Rath, Dominic. (2008). Open On-Chip Debugger: Spen.

Reinl, Roland. (2014). VC Startup Code. Vector.

Ribbens, William B. (2013). Understanding automotive electronics: an engineering perspective (Vol.

7th.;7th;7;7th;). Amsterdam: Butterworth-Heinemann.

Rouse, Margaret. (2007). Definition debugging. Retrieved 13/03/16, from

http://searchsoftwarequality.techtarget.com/definition/debugging

Rudolf Grave , Stefan Krämer (2014). Software optimal auf mehrere Kerne verteilen. Elektronik

automotive.

Salah, Mohamed. (2016). Webinar: Migrating to AUTOSAR 4.2: Mentor Graphics.

Scott, Tony. (2004). "Keynote Talk". CeBIT America Conference.

Semiconductor, Freescale. (2008). e200z0 Power Architectur Core Reference Manual. 288.

http://cache.freescale.com/files/32bit/doc/ref_manual/e200z0RM.pdf

Semiconductor, NXP. (2014). SBC Gen2 with CAN High Speed and LIN Interface.

http://cache.nxp.com/files/analog/doc/data_sheet/MC33903-MC33904-
MC33905.pdf?fpsp=1&WT_TYPE=Data%20Sheets&WT_VENDOR=FREESCALE&WT_FILE_F
ORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf

Semiconductors, NXP. (2007). MPC5510EVB User Manual. 78.

http://cache.freescale.com/files/dsp/doc/ref_manual/MPC5510EVBUM.pdf

Semiconductors, NXP. (2014). MPC5510 Microcontroller Family Reference Manual. 1018.

http://cache.nxp.com/files/32bit/doc/ref_manual/MPC5510RM.pdf

Senthilkumar, K., & Ramadoss, Ramesh. (2011). Designing multicore ECU architecture in vehicle

networks using AUTOSAR.

http://www.design-reuse.com/news/15544/freescale-opens-licensing-power-architecture-e200-core-through-ipextreme.html
http://www.design-reuse.com/news/15544/freescale-opens-licensing-power-architecture-e200-core-through-ipextreme.html
http://publications.lib.chalmers.se/records/fulltext/193956/193956.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://searchsoftwarequality.techtarget.com/definition/debugging
http://cache.freescale.com/files/32bit/doc/ref_manual/e200z0RM.pdf
http://cache.nxp.com/files/analog/doc/data_sheet/MC33903-MC33904-MC33905.pdf?fpsp=1&WT_TYPE=Data%20Sheets&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.nxp.com/files/analog/doc/data_sheet/MC33903-MC33904-MC33905.pdf?fpsp=1&WT_TYPE=Data%20Sheets&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.nxp.com/files/analog/doc/data_sheet/MC33903-MC33904-MC33905.pdf?fpsp=1&WT_TYPE=Data%20Sheets&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/dsp/doc/ref_manual/MPC5510EVBUM.pdf
http://cache.nxp.com/files/32bit/doc/ref_manual/MPC5510RM.pdf

115

Sha, Lui and Rajkumar, Ragunathan and Lehoczky, John P. (1990). Priority inheritance protocols: An
approach to real-time synchronization. Computers, IEEE Transactions on, 9, 1175--1185.

Siebert, Fridtjof. (2010). Multicore Systems–Challenges for the Real-Time Software Developer. 8.

Silverio Miyashiro, Magda A, Ferreira, Mauricio GV, & Sant'Anna, Nilson. (2015). CMMI-DEV process

areas modeled on a process for critical embedded systems development. Paper presented at the
Science and Information Conference (SAI), 2015.

Soffel, Volker. (2004). Developing Embedded Systems—A Tools Introduction. embedded, 2, 2-2.

Standard, I. S. O. (1993). ISO 11898, 1993. Road vehicles--interchange of digital information--Controller

Area Network (CAN) for high-speed communication, 100, 100-100.

StMicroelectronics. (2013a). Getting started tutorial for SPC564Bxx and SPC56ECxx family.

StMicroelectronics. (2013b). SPC564Bxx, SPC56ECxx 32-bit MCU family built on the embedded Power

Architecture.

StMicroelectronics. (2016). STM8AF62. Retrieved 14/03/16, from

http://www.st.com/web/en/catalog/mmc/SC1244/SS1214/LN6

Vector. (2007). MICROSAR BSW Scheduler.

Vector. (2010). ELearning CAN Controller Area Network.

http://elearning.vector.com/index.php?seite=vl_can_introduction_en&root=378422&wbt_ls_kapite
l_id=489560&wbt_ls_seite_id=489561&d=yes

Vector. (2011). User Manual VC121-12.

Vector. (2012). Startup Vector AUTOSAR Solution.

Vector. (2014a). ECU Development VC121-12. 1. https://vector.com/vi_downloadcenter_en.html#

Vector. (2014b). VC121-12 Factsheet. http://vector.com/portal/medien/cmc/factsheets/VC121-

12_FactSheet_EN.pdf

Vector. (2015). Vector News. Retrieved 23/03/16, from

https://vector.com/vi_news_en.html#!vi_news_detail_iframe_en,,,1355155,detail.html

Wei, Ting-Ying, Qiu, Zhi-liang, Young, Chung-ping, & Chang, Da-Wei. (2011). Development of

heterogeneous multi-core embedded platform for automotive applications. Paper presented at the
2011 International Conference on Circuits, System and Simulation (IPCSIT).

WindRiver. (2010). User's Guid WindRiver Diab Compiler 5.8.

Zeng, Haibo, & Natale, Marco Di. (2011). Mechanisms for guaranteeing data consistency and flow

preservation in AUTOSAR software on multi-core platforms. Paper presented at the Industrial
Embedded Systems (SIES), 2011 6th IEEE International Symposium on.

http://www.st.com/web/en/catalog/mmc/SC1244/SS1214/LN6
http://elearning.vector.com/index.php?seite=vl_can_introduction_en&root=378422&wbt_ls_kapitel_id=489560&wbt_ls_seite_id=489561&d=yes
http://elearning.vector.com/index.php?seite=vl_can_introduction_en&root=378422&wbt_ls_kapitel_id=489560&wbt_ls_seite_id=489561&d=yes
http://vector.com/portal/medien/cmc/factsheets/VC121-12_FactSheet_EN.pdf
http://vector.com/portal/medien/cmc/factsheets/VC121-12_FactSheet_EN.pdf

116

11. Appendix

 STK600 source code 11.1.

117

Source code 11-1: STK600 CAN messages

118

 Python source code 11.1.

119

120

121

122

 User manual for DaVinciDeveloper 11.2.

 Project Assistant 11.2.1.

 Start Davinci Developer, Make sure that no workspace is open.

 File => Project Assistant => New ECU Project

 If appropriate use old setting by pressing Use button

1. General Settings

 Choose New ECU configuration

 Enter Project Name, Author, Version and Description

2. Project Folder

 Enter project root path

3. Software Integration Package (SIP)

 Choose Manual Path:

C:\Projects\DemoApplication\MainController\MICROSAR\Generators\Components

 Keep default setting, e.g

o Plattform: Mpc55xx_Flexcan2,

o Compiler: Diab,

o Derivative: Mpc5500_Spc56ec64

4. Output Paths

 Keep default configurations and single file ticked

5. Tools

 Keep default paths,

o DaVinci Configurator Pro: C:\Program Files (x86)\Vector DaVinci Configurator 4.2

SP2\DaVinciCFG.exe

o DaVinci Developer: C:\Program Files (x86)\Vector DaVinci Developer

3.9\Bin\DaVinciDEV.exe

o GENy: C:\Program Files (x86)\Vector GENy 1.4\GENy.exe

123

6. DaVinci Developer Workspace

 Create new DaVInci Developer Workspace

 Workspace Format: DCF

7. Input Files

 Tick Single ECU

 Include all files from

C:\Projects\DemoApplication\MainController\DemoApplication\Config\System include all files:

 CAN0.dbc  CAN1.dbc  CAN2.dbc  CAN3.dbc  CAN4.dbc

 CAN5.dbc

 LIN0.ldf  LIN1.ldf

FlexRay_300_NoCan.xml VC121_SystemDescr_VC121.arxml

 Activate VC121 tick box in ECU Instances

 Configure SWCs and RTE 11.2.2.

11.2.2.1. Create SWCs

 Right click to Application Component Types

Name Name of the SWC

Composition/ Atomic Choose composition if it is a composition of SWCs, see herefore

AUTOSAR specification,

Choose Atomic for atomic SWC

Type Application

Supports multiple

instantiation

Enables an instantiation of a component for more than once with the

same

Symbol The RTE generator uses symbols instead of names.

 OK

 Double-click on Software Design in the ECU Projects view to open the Software Design view for the

ECU

124

 To use the defined application component type drag and drop the component from the libary to the

software design view.

 A application component type becomes automatically an application component prototype when it

is used. In the library, the softwarecomponents are types and the ports are interfaces. As soon as

they are used, they will become:

o Port Interface => Port Prototype

o Component Type => Component Prototype

 To change their name open the property window (with right-click) form the context menu

Figure 11-1: Drag and Drop of software components

125

11.2.2.2. Create Ports

11.2.2.2.1. Define Data Types

 Define data types by right-click on Data Type in

the library and select out of the list the

predefined data types or create a new one.

Boolean Boolean has the value space required to support the mathematical concept

of binary-valued logic: (true, false).

Enumeration Enumerated types is a user defined data type by using identifier to create

variables.

Real type Real type represent an approximation of a real number

Opaque type Opaque type is a type which is exposed in APIs via a pointer but never

concretely defined. Its value can only be manipulated by calling subroutines

that have access to the missing information.

String type String type is a one-dimensional array of characters which is terminated be a

null character ‘\0’.

Array type Array type stores a fixed-size sequential collection of elements of the same

type.

Record Type Record type also called struct is a collection of items of different types.

 Right-click on Data Types in libary window => select new Record Type

add all necessary Record elements

Figure 11-2: Right-click on data type

126

11.2.2.2.2. Define Application Port Interfaces (Ports)

 Right-Click on Application Port Interface in the

library window and select New S/R Port Interface

 Enter a name and choose tab Data Element

Prototype

 Enter the name of the Data element and select the

type

 Select an application port interface from the library

and place it onto the application component via

drag’n’drop.

 Double- click on the added port and select

whether it is a sender or receiver port

Init value

 Each port should have an init value (constant),

use therefore the library to define constants

 Right-click on Constants in the library, select the

data type and enter a name

Refer Init value to the SWC

 Double-click on the application port in the software design view and select the tab Communication

Spec

 Click […] and choose constant

Reception handle

 To react on incoming information the Rx Filter can be enabled

Click on the Receiver Port and select the option Rx Filter:

- Always (Every reception will be handled)

- MasekdNewDiffersMaskedOld (Only those receptions will be handled in which the new value

differs from the previous one)

Connector

 Use the Botton Draw Connector to connect ports manually.

 Ports have to be compatible (matching data elements)

Figure 11-3: Insert S/R Port Interface

Figure 11-4: Selection of data element

127

11.2.2.3. Define runnables

Order. Name Description Checkbox

1. Symbol, Name What the runnable is called in the template file

2. Trigger When is the runnable executed

3. Port access What data can the runnable access

4. Mapping In which task context does the runnable work

Table 11-1: Check- list for defining a runnable

 Double-click on SWC in the library

 Click on the icon [fx]

 Click [New] and select [Runnable]

 Enter Name and Symbol for the new runnable on the Properties tab

 Can be invoked concurrently runnable can be executed while it is already running, it can be

safetly executed concurrently. There are a few criteria for the implementation code:

o No static (or global) non-constant data

o No return of address to static non constant data

o Only work on data provided by caller

o No modification of own code at runtime

o No call of non-re-entrant runnables

Not suggested because it will be not mapped to a task.

 Triggers for runnables

 Select the trigger tab and click on New and choose periodical for a periodical timing event.

 Select on data reception the runnable will be activated as soon as data is received at the

appropriate port.

 Select on operation invocation, see 11.2.2.4 Communication with external signals , p. 128

 Connect Port with runnable

Select the tab Port Access, you can choose between the following options:

Direct write

[dataSendPoint]
Explicit writing process

Buffered write

[dataWriteAccess]
Implicit writing process

Direct read

[dataReceivePointByArgument
Explicit reading process

Buffered read [implicit read,

dataReadAccess]
Implicit reading process

128

11.2.2.4. Communication with external signals

Import Service Coponent

 Import the XML file of the service component, therefore:

 File->Import XML File… -> Click [Add File…] -> Select File

 For the purpose of VCx_Components folder from the DemoApplication

C:\Projects\MultiCore_V1_0\VCx_Components\IoHwAb\Description

 Unlock the service component: right Click on the service component-> Object

Locking -> Unlock Object

 Create an application interface with the right data type DT_CAN0_D_Input_DIN0_Swi

 Drag and drop this interface onto your software component to create a port

 Create a deligation port, therefore:

o Right-Click on your software component by activating the ECU_Composition interface

view

o Select Complete Ports … make sure Delegation Ports only is activated

o Rename the added delegation port to be able to differ from other ports and select Select

signal

 Add a Service port to the software component

o Select the software component in the Software Design view and select the Port Prototype

List

o Click New -> Choose a Service port interface (VC_IoHwAb_SwitchInputValue)

o Select the tab Port API Option and Enable API usage by address

 Connect the created service port of the software component with a server port

o Select Service Mapping out of the ECU Project view

o Select the Application Component View

o Right-Click on the Application Component Port and select Map Service Port …

 Now you are able to add the Invoke Operation as an Port Access into your runnable

o Make sure it is asynncron and triggered periodically

 Connect the delegation port with a network signal via Data mapping

o Select Data mapping out of the ECU Project window

o Select the Data element view mode

o Right-Click on the Data Element, which will be connected to a network signal

129

11.2.2.5. Tasks and Task Mapping

A runnable has to be mapped to a task if it is not re-entrant but could be called re-entrant during system

operation.

 Open task mapping view

 Right-click in the left view below Task and select Add Task , type the name of the task and its

priority

 The Activation defines how many task activation are stored in parallel – 1 is recommended. (a task

type could be Auto, Basic or Extended)

 Select if the task is Full-preemptive or Non-preemptive and confirm with OK

 Assign your runnables to the task via drag’n’drop

11.2.2.6. Code Generation with DaVinci Developer

 Check first your configuration for error and missing information,

Right-click on the root of your ECU Project view and select Check

 Repeat the last configuration and select Open generator list

 Activate the MICROSAR RTE generator and the Component Template Generator

 Repeat first selection (Right-click on root ECU project) and select Generate Code The Developer

works off the generator list and generates:

 The configuration files for the BSW

 The operating system

 The RTE

 The component templates files without deleting your software parts within, if already exist

130

 Automotive microcontroller 11.3.

Application Microcontrollers

Engine Control and Management Interfaces MPC5674F, MPC5673F, MPC563xM, MPC5644A, MPC5643A, MPC5642A, MPC5746M, MPC5777M

Hybrid and Electric Auxillaries MPC5674F, MPC5673F, MPC563xM, S12G, MPC5644A, MPC5643A, MPC5642A, MPC5744P, MPC5746G,
MPC5747C, MPC5747G, MPC5748C, MPC5748G, MPC5746M

Watchdog S08QD4, S08SG, S08AW, S08SC4, S08RN

High Temperature MPC5744P,S08SG

Body Control Module and Gateway MPC5668x, MPC560xB, MPC560xD, MPC564xB/C, MPC5746G, MPC5747C, MPC5747G, MPC5748C,
MPC5748G

HVAC, Lighting, Seats, Window Lift, Doors MPC560xB, MPC560xD, S08D, S08AW, S08EL, S08SG, S08SL, S08MP16, S08SC4, S08RN

Body Motor Control S08MP16, S08RN

Infotainment all i.MX, SVFxxxR, MAC57D5xx

Telematics i.MX251, i.MX281, i.MX53, i.MX351, i.MX 6S1, i.MX 6U1, MAC57D5xx

Instrument Cluster MPC560xS, i.MX534, i.MX 6S1, i.MX 6U1, SVFxxxR, S12H, S12XH, S12XHY, S12ZVFP, S12ZVH, S12ZVHY,
MAC57D5xx

Braking Systems MPC564xL, MPC560xP, MPC5744P, S12XE, S12XS

Electronic Power Steering MPC564xL, MPC560xP, MPC5744P S12G

Semi-Active Suspension MPC564xL, MPC5744P

Airbag MPC560xP, MPC5744P, S12XF, S12XE, S12XS, S08SG

Electronic Stability Control MPC564xL, MPC560xP, MPC5744P

Lane Departure i.MX534, MPC567xK, i.MX 6S4, i.MX 6U4, i.MX 6D4, i.MX 6Q4, MPC577xK

Advanced Cruise Control MPC564xL, MPC567xK, MPC5744P, SCP2201, SCP2207, MPC577xK

Precrash, Blindspot Detection, Backup Warning MPC564xL, MPC567xK, MPC5604E, MPC5744P, MPC577xK, S08RN

Multi-function Display MAC57D5xx

Table 11-2: This overview is a section out of (Freescale Semiconductor, 2014)

131

 VC121-12 ECU component diagram 11.4.

Figure 11-5: VC121-12 ECU component diagram

132

 System program flow chart 11.5.

 Start up and initialisation of VC121-12 11.5.1.

- Initializes the whole RAM by writing the

configured predefined init pattern (0x00000000)

stored in the MCU ROM area

- Each configured ROM area is copied to the

corresponding RAM area

- Stack pointer will be re-initialized after RAM

initialisation wit 0x00000000

_start

Initialisation of MMU assembler code in C

StartupCode_InitStep0

- Initialisation of IVPR (interrupt vector prefix register)

- Initialisation IVOR values

StartupCode_InitPll

startup code

- Enable all RUN modes (RESET_DEST, STOP, HALT,

RUN 3-1, DRUN, SAFE, TEST, RESET_FUNC)

- Activate all Peripheral in every mode

- Enable on-chip oscillator

- Enable clock output

- Configuration of FMPLL (Frequency-modulated phase-

locked loop)

- RUN0 mode configuration (Switch on oscillator, PLL0,

use PLL as system clock)

- Enter RUN0 mode

StartupCode_InitRAM

StartupCode_InitStep1

- Initializes global RAM

variables

- Enable cache

- starts main()

Main(void)

osInitialize

Initialize all OS-variables, that are used

by OS-API-functions which might be

used before StartOS() is called.

(osUnhandledExceptionDetail,

osIntSaveDisableCounterGlobal,

osIntSaveDisableCounter,

osIntAPIStatus)

EcuM_Init

Initialisation the ECU State Manager Module

This function takes control of the start-up

procedure. It performs the initialization of all

BSW modules, RTE and OS.

- EcuM_Mode = ECUM_STATE_STARTUP

EcuM_AL_DriverInitZero

Initialisation of DET (Development

Error Tracer), not executed because

DET was not selected

- set the control variables for the notification buffering

mechanism of the communication manager

- config of NVRAM (job status, NvM_WriteAll

- reset wakeup timeouts (validation timeout, check

wakeup timeout)

- clear/set all RUN/Post RUN Request

EcuM_Mode = ECUM_STATE_STARTUP_ONE

Initialisation of memory space for followed BSW modules: COM,

PduR (Protocol Data Unit Router), CanNM, FrNm, ComM,

CanSM, FrSM, LinSM, EthSM, CanTp, FrTp, TcpIp, IpV4, IpV6,

CanIf, LinIf, FrIf, EthIf, SoAd, CanXcp, Dem, SchM, Fim, BswM,

Can, CanTrcv_30_E52013, CanTrcv_3-_Tja1043,

Lin, LlinTrcv_30_Tle7259,

FrTrcv_30_Tja1080

Eth, EthTrcv_30_Bcm89810, VStdInitPowerOn (Vector

Standard), SbcM, IsM, VC_VX1000, DiH, DoH, FrqH, PwmH,

AdH, Del

BswInt_DriverInitListZero

BswInt_DriverInitListOne

Dem_PreInit, Wdg_Init, Wdg_Trigger,

Mcu_Init(setting for power down, clock and ram))

- Initializes the Port Driver module (Port.c)

- Initializes the memory check module

(VC_MemoryCheck.c)

StartOS

- Retrieve the reset reason from the

Mcu module and map it to an wakeup

source

Configure Shutdown target

- set default AppMode for restart

- set the last shutdown target if the

restart was NOT intended

osStartOSc

- Error checking

- InitIalisation of all task as suspended)

- osFillTaskStacks (fills all stacks with a

certain pattern

- reset osLastActiveTaskIndex to 0

- disable the opportunity to nested

interrupts (osActiveTaskPrio)

- set osErrorFlag to osdFALSE

- reset osLastErrorCode, osLastError,

osIntNestinDepth, osStartDispatcher,

osLockDispatcher (1)

- osActiveISRID = INVALID_ISR

- assure that OS variable are linked to

RAM

- activate all tasks

- reset osSystemCounter

- osInitAlarms() (Prepare the RAM part of

all alarms)

- osInterStartupHook()

- osInitTimer() (initialization of the

hardware timer now after the startup-

hock)

- reset osLockDispatcher

- OS_ST_EXIT

osDispatch

saves old task context and switch to new

task

Entry point of the application

Assembly part in intvect.c:

osInitialize, osInitInterruptUnit,

osFillInterruptStack

osInitialize

Initialize all OS-variables

osFillInterruptStack

Filling interrupt and

system stack with

pattern

Startup_code_init_stack_pointer()

Iinitialise stack pointer to value in linker

command file

Move_symbol_address_to_register()

Initialisese r13 to sdata base (provided

by linker)

Move_symbol_address_to_register()

Initialisese r2 to sdata2 base (provided

by linker)

Initialisation

It will be

continued on

the next page.

Figure 11-6: Program flow chart for the start up and initialisation of VC121-12

133

 SchM_AsyncTask part 1 11.5.2.

SchM_AsyncTask

 EcuM_Mode =

ECUM_STATE_STARTUP_TWO

Implements the startup phase where

the OS running

EcuM_StartupTwo()

SchM_init()

Initialisation of all timers for the scheduling

of the main functions of the BSW modules

BswInt_DriverInitListTwo

Initialise driver and BSW modules

Check all wake up reasons

Rte_Start()

- Set default values for internal data

- Activate tasks:

Transfer all tasks in state „READY“

- activate the alarms used for TimingEvents

BswInt_DriverInitListThree()

- ComM_Init(), Dem_Init(), Sbc_WdgTrigger(),

Spi_MainFunction_Driving(),

Spi_SetAsyncMode(),

Com_RequestComMode()

ComM_EcuM_WakeupIndication()

Is wakeup event valid and is

wakeup source equal to COM

channel?

Set the state for the state

machine to

ECUM_STATE_APP_RUN

YES

Start cyclic triggering of the mainfunctions

- setAlarm SchM_Alarm_Aync_1 ID 0, increment 1 ticks, cycle 1ms

setAlarm SchM_Alarm_Sync_1 ID 1, increment 1 ticks, cycle 1ms

wait until SchM_AsyncEvent_1 occures

WaitEvent(SchM_AsyncEvent_1)

GetEvent()

Return the Eventmask of the task and it will

be stored in ev

ClearEvent()

Clear the mask of the event

SchM_Timer_SchM_AsyncTask_1_0_20ms

SchM_Timer_SchM_AsyncTask_1_2_10ms

SchM_Timer_SchM_AsyncTask_1_1_5ms

SchM_Timer_SchM_AsyncTask_1_3_100ms

SchM_Timer_SchM_AsyncTask_1_4_10ms

Which time variable

equals zero?

Figure 11-7: Program flow chart for the SchM_AsyncTask part 1

134

 SchM_AsyncTask part 2 11.5.3.

SchM_Timer_SchM_AsyncTask_1_0_20ms

NvM_MainFunction()

The Non-Volatile Manage accesses the of the

MEMIF (Memory Abstraction Interface), which

abstracts the modules FEE (Flash EEPROM

Emulation) and EA (EEPROM Abstraction)

SchM_Timer_SchM_AsyncTask_1_0_50ms

CanNM_MainFunction_0-5()

The CAN Network Management is a protocol that

decentralized direct network every ECU transmits a

special network management message, which is

reserved for the network management only. This main

function is generated according to the number of CAN

NM channels

SchM_Timer_SchM_AsyncTask_1_0_50ms = 50u

CanSM_MainFunction()

The CAN State Manager execute the bus-off

recovery state machines (including timer and

counter) of each network handle, which is

configured in CANSM.

SchM_Timer_SchM_AsyncTask_1_0_20ms

ComM_MainFunction_0-5

The Communication Manager is

responsible for CAN and FlexRay bus

SchM_Timer_SchM_AsyncTask_1_0_10ms

WdgM_MainFunction_AliveSupervision()

Performs the processing of the

Watchdog Manager jobs

WdgM_MainFunction_Trigger()

Invokes the triggering of a

watchdog instance if its trigger

reference cycle is reached

SchM_Timer_SchM_AsyncTask_1_0_20ms

EcuM_MainFunction()

This function implements all activities of

the ECU State Manager while OS is up

and running.

SchM_Timer_SchM_AsyncTask_1_0_10ms = 10u

BswM_MainFunction()

Mainfunction of BswM

SchM_Timer_SchM_AsyncTask_1_0_20ms = 20u

CanTrcv_30_E52013_MainFunction()

Scan all buses for wake up

event and perform these events

CanTrcv_30_Mc33905_MainFunction()

Scan all buses for wake up

event and perform these events

SchM_Timer_SchM_AsyncTask_1_0_5ms

SbcM_MainFunction_Driving()

The processing of the queue from the

SbcM_MC33905 data transmission part

will be triggered

CanTrcv_30_Tja1043_MainFunction()

This function checks if a wakeup

was detected by the underlying

transceiver hardware.

VC_IoHwAb_Handler()

This function add additional needed cyclic

action to allow access to all VC specific

inputs and outputs and internal diagnostic

data.

SchM_Timer_SchM_AsyncTask_1_0_5ms

Com_MainFunctionRx()

This mainfunction processing the

reception deadline monitoring and

deferred reception notification.

SchM_Timer_SchM_AsyncTask_1_0_5ms = 5u

SchM_Timer_SchM_AsyncTask_1_0_100ms

Decrement all

SchM_Timer_SchM_AsyncTask

Figure 11-8: Program flow chart for the SchM_AsyncTask part 2

135

 SchM_AsyncTask part 3 11.5.4.

SchM_Timer_SchM_AsyncTask_1_1_5ms

Spi_MainFunction_Driving()

Asynchronously poll SPI interrupts and

call ISR if appropriate

WKPU_LLD_PullUpUnUsedWakeupPin()

This function enables pull up for not

configured and unavailable wakeup pins

SchM_Timer_SchM_AsyncTask_1_1_10ms

Fls_MainFunction()

The mainfunction for the flash driver

SchM_Timer_SchM_AsyncTask_1_1_50ms

CanNM_MainFunction_0()

The CAN Network Management is a protocol that

decentralized direct network every ECU transmits a

special network management message, which is

reserved for the network management only. This main

function is generated according to the number of CAN

NM channels

CanTrcv_30_E52013_MainFunction()

Scan all buses for wake up

event and perform these events

CanTrcv_30_Mc33905_MainFunction()

Scan all buses for wake up

event and perform these events

SchM_Timer_SchM_AsyncTask_1_1_50ms = 50u

SchM_Timer_SchM_AsyncTask_1_1_10ms

Vnq_MainFunction()

Mainfunction of the module , which

controlls the cyclically call of the VNQ

Handler operation

SchM_Timer_SchM_AsyncTask_1_1_10ms = 10u

Scan all buses for wake up

event and perform these events

CanTrcv_30_Tja1043_MainFunction()

SchM_Timer_SchM_AsyncTask_1_2_10ms

CanXcp_MainFunction()

Transmission and reception of

XCP packets through the Can

Interface

CanTp_MainFunctionRx()

Central timer task of the Rx-part of all

(full duplex) channels. Task is to survey

receive timing conditions

CanTp_MainFunctionTx()

Central timer task of the Tx-part of all (full

duplex) channels . Task are to survey

transmit conditions and transmit CanTp-

frames

SchM_Timer_SchM_AsyncTask_1_2_5ms

Fee_MainFunction()

Mainfunction for the flash EEPROM Emulation

module. This module operates on blocks

provided by the NVRAM manager. Read

accesses to block are handled byte-wise.

SchM_Timer_SchM_AsyncTask_1_2_5ms = 5u

SchM_Timer_SchM_AsyncTask_1_2_10ms

Dem_MainFunction()

Mainfunction for the Diagnostic

Event Manager

CanTrcv_30_E52013_MainFunction()

Scan all buses for wake up

event and perform these events

CanTrcv_30_Mc33905_MainFunction()

Scan all buses for wake up

event and perform these events

SchM_Timer_SchM_AsyncTask_1_2_10ms

IsM_MainFunction()

Mainfunction for the module Input Switch

Manager, state machine and SPI

command queue of every configured

device can be processed.

CanTrcv_30_Tja1043_MainFunction()

Scan all buses for wake

up event and perform

these events

Figure 11-9: Program flow chart for the SchM_AsyncTask part 3

136

 SchM_AsyncTask part 4 11.5.5.

SchM_Timer_SchM_AsyncTask_1_3_100ms

SbcM_MainFunction_Diag()

This mainfunction triggers the reading of the

flag registers from the SBC device. If it is

configured that the flag registers shall be

analyzed out of the task context this will be

done within this function before triggering to

read flag registers again.

Scan all buses for wake up

event and perform these events

CanTrcv_30_Tja1043_MainFunction()

SchM_Timer_SchM_AsyncTask_1_3_100ms =100u

SchM_Timer_SchM_AsyncTask_1_3_5ms

Com_MainFunctionTx()

This function perform the processing of the

AUTOSAR COM transmission activities . It

returns if COM was not previously initialized

with a call to Com_Init.

SchM_Timer_SchM_AsyncTask_1_3_5ms = 5u

SchM_Timer_SchM_AsyncTask_1_4_10ms

Can_MainFunction_Write()

This main function is responsible to poll Tx confirmation

(for all controller and Tx mailboxes), also it notify the

CAN Interface about Tx confirmations.

Can_MainFunction_Read()

This main function is responsible to poll reception (for

all controller and Rx mailboxes). Also it is used to

read out Rx Queue messages queued within interrupt

context.

Can_MainFunction_BusOff()

This main function is responsible to poll Bus

Off event (over all controller)

Can_MainFunction_Wakeup()

SchM_Timer_SchM_AsyncTask_1_4_10ms = 10u

This function poll wakeup event

(over all controller)

CanTrcv_30_E52013_MainFunction()

Scan all buses for wake up

event and perform these events

CanTrcv_30_Mc33905_MainFunction()

Scan all buses for wake up

event and perform these events

Scan all buses for wake up

event and perform these events

CanTrcv_30_Tja1043_MainFunction()

Decrement all

SchM_Timer_SchM_AsyncTask

Decrement all

SchM_Timer_SchM_AsyncTask

Figure 11-10: Program flow chart for the SchM_AsyncTask part 3

137

 Performance analyses of SingleCoreV1_0 V1_0_1111 11.6.

 V1_0_1111 write-process 0 to 6 ms 11.6.1.

Name Entry in msec End in ms Duration in ms Runnable Out Entry in ms End in ms Duration in ms Write function Entry in ms End in ms Duration in ms

Task_Event_Expl_Swc4to3func 20.052158 20.068304 0.016146 Runnable_Swc04_Event_Expl_DataStruct_Out 20.056712 20.062561 0.005849

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 20.059637 20.062447 0.001115

Task_Event_Impl_Swc3to4func 20.073101 20.089822 0.016721 Runnable_Swc03_Event_Impl_DataStruct_Out 20.077049 20.080439 0.003390 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 20.094292 20.107327 0.013035 Runnable_Swc06_Period_Expl_DataDIN3_Out 20.097737 20.102599 0.004862

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 20.100767 20.102478 0.000345

Task_IoHw_Period_Impl_Swc5to6func 20.111681 20.133818 0.022137 Runnable_Swc05_Period_Impl_DataDIN2_Out 20.122561 20.125529 0.002968 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1func 20.138524 20.146281 0.007757 Runnable_Swc02_Period_Expl_DataStruct_Out 20.141817 20.144074 0.002257

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Pe

riod_Expl_DataStruct 20.141908 20.143974 0.000727

Task_Period_Impl_Swc1to2func 20.150864 20.160083 0.009219 Runnable_Swc01_Period_Impl_DataStruct_Out 20.154175 20.154579 0.000404 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 20.168599 20.724529 0.555930

Task_Event_Impl_Swc3to4func 20.754995 20.771530 0.016535 Runnable_Swc03_Event_Impl_DataStruct_Out 20.757521 20.760684 0.003163 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 20.776423 20.788622 0.012199 Runnable_Swc04_Event_Expl_DataStruct_Out 20.778557 20.783276 0.004719

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 20.781156 20.783181 0.000812

Task_IoHw_Period_Impl_Swc5to6func 20.793531 20.805218 0.011687 Runnable_Swc05_Period_Impl_DataDIN2_Out 20.795173 20.797537 0.002364 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 20.809775 20.820547 0.010772 Runnable_Swc06_Period_Expl_DataDIN3_Out 20.811801 20.816040 0.004239

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 20.814185 20.815923 0.000324

osIdleLoop 21.323354 21.724636 0.401282

Task_Event_Impl_Swc3to4func 21.755307 21.772689 0.017382 Runnable_Swc03_Event_Impl_DataStruct_Out 21.758294 21.761715 0.003421 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 21.777546 21.790417 0.012871 Runnable_Swc04_Event_Expl_DataStruct_Out 21.779849 21.785448 0.005599

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 21.782758 21.785338 0.000979

Task_IoHw_Period_Expl_Swc6to5func 21.795592 21.806535 0.010943 Runnable_Swc06_Period_Expl_DataDIN3_Out 21.797638 21.802212 0.004574

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 21.800227 21.802096 0.000345

Task_IoHw_Period_Impl_Swc5to6func 21.811403 21.823774 0.012371 Runnable_Swc05_Period_Impl_DataDIN2_Out 21.813264 21.815714 0.002450 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 22.254081 22.724710 0.470629

Task_Event_Expl_Swc4to3func 22.770773 22.785583 0.014810 Runnable_Swc04_Event_Expl_DataStruct_Out 22.773440 22.779227 0.005787

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 22.776371 22.779111 0.001101

Task_Event_Impl_Swc3to4func 22.790952 22.813777 0.022825 Runnable_Swc03_Event_Impl_DataStruct_Out 22.792666 22.796117 0.003451 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Impl_Swc5to6func 22.819412 22.833007 0.013595 Runnable_Swc05_Period_Impl_DataDIN2_Out 22.821046 22.823920 0.002874 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 22.837634 22.849385 0.011751 Runnable_Swc06_Period_Expl_DataDIN3_Out 22.839357 22.844245 0.004888

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 22.842095 22.844130 0.000369

osIdleLoop 23.211772 23.724801 0.513029

Task_Event_Expl_Swc4to3func 23.754452 23.768900 0.014448 Runnable_Swc04_Event_Expl_DataStruct_Out 23.756884 23.762462 0.005578

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 23.759790 23.762347 0.001001

Task_Event_Impl_Swc3to4func 23.774312 23.788663 0.014351 Runnable_Swc03_Event_Impl_DataStruct_Out 23.776701 23.779424 0.002723 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Impl_Swc5to6func 23.793412 23.806235 0.012823 Runnable_Swc05_Period_Impl_DataDIN2_Out 23.795578 23.798049 0.002471 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 23.810910 23.821486 0.010576 Runnable_Swc06_Period_Expl_DataDIN3_Out 23.812869 23.817023 0.004154

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 23.815145 23.816914 0.000338

osIdleLoop 24.150054 24.724892 0.574838

Task_Event_Impl_Swc3to4func 24.763335 24.780280 0.016945 Runnable_Swc03_Event_Impl_DataStruct_Out 24.766058 24.769368 0.003310 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 24.785082 24.808711 0.023629 Runnable_Swc04_Event_Expl_DataStruct_Out 24.787042 24.802228 0.015186

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 24.799548 24.802111 0.000974

Task_IoHw_Period_Expl_Swc6to5func 24.814277 24.827021 0.012744 Runnable_Swc06_Period_Expl_DataDIN3_Out 24.816581 24.821407 0.004826

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 24.819579 24.821294 0.000321

Task_IoHw_Period_Impl_Swc5to6func 24.831870 24.844173 0.012303 Runnable_Swc05_Period_Impl_DataDIN2_Out 24.833637 24.836017 0.002380 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Impl_Swc1to2func 24.848787 24.857269 0.008482 Runnable_Swc01_Period_Impl_DataStruct_Out 24.850393 24.851006 0.000613 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1func 24.862588 24.868449 0.005861 Runnable_Swc02_Period_Expl_DataStruct_Out 24.864263 24.866228 0.001965

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Pe

riod_Expl_DataStruct 24.864353 24.866136 0.000725

osIdleLoop 25.184918 25.725011 0.540093

Task_Event_Impl_Swc3to4func 25.764524 25.781963 0.017439 Runnable_Swc03_Event_Impl_DataStruct_Out 25.767467 25.770679 0.003212 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 25.786893 25.799658 0.012765 Runnable_Swc04_Event_Expl_DataStruct_Out 25.788931 25.794267 0.005336

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 25.791840 25.794156 0.000979

Task_IoHw_Period_Expl_Swc6to5func 25.804350 25.815961 0.011611 Runnable_Swc06_Period_Expl_DataDIN3_Out 25.806446 25.811136 0.004690

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 25.809481 25.811014 0.000300

Task_IoHw_Period_Impl_Swc5to6func 25.820808 25.832743 0.011935 Runnable_Swc05_Period_Impl_DataDIN2_Out 25.822774 25.824994 0.002220 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 26.148072 26.725092 0.577020

0

1

2

3

4

5

6

138

 V1_0_1111 notification process 0 to 6 ms 11.6.2.

SetEvent

Entry in ms End in ms Duration in ms OsSchedule Entry in ms End in ms Duration in ms

osGetEvent

Entry in ms End in ms

Duration in

ms

OsWait Entry in

ms End in ms Duration in ms

OsClearEvent

Entry in ms End in ms

Duration in

ms

Notification

sum in ms

20.060628 20.062323 0.001695 20.062587 20.065444 0.002857 20.065523 20.066254 0.000731 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005283

20.081240 20.082634 0.001394 20.082668 20.085275 0.002607 20.087006 20.087615 0.000609 20.085403 20.086940 0.001537 20.087660 20.088668 0.001008 0.007155

20.100993 20.102359 0.001366 20.102625 20.104817 0.002192 20.104896 20.105625 0.000729 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004287

20.125633 20.127155 0.001522 20.127184 20.129533 0.002349 20.131470 20.132150 0.000680 20.129680 20.131397 0.001717 20.132221 20.133540 0.001319 0.007587

20.142511 20.143850 0.001339 0.000000 0.000000 0.000000 20.144108 20.144421 0.000313 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001652

20.155175 20.156263 0.001088 0.000000 0.000000 0.000000 20.157810 20.158142 0.000332 20.156370 20.157775 0.001405 20.158186 20.159201 0.001015 0.003840

20.761475 20.762799 0.001324 20.762834 20.766068 0.003234 20.768287 20.768900 0.000613 20.766262 20.768221 0.001959 20.768955 20.770099 0.001144 0.008274

20.781846 20.783059 0.001213 20.783288 20.785942 0.002654 20.786016 20.786695 0.000679 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004546

20.797634 20.798947 0.001313 20.798977 20.801305 0.002328 20.803086 20.803692 0.000606 20.801444 20.803021 0.001577 20.803751 20.804932 0.001181 0.007005

20.814398 20.815812 0.001414 20.816062 20.818380 0.002318 20.818457 20.819169 0.000712 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004444

21.762641 21.764271 0.001630 21.764307 21.767441 0.003134 21.769641 21.770247 0.000606 21.767635 21.769576 0.001941 21.770307 21.771522 0.001215 0.008526

21.783613 21.785214 0.001601 21.785469 21.787580 0.002111 21.787657 21.788370 0.000713 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004425

21.800461 21.801985 0.001524 21.802234 21.804432 0.002198 21.804501 21.805140 0.000639 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004361

21.815830 21.817345 0.001515 21.817364 21.819610 0.002246 21.821351 21.821965 0.000614 21.819726 21.821285 0.001559 21.822027 21.823257 0.001230 0.007164

22.777348 22.778987 0.001639 22.779254 22.782370 0.003116 22.782445 22.783137 0.000692 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005447

22.796798 22.798161 0.001363 22.798187 22.801058 0.002871 22.810724 22.811340 0.000616 22.801191 22.810658 0.009467 22.811406 22.812694 0.001288 0.015605

22.824068 22.825786 0.001718 22.825817 22.828976 0.003159 22.830817 22.831505 0.000688 22.829110 22.830743 0.001633 22.838196 22.839233 0.001037 0.008235

22.842348 22.844014 0.001666 22.844272 22.847041 0.002769 22.847113 22.847770 0.000657 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005092

23.760674 23.762230 0.001556 23.762488 23.765561 0.003073 23.765636 23.766328 0.000692 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005321

23.780010 23.781162 0.001152 23.781188 23.783895 0.002707 23.785688 23.786247 0.000559 23.784035 23.785629 0.001594 23.786307 23.787504 0.001197 0.007209

23.798160 23.799600 0.001440 23.799629 23.802046 0.002417 23.803777 23.804389 0.000612 23.802163 23.803712 0.001549 23.804468 23.805891 0.001423 0.007441

23.815365 23.816796 0.001431 23.817038 23.819116 0.002078 23.819194 23.819907 0.000713 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004222

24.770239 24.771892 0.001653 24.771921 24.774850 0.002929 24.777062 24.777751 0.000689 24.775047 24.776988 0.001941 24.777823 24.779158 0.001335 0.008547

24.800398 24.801987 0.001589 24.802256 24.805391 0.003135 24.805476 24.806255 0.000779 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005503

24.819784 24.821178 0.001394 24.821433 24.824198 0.002765 24.824275 24.825002 0.000727 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004886

24.836151 24.837719 0.001568 24.837748 24.840455 0.002707 24.842076 24.842611 0.000535 24.840572 24.842019 0.001447 24.842673 24.843888 0.001215 0.007472

24.851581 24.852792 0.001211 0.000000 0.000000 0.000000 24.854637 24.854969 0.000332 24.852908 24.854602 0.001694 24.855014 24.856033 0.001019 0.004256

24.864956 24.866014 0.001058 0.000000 0.000000 0.000000 24.866259 24.866550 0.000291 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001349

25.771615 25.773307 0.001692 25.773342 25.776608 0.003266 25.778942 25.779551 0.000609 25.776821 25.778876 0.002055 25.779596 25.780607 0.001011 0.008633

25.792695 25.794032 0.001337 25.794290 25.796714 0.002424 25.796785 25.797443 0.000658 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004419

25.809663 25.810896 0.001233 25.811163 25.813565 0.002402 25.813626 25.814189 0.000563 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004198

25.825106 25.826555 0.001449 25.826583 25.828992 0.002409 25.830731 25.831326 0.000595 25.829110 25.830666 0.001556 25.831379 25.832477 0.001098 0.007107

4

5

6

0

1

2

3

139

 V1_0_1111 read-process 0 to 6 ms 11.6.3.

Runnable In Entry in ms End in ms Duration in ms Read function Entry in ms End in ms Duration in ms

Communication

(write + read

only) sum in ms

Communication

(w,r,n)

Runnable_Swc03_Odr_Expl_DataStruct_In 20.066346 20.067232 0.000886

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 20.066456 20.067129 0.000673 0.001788 0.007071

Runnable_Swc04_Odr_Impl_DataStruct_In 20.089273 20.089771 0.000498 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007155

Runnable_Swc05_Odr_Expl_DataDIN3_In 20.105707 20.105993 0.000286

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 20.105789 20.105884 0.000095 0.000440 0.004727

Runnable_Swc06_Odr_Impl_DataDIN2_In 20.133704 20.133763 0.000059 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007587

Runnable_Swc01_Odr_Expl_DataStruct_In 20.144485 20.145143 0.000658

Rte_Read_SwcPeriod01_R_Swc01_

DataStruct_Odr_Expl_DataStruct 20.144562 20.145038 0.000476 0.001203 0.002855

Runnable_Swc02_Odr_Impl_DataStruct_In 20.159661 20.160041 0.000380 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.003840

Runnable_Swc04_Odr_Impl_DataStruct_In 20.770859 20.771480 0.000621 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008274

Runnable_Swc03_Odr_Expl_DataStruct_In 20.786763 20.787452 0.000689

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 20.786844 20.787347 0.000503 0.001315 0.005861

Runnable_Swc06_Odr_Impl_DataDIN2_In 20.805110 20.805170 0.000060 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007005

Runnable_Swc05_Odr_Expl_DataDIN3_In 20.819241 20.819503 0.000262

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 20.819314 20.819402 0.000088 0.000412 0.004856

Runnable_Swc04_Odr_Impl_DataStruct_In 21.772127 21.772629 0.000502 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008526

Runnable_Swc03_Odr_Expl_DataStruct_In 21.788453 21.789260 0.000807

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 21.788551 21.789156 0.000605 0.001584 0.006009

Runnable_Swc05_Odr_Expl_DataDIN3_In 21.805207 21.805459 0.000252

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 21.805273 21.805356 0.000083 0.000428 0.004789

Runnable_Swc06_Odr_Impl_DataDIN2_In 21.823618 21.823725 0.000107 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007164

Runnable_Swc03_Odr_Expl_DataStruct_In 22.783235 22.784167 0.000932

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 22.783352 22.784063 0.000711 0.001812 0.007259

Runnable_Swc04_Odr_Impl_DataStruct_In 22.813239 22.813698 0.000459 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.015605

Runnable_Swc06_Odr_Impl_DataDIN2_In 22.832879 22.832967 0.000088 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008235

Runnable_Swc05_Odr_Expl_DataDIN3_In 22.847849 22.848127 0.000278

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 22.847927 22.848020 0.000093 0.000462 0.005554

Runnable_Swc03_Odr_Expl_DataStruct_In 23.766426 23.767361 0.000935

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 23.766543 23.767254 0.000711 0.001712 0.007033

Runnable_Swc04_Odr_Impl_DataStruct_In 23.788109 23.788609 0.000500 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007209

Runnable_Swc06_Odr_Impl_DataDIN2_In 23.806116 23.806188 0.000072 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007441

Runnable_Swc05_Odr_Expl_DataDIN3_In 23.819992 23.820281 0.000289

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 23.820077 23.820174 0.000097 0.000435 0.004657

Runnable_Swc04_Odr_Impl_DataStruct_In 24.779738 24.780220 0.000482 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008547

Runnable_Swc03_Odr_Expl_DataStruct_In 24.806353 24.807285 0.000932

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 24.806470 24.807181 0.000711 0.001685 0.007188

Runnable_Swc05_Odr_Expl_DataDIN3_In 24.825150 24.825559 0.000409

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 24.825299 24.825447 0.000148 0.000469 0.005355

Runnable_Swc06_Odr_Impl_DataDIN2_In 24.844072 24.844131 0.000059 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007472

Runnable_Swc02_Odr_Impl_DataStruct_In 24.856688 24.857224 0.000536 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.004256

Runnable_Swc01_Odr_Expl_DataStruct_In 24.866619 24.867324 0.000705

Rte_Read_SwcPeriod01_R_Swc01_

DataStruct_Odr_Expl_DataStruct 24.866703 24.867220 0.000517 0.001242 0.002591

Runnable_Swc04_Odr_Impl_DataStruct_In 25.781322 25.781909 0.000587 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008633

Runnable_Swc03_Odr_Expl_DataStruct_In 25.797527 25.798347 0.000820

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 25.797626 25.798238 0.000612 0.001591 0.006010

Runnable_Swc05_Odr_Expl_DataDIN3_In 25.814274 25.814566 0.000292

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 25.814359 25.814456 0.000097 0.000397 0.004595

Runnable_Swc06_Odr_Impl_DataDIN2_In 25.832648 25.832704 0.000056 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007107

0

1

2

3

4

5

6

140

 V1_0_1111 write-process 7 to 12 ms 11.6.4.

Name Entry in msec End in ms Duration in ms Runnable Out Entry in ms End in ms Duration in ms Write function Entry in ms End in ms Duration in ms

Task_Event_Expl_Swc4to3func 26.755061 26.769437 0.014376 Runnable_Swc04_Event_Expl_DataStruct_Out 26.757685 26.763292 0.005607

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 26.760596 26.763174 0.000988

Task_Event_Impl_Swc3to4func 26.774613 26.788788 0.014175 Runnable_Swc03_Event_Impl_DataStruct_Out 26.776366 26.779045 0.002679 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Impl_Swc5to6func 26.793898 26.805826 0.011928 Runnable_Swc05_Period_Impl_DataDIN2_Out 26.795613 26.798179 0.002566 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 26.810416 26.821187 0.010771 Runnable_Swc06_Period_Expl_DataDIN3_Out 26.812174 26.816610 0.004436

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 26.814798 26.816505 0.000323

osIdleLoop 27.130627 27.725165 0.594538

Task_Event_Expl_Swc4to3func 27.755099 27.769087 0.013988 Runnable_Swc04_Event_Expl_DataStruct_Out 27.757549 27.762863 0.005314

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 27.760127 27.762747 0.001007

Task_Event_Impl_Swc3to4func 27.774377 27.788785 0.014408 Runnable_Swc03_Event_Impl_DataStruct_Out 27.776604 27.779624 0.003020 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Impl_Swc5to6func 27.793648 27.806171 0.012523 Runnable_Swc05_Period_Impl_DataDIN2_Out 27.795586 27.798156 0.002570 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 27.810845 27.821528 0.010683 Runnable_Swc06_Period_Expl_DataDIN3_Out 27.812642 27.817060 0.004418

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 27.815365 27.816950 0.000291

osIdleLoop 28.129354 28.725258 0.595904

Task_Event_Impl_Swc3to4func 28.754757 28.771330 0.016573 Runnable_Swc03_Event_Impl_DataStruct_Out 28.757385 28.760784 0.003399 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 28.776351 28.788474 0.012123 Runnable_Swc04_Event_Expl_DataStruct_Out 28.778514 28.783130 0.004616

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 28.781004 28.783027 0.000821

Task_IoHw_Period_Expl_Swc6to5func 28.793266 28.804472 0.011206 Runnable_Swc06_Period_Expl_DataDIN3_Out 28.795263 28.799840 0.004577

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 28.797990 28.799739 0.000323

Task_IoHw_Period_Impl_Swc5to6func 28.809250 28.821058 0.011808 Runnable_Swc05_Period_Impl_DataDIN2_Out 28.810950 28.813421 0.002471 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 29.139099 29.725398 0.586299

Task_Event_Expl_Swc4to3func 29.762608 29.776343 0.013735 Runnable_Swc04_Event_Expl_DataStruct_Out 29.765049 29.770699 0.005650

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 29.767956 29.770584 0.001017

Task_Event_Impl_Swc3to4func 29.781672 29.796701 0.015029 Runnable_Swc03_Event_Impl_DataStruct_Out 29.783849 29.786973 0.003124 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Impl_Swc5to6func 29.801486 29.814493 0.013007 Runnable_Swc05_Period_Impl_DataDIN2_Out 29.803144 29.805998 0.002854 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 29.819047 29.830052 0.011005 Runnable_Swc06_Period_Expl_DataDIN3_Out 29.820999 29.825643 0.004644

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 29.823803 29.825532 0.000331

Task_Period_Expl_Swc2to1func 29.834741 29.840449 0.005708 Runnable_Swc02_Period_Expl_DataStruct_Out 29.836457 29.838364 0.001907

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Pe

riod_Expl_DataStruct 29.836541 29.838272 0.000685

Task_Period_Impl_Swc1to2func 29.845107 29.852548 0.007441 Runnable_Swc01_Period_Impl_DataStruct_Out 29.846713 29.847124 0.000411 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 30.155472 30.725447 0.569975

Task_Event_Expl_Swc4to3func 30.756139 30.769723 0.013584 Runnable_Swc04_Event_Expl_DataStruct_Out 30.758549 30.764299 0.005750

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 30.761474 30.764190 0.001065

Task_Event_Impl_Swc3to4func 30.774946 30.788906 0.013960 Runnable_Swc03_Event_Impl_DataStruct_Out 30.776979 30.779807 0.002828 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 30.793920 30.804966 0.011046 Runnable_Swc06_Period_Expl_DataDIN3_Out 30.795963 30.800434 0.004471

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 30.798784 30.800321 0.000316

Task_IoHw_Period_Impl_Swc5to6func 30.809663 30.821962 0.012299 Runnable_Swc05_Period_Impl_DataDIN2_Out 30.811631 30.814046 0.002415 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 31.169399 31.725557 0.556158

Task_Event_Impl_Swc3to4func 31.755700 31.773027 0.017327 Runnable_Swc03_Event_Impl_DataStruct_Out 31.758440 31.761859 0.003419 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 31.778040 31.790938 0.012898 Runnable_Swc04_Event_Expl_DataStruct_Out 31.780149 31.785275 0.005126

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 31.783030 31.785165 0.000870

Task_IoHw_Period_Expl_Swc6to5func 31.795992 31.806901 0.010909 Runnable_Swc06_Period_Expl_DataDIN3_Out 31.797874 31.802110 0.004236

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 31.800264 31.801996 0.000327

Task_IoHw_Period_Impl_Swc5to6func 31.811592 31.823479 0.011887 Runnable_Swc05_Period_Impl_DataDIN2_Out 31.813437 31.815630 0.002193 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 32.235327 32.725629 0.490302

8

7

9

10

11

12

141

 V1_0_1111 notification process 7 to 12 ms 11.6.5.

SetEvent

Entry in ms End in ms Duration in ms OsSchedule Entry in ms End in ms Duration in ms

osGetEvent

Entry in ms End in ms

Duration in

ms

OsWait Entry in

ms End in ms Duration in ms

OsClearEvent

Entry in ms End in ms

Duration in

ms

Notification

sum in ms

26.761460 26.763050 0.001590 26.763321 26.766433 0.003112 26.766508 26.767200 0.000692 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005394

26.779736 26.780983 0.001247 26.781003 26.783788 0.002785 26.785614 26.786220 0.000606 26.783935 26.785548 0.001613 26.786283 26.787514 0.001231 0.007482

26.798256 26.799347 0.001091 26.799377 26.801706 0.002329 26.803524 26.804141 0.000617 26.801853 26.803458 0.001605 26.804212 26.805533 0.001321 0.006963

26.815003 26.816387 0.001384 26.816621 26.818743 0.002122 26.818821 26.819532 0.000711 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004217

27.761010 27.762623 0.001613 27.762890 27.765798 0.002908 27.765875 27.766592 0.000717 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005238

27.780210 27.781443 0.001233 27.781467 27.783832 0.002365 27.785740 27.786337 0.000597 27.783973 27.785675 0.001702 27.786393 27.787533 0.001140 0.007037

27.798259 27.799500 0.001241 27.799529 27.801760 0.002231 27.803584 27.804357 0.000773 27.801906 27.803500 0.001594 27.804422 27.805682 0.001260 0.007099

27.815538 27.816832 0.001294 27.817075 27.819147 0.002072 27.819209 27.819776 0.000567 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003933

28.761570 28.762956 0.001386 28.762985 28.766109 0.003124 28.768151 28.768764 0.000613 28.766278 28.768085 0.001807 28.768820 28.769961 0.001141 0.008071

28.781703 28.782905 0.001202 28.783151 28.785552 0.002401 28.785626 28.786315 0.000689 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004292

28.798197 28.799623 0.001426 28.799854 28.802025 0.002171 28.802103 28.802813 0.000710 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004307

28.813527 28.814828 0.001301 28.814857 28.817087 0.002230 28.818900 28.819598 0.000698 28.817233 28.818825 0.001592 28.819647 28.820718 0.001071 0.006892

29.768848 29.770459 0.001611 29.770726 29.773416 0.002690 29.773494 29.794313 0.020819 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.025120

29.787709 29.789074 0.001365 29.789111 29.791699 0.002588 29.793633 29.812659 0.019026 29.791863 29.793560 0.001697 29.812730 29.814052 0.001322 0.025998

29.806130 29.807655 0.001525 29.807682 29.810093 0.002411 29.811884 29.828441 0.016557 29.810215 29.811800 0.001585 29.828831 29.829992 0.001161 0.023239

29.824016 29.825414 0.001398 29.825658 29.827732 0.002074 29.827801 29.838683 0.010882 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.014354

29.837104 29.838150 0.001046 0.000000 0.000000 0.000000 29.838395 29.850642 0.012247 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.013293

29.847705 29.848761 0.001056 0.000000 0.000000 0.000000 29.850294 29.850642 0.000348 29.848858 29.850257 0.001399 29.850686 29.851682 0.000996 0.003799

30.762418 30.764069 0.001651 30.764327 30.766833 0.002506 30.766907 30.767592 0.000685 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004842

30.780422 30.781684 0.001262 30.781705 30.784009 0.002304 30.785951 30.786564 0.000613 30.784172 30.785885 0.001713 30.786620 30.787759 0.001139 0.007031

30.798984 30.800205 0.001221 30.800460 30.802723 0.002263 30.802793 30.803444 0.000651 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004135

30.814142 30.815532 0.001390 30.815547 30.817742 0.002195 30.819658 30.820437 0.000779 30.817886 30.819573 0.001687 30.820494 30.821678 0.001184 0.007235

31.762730 31.764317 0.001587 31.764352 31.767590 0.003238 31.769921 31.770517 0.000596 31.767803 31.769857 0.002054 31.770569 31.771670 0.001101 0.008576

31.783776 31.785041 0.001265 31.785296 31.788099 0.002803 31.788178 31.788908 0.000730 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004798

31.800473 31.801878 0.001405 31.802131 31.804278 0.002147 31.804349 31.805012 0.000663 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004215

31.815736 31.817141 0.001405 31.817164 31.819496 0.002332 31.821307 31.821989 0.000682 31.819640 31.821233 0.001593 31.822039 31.823111 0.001072 0.007084

9

10

11

12

7

8

142

 V1_0_1111 read-process 7 to 12 ms 11.6.6.

Runnable In Entry in ms End in ms Duration in ms Read function Entry in ms End in ms Duration in ms

Communication

(write + read

only) sum in ms

Communication

(w,r,n)

Runnable_Swc03_Odr_Expl_DataStruct_In 26.767292 26.768181 0.000889

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 26.767402 26.768074 0.000672 0.001660 0.007054

Runnable_Swc04_Odr_Impl_DataStruct_In 26.788174 26.788722 0.000548 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007482

Runnable_Swc06_Odr_Impl_DataDIN2_In 26.805717 26.805779 0.000062 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.006963

Runnable_Swc05_Odr_Expl_DataDIN3_In 26.819605 26.819874 0.000269

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 26.819678 26.819765 0.000087 0.000410 0.004627

Runnable_Swc03_Odr_Expl_DataStruct_In 27.766689 27.767623 0.000934

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 27.766807 27.767518 0.000711 0.001718 0.006956

Runnable_Swc04_Odr_Impl_DataStruct_In 27.788193 27.788734 0.000541 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007037

Runnable_Swc06_Odr_Impl_DataDIN2_In 27.806023 27.806124 0.000101 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007099

Runnable_Swc05_Odr_Expl_DataDIN3_In 27.819839 27.820095 0.000256

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 27.819903 27.819984 0.000081 0.000372 0.004305

Runnable_Swc04_Odr_Impl_DataStruct_In 28.770676 28.771266 0.000590 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008071

Runnable_Swc03_Odr_Expl_DataStruct_In 28.786392 28.787165 0.000773

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 28.786485 28.787056 0.000571 0.001392 0.005684

Runnable_Swc05_Odr_Expl_DataDIN3_In 28.802879 28.803138 0.000259

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 28.802946 28.803029 0.000083 0.000406 0.004713

Runnable_Swc06_Odr_Impl_DataDIN2_In 28.820943 28.821014 0.000071 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.006892

Runnable_Swc03_Odr_Expl_DataStruct_In 29.774275 29.774992 0.000717

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 29.774360 29.774884 0.000524 0.001541 0.026661

Runnable_Swc04_Odr_Impl_DataStruct_In 29.796191 29.796632 0.000441 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.025998

Runnable_Swc06_Odr_Impl_DataDIN2_In 29.814352 29.814443 0.000091 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.023239

Runnable_Swc05_Odr_Expl_DataDIN3_In 29.828514 29.828773 0.000259

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 29.828587 29.828672 0.000085 0.000416 0.014770

Runnable_Swc01_Odr_Expl_DataStruct_In 29.838736 29.839306 0.000570

Rte_Read_SwcPeriod01_R_Swc01_

DataStruct_Odr_Expl_DataStruct 29.838800 29.839202 0.000402 0.001087 0.014380

Runnable_Swc02_Odr_Impl_DataStruct_In 29.852132 29.852505 0.000373 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.003799

Runnable_Swc03_Odr_Expl_DataStruct_In 30.767689 30.768623 0.000934

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 30.767807 30.768520 0.000713 0.001778 0.006620

Runnable_Swc04_Odr_Impl_DataStruct_In 30.788364 30.788860 0.000496 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007031

Runnable_Swc05_Odr_Expl_DataDIN3_In 30.803529 30.803815 0.000286

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 30.803613 30.803711 0.000098 0.000414 0.004549

Runnable_Swc06_Odr_Impl_DataDIN2_In 30.821855 30.821915 0.000060 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007235

Runnable_Swc04_Odr_Impl_DataStruct_In 31.772385 31.772972 0.000587 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008576

Runnable_Swc03_Odr_Expl_DataStruct_In 31.788996 31.789850 0.000854

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 31.789102 31.789747 0.000645 0.001515 0.006313

Runnable_Swc05_Odr_Expl_DataDIN3_In 31.805118 31.805441 0.000323

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 31.805224 31.805336 0.000112 0.000439 0.004654

Runnable_Swc06_Odr_Impl_DataDIN2_In 31.823364 31.823440 0.000076 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007084

7

8

9

10

11

12

143

 V1_0_1111 write-process 13 to 18 ms 11.6.7.

Name Entry in msec End in ms Duration in ms Runnable Out Entry in ms End in ms Duration in ms Write function Entry in ms End in ms Duration in ms

Task_Event_Expl_Swc4to3func 32.762963 32.777763 0.014800 Runnable_Swc04_Event_Expl_DataStruct_Out 32.765703 32.771554 0.005851

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 32.768636 32.771438 0.001111

Task_Event_Impl_Swc3to4func 32.783026 32.797699 0.014673 Runnable_Swc03_Event_Impl_DataStruct_Out 32.784885 32.788079 0.003194 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Impl_Swc5to6func 32.802648 32.815430 0.012782 Runnable_Swc05_Period_Impl_DataDIN2_Out 32.804582 32.807068 0.002486 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 32.820234 32.830380 0.010146 Runnable_Swc06_Period_Expl_DataDIN3_Out 32.822115 32.825925 0.003810

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 32.824127 32.825805 0.000352

osIdleLoop 33.195118 33.725729 0.530611

Task_Event_Expl_Swc4to3func 33.755875 33.770427 0.014552 Runnable_Swc04_Event_Expl_DataStruct_Out 33.758412 33.764245 0.005833

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 33.761336 33.764129 0.001111

Task_Event_Impl_Swc3to4func 33.775651 33.790275 0.014624 Runnable_Swc03_Event_Impl_DataStruct_Out 33.777449 33.780793 0.003344 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 33.795257 33.806263 0.011006 Runnable_Swc06_Period_Expl_DataDIN3_Out 33.797208 33.801832 0.004624

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 33.800116 33.801723 0.000291

Task_IoHw_Period_Impl_Swc5to6func 33.810907 33.822967 0.012060 Runnable_Swc05_Period_Impl_DataDIN2_Out 33.812717 33.815232 0.002515 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 34.133981 34.725810 0.591829

Task_Event_Impl_Swc3to4func 34.763399 34.779489 0.016090 Runnable_Swc03_Event_Impl_DataStruct_Out 34.765931 34.769348 0.003417 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 34.784495 34.796522 0.012027 Runnable_Swc04_Event_Expl_DataStruct_Out 34.786748 34.791350 0.004602

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 34.789328 34.791238 0.000705

Task_IoHw_Period_Expl_Swc6to5func 34.801712 34.812476 0.010764 Runnable_Swc06_Period_Expl_DataDIN3_Out 34.803762 34.808026 0.004264

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 34.806215 34.807905 0.000310

Task_IoHw_Period_Impl_Swc5to6func 34.817062 34.829179 0.012117 Runnable_Swc05_Period_Impl_DataDIN2_Out 34.818880 34.821586 0.002706 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Impl_Swc1to2func 34.834012 34.842376 0.008364 Runnable_Swc01_Period_Impl_DataStruct_Out 34.835684 34.836295 0.000611 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1func 34.847360 34.852842 0.005482 Runnable_Swc02_Period_Expl_DataStruct_Out 34.848975 34.850746 0.001771

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Pe

riod_Expl_DataStruct 34.849051 34.850647 0.000630

osIdleLoop 35.161945 35.725903 0.563958

Task_Event_Impl_Swc3to4func 35.756495 35.772764 0.016269 Runnable_Swc03_Event_Impl_DataStruct_Out 35.759037 35.762241 0.003204 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 35.777619 35.789784 0.012165 Runnable_Swc04_Event_Expl_DataStruct_Out 35.779725 35.784604 0.004879

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 35.782490 35.784493 0.000845

Task_IoHw_Period_Impl_Swc5to6func 35.794977 35.807057 0.012080 Runnable_Swc05_Period_Impl_DataDIN2_Out 35.797118 35.799471 0.002353 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 35.811490 35.822007 0.010517 Runnable_Swc06_Period_Expl_DataDIN3_Out 35.813350 35.817566 0.004216

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 35.815772 35.817459 0.000339

osIdleLoop 36.130363 36.725992 0.595629

Task_Event_Expl_Swc4to3func 36.756185 36.770535 0.014350 Runnable_Swc04_Event_Expl_DataStruct_Out 36.758749 36.764434 0.005685

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 36.761671 36.764320 0.001049

Task_Event_Impl_Swc3to4func 36.775694 36.790897 0.015203 Runnable_Swc03_Event_Impl_DataStruct_Out 36.777749 36.780966 0.003217 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 36.795575 36.807500 0.011925 Runnable_Swc06_Period_Expl_DataDIN3_Out 36.797828 36.802761 0.004933

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 36.800853 36.802650 0.000350

Task_IoHw_Period_Impl_Swc5to6func 36.812182 36.824108 0.011926 Runnable_Swc05_Period_Impl_DataDIN2_Out 36.814009 36.816385 0.002376 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 37.133990 37.726083 0.592093

Task_Event_Impl_Swc3to4func 37.756008 37.772982 0.016974 Runnable_Swc03_Event_Impl_DataStruct_Out 37.758576 37.761851 0.003275 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 37.777863 37.789671 0.011808 Runnable_Swc04_Event_Expl_DataStruct_Out 37.779957 37.784440 0.004483

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 37.782410 37.784329 0.000757

Task_IoHw_Period_Impl_Swc5to6func 37.795057 37.807773 0.012716 Runnable_Swc05_Period_Impl_DataDIN2_Out 37.797216 37.799557 0.002341 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 37.812412 37.822750 0.010338 Runnable_Swc06_Period_Expl_DataDIN3_Out 37.813999 37.818326 0.004327

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 37.816507 37.818205 0.000330

osIdleLoop 38.130345 38.726174 0.595829

13

14

15

16

17

18

144

 V1_0_1111 notification process 13 to 18 ms 11.6.8.

SetEvent

Entry in ms End in ms Duration in ms OsSchedule Entry in ms End in ms Duration in ms

osGetEvent

Entry in ms End in ms

Duration in

ms

OsWait Entry in

ms End in ms Duration in ms

OsClearEvent

Entry in ms End in ms

Duration in

ms

Notification

sum in ms

32.769623 32.771314 0.001691 32.771581 32.774697 0.003116 32.774772 32.775463 0.000691 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005498

32.788685 32.789940 0.001255 32.789972 32.792814 0.002842 32.794597 32.795212 0.000615 32.792957 32.794531 0.001574 32.795276 32.796541 0.001265 0.007551

32.807181 32.808660 0.001479 32.808675 32.811170 0.002495 32.813116 32.813737 0.000621 32.811320 32.813049 0.001729 32.813794 32.814970 0.001176 0.007500

32.824361 32.825687 0.001326 32.825950 32.828141 0.002191 32.828209 32.828844 0.000635 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004152

33.762323 33.764005 0.001682 33.764272 33.767360 0.003088 33.767434 33.768118 0.000684 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005454

33.781589 33.783031 0.001442 33.783063 33.785641 0.002578 33.787424 33.788036 0.000612 33.785784 33.787358 0.001574 33.788091 33.789230 0.001139 0.007345

33.800296 33.801612 0.001316 33.801847 33.803923 0.002076 33.803992 33.804635 0.000643 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004035

33.815350 33.816677 0.001327 33.816700 33.819025 0.002325 33.820671 33.821356 0.000685 33.819125 33.820597 0.001472 33.821415 33.822593 0.001178 0.006987

34.770144 34.771537 0.001393 34.771566 34.774377 0.002811 34.776497 34.777110 0.000613 34.774571 34.776431 0.001860 34.777168 34.778322 0.001154 0.007831

34.789909 34.791114 0.001205 34.791373 34.793497 0.002124 34.793572 34.794263 0.000691 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004020

34.806407 34.807787 0.001380 34.808052 34.810232 0.002180 34.810304 34.810962 0.000658 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004218

34.821703 34.823145 0.001442 34.823164 34.825418 0.002254 34.827138 34.827663 0.000525 34.825532 34.827082 0.001550 34.827717 34.828845 0.001128 0.006899

34.836826 34.837937 0.001111 0.000000 0.000000 0.000000 34.839828 34.840160 0.000332 34.838054 34.839793 0.001739 34.840205 34.841231 0.001026 0.004208

34.849557 34.850523 0.000966 0.000000 0.000000 0.000000 34.850778 34.851074 0.000296 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001262

35.763112 35.764699 0.001587 35.764734 35.767789 0.003055 35.769669 35.770280 0.000611 35.767942 35.769603 0.001661 35.770332 35.771434 0.001102 0.008016

35.783218 35.784376 0.001158 35.784627 35.786779 0.002152 35.786853 35.787537 0.000684 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003994

35.799554 35.800800 0.001246 35.800819 35.803078 0.002259 35.804906 35.805520 0.000614 35.803222 35.804840 0.001618 35.805582 35.806786 0.001204 0.006941

35.815993 35.817341 0.001348 35.817577 35.819716 0.002139 35.819795 35.820511 0.000716 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004203

36.762596 36.764196 0.001600 36.764459 36.767515 0.003056 36.767589 36.768274 0.000685 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005341

36.781752 36.783088 0.001336 36.783123 36.785968 0.002845 36.787743 36.788368 0.000625 36.786109 36.787676 0.001567 36.788435 36.789723 0.001288 0.007661

36.801085 36.802532 0.001447 36.802777 36.804989 0.002212 36.805066 36.805779 0.000713 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004372

36.816493 36.817856 0.001363 36.817885 36.820116 0.002231 36.822080 36.822760 0.000680 36.820269 36.822006 0.001737 36.822805 36.823823 0.001018 0.007029

37.762782 37.764433 0.001651 37.764467 37.767478 0.003011 37.769703 37.770301 0.000598 37.767673 37.769639 0.001966 37.770362 37.771553 0.001191 0.008417

37.783043 37.784205 0.001162 37.784462 37.786779 0.002317 37.786853 37.787534 0.000681 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004160

37.799660 37.801064 0.001404 37.801092 37.803505 0.002413 37.805387 37.806002 0.000615 37.803647 37.805321 0.001674 37.806063 37.807300 0.001237 0.007343

37.816726 37.818094 0.001368 37.818352 37.820544 0.002192 37.820623 37.821347 0.000724 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004284

14

15

16

17

18

13

145

 V1_0_1111 read-process 13 to 18 ms 11.6.9.

Runnable In Entry in ms End in ms Duration in ms Read function Entry in ms End in ms Duration in ms

Communication

(write + read

only) sum in ms

Communication

(w,r,n)

Runnable_Swc03_Odr_Expl_DataStruct_In 32.775555 32.776446 0.000891

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 32.775665 32.776338 0.000673 0.001784 0.007282

Runnable_Swc04_Odr_Impl_DataStruct_In 32.797146 32.797645 0.000499 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007551

Runnable_Swc06_Odr_Impl_DataDIN2_In 32.815270 32.815366 0.000096 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007500

Runnable_Swc05_Odr_Expl_DataDIN3_In 32.828929 32.829215 0.000286

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 32.829013 32.829111 0.000098 0.000450 0.004602

Runnable_Swc03_Odr_Expl_DataStruct_In 33.768210 33.769101 0.000891

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 33.768320 33.768993 0.000673 0.001784 0.007238

Runnable_Swc04_Odr_Impl_DataStruct_In 33.789760 33.790205 0.000445 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007345

Runnable_Swc05_Odr_Expl_DataDIN3_In 33.804719 33.805008 0.000289

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 33.804804 33.804902 0.000098 0.000389 0.004424

Runnable_Swc06_Odr_Impl_DataDIN2_In 33.822846 33.822923 0.000077 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.006987

Runnable_Swc04_Odr_Impl_DataStruct_In 34.778927 34.779429 0.000502 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007831

Runnable_Swc03_Odr_Expl_DataStruct_In 34.794352 34.795210 0.000858

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 34.794458 34.795109 0.000651 0.001356 0.005376

Runnable_Swc05_Odr_Expl_DataDIN3_In 34.811050 34.811343 0.000293

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 34.811138 34.811238 0.000100 0.000410 0.004628

Runnable_Swc06_Odr_Impl_DataDIN2_In 34.829063 34.829133 0.000070 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.006899

Runnable_Swc02_Odr_Impl_DataStruct_In 34.841836 34.842332 0.000496 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.004208

Runnable_Swc01_Odr_Expl_DataStruct_In 34.851127 34.851698 0.000571

Rte_Read_SwcPeriod01_R_Swc01_

DataStruct_Odr_Expl_DataStruct 34.851191 34.851593 0.000402 0.001032 0.002294

Runnable_Swc04_Odr_Impl_DataStruct_In 35.772139 35.772716 0.000577 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008016

Runnable_Swc03_Odr_Expl_DataStruct_In 35.787635 35.788572 0.000937

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 35.787752 35.788465 0.000713 0.001558 0.005552

Runnable_Swc06_Odr_Impl_DataDIN2_In 35.806957 35.807014 0.000057 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.006941

Runnable_Swc05_Odr_Expl_DataDIN3_In 35.820569 35.820806 0.000237

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 35.820626 35.820702 0.000076 0.000415 0.004618

Runnable_Swc03_Odr_Expl_DataStruct_In 36.768371 36.769307 0.000936

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 36.768488 36.769202 0.000714 0.001763 0.007104

Runnable_Swc04_Odr_Impl_DataStruct_In 36.790338 36.790844 0.000506 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007661

Runnable_Swc05_Odr_Expl_DataDIN3_In 36.805861 36.806147 0.000286

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 36.805943 36.806038 0.000095 0.000445 0.004817

Runnable_Swc06_Odr_Impl_DataDIN2_In 36.824001 36.824061 0.000060 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007029

Runnable_Swc04_Odr_Impl_DataStruct_In 37.772313 37.772934 0.000621 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008417

Runnable_Swc03_Odr_Expl_DataStruct_In 37.787617 37.788436 0.000819

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 37.787717 37.788329 0.000612 0.001369 0.005529

Runnable_Swc06_Odr_Impl_DataDIN2_In 37.807634 37.807731 0.000097 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007343

Runnable_Swc05_Odr_Expl_DataDIN3_In 37.821401 37.821632 0.000231

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 37.821456 37.821529 0.000073 0.000403 0.004687

14

15

16

17

18

13

146

 V1_0_1111 write-process 19 to 25 ms 11.6.10.

Name Entry in msec End in ms Duration in ms Runnable Out Entry in ms End in ms Duration in ms Write function Entry in ms End in ms Duration in ms

Task_Event_Impl_Swc3to4func 38.756250 38.773112 0.016862 Runnable_Swc03_Event_Impl_DataStruct_Out 38.758881 38.762041 0.003160 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 38.778034 38.789887 0.011853 Runnable_Swc04_Event_Expl_DataStruct_Out 38.780191 38.784843 0.004652

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 38.782952 38.784738 0.000681

Task_IoHw_Period_Impl_Swc5to6func 38.794845 38.806908 0.012063 Runnable_Swc05_Period_Impl_DataDIN2_Out 38.796756 38.799145 0.002389 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 38.811694 38.822567 0.010873 Runnable_Swc06_Period_Expl_DataDIN3_Out 38.813726 38.818113 0.004387

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 38.816203 38.818003 0.000343

osIdleLoop 39.140009 39.726308 0.586299

Task_Event_Expl_Swc4to3func 39.764209 39.777939 0.013730 Runnable_Swc04_Event_Expl_DataStruct_Out 39.766421 39.771994 0.005573

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 39.769334 39.771874 0.000998

Task_Event_Impl_Swc3to4func 39.783051 39.796847 0.013796 Runnable_Swc03_Event_Impl_DataStruct_Out 39.785363 39.787680 0.002317 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 39.801976 39.813088 0.011112 Runnable_Swc06_Period_Expl_DataDIN3_Out 39.804210 39.808616 0.004406

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 39.806939 39.808505 0.000317

Task_IoHw_Period_Impl_Swc5to6func 39.817631 39.829524 0.011893 Runnable_Swc05_Period_Impl_DataDIN2_Out 39.819463 39.821823 0.002360 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1func 39.834285 39.840112 0.005827 Runnable_Swc02_Period_Expl_DataStruct_Out 39.835860 39.837900 0.002040

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Pe

riod_Expl_DataStruct 39.835948 39.837802 0.000709

Task_Period_Impl_Swc1to2func 39.845087 39.852753 0.007666 Runnable_Swc01_Period_Impl_DataStruct_Out 39.846656 39.847050 0.000394 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 40.155236 40.726356 0.571120

Task_Event_Expl_Swc4to3func 40.756832 40.771073 0.014241 Runnable_Swc04_Event_Expl_DataStruct_Out 40.759528 40.764980 0.005452

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 40.762416 40.764865 0.000946

Task_Event_Impl_Swc3to4func 40.776372 40.791099 0.014727 Runnable_Swc03_Event_Impl_DataStruct_Out 40.778471 40.781327 0.002856 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 40.796036 40.807129 0.011093 Runnable_Swc06_Period_Expl_DataDIN3_Out 40.798142 40.802624 0.004482

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 40.800754 40.802514 0.000352

Task_IoHw_Period_Impl_Swc5to6func 40.811911 40.824102 0.012191 Runnable_Swc05_Period_Impl_DataDIN2_Out 40.813824 40.816409 0.002585 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 41.234945 41.726475 0.491530

Task_Event_Impl_Swc3to4func 41.757046 41.774936 0.017890 Runnable_Swc03_Event_Impl_DataStruct_Out 41.760240 41.763632 0.003392 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 41.779687 41.792937 0.013250 Runnable_Swc04_Event_Expl_DataStruct_Out 41.781886 41.787286 0.005400

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 41.784795 41.787174 0.000984

Task_IoHw_Period_Impl_Swc5to6func 41.797936 41.809826 0.011890 Runnable_Swc05_Period_Impl_DataDIN2_Out 41.799790 41.802518 0.002728 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 41.814472 41.824830 0.010358 Runnable_Swc06_Period_Expl_DataDIN3_Out 41.816190 41.820308 0.004118

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 41.818451 41.820187 0.000352

osIdleLoop 42.242609 42.720237 0.477628

Task_Event_Expl_Swc4to3func 42.764288 42.779125 0.014837 Runnable_Swc04_Event_Expl_DataStruct_Out 42.767076 42.772927 0.005851

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 42.770009 42.772818 0.001109

Task_Event_Impl_Swc3to4func 42.784304 42.807522 0.023218 Runnable_Swc03_Event_Impl_DataStruct_Out 42.786049 42.789275 0.003226 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Impl_Swc5to6func 42.813091 42.826569 0.013478 Runnable_Swc05_Period_Impl_DataDIN2_Out 42.815083 42.817828 0.002745 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 42.831091 42.842252 0.011161 Runnable_Swc06_Period_Expl_DataDIN3_Out 42.832972 42.837694 0.004722

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 42.835566 42.837585 0.000368

osIdleLoop 43.205981 43.726629 0.520648

Task_Event_Expl_Swc4to3func 43.757018 43.771831 0.014813 Runnable_Swc04_Event_Expl_DataStruct_Out 43.759858 43.765534 0.005676

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 43.762771 43.765420 0.001042

Task_Event_Impl_Swc3to4func 43.777201 43.792394 0.015193 Runnable_Swc03_Event_Impl_DataStruct_Out 43.779403 43.782746 0.003343 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 43.797584 43.808708 0.011124 Runnable_Swc06_Period_Expl_DataDIN3_Out 43.799747 43.804432 0.004685

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 43.802484 43.804323 0.000342

Task_IoHw_Period_Impl_Swc5to6func 43.813462 43.825212 0.011750 Runnable_Swc05_Period_Impl_DataDIN2_Out 43.815253 43.817565 0.002312 Macros no functions 0.000000 0.000000 0.000000

osIdleLoop 44.136563 44.726738 0.590175

Task_Event_Impl_Swc3to4func 44.763745 44.780785 0.017040 Runnable_Swc03_Event_Impl_DataStruct_Out 44.766394 44.769724 0.003330 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3func 44.785869 44.798166 0.012297 Runnable_Swc04_Event_Expl_DataStruct_Out 44.788158 44.792695 0.004537

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Eve

nt_Expl_DataStruct 44.790737 44.792584 0.000706

Task_IoHw_Period_Impl_Swc5to6func 44.803159 44.815360 0.012201 Runnable_Swc05_Period_Impl_DataDIN2_Out 44.805212 44.807706 0.002494 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5func 44.820027 44.830315 0.010288 Runnable_Swc06_Period_Expl_DataDIN3_Out 44.821876 44.825956 0.004080

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3

_Period_Expl_D_CAN0_D_Input_DIN3_Swi 44.824449 44.825850 0.000267

Task_Period_Impl_Swc1to2func 44.834977 44.843551 0.008574 Runnable_Swc01_Period_Impl_DataStruct_Out 44.836648 44.837160 0.000512 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1func 44.848323 44.853840 0.005517 Runnable_Swc02_Period_Expl_DataStruct_Out 44.849938 44.851801 0.001863

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Pe

riod_Expl_DataStruct 44.850013 44.851709 0.000624

osIdleLoop 45.161690 45.726810 0.565120

20

19

21

22

23

24

25

147

 V1_0_1111 notification process 19 to 25 ms 11.6.11.

SetEvent

Entry in ms End in ms Duration in ms OsSchedule Entry in ms End in ms Duration in ms

osGetEvent

Entry in ms End in ms

Duration in

ms

OsWait Entry in

ms End in ms Duration in ms

OsClearEvent

Entry in ms End in ms

Duration in

ms

Notification

sum in ms

38.762917 38.764507 0.001590 38.764542 38.767563 0.003021 38.769905 38.770574 0.000669 38.767778 38.769833 0.002055 38.770634 38.771842 0.001208 0.008543

38.783509 38.784614 0.001105 38.784860 38.787151 0.002291 38.787225 38.787907 0.000682 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004078

38.799237 38.800492 0.001255 38.800511 38.802785 0.002274 38.804594 38.805190 0.000596 38.802915 38.804530 0.001615 38.805243 38.806359 0.001116 0.006856

38.816430 38.817887 0.001457 38.818136 38.820469 0.002333 38.820540 38.821192 0.000652 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004442

39.770208 39.771750 0.001542 39.772024 39.774953 0.002929 39.775032 39.775762 0.000730 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005201

39.788305 39.789697 0.001392 39.789730 39.792238 0.002508 39.793924 39.794537 0.000613 39.792357 39.793858 0.001501 39.794594 39.795767 0.001173 0.007187

39.807138 39.808387 0.001249 39.808633 39.810677 0.002044 39.810746 39.811386 0.000640 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003933

39.821942 39.823417 0.001475 39.823435 39.825677 0.002242 39.827511 39.828035 0.000524 39.825813 39.827455 0.001642 39.828087 39.829191 0.001104 0.006987

39.836533 39.837678 0.001145 0.000000 0.000000 0.000000 39.837930 39.838213 0.000283 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001428

39.847581 39.848757 0.001176 0.000000 0.000000 0.000000 39.850401 39.850733 0.000332 39.848883 39.850366 0.001483 39.850778 39.851802 0.001024 0.004015

40.763238 40.764741 0.001503 40.765007 40.768079 0.003072 40.768153 40.768837 0.000684 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005259

40.782013 40.783296 0.001283 40.783320 40.786250 0.002930 40.788025 40.788647 0.000622 40.786391 40.787958 0.001567 40.788709 40.789941 0.001232 0.007634

40.800988 40.802396 0.001408 40.802640 40.804847 0.002207 40.804908 40.805471 0.000563 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004178

40.816503 40.817774 0.001271 40.817802 40.820098 0.002296 40.822062 40.822742 0.000680 40.820251 40.821988 0.001737 40.822786 40.823805 0.001019 0.007003

41.764508 41.766115 0.001607 41.766149 41.769362 0.003213 41.771698 41.772320 0.000622 41.769576 41.771631 0.002055 41.772382 41.773579 0.001197 0.008694

41.785655 41.787050 0.001395 41.787309 41.790224 0.002915 41.790298 41.790980 0.000682 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004992

41.802610 41.803866 0.001256 41.803887 41.806186 0.002299 41.807921 41.808452 0.000531 41.806322 41.807864 0.001542 41.808500 41.809567 0.001067 0.006695

41.818692 41.820076 0.001384 41.820334 41.822604 0.002270 41.822674 41.823314 0.000640 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004294

42.770996 42.772696 0.001700 42.772954 42.776079 0.003125 42.776153 42.776836 0.000683 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005508

42.790076 42.791528 0.001452 42.791566 42.794464 0.002898 42.804387 42.805059 0.000672 42.794685 42.804314 0.009629 42.805128 42.806448 0.001320 0.015971

42.817925 42.819419 0.001494 42.819447 42.822215 0.002768 42.824143 42.824832 0.000689 42.822362 42.824070 0.001708 42.824903 42.826227 0.001324 0.007983

42.835818 42.837469 0.001651 42.837716 42.839990 0.002274 42.840069 42.840795 0.000726 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004651

43.763696 43.765303 0.001607 43.765559 43.768615 0.003056 43.768690 43.769383 0.000693 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.005356

43.783482 43.784762 0.001280 43.784798 43.787436 0.002638 43.789377 43.790047 0.000670 43.787601 43.789305 0.001704 43.790109 43.791339 0.001230 0.007522

43.802708 43.804205 0.001497 43.804447 43.806523 0.002076 43.806592 43.807234 0.000642 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004215

43.817665 43.818886 0.001221 43.818909 43.821234 0.002325 43.822881 43.823577 0.000696 43.821334 43.822806 0.001472 43.823646 43.824949 0.001303 0.007017

44.770660 44.772353 0.001693 44.772388 44.775405 0.003017 44.777624 44.778237 0.000613 44.775598 44.777558 0.001960 44.778293 44.779434 0.001141 0.008424

44.791318 44.792459 0.001141 44.792718 44.795117 0.002399 44.795196 44.795928 0.000732 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.004272

44.807784 44.809036 0.001252 44.809064 44.811478 0.002414 44.813278 44.813891 0.000613 44.811624 44.813212 0.001588 44.813948 44.815087 0.001139 0.007006

44.824598 44.825732 0.001134 44.825967 44.828095 0.002128 44.828165 44.828805 0.000640 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003902

44.837736 44.838967 0.001231 0.000000 0.000000 0.000000 44.840740 44.841087 0.000347 44.839097 44.840703 0.001606 44.841133 44.842144 0.001011 0.004195

44.850515 44.851587 0.001072 0.000000 0.000000 0.000000 44.851834 44.852136 0.000302 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001374

24

25

19

20

21

22

23

148

 V1_0_1111 read-process 19 to 25 ms 11.6.12.

Runnable In Entry in ms End in ms Duration in ms Read function Entry in ms End in ms Duration in ms

Communication

(write + read

only) sum in ms

Communication

(w,r,n)

Runnable_Swc04_Odr_Impl_DataStruct_In 38.772502 38.773048 0.000546 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008543

Runnable_Swc03_Odr_Expl_DataStruct_In 38.787990 38.788805 0.000815

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 38.788090 38.788702 0.000612 0.001293 0.005371

Runnable_Swc06_Odr_Impl_DataDIN2_In 38.806748 38.806861 0.000113 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.006856

Runnable_Swc05_Odr_Expl_DataDIN3_In 38.821247 38.821478 0.000231

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 38.821301 38.821374 0.000073 0.000416 0.004858

Runnable_Swc03_Odr_Expl_DataStruct_In 39.775845 39.776663 0.000818

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 39.775945 39.776556 0.000611 0.001609 0.006810

Runnable_Swc04_Odr_Impl_DataStruct_In 39.796317 39.796777 0.000460 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007187

Runnable_Swc05_Odr_Expl_DataDIN3_In 39.811498 39.811837 0.000339

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 39.811610 39.811729 0.000119 0.000436 0.004369

Runnable_Swc06_Odr_Impl_DataDIN2_In 39.829416 39.829485 0.000069 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.006987

Runnable_Swc01_Odr_Expl_DataStruct_In 39.838283 39.838988 0.000705

Rte_Read_SwcPeriod01_R_Swc01_

DataStruct_Odr_Expl_DataStruct 39.838367 39.838884 0.000517 0.001226 0.002654

Runnable_Swc02_Odr_Impl_DataStruct_In 39.852297 39.852706 0.000409 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.004015

Runnable_Swc03_Odr_Expl_DataStruct_In 40.768935 40.769870 0.000935

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 40.769052 40.769765 0.000713 0.001659 0.006918

Runnable_Swc04_Odr_Impl_DataStruct_In 40.790546 40.791045 0.000499 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007634

Runnable_Swc05_Odr_Expl_DataDIN3_In 40.805556 40.805845 0.000289

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 40.805641 40.805738 0.000097 0.000449 0.004627

Runnable_Swc06_Odr_Impl_DataDIN2_In 40.823982 40.824045 0.000063 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007003

Runnable_Swc04_Odr_Impl_DataStruct_In 41.774294 41.774881 0.000587 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008694

Runnable_Swc03_Odr_Expl_DataStruct_In 41.791063 41.791877 0.000814

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 41.791163 41.791774 0.000611 0.001595 0.006587

Runnable_Swc06_Odr_Impl_DataDIN2_In 41.809724 41.809779 0.000055 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.006695

Runnable_Swc05_Odr_Expl_DataDIN3_In 41.823387 41.823652 0.000265

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 41.823459 41.823547 0.000088 0.000440 0.004734

Runnable_Swc03_Odr_Expl_DataStruct_In 42.776929 42.777828 0.000899

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 42.777040 42.777720 0.000680 0.001789 0.007297

Runnable_Swc04_Odr_Impl_DataStruct_In 42.806993 42.807450 0.000457 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.015971

Runnable_Swc06_Odr_Impl_DataDIN2_In 42.826452 42.826524 0.000072 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007983

Runnable_Swc05_Odr_Expl_DataDIN3_In 42.840861 42.841105 0.000244

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 42.840928 42.841009 0.000081 0.000449 0.005100

Runnable_Swc03_Odr_Expl_DataStruct_In 43.769480 43.770412 0.000932

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 43.769598 43.770309 0.000711 0.001753 0.007109

Runnable_Swc04_Odr_Impl_DataStruct_In 43.791874 43.792323 0.000449 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007522

Runnable_Swc05_Odr_Expl_DataDIN3_In 43.807316 43.807596 0.000280

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 43.807398 43.807493 0.000095 0.000437 0.004652

Runnable_Swc06_Odr_Impl_DataDIN2_In 43.825113 43.825169 0.000056 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007017

Runnable_Swc04_Odr_Impl_DataStruct_In 44.780134 44.780714 0.000580 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.008424

Runnable_Swc03_Odr_Expl_DataStruct_In 44.796025 44.796953 0.000928

Rte_Read_SwcEvent03_R_Swc03_D

ataStruct_Odr_Expl_DataStruct 44.796141 44.796847 0.000706 0.001412 0.005684

Runnable_Swc06_Odr_Impl_DataDIN2_In 44.815264 44.815322 0.000058 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.007006

Runnable_Swc05_Odr_Expl_DataDIN3_In 44.828878 44.829143 0.000265

Rte_Read_SwcIoHwPeriod05_R_Sw

c05_DataDIN3_Period_Expl_D_CAN

0_D_Input_DIN3_Swi 44.828950 44.829038 0.000088 0.000355 0.004257

Runnable_Swc02_Odr_Impl_DataStruct_In 44.842894 44.843506 0.000612 Macros no functions 0.000000 0.000000 0.000000 0.000000 0.004195

Runnable_Swc01_Odr_Expl_DataStruct_In 44.852184 44.852706 0.000522

Rte_Read_SwcPeriod01_R_Swc01_

DataStruct_Odr_Expl_DataStruct 44.852240 44.852602 0.000362 0.000986 0.002360

Communication with notification sum: 0.815256

Communication without notification sum:0.059585

OsIdleLoop sum: 13.897184

24

25

19

20

21

22

23

149

 Performance analyses of SingleCoreV2_0 V1_0_1111 11.7.

 V2_0_1111 write-process 0 to 3 ms 11.7.1.

Name

Entry in

msec End in ms

Duration in

ms Runnable Out Entry in ms End in ms

Duration in

ms Write function Entry in ms End in ms

Duration

in ms

Task_Event_Expl_Swc4to3_Outfunc 19.015534 19.022523 0.006989 Runnable_Swc04_Event_Expl_DataStruct_Out 19.015671 19.022497 0.006826

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct
19.018663 19.022384 0.001136

Task_Event_Impl_Swc3to4_Outfunc 19.028638 19.033610 0.004972 Runnable_Swc03_Event_Impl_DataStruct_Out 19.028719 19.030820 0.002101 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 19.038633 19.039480 0.000847

Task_Event_Impl_Swc3to4_Infunc 19.044113 19.045184 0.001071

Task_IoHw_Period_Impl_Swc5to6_Outfunc 19.050461 19.055198 0.004737 Runnable_Swc05_Period_Impl_DataDIN2_Out 19.050564 19.052780 0.002216 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 19.060152 19.064431 0.004279 Runnable_Swc06_Period_Expl_DataDIN3_Out 19.060218 19.064420 0.004202 Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri 19.061961 19.064314 0.000314

Task_IoHw_Period_Impl_Swc5to6_Infunc 19.069477 19.069743 0.000266

Task_IoHw_Period_Expl_Swc6to5_Infunc 19.074525 19.075149 0.000624

Task_Period_Impl_Swc1to2_Outfunc 19.087443 19.090264 0.002821 Runnable_Swc01_Period_Impl_DataStruct_Out 19.087654 19.087672 0.000018 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1_Outfunc 19.095108 19.098158 0.003050 Runnable_Swc02_Period_Expl_DataStruct_Out 19.095180 19.098142 0.002962

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Period_

Expl_DataStruct 19.095287 19.098038 0.000900

Task_Period_Impl_Swc1to2_Infunc 19.102803 19.103788 0.000985

Task_Period_Expl_Swc2to1_Infunc 19.108581 19.109536 0.000955

osIdleLoop 19.119381 19.735301 0.615920

Task_Event_Impl_Swc3to4_Outfunc 19.769866 19.775971 0.006105 Runnable_Swc03_Event_Impl_DataStruct_Out 19.769986 19.772676 0.002690 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 19.781873 19.787027 0.005154 Runnable_Swc04_Event_Expl_DataStruct_Out 19.781948 19.787013 0.005065

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 19.783960 19.786911 0.000809

Task_Event_Impl_Swc3to4_Infunc 19.791931 19.792997 0.001066

Task_Event_Expl_Swc4to3_Infunc 19.798015 19.798861 0.000846

Task_IoHw_Period_Impl_Swc5to6_Outfunc 19.803829 19.808317 0.004488 Runnable_Swc05_Period_Impl_DataDIN2_Out 19.803909 19.806033 0.002124 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 19.813423 19.817578 0.004155 Runnable_Swc06_Period_Expl_DataDIN3_Out 19.813482 19.817566 0.004084

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 19.815357 19.817459 0.000273

Task_IoHw_Period_Impl_Swc5to6_Infunc 19.822722 19.823078 0.000356

Task_IoHw_Period_Expl_Swc6to5_Infunc 19.828156 19.828679 0.000523

osIdleLoop 20.710336 20.735411 0.025075

Task_Event_Impl_Swc3to4_Outfunc 20.789103 20.795517 0.006414 Runnable_Swc03_Event_Impl_DataStruct_Out 20.789226 20.791890 0.002664 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 20.801592 20.806882 0.005290 Runnable_Swc04_Event_Expl_DataStruct_Out 20.801671 20.806863 0.005192

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 20.803589 20.806756 0.000990

Task_Event_Impl_Swc3to4_Infunc 20.812004 20.813075 0.001071

Task_Event_Expl_Swc4to3_Infunc 20.818015 20.818866 0.000851

Task_IoHw_Period_Expl_Swc6to5_Outfunc 20.824087 20.828671 0.004584 Runnable_Swc06_Period_Expl_DataDIN3_Out 20.824185 20.828658 0.004473

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 20.826458 20.828550 0.000286

Task_IoHw_Period_Impl_Swc5to6_Outfunc 20.833428 20.837889 0.004461 Runnable_Swc05_Period_Impl_DataDIN2_Out 20.833508 20.835687 0.002179 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 20.843162 20.843781 0.000619

Task_IoHw_Period_Impl_Swc5to6_Infunc 20.848723 20.849003 0.000280

osIdleLoop 21.043445 21.735494 0.692049

Task_Event_Expl_Swc4to3_Outfunc 21.768452 21.775629 0.007177 Runnable_Swc04_Event_Expl_DataStruct_Out 21.768589 21.775605 0.007016

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 21.771600 21.775493 0.001240

Task_Event_Impl_Swc3to4_Outfunc 21.781619 21.786762 0.005143 Runnable_Swc03_Event_Impl_DataStruct_Out 21.781698 21.783947 0.002249 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 21.791879 21.792738 0.000859

Task_Event_Impl_Swc3to4_Infunc 21.797776 21.798741 0.000965

Task_IoHw_Period_Impl_Swc5to6_Outfunc 21.804243 21.808894 0.004651 Runnable_Swc05_Period_Impl_DataDIN2_Out 21.804346 21.806563 0.002217 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 21.813457 21.818047 0.004590 Runnable_Swc06_Period_Expl_DataDIN3_Out 21.813543 21.818032 0.004489

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 21.815634 21.817923 0.000291

Task_IoHw_Period_Impl_Swc5to6_Infunc 21.823060 21.823517 0.000457

Task_IoHw_Period_Expl_Swc6to5_Infunc 21.828488 21.829080 0.000592

osIdleLoop 21.941562 22.735567 0.794005

3

0

1

2

150

 V2_0_1111 notification process 0 to 3 ms 11.7.2.

osActivate

Task

Entry in ms End in ms

Duration

in ms

osCheckInterru

ptEnabled

Entry in ms End in ms

Duration

in ms

osSchedule

Prio Entry in

ms End in ms

Duration in

ms

osDispateche

r Entry in ms End in ms Duration

Notification

Duration in ms

(without

ActivateTask)

Duration

notification

19.019674 19.022259 0.002585 Task_Event_Expl_Swc4to3_Outfunc

19.031566 19.033591 0.002025 19.023028 19.023325 0.000297 19.024524 19.025367 0.000843 19.026473 19.028427 0.001954 0.003094 Task_Event_Impl_Swc3to4_Outfunc

19.033987 19.034261 0.000274 19.035310 19.036099 0.000789 19.036904 19.038427 0.001523 0.002586 Task_Event_Expl_Swc4to3_Infunc
0.013237

19.039736 19.039972 0.000236 19.040899 19.041625 0.000726 19.042505 19.043945 0.001440 0.002402 Task_Event_Impl_Swc3to4_Infunc 0.007860

19.052912 19.055176 0.002264 19.045669 19.046036 0.000367 19.047113 19.047836 0.000723 19.048678 19.050277 0.001599 0.002689 Task_IoHw_Period_Impl_Swc5to6_Outfunc

19.062157 19.064196 0.002039 19.055643 19.055926 0.000283 19.056838 19.057532 0.000694 19.058409 19.059945 0.001536 0.002513 Task_IoHw_Period_Expl_Swc6to5_Outfunc

19.064660 19.064890 0.000230 19.065995 19.066832 0.000837 19.067713 19.069263 0.001550 0.002617 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011673

19.070086 19.070354 0.000268 19.071342 19.072172 0.000830 19.072925 19.074299 0.001374 0.002472 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007394

19.088331 19.090245 0.001914 19.081841 19.082151 0.000310 19.083619 19.084509 0.000890 19.085420 19.087199 0.001779 0.002979 Task_Period_Impl_Swc1to2_Outfunc

19.095983 19.097834 0.001851 19.090634 19.090879 0.000245 19.091997 19.092812 0.000815 19.093606 19.094931 0.001325 0.002385 Task_Period_Expl_Swc2to1_Outfunc

19.098468 19.098709 0.000241 19.099599 19.100285 0.000686 19.101219 19.102631 0.001412 0.002339 Task_Period_Impl_Swc1to2_Infunc 0.009688

19.104124 19.104472 0.000348 19.105460 19.106353 0.000893 19.107159 19.108404 0.001245 0.002486 Task_Period_Expl_Swc2to1_Infunc 0.007661

19.773487 19.775944 0.002457 Task_Event_Impl_Swc3to4_Outfunc

19.784652 19.786794 0.002142 19.776503 19.776807 0.000304 19.778013 19.778879 0.000866 19.779894 19.781695 0.001801 0.002971 Task_Event_Expl_Swc4to3_Outfunc

19.787303 19.787536 0.000233 19.788427 19.789106 0.000679 19.790042 19.791727 0.001685 0.002597 Task_Event_Impl_Swc3to4_Infunc 0.013179

19.793428 19.793819 0.000391 19.794779 19.795608 0.000829 19.796387 19.797836 0.001449 0.002669 Task_Event_Expl_Swc4to3_Infunc 0.008474

19.806156 19.808294 0.002138 19.799110 19.799326 0.000216 19.800426 19.801254 0.000828 19.802063 19.803609 0.001546 0.002590 Task_IoHw_Period_Impl_Swc5to6_Outfunc

19.815512 19.817341 0.001829 19.808761 19.809036 0.000275 19.810029 19.810826 0.000797 19.811639 19.813213 0.001574 0.002646 Task_IoHw_Period_Expl_Swc6to5_Outfunc

19.817813 19.818044 0.000231 19.819046 19.819046 0.000000 19.820802 19.822499 0.001697 0.001928 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.010867

19.823503 19.823891 0.000388 19.824835 19.825562 0.000727 19.826463 19.827968 0.001505 0.002620 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.006733

20.792895 20.795490 0.002595 Task_Event_Impl_Swc3to4_Outfunc

20.804390 20.806567 0.002177 20.796056 20.796351 0.000295 20.797505 20.798398 0.000893 20.799437 20.801372 0.001935 0.003123 Task_Event_Expl_Swc4to3_Outfunc

20.807252 20.807499 0.000247 20.808386 20.809123 0.000737 20.810142 20.811799 0.001657 0.002641 Task_Event_Impl_Swc3to4_Infunc 0.013649

20.813560 20.813945 0.000385 20.814873 20.815599 0.000726 20.816378 20.817831 0.001453 0.002564 Task_Event_Expl_Swc4to3_Infunc 0.008453

20.826626 20.828432 0.001806 20.819264 20.819627 0.000363 20.820674 20.821399 0.000725 20.822235 20.823872 0.001637 0.002725 Task_IoHw_Period_Expl_Swc6to5_Outfunc

20.835804 20.837867 0.002063 20.828934 20.829163 0.000229 20.830188 20.830881 0.000693 20.831695 20.833245 0.001550 0.002472 Task_IoHw_Period_Impl_Swc5to6_Outfunc

20.838334 20.838681 0.000347 20.839795 20.840624 0.000829 20.841492 20.842972 0.001480 0.002656 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011395

20.844138 20.844499 0.000361 20.845456 20.846181 0.000725 20.847002 20.848540 0.001538 0.002624 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007962

21.772716 21.775369 0.002653 Task_Event_Expl_Swc4to3_Outfunc

21.784703 21.786744 0.002041 21.776107 21.776388 0.000281 21.777707 21.778571 0.000864 21.779576 21.781409 0.001833 0.002978 Task_Event_Impl_Swc3to4_Outfunc

21.787112 21.787352 0.000240 21.788336 21.789021 0.000685 21.789953 21.791695 0.001742 0.002667 Task_Event_Expl_Swc4to3_Infunc 0.013441

21.793122 21.793388 0.000266 21.794460 21.795188 0.000728 21.796072 21.797590 0.001518 0.002512 Task_Event_Impl_Swc3to4_Infunc 0.008079

21.806697 21.808879 0.002182 21.799159 21.799442 0.000283 21.800620 21.801353 0.000733 21.802241 21.804027 0.001786 0.002802 Task_IoHw_Period_Impl_Swc5to6_Outfunc

21.815807 21.817805 0.001998 21.809204 21.809453 0.000249 21.810321 21.810981 0.000660 21.811776 21.813259 0.001483 0.002392 Task_IoHw_Period_Expl_Swc6to5_Outfunc

21.818344 21.818572 0.000228 21.819551 21.820244 0.000693 21.821183 21.822840 0.001657 0.002578 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011742

21.823874 21.824153 0.000279 21.825183 21.825979 0.000796 21.826834 21.828263 0.001429 0.002504 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007537

3

0

1

2

151

 V2_0_1111 read-process 0 to 3 ms 11.7.3.

Runnable In

Entry in

ms End in ms Duration in ms Read function Entry in ms End in ms

Duration in

ms

Communicati

on (write +

read only)

sum in ms

Communic

ation

(w,r,n)

0.001712 0.014949

0.000000 0.007860

Runnable_Swc03_Odr_Expl_DataStruct_In 19.038696 19.039467 0.000771

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 19.038789 19.039365 0.000576

Runnable_Swc04_Odr_Impl_DataStruct_In 19.044652 19.045160 0.000508 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.011673

0.000481 0.007875

Runnable_Swc06_Odr_Impl_DataDIN2_In 19.069639 19.069726 0.000087
Macros no functions

0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 19.074662 19.075120 0.000458

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 19.074835 19.075002 0.000167

0.000000 0.009688

0.001559 0.009220

Runnable_Swc02_Odr_Impl_DataStruct_In 19.103304 19.103771 0.000467 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc01_Odr_Expl_DataStruct_In 19.108653 19.109522 0.000869

Rte_Read_SwcPeriod01_R_Swc01_DataStruct_Odr_

Expl_DataStruct 19.108761 19.109420 0.000659

0.000000 0.013179

0.001385 0.009859

Runnable_Swc04_Odr_Impl_DataStruct_In 19.792470 19.792976 0.000506 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 19.798078 19.798848 0.000770

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 19.798171 19.798747 0.000576

0.000000 0.010867

0.000419 0.007152

Runnable_Swc06_Odr_Impl_DataDIN2_In 19.822942 19.823057 0.000115 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 19.828273 19.828666 0.000393

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 19.828419 19.828565 0.000146

0.000000 0.013649

0.001559 0.010012

Runnable_Swc04_Odr_Impl_DataStruct_In 20.812543 20.813051 0.000508 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 20.818077 20.818847 0.000770

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 20.818169 20.818738 0.000569

0.000458 0.011853

0.000000 0.007962

Runnable_Swc05_Odr_Expl_DataDIN3_In 20.843305 20.843763 0.000458

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 20.843484 20.843656 0.000172

Runnable_Swc06_Odr_Impl_DataDIN2_In 20.848891 20.848983 0.000092 Macros no functions 0.000000 0.000000 0.000000

0.001816 0.015257

0.000000 0.008079

Runnable_Swc03_Odr_Expl_DataStruct_In 21.791941 21.792719 0.000778

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 21.792035 21.792611 0.000576

Runnable_Swc04_Odr_Impl_DataStruct_In 21.798262 21.798720 0.000458 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.011742

0.000458 0.007995

Runnable_Swc06_Odr_Impl_DataDIN2_In 21.823355 21.823499 0.000144 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 21.828626 21.829067 0.000441

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 21.828798 21.828965 0.000167

0

1

2

3

152

 V2_0_1111 write-process 4 to 7 ms 11.7.4.

Name

Entry in

msec End in ms

Duration in

ms Runnable Out Entry in ms End in ms

Duration in

ms Write function Entry in ms End in ms

Duration

in ms

Task_Event_Expl_Swc4to3_Outfunc 22.769752 22.776619 0.006867 Runnable_Swc04_Event_Expl_DataStruct_Out 22.769889 22.776595 0.006706

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 22.772872 22.776484 0.001117

Task_Event_Impl_Swc3to4_Outfunc 22.782137 22.786867 0.004730 Runnable_Swc03_Event_Impl_DataStruct_Out 22.782216 22.784335 0.002119 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 22.792270 22.793143 0.000873

Task_Event_Impl_Swc3to4_Infunc 22.798148 22.799117 0.000969

Task_IoHw_Period_Impl_Swc5to6_Outfunc 22.804142 22.808698 0.004556 Runnable_Swc05_Period_Impl_DataDIN2_Out 22.804238 22.806477 0.002239 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 22.813954 22.818156 0.004202 Runnable_Swc06_Period_Expl_DataDIN3_Out 22.814024 22.818142 0.004118

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 22.815938 22.818032 0.000261

Task_IoHw_Period_Impl_Swc5to6_Infunc 22.823268 22.823626 0.000358

Task_IoHw_Period_Expl_Swc6to5_Infunc 22.828601 22.829119 0.000518

osIdleLoop 22.916945 23.735676 0.818731

Task_Event_Impl_Swc3to4_Outfunc 23.778772 23.784922 0.006150 Runnable_Swc03_Event_Impl_DataStruct_Out 23.778881 23.781397 0.002516

Macros no functions

0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 23.790848 23.796275 0.005427 Runnable_Swc04_Event_Expl_DataStruct_Out 23.790933 23.796260 0.005327 Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex 23.792871 23.796156 0.000954

Task_Event_Impl_Swc3to4_Infunc 23.801103 23.802108 0.001005

Task_Event_Expl_Swc4to3_Infunc 23.813261 23.814135 0.000874

Task_IoHw_Period_Expl_Swc6to5_Outfunc 23.820110 23.825894 0.005784 Runnable_Swc06_Period_Expl_DataDIN3_Out 23.820224 23.825879 0.005655

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 23.822878 23.825769 0.000395

Task_IoHw_Period_Impl_Swc5to6_Outfunc 23.831865 23.836355 0.004490 Runnable_Swc05_Period_Impl_DataDIN2_Out 23.831947 23.834168 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 23.841346 23.841856 0.000510

Task_IoHw_Period_Impl_Swc5to6_Infunc 23.846968 23.847232 0.000264 0.000000

Task_Period_Impl_Swc1to2_Outfunc 23.852227 23.854946 0.002719 Runnable_Swc01_Period_Impl_DataStruct_Out 23.852481 23.852499 0.000018 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1_Outfunc 23.859635 23.862587 0.002952 Runnable_Swc02_Period_Expl_DataStruct_Out 23.859706 23.862566 0.002860

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Period_

Expl_DataStruct 23.859812 23.862463 0.000810

Task_Period_Impl_Swc1to2_Infunc 23.867467 23.868429 0.000962

Task_Period_Expl_Swc2to1_Infunc 23.873156 23.874212 0.001056

osIdleLoop 23.935244 24.735757 0.800513

Task_Event_Impl_Swc3to4_Outfunc 24.769471 24.775798 0.006327 Runnable_Swc03_Event_Impl_DataStruct_Out 24.769577 24.772109 0.002532 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 24.781745 24.786946 0.005201 Runnable_Swc04_Event_Expl_DataStruct_Out 24.781819 24.786932 0.005113

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 24.783766 24.786829 0.000851

Task_Event_Impl_Swc3to4_Infunc 24.791994 24.793006 0.001012

Task_Event_Expl_Swc4to3_Infunc 24.797896 24.798707 0.000811

Task_IoHw_Period_Expl_Swc6to5_Outfunc 24.803706 24.808420 0.004714 Runnable_Swc06_Period_Expl_DataDIN3_Out 24.803804 24.808410 0.004606

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 24.806063 24.808305 0.000282

Task_IoHw_Period_Impl_Swc5to6_Outfunc 24.813403 24.817751 0.004348 Runnable_Swc05_Period_Impl_DataDIN2_Out 24.813489 24.815656 0.002167 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 24.822372 24.822984 0.000612

Task_IoHw_Period_Impl_Swc5to6_Infunc 24.827724 24.828000 0.000276

osIdleLoop 24.891845 25.735839 0.843994

Task_Event_Expl_Swc4to3_Outfunc 25.768947 25.775778 0.006831 Runnable_Swc04_Event_Expl_DataStruct_Out 25.769066 25.775757 0.006691

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 25.771864 25.775647 0.001192

Task_Event_Impl_Swc3to4_Outfunc 25.781193 25.786200 0.005007 Runnable_Swc03_Event_Impl_DataStruct_Out 25.781274 25.783474 0.002200 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 25.791606 25.792472 0.000866

Task_Event_Impl_Swc3to4_Infunc 25.797850 25.798934 0.001084

Task_IoHw_Period_Impl_Swc5to6_Outfunc 25.804498 25.809132 0.004634 Runnable_Swc05_Period_Impl_DataDIN2_Out 25.804600 25.806816 0.002216 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 25.814607 25.818837 0.004230 Runnable_Swc06_Period_Expl_DataDIN3_Out 25.814675 25.818823 0.004148

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 25.816473 25.818714 0.000295

Task_IoHw_Period_Impl_Swc5to6_Infunc 25.823849 25.824106 0.000257

Task_IoHw_Period_Expl_Swc6to5_Infunc 25.828926 25.829544 0.000618

osIdleLoop 25.881818 26.735946 0.854128

7

4

5

6

153

 V2_0_1111 notification process 4 to 7 ms 11.7.5.

osActivate

Task

Entry in ms End in ms

Duration

in ms

osCheckInterru

ptEnabled

Entry in ms End in ms

Duration

in ms

osSchedule

Prio Entry in

ms End in ms

Duration in

ms

osDispateche

r Entry in ms End in ms Duration

Notification

Duration in ms

(without

ActivateTask)

Duration

notification

22.773835 22.776330 0.002495 Task_Event_Expl_Swc4to3_Outfunc

22.784961 22.786851 0.001890 22.777083 22.777379 0.000296 22.778533 22.779260 0.000727 22.780223 22.781954 0.001731 0.002754 Task_Event_Impl_Swc3to4_Outfunc

22.787177 22.787425 0.000248 22.788557 22.789379 0.000822 22.790348 22.792095 0.001747 0.002817 Task_Event_Expl_Swc4to3_Infunc 0.012796

22.793486 22.793754 0.000268 22.794742 22.795580 0.000838 22.796462 22.797945 0.001483 0.002589 Task_Event_Impl_Swc3to4_Infunc 0.008169

22.806591 22.808676 0.002085 22.799561 22.799826 0.000265 22.800900 22.801726 0.000826 22.802505 22.803954 0.001449 0.002540 Task_IoHw_Period_Impl_Swc5to6_Outfunc

22.816081 22.817914 0.001833 22.809143 22.809490 0.000347 22.810499 22.811315 0.000816 22.812195 22.813745 0.001550 0.002713 Task_IoHw_Period_Expl_Swc6to5_Outfunc

22.818453 22.818672 0.000219 22.819764 22.820580 0.000816 22.821488 22.823045 0.001557 0.002592 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011592

22.823983 22.824255 0.000272 22.825342 22.826190 0.000848 22.826959 22.828381 0.001422 0.002542 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007325

23.782328 23.784897 0.002569 Task_Event_Impl_Swc3to4_Outfunc

23.793672 23.796003 0.002331 23.785420 23.785716 0.000296 23.786915 23.787753 0.000838 23.788763 23.790636 0.001873 0.003007 Task_Event_Expl_Swc4to3_Outfunc

23.796571 23.796799 0.000228 23.797733 23.798539 0.000806 23.799478 23.800927 0.001449 0.002483 Task_Event_Impl_Swc3to4_Infunc 0.013486

23.802552 23.802809 0.000257 23.803781 23.804609 0.000828 23.805370 23.806736 0.001366 0.002451 Task_Event_Expl_Swc4to3_Infunc 0.008270

23.823154 23.825650 0.002496 23.814666 23.814963 0.000297 23.816148 23.816999 0.000851 23.817934 23.819872 0.001938 0.003086 Task_IoHw_Period_Expl_Swc6to5_Outfunc

23.834285 23.836337 0.002052 23.826204 23.826434 0.000230 23.827812 23.828671 0.000859 23.829705 23.831636 0.001931 0.003020 Task_IoHw_Period_Impl_Swc5to6_Outfunc

23.836732 23.836999 0.000267 23.837941 23.838725 0.000784 23.839622 23.841149 0.001527 0.002578 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.012584

0.000000 23.842145 23.842506 0.000361 23.843578 23.844324 0.000746 23.845211 23.846754 0.001543 0.002650 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007790

23.853149 23.854932 0.001783 23.847562 23.847899 0.000337 23.848916 23.849635 0.000719 23.850441 23.851972 0.001531 0.002587 Task_Period_Impl_Swc1to2_Outfunc

23.860500 23.862341 0.001841 23.855229 23.855463 0.000234 23.856374 23.857043 0.000669 23.857929 23.859427 0.001498 0.002401 Task_Period_Expl_Swc2to1_Outfunc

23.863012 23.863281 0.000269 23.864172 23.864867 0.000695 23.865811 23.867286 0.001475 0.002439 Task_Period_Impl_Swc1to2_Infunc 0.009575

23.868725 23.868972 0.000247 23.869951 23.870788 0.000837 23.871620 23.872968 0.001348 0.002432 Task_Period_Expl_Swc2to1_Infunc 0.007674

24.773122 24.775772 0.002650 Task_Event_Impl_Swc3to4_Outfunc

24.784493 24.786705 0.002212 24.776330 24.776642 0.000312 24.777900 24.778843 0.000943 24.779804 24.781536 0.001732 0.002987 Task_Event_Expl_Swc4to3_Outfunc

24.787229 24.787463 0.000234 24.788533 24.789367 0.000834 24.790318 24.791822 0.001504 0.002572 Task_Event_Impl_Swc3to4_Infunc 0.013410

24.793437 24.793735 0.000298 24.794647 24.795363 0.000716 24.796184 24.797722 0.001538 0.002552 Task_Event_Expl_Swc4to3_Infunc 0.008348

24.806227 24.808187 0.001960 24.799145 24.799535 0.000390 24.800635 24.801463 0.000828 24.802204 24.803518 0.001314 0.002532 Task_IoHw_Period_Expl_Swc6to5_Outfunc

24.815756 24.817734 0.001978 24.808629 24.808853 0.000224 24.809921 24.810725 0.000804 24.811634 24.813190 0.001556 0.002584 Task_IoHw_Period_Impl_Swc5to6_Outfunc

24.818081 24.818335 0.000254 24.819210 24.819872 0.000662 24.820656 24.822145 0.001489 0.002405 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011297

24.823280 24.823599 0.000319 24.824572 24.825399 0.000827 24.826164 24.827540 0.001376 0.002522 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007517

25.772932 25.775523 0.002591 Task_Event_Expl_Swc4to3_Outfunc

25.784225 25.786177 0.001952 25.776195 25.776461 0.000266 25.777616 25.778342 0.000726 25.779283 25.780981 0.001698 0.002690 Task_Event_Impl_Swc3to4_Outfunc

25.786658 25.786936 0.000278 25.787944 25.788742 0.000798 25.789700 25.791422 0.001722 0.002798 Task_Event_Expl_Swc4to3_Infunc 0.013086

25.793018 25.793415 0.000397 25.794450 25.795172 0.000722 25.796031 25.797677 0.001646 0.002765 Task_Event_Impl_Swc3to4_Infunc 0.008381

25.806946 25.809111 0.002165 25.799554 25.799961 0.000407 25.801147 25.801872 0.000725 25.802714 25.804313 0.001599 0.002731 Task_IoHw_Period_Impl_Swc5to6_Outfunc

25.816650 25.818596 0.001946 25.809550 25.809879 0.000329 25.810982 25.811751 0.000769 25.812705 25.814431 0.001726 0.002824 Task_IoHw_Period_Expl_Swc6to5_Outfunc

25.819120 25.819361 0.000241 25.820582 25.821298 0.000716 25.822190 25.823668 0.001478 0.002435 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011654

25.824443 25.824744 0.000301 25.825709 25.826444 0.000735 25.827240 25.828731 0.001491 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.004638

4

5

6

7

154

 V2_0_1111 read-process 4 to 7 ms 11.7.6.

Runnable In

Entry in

ms End in ms Duration in ms Read function Entry in ms End in ms

Duration in

ms

Communicati

on (write +

read only)

sum in ms

Communic

ation

(w,r,n)

0.001707 0.014503

0.000000 0.008169

Runnable_Swc03_Odr_Expl_DataStruct_In 22.792334 22.793126 0.000792

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 22.792430 22.793020 0.000590

Runnable_Swc04_Odr_Impl_DataStruct_In 22.798635 22.799094 0.000459 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.011592

0.000405 0.007730

Runnable_Swc06_Odr_Impl_DataDIN2_In 22.823494 22.823608 0.000114 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 22.828715 22.829105 0.000390

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 22.828858 22.829002 0.000144

0.000000 0.013486

0.001530 0.009800

Runnable_Swc04_Odr_Impl_DataStruct_In 23.801609 23.802085 0.000476 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 23.813323 23.814108 0.000785 Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E 23.813417 23.813993 0.000576

0.000537 0.013121

0.000000 0.007790

Runnable_Swc05_Odr_Expl_DataDIN3_In 23.841461 23.841841 0.000380

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 23.841603 23.841745 0.000142

Runnable_Swc06_Odr_Impl_DataDIN2_In 23.847130 23.847216 0.000086 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.009575

0.001545 0.009219

Runnable_Swc02_Odr_Impl_DataStruct_In 23.867958 23.868414 0.000456 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc01_Odr_Expl_DataStruct_In 23.873237 23.874197 0.000960

Rte_Read_SwcPeriod01_R_Swc01_DataStruct_Odr_

Expl_DataStruct 23.873358 23.874093 0.000735

0.000000 0.013410

0.001390 0.009738

Runnable_Swc04_Odr_Impl_DataStruct_In 24.792505 24.792985 0.000480 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 24.797954 24.798685 0.000731

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 24.798042 24.798581 0.000539

0.000454 0.011751

0.000000 0.007517

Runnable_Swc05_Odr_Expl_DataDIN3_In 24.822514 24.822969 0.000455

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 24.822693 24.822865 0.000172

Runnable_Swc06_Odr_Impl_DataDIN2_In 24.827898 24.827986 0.000088 Macros no functions 0.000000 0.000000 0.000000

0.001766 0.014852

0.000000 0.008381

Runnable_Swc03_Odr_Expl_DataStruct_In 25.791668 25.792445 0.000777

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 25.791762 25.792336 0.000574

Runnable_Swc04_Odr_Impl_DataStruct_In 25.798389 25.798903 0.000514 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.011654

0.000467 0.005105

Runnable_Swc06_Odr_Impl_DataDIN2_In 25.824005 25.824089 0.000084 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 25.829069 25.829526 0.000457

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 25.829248 25.829420 0.000172

4

5

6

7

155

 V2_0_1111 write-process 8 to 11 ms 11.7.7.

Name

Entry in

msec End in ms

Duration in

ms Runnable Out Entry in ms End in ms

Duration in

ms Write function Entry in ms End in ms

Duration

in ms

Task_Event_Expl_Swc4to3_Outfunc 26.768756 26.775173 0.006417 Runnable_Swc04_Event_Expl_DataStruct_Out 26.768875 26.775150 0.006275

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 26.771631 26.775038 0.001008

Task_Event_Impl_Swc3to4_Outfunc 26.781127 26.785830 0.004703 Runnable_Swc03_Event_Impl_DataStruct_Out 26.781200 26.783110 0.001910 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 26.791161 26.792033 0.000872

Task_Event_Impl_Swc3to4_Infunc 26.796977 26.798040 0.001063

Task_IoHw_Period_Impl_Swc5to6_Outfunc 26.803080 26.807223 0.004143 Runnable_Swc05_Period_Impl_DataDIN2_Out 26.803149 26.805022 0.001873 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 26.812342 26.816670 0.004328 Runnable_Swc06_Period_Expl_DataDIN3_Out 26.812402 26.816657 0.004255

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 26.814337 26.816550 0.000294

Task_IoHw_Period_Impl_Swc5to6_Infunc 26.821649 26.822006 0.000357

Task_IoHw_Period_Expl_Swc6to5_Infunc 26.827074 26.827600 0.000526

osIdleLoop 26.888500 27.736029 0.847529

Task_Event_Impl_Swc3to4_Outfunc 27.812897 27.818974 0.006077 Runnable_Swc03_Event_Impl_DataStruct_Out 27.812999 27.815425 0.002426 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 27.825195 27.830481 0.005286 Runnable_Swc04_Event_Expl_DataStruct_Out 27.825287 27.830468 0.005181

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 27.827519 27.830365 0.000943

Task_Event_Impl_Swc3to4_Infunc 27.835468 27.836537 0.001069

Task_Event_Expl_Swc4to3_Infunc 27.841506 27.842354 0.000848

Task_IoHw_Period_Expl_Swc6to5_Outfunc 27.847439 27.851978 0.004539 Runnable_Swc06_Period_Expl_DataDIN3_Out 27.847525 27.851966 0.004441

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 27.849757 27.851859 0.000273

Task_IoHw_Period_Impl_Swc5to6_Outfunc 27.857192 27.861140 0.003948 Runnable_Swc05_Period_Impl_DataDIN2_Out 27.857272 27.859306 0.002034 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 27.865964 27.866482 0.000518

Task_IoHw_Period_Impl_Swc5to6_Infunc 27.871522 27.871878 0.000356

osIdleLoop 27.929063 28.736103 0.807040

Task_Event_Expl_Swc4to3_Outfunc 28.778443 28.785453 0.007010 Runnable_Swc04_Event_Expl_DataStruct_Out 28.778581 28.785431 0.006850

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct
28.781584 28.785320 0.001206

Task_Event_Impl_Swc3to4_Outfunc 28.791357 28.796123 0.004766 Runnable_Swc03_Event_Impl_DataStruct_Out 28.791439 28.793544 0.002105 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 28.801443 28.802302 0.000859

Task_Event_Impl_Swc3to4_Infunc 28.807285 28.808296 0.001011

Task_IoHw_Period_Impl_Swc5to6_Outfunc 28.813516 28.818135 0.004619 Runnable_Swc05_Period_Impl_DataDIN2_Out 28.813617 28.815912 0.002295 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 28.823210 28.827920 0.004710 Runnable_Swc06_Period_Expl_DataDIN3_Out 28.823287 28.827905 0.004618 Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri 28.825407 28.827796 0.000316

Task_IoHw_Period_Impl_Swc5to6_Infunc 28.832695 28.833043 0.000348

Task_IoHw_Period_Expl_Swc6to5_Infunc 28.837919 28.838438 0.000519

Task_Period_Expl_Swc2to1_Outfunc 28.843401 28.846691 0.003290 Runnable_Swc02_Period_Expl_DataStruct_Out 28.843482 28.846668 0.003186

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Period_

Expl_DataStruct 28.843602 28.846543 0.000950

Task_Period_Impl_Swc1to2_Outfunc 28.851863 28.854612 0.002749 Runnable_Swc01_Period_Impl_DataStruct_Out 28.852081 28.852099 0.000018 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1_Infunc 28.859302 28.860376 0.001074

Task_Period_Impl_Swc1to2_Infunc 28.865338 28.866232 0.000894

osIdleLoop 28.920153 29.736192 0.816039

Task_Event_Expl_Swc4to3_Outfunc 29.769389 29.775310 0.005921 Runnable_Swc04_Event_Expl_DataStruct_Out 29.769491 29.775286 0.005795

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 29.771883 29.775174 0.000924

Task_Event_Impl_Swc3to4_Outfunc 29.781429 29.786456 0.005027 Runnable_Swc03_Event_Impl_DataStruct_Out 29.781510 29.783647 0.002137 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 29.791606 29.792485 0.000879 0.000000

Task_Event_Impl_Swc3to4_Infunc 29.797439 29.798395 0.000956 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 29.803148 29.807979 0.004831 Runnable_Swc06_Period_Expl_DataDIN3_Out 29.803233 29.807962 0.004729

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 29.805441 29.807850 0.000323

Task_IoHw_Period_Impl_Swc5to6_Outfunc 29.813125 29.816859 0.003734 Runnable_Swc05_Period_Impl_DataDIN2_Out 29.813190 29.815035 0.001845 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 29.821829 29.822356 0.000527

Task_IoHw_Period_Impl_Swc5to6_Infunc 29.827023 29.827294 0.000271

osIdleLoop 29.907772 30.736283 0.828511

8

11

9

10

156

 V2_0_1111 notification process 8 to 11 ms 11.7.8.

osActivate

Task

Entry in ms End in ms

Duration

in ms

osCheckInterru

ptEnabled

Entry in ms End in ms

Duration

in ms

osSchedule

Prio Entry in

ms End in ms

Duration in

ms

osDispateche

r Entry in ms End in ms Duration

Notification

Duration in ms

(without

ActivateTask)

Duration

notification

26.772515 26.774914 0.002399 Task_Event_Expl_Swc4to3_Outfunc

26.783848 26.785810 0.001962 26.775630 26.775898 0.000268 26.777112 26.777934 0.000822 26.778984 26.780918 0.001934 0.003024 Task_Event_Impl_Swc3to4_Outfunc

26.786227 26.786490 0.000263 26.787381 26.788069 0.000688 26.789068 26.790954 0.001886 0.002837 Task_Event_Expl_Swc4to3_Infunc 0.012963

26.792457 26.792846 0.000389 26.793780 26.794499 0.000719 26.795283 26.796772 0.001489 0.002597 Task_Event_Impl_Swc3to4_Infunc 0.008268

26.805135 26.807202 0.002067 26.798539 26.798927 0.000388 26.800004 26.800827 0.000823 26.801558 26.802872 0.001314 0.002525 Task_IoHw_Period_Impl_Swc5to6_Outfunc

26.814513 26.816432 0.001919 26.807641 26.807963 0.000322 26.808921 26.809671 0.000750 26.810593 26.812163 0.001570 0.002642 Task_IoHw_Period_Expl_Swc6to5_Outfunc

26.816919 26.817127 0.000208 26.818233 26.819069 0.000836 26.819954 26.821459 0.001505 0.002549 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011586

26.822437 26.822835 0.000398 26.823858 26.824707 0.000849 26.825540 26.826881 0.001341 0.002588 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007413

27.816374 27.818946 0.002572 Task_Event_Impl_Swc3to4_Outfunc

27.828338 27.830241 0.001903 27.819532 27.819843 0.000311 27.820998 27.821762 0.000764 27.822880 27.824995 0.002115 0.003190 Task_Event_Expl_Swc4to3_Outfunc

27.830750 27.830972 0.000222 27.831869 27.832550 0.000681 27.833569 27.835245 0.001676 0.002579 Task_Event_Impl_Swc3to4_Infunc 0.013627

27.837001 27.837372 0.000371 27.838269 27.838997 0.000728 27.839869 27.841322 0.001453 0.002552 Task_Event_Expl_Swc4to3_Infunc 0.008103

27.849912 27.851741 0.001829 27.842718 27.843054 0.000336 27.844121 27.844836 0.000715 27.845650 27.847213 0.001563 0.002614 Task_IoHw_Period_Expl_Swc6to5_Outfunc

27.859385 27.861124 0.001739 27.852213 27.852436 0.000223 27.853736 27.854590 0.000854 27.855405 27.856981 0.001576 0.002653 Task_IoHw_Period_Impl_Swc5to6_Outfunc

27.861449 27.861690 0.000241 27.862648 27.863351 0.000703 27.864236 27.865772 0.001536 0.002480 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.010910

27.866765 27.867027 0.000262 27.868023 27.868860 0.000837 27.869750 27.871299 0.001549 0.002648 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007385

28.782666 28.785196 0.002530 Task_Event_Expl_Swc4to3_Outfunc

28.794185 28.796107 0.001922 28.785897 28.786179 0.000282 28.787446 28.788280 0.000834 28.789292 28.791145 0.001853 0.002969 Task_Event_Impl_Swc3to4_Outfunc

28.796453 28.796708 0.000292 28.797732 28.798426 0.000688 28.799347 28.801231 0.001574 0.002554 Task_Event_Expl_Swc4to3_Infunc
0.012819

28.802598 28.802851 0.000266 28.803894 28.804626 0.000829 28.805448 28.807063 0.001359 0.002454 Task_Event_Impl_Swc3to4_Infunc 0.007789

28.816019 28.818113 0.002094 28.808721 28.808998 0.000351 28.810168 28.810890 0.000797 28.811728 28.813322 0.001477 0.002625 Task_IoHw_Period_Impl_Swc5to6_Outfunc

28.825605 28.827678 0.002073 28.818579 28.818862 0.000243 28.819871 28.820670 0.000855 28.821549 28.823022 0.001547 0.002645 Task_IoHw_Period_Expl_Swc6to5_Outfunc

28.828216 28.828444 0.000296 28.829490 28.830190 0.000761 28.830999 28.832504 0.001577 0.002634 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.012083

28.833386 28.833664 0.000379 28.834615 28.835453 0.000731 28.836312 28.837727 0.001670 0.002780 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007835

28.844387 28.846378 0.001991 28.838735 28.839081 0.000282 28.840119 28.840845 0.000916 28.841671 28.843213 0.001775 0.002973 Task_Period_Expl_Swc2to1_Outfunc

28.852758 28.854596 0.001838 28.847149 28.847416 0.000240 28.848452 28.849134 0.000744 28.850067 28.851645 0.001498 0.002482 Task_Period_Impl_Swc1to2_Outfunc

28.854915 28.855145 0.000228 28.856041 28.856715 0.000829 28.857590 28.859086 0.001444 0.002501 Task_Period_Expl_Swc2to1_Infunc 0.009723

28.860686 28.861027 0.000228 28.861955 28.862681 0.000829 28.863517 28.865136 0.001444 0.002501 Task_Period_Impl_Swc1to2_Infunc 0.007914

29.772654 29.775021 0.002367 Task_Event_Expl_Swc4to3_Outfunc

29.784398 29.786432 0.002034 29.775774 29.776051 0.000277 29.777422 29.778287 0.000865 29.779314 29.781249 0.001935 0.003077 Task_Event_Impl_Swc3to4_Outfunc

29.786927 29.787206 0.000279 29.788181 29.788863 0.000682 29.789729 29.791427 0.001698 0.002659 Task_Event_Expl_Swc4to3_Infunc 0.013130

29.792882 29.793127 0.000245 29.794114 29.794953 0.000839 29.795814 29.797236 0.001422 0.002506 Task_Event_Impl_Swc3to4_Infunc 0.008078

29.805646 29.807732 0.002086 29.798719 29.798963 0.000244 29.800010 29.800727 0.000717 29.801515 29.802963 0.001448 0.002409 Task_IoHw_Period_Expl_Swc6to5_Outfunc

29.815121 29.816843 0.001722 29.808323 29.808563 0.000240 29.809759 29.810589 0.000830 29.811469 29.812945 0.001476 0.002546 Task_IoHw_Period_Impl_Swc5to6_Outfunc

29.817182 29.817417 0.000235 29.818411 29.819207 0.000796 29.820109 29.821640 0.001531 0.002562 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.010928

29.822645 29.822870 0.000225 29.823973 29.824817 0.000844 29.825544 29.826840 0.001296 0.002365 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007176

8

9

10

11

157

 V2_0_1111 read-process 8 to 11 ms 11.7.9.

Runnable In

Entry in

ms End in ms Duration in ms Read function Entry in ms End in ms

Duration in

ms

Communicati

on (write +

read only)

sum in ms

Communic

ation

(w,r,n)

0.001596 0.014559

0.000000 0.008268

Runnable_Swc03_Odr_Expl_DataStruct_In 26.791225 26.792012 0.000787

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 26.791321 26.791909 0.000588

Runnable_Swc04_Odr_Impl_DataStruct_In 26.797511 26.798015 0.000504 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.011586

0.000437 0.007850

Runnable_Swc06_Odr_Impl_DataDIN2_In 26.821869 26.821985 0.000116 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 26.827188 26.827582 0.000394

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 26.827331 26.827474 0.000143

0.000000 0.013627

0.001517 0.009620

Runnable_Swc04_Odr_Impl_DataStruct_In 27.836007 27.836514 0.000507 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 27.841568 27.842336 0.000768

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 27.841662 27.842236 0.000574

0.000416 0.011326

0.000000 0.007385

Runnable_Swc05_Odr_Expl_DataDIN3_In 27.866079 27.866468 0.000389

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 27.866222 27.866365 0.000143

Runnable_Swc06_Odr_Impl_DataDIN2_In 27.871742 27.871857 0.000115 Macros no functions 0.000000 0.000000 0.000000

0.001789 0.014608

0.000000 0.007789

Runnable_Swc03_Odr_Expl_DataStruct_In 28.801506 28.802287 0.000781

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 28.801601 28.802184 0.000583

Runnable_Swc04_Odr_Impl_DataStruct_In 28.807796 28.808275 0.000479 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.012083

0.000316 0.008151

Runnable_Swc06_Odr_Impl_DataDIN2_In 28.832914 28.833026 0.000112
Macros no functions

0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 28.838033 28.838423 0.000390

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 28.838176 28.838320 0.000144

0.001699 0.011422

0.000000 0.007914

Runnable_Swc01_Odr_Expl_DataStruct_In 28.859384 28.860360 0.000976

Rte_Read_SwcPeriod01_R_Swc01_DataStruct_Odr_

Expl_DataStruct 28.859507 28.860256 0.000749

Runnable_Swc02_Odr_Impl_DataStruct_In 28.865792 28.866216 0.000424 Macros no functions 0.000000 0.000000 0.000000

0.001514 0.014644

0.000000 0.008078

Runnable_Swc03_Odr_Expl_DataStruct_In 29.791670 29.792465 0.000795

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 29.791766 29.792356 0.000590

Runnable_Swc04_Odr_Impl_DataStruct_In 29.797926 29.798379 0.000453 Macros no functions 0.000000 0.000000 0.000000

0.000470 0.011398

0.000000 0.007176

Runnable_Swc05_Odr_Expl_DataDIN3_In 29.821949 29.822341 0.000392

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 29.822098 29.822245 0.000147

Runnable_Swc06_Odr_Impl_DataDIN2_In 29.827191 29.827279 0.000088 Macros no functions 0.000000 0.000000 0.000000

8

9

10

11

158

 V2_0_1111 write-process 12 to 15 ms 11.7.10.

Name

Entry in

msec End in ms

Duration in

ms Runnable Out Entry in ms End in ms

Duration in

ms Write function Entry in ms End in ms

Duration

in ms

Task_Event_Impl_Swc3to4_Outfunc 30.769695 30.776067 0.006372 Runnable_Swc03_Event_Impl_DataStruct_Out 30.769825 30.772561 0.002736 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 30.782418 30.787887 0.005469 Runnable_Swc04_Event_Expl_DataStruct_Out 30.782491 30.787871 0.005380

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 30.784488 30.787765 0.001024

Task_Event_Impl_Swc3to4_Infunc 30.792995 30.794062 0.001067

Task_Event_Expl_Swc4to3_Infunc 30.799096 30.799907 0.000811

Task_IoHw_Period_Expl_Swc6to5_Outfunc 30.804801 30.809529 0.004728 Runnable_Swc06_Period_Expl_DataDIN3_Out 30.804879 30.809514 0.004635

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 30.807032 30.809412 0.000321

Task_IoHw_Period_Impl_Swc5to6_Outfunc 30.814455 30.818862 0.004407 Runnable_Swc05_Period_Impl_DataDIN2_Out 30.814532 30.816640 0.002108 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 30.824084 30.824626 0.000542

Task_IoHw_Period_Impl_Swc5to6_Infunc 30.829804 30.830153 0.000349

osIdleLoop 30.994400 31.736402 0.742002

Task_Event_Expl_Swc4to3_Outfunc 31.769388 31.776566 0.007178 Runnable_Swc04_Event_Expl_DataStruct_Out 31.769526 31.776542 0.007016

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 31.772536 31.776436 0.001238

Task_Event_Impl_Swc3to4_Outfunc 31.782710 31.787866 0.005156 Runnable_Swc03_Event_Impl_DataStruct_Out 31.782789 31.785038 0.002249 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 31.793042 31.793897 0.000855

Task_Event_Impl_Swc3to4_Infunc 31.799248 31.800215 0.000967

Task_IoHw_Period_Impl_Swc5to6_Outfunc 31.805095 31.809587 0.004492 Runnable_Swc05_Period_Impl_DataDIN2_Out 31.805186 31.807412 0.002226 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 31.814662 31.819033 0.004371 Runnable_Swc06_Period_Expl_DataDIN3_Out 31.814732 31.819021 0.004289

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 31.816746 31.818914 0.000294

Task_IoHw_Period_Impl_Swc5to6_Infunc 31.824067 31.824323 0.000256

Task_IoHw_Period_Expl_Swc6to5_Infunc 31.829275 31.829809 0.000534

osIdleLoop 31.934700 32.736474 0.801774

Task_Event_Expl_Swc4to3_Outfunc 32.770705 32.777628 0.006923 Runnable_Swc04_Event_Expl_DataStruct_Out 32.770838 32.777605 0.006767

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 32.773763 32.777493 0.001135

Task_Event_Impl_Swc3to4_Outfunc 32.783530 32.788571 0.005041 Runnable_Swc03_Event_Impl_DataStruct_Out 32.783616 32.785747 0.002131 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 32.794061 32.794927 0.000866

Task_Event_Impl_Swc3to4_Infunc 32.800194 32.801148 0.000954

Task_IoHw_Period_Expl_Swc6to5_Outfunc 32.806505 32.811154 0.004649 Runnable_Swc06_Period_Expl_DataDIN3_Out 32.806600 32.811141 0.004541

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 32.808927 32.811039 0.000258

Task_IoHw_Period_Impl_Swc5to6_Outfunc 32.816220 32.820591 0.004371 Runnable_Swc05_Period_Impl_DataDIN2_Out 32.816301 32.818469 0.002168 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 32.825899 32.826517 0.000618

Task_IoHw_Period_Impl_Swc5to6_Infunc 32.831695 32.832052 0.000357

osIdleLoop 32.896572 33.736565 0.839993

Task_Event_Impl_Swc3to4_Outfunc 33.777548 33.783650 0.006102 Runnable_Swc03_Event_Impl_DataStruct_Out 33.777668 33.780340 0.002672

Macros no functions

0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 33.789202 33.794364 0.005162 Runnable_Swc04_Event_Expl_DataStruct_Out 33.789283 33.794350 0.005067 Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex 33.791491 33.794247 0.000885

Task_Event_Impl_Swc3to4_Infunc 33.799367 33.800353 0.000986

Task_Event_Expl_Swc4to3_Infunc 33.805188 33.806038 0.000850

Task_IoHw_Period_Expl_Swc6to5_Outfunc 33.811273 33.815663 0.004390 Runnable_Swc06_Period_Expl_DataDIN3_Out 33.811348 33.815649 0.004301

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 33.813344 33.815541 0.000280

Task_IoHw_Period_Impl_Swc5to6_Outfunc 33.820972 33.825188 0.004216 Runnable_Swc05_Period_Impl_DataDIN2_Out 33.821042 33.822995 0.001953 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 33.830564 33.831082 0.000518

Task_IoHw_Period_Impl_Swc5to6_Infunc 33.836031 33.836294 0.000263

Task_Period_Impl_Swc1to2_Outfunc 33.841474 33.844082 0.002608 Runnable_Swc01_Period_Impl_DataStruct_Out 33.841736 33.841752 0.000016 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1_Outfunc 33.848872 33.851821 0.002949 Runnable_Swc02_Period_Expl_DataStruct_Out 33.848942 33.851806 0.002864

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Period_

Expl_DataStruct 33.849048 33.851702 0.000812

Task_Period_Impl_Swc1to2_Infunc 33.856439 33.857402 0.000963

Task_Period_Expl_Swc2to1_Infunc 33.862175 33.863256 0.001081

osIdleLoop 33.911226 34.736656 0.825430

13

12

14

15

159

 V2_0_1111 notification process 12 to 15 ms 11.7.11.

osActivate

Task

Entry in ms End in ms

Duration

in ms

osCheckInterru

ptEnabled

Entry in ms End in ms

Duration

in ms

osSchedule

Prio Entry in

ms End in ms

Duration in

ms

osDispateche

r Entry in ms End in ms Duration

Notification

Duration in ms

(without

ActivateTask)

Duration

notification

30.773506 30.776042 0.002536 Task_Event_Impl_Swc3to4_Outfunc

30.785337 30.787590 0.002253 30.776558 30.776861 0.000303 30.778223 30.779189 0.000966 30.780255 30.782209 0.001954 0.003223 Task_Event_Expl_Swc4to3_Outfunc

30.788217 30.788479 0.000262 30.789594 30.790403 0.000809 30.791249 30.792781 0.001532 0.002603 Task_Event_Impl_Swc3to4_Infunc 0.013831

30.794507 30.794881 0.000374 30.795787 30.796506 0.000719 30.797381 30.798890 0.001509 0.002602 Task_Event_Expl_Swc4to3_Infunc 0.008525

30.807237 30.809296 0.002059 30.800345 30.800699 0.000354 30.801716 30.802436 0.000720 30.803195 30.804590 0.001395 0.002469 Task_IoHw_Period_Expl_Swc6to5_Outfunc

30.816752 30.818840 0.002088 30.809825 30.810054 0.000229 30.811079 30.811780 0.000701 30.812693 30.814268 0.001575 0.002505 Task_IoHw_Period_Impl_Swc5to6_Outfunc

30.819307 30.819590 0.000283 30.820590 30.821397 0.000807 30.822286 30.823863 0.001577 0.002667 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011638

30.824983 30.825343 0.000360 30.826364 30.827097 0.000733 30.828005 30.829581 0.001576 0.002669 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007966

31.773652 31.776314 0.002662 Task_Event_Expl_Swc4to3_Outfunc

31.785798 31.787846 0.002048 31.777051 31.777333 0.000282 31.778651 31.779516 0.000865 31.780553 31.782499 0.001946 0.003093 Task_Event_Impl_Swc3to4_Outfunc

31.788256 31.788515 0.000259 31.789490 31.790176 0.000686 31.791095 31.792831 0.001736 0.002681 Task_Event_Expl_Swc4to3_Infunc 0.013592

31.794328 31.794726 0.000398 31.795681 31.796516 0.000835 31.797435 31.799045 0.001610 0.002843 Task_Event_Impl_Swc3to4_Infunc 0.008427

31.807519 31.809566 0.002047 31.800646 31.800926 0.000280 31.801957 31.802672 0.000715 31.803458 31.804904 0.001446 0.002441 Task_IoHw_Period_Impl_Swc5to6_Outfunc

31.816922 31.818796 0.001874 31.810004 31.810262 0.000258 31.811227 31.811916 0.000689 31.812841 31.814449 0.001608 0.002555 Task_IoHw_Period_Expl_Swc6to5_Outfunc

31.819283 31.819490 0.000207 31.820567 31.821380 0.000813 31.822291 31.823854 0.001563 0.002583 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011556

31.824646 31.824881 0.000235 31.826016 31.826881 0.000865 31.827639 31.829054 0.001415 0.002515 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007228

32.774774 32.777369 0.002595 Task_Event_Expl_Swc4to3_Outfunc

32.786493 32.788549 0.002056 32.778092 32.778388 0.000296 32.779586 32.780415 0.000829 32.781425 32.783318 0.001893 0.003018 Task_Event_Impl_Swc3to4_Outfunc

32.789016 32.789299 0.000283 32.790241 32.791025 0.000784 32.792022 32.793854 0.001832 0.002899 Task_Event_Expl_Swc4to3_Infunc 0.013553

32.795385 32.795689 0.000304 32.796830 32.797681 0.000851 32.798474 32.799990 0.001516 0.002671 Task_Event_Impl_Swc3to4_Infunc 0.008492

32.809069 32.810923 0.001854 32.801546 32.801806 0.000260 32.803004 32.803827 0.000823 32.804678 32.806313 0.001635 0.002718 Task_IoHw_Period_Expl_Swc6to5_Outfunc

32.818589 32.820568 0.001979 32.811430 32.811652 0.000222 32.812799 32.813507 0.000708 32.814435 32.816040 0.001605 0.002535 Task_IoHw_Period_Impl_Swc5to6_Outfunc

32.821049 32.821399 0.000350 32.822378 32.823071 0.000693 32.824015 32.825672 0.001657 0.002700 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011460

32.826874 32.827242 0.000368 32.828314 32.829060 0.000746 32.829950 32.831499 0.001549 0.002663 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007960

33.781169 33.783625 0.002456 Task_Event_Impl_Swc3to4_Outfunc

33.792252 33.794123 0.001871 33.784155 33.784442 0.000287 33.785529 33.786242 0.000713 33.787226 33.789018 0.001792 0.002792 Task_Event_Expl_Swc4to3_Outfunc

33.794647 33.794881 0.000292 33.795824 33.796607 0.000688 33.797539 33.799163 0.001574 0.002554 Task_Event_Impl_Swc3to4_Infunc 0.012964

33.800710 33.800991 0.000266 33.801942 33.802772 0.000829 33.803551 33.805004 0.001359 0.002454 Task_Event_Expl_Swc4to3_Infunc 0.007865

33.813506 33.815423 0.001917 33.806422 33.806690 0.000351 33.807790 33.808618 0.000797 33.809460 33.811077 0.001477 0.002625 Task_IoHw_Period_Expl_Swc6to5_Outfunc

33.823111 33.825171 0.002060 33.815932 33.816154 0.000243 33.817439 33.818297 0.000855 33.819200 33.820763 0.001547 0.002645 Task_IoHw_Period_Impl_Swc5to6_Outfunc

33.825532 33.825772 0.000296 33.826946 33.827797 0.000761 33.828714 33.830345 0.001577 0.002634 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011412

33.831365 33.831627 0.000379 33.832609 33.833344 0.000731 33.834254 33.835818 0.001670 0.002780 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007992

33.842337 33.844068 0.001731 33.836691 33.837054 0.000282 33.838101 33.838826 0.000916 33.839646 33.841218 0.001775 0.002973 Task_Period_Impl_Swc1to2_Outfunc

33.849736 33.851578 0.001842 33.844365 33.844590 0.000240 33.845600 33.846409 0.000744 33.847192 33.848663 0.001498 0.002482 Task_Period_Expl_Swc2to1_Outfunc

33.852131 33.852354 0.000228 33.853260 33.853941 0.000829 33.854870 33.856259 0.001444 0.002501 Task_Period_Impl_Swc1to2_Infunc 0.009663

33.857698 33.857944 0.000228 33.858914 33.859815 0.000829 33.860633 33.861963 0.001444 0.002501 Task_Period_Expl_Swc2to1_Infunc 0.007807

13

14

15

12

160

 V2_0_1111 read-process 12 to 15 ms 11.7.12.

Runnable In

Entry in

ms End in ms Duration in ms Read function Entry in ms End in ms

Duration in

ms

Communicati

on (write +

read only)

sum in ms

Communic

ation

(w,r,n)

0.000000 0.013831

0.001563 0.010088

Runnable_Swc04_Odr_Impl_DataStruct_In 30.793534 30.794040 0.000506 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 30.799154 30.799885 0.000731

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 30.799242 30.799781 0.000539

0.000470 0.012108

0.000000 0.000000 0.007966

Runnable_Swc05_Odr_Expl_DataDIN3_In 30.824203 30.824608 0.000405

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 30.824353 30.824502 0.000149

Runnable_Swc06_Odr_Impl_DataDIN2_In 30.830023 30.830136 0.000113 Macros no functions 0.000000 0.000000 0.000000

0.001807 0.015399

0.000000 0.008427

Runnable_Swc03_Odr_Expl_DataStruct_In 31.793104 31.793876 0.000772

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 31.793196 31.793765 0.000569

Runnable_Swc04_Odr_Impl_DataStruct_In 31.799735 31.800194 0.000459 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.011556

0.000000 0.000440 0.007668

Runnable_Swc06_Odr_Impl_DataDIN2_In 31.824223 31.824307 0.000084 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 31.829394 31.829790 0.000396

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 31.829544 31.829690 0.000146

0.001711 0.015264

0.000000 0.008492

Runnable_Swc03_Odr_Expl_DataStruct_In 32.794123 32.794904 0.000781

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 32.794217 32.794793 0.000576

Runnable_Swc04_Odr_Impl_DataStruct_In 32.800676 32.801128 0.000452 Macros no functions 0.000000 0.000000 0.000000

0.000431 0.011891

0.000000 0.007960

Runnable_Swc05_Odr_Expl_DataDIN3_In 32.826042 32.826499 0.000457

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 32.826220 32.826393 0.000173

Runnable_Swc06_Odr_Impl_DataDIN2_In 32.831921 32.832035 0.000114 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.012964

0.001459 0.009324

Runnable_Swc04_Odr_Impl_DataStruct_In 33.799868 33.800336 0.000468 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 33.805250 33.806019 0.000769 Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E 33.805344 33.805918 0.000574

0.000423 0.011835

0.000000 0.007992

Runnable_Swc05_Odr_Expl_DataDIN3_In 33.830679 33.831068 0.000389

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 33.830822 33.830965 0.000143

Runnable_Swc06_Odr_Impl_DataDIN2_In 33.836187 33.836274 0.000087 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.009663

0.001568 0.009375

Runnable_Swc02_Odr_Impl_DataStruct_In 33.856931 33.857387 0.000456 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc01_Odr_Expl_DataStruct_In 33.862258 33.863242 0.000984

Rte_Read_SwcPeriod01_R_Swc01_DataStruct_Odr_

Expl_DataStruct 33.862382 33.863138 0.000756

Macros no functions

13

14

15

12

161

 V2_0_1111 write-process 16 to 19 ms 11.7.13.

Name

Entry in

msec End in ms

Duration in

ms Runnable Out Entry in ms End in ms

Duration in

ms Write function Entry in ms End in ms

Duration

in ms

Task_Event_Impl_Swc3to4_Outfunc 34.770837 34.776759 0.005922 Runnable_Swc03_Event_Impl_DataStruct_Out 34.770953 34.773531 0.002578 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 34.782426 34.787929 0.005503 Runnable_Swc04_Event_Expl_DataStruct_Out 34.782497 34.787910 0.005413

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 34.784501 34.787802 0.000993

Task_Event_Impl_Swc3to4_Infunc 34.792785 34.793747 0.000962

Task_Event_Expl_Swc4to3_Infunc 34.798670 34.799547 0.000877

Task_IoHw_Period_Impl_Swc5to6_Outfunc 34.804745 34.808944 0.004199 Runnable_Swc05_Period_Impl_DataDIN2_Out 34.804819 34.806730 0.001911 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 34.814307 34.818703 0.004396 Runnable_Swc06_Period_Expl_DataDIN3_Out 34.814374 34.818688 0.004314

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 34.816375 34.818585 0.000283

Task_IoHw_Period_Impl_Swc5to6_Infunc 34.824067 34.824323 0.000256

Task_IoHw_Period_Expl_Swc6to5_Infunc 34.829055 34.829582 0.000527

osIdleLoop 34.890154 35.736729 0.846575

Task_Event_Expl_Swc4to3_Outfunc 35.769438 35.775911 0.006473 Runnable_Swc04_Event_Expl_DataStruct_Out 35.769557 35.775887 0.006330

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 35.772321 35.775774 0.001025

Task_Event_Impl_Swc3to4_Outfunc 35.781480 35.786262 0.004782 Runnable_Swc03_Event_Impl_DataStruct_Out 35.781548 35.783680 0.002132 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 35.791325 35.792201 0.000876

Task_Event_Impl_Swc3to4_Infunc 35.797241 35.798312 0.001071

Task_IoHw_Period_Expl_Swc6to5_Outfunc 35.803583 35.808164 0.004581 Runnable_Swc06_Period_Expl_DataDIN3_Out 35.803661 35.808145 0.004484

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 35.805755 35.808039 0.000347

Task_IoHw_Period_Impl_Swc5to6_Outfunc 35.813645 35.817579 0.003934 Runnable_Swc05_Period_Impl_DataDIN2_Out 35.813720 35.815795 0.002075 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 35.822728 35.823246 0.000518

Task_IoHw_Period_Impl_Swc5to6_Infunc 35.828505 35.828777 0.000272

osIdleLoop 35.877589 36.736838 0.859249

Task_Event_Impl_Swc3to4_Outfunc 36.769310 36.775231 0.005921 Runnable_Swc03_Event_Impl_DataStruct_Out 36.769423 36.771987 0.002564 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 36.780880 36.785955 0.005075 Runnable_Swc04_Event_Expl_DataStruct_Out 36.780947 36.785936 0.004989

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 36.783092 36.785829 0.000842

Task_Event_Impl_Swc3to4_Infunc 36.791149 36.792168 0.001019

Task_Event_Expl_Swc4to3_Infunc 36.797433 36.798288 0.000855

Task_IoHw_Period_Impl_Swc5to6_Outfunc 36.803189 36.807342 0.004153 Runnable_Swc05_Period_Impl_DataDIN2_Out 36.803259 36.805221 0.001962 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 36.812254 36.816475 0.004221 Runnable_Swc06_Period_Expl_DataDIN3_Out 36.812324 36.816464 0.004140

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 36.814296 36.816359 0.000277

Task_IoHw_Period_Impl_Swc5to6_Infunc 36.821513 36.821771 0.000258

Task_IoHw_Period_Expl_Swc6to5_Infunc 36.826564 36.827091 0.000527

osIdleLoop 36.886291 37.736919 0.850628

Task_Event_Impl_Swc3to4_Outfunc 37.770032 37.775723 0.005691 Runnable_Swc03_Event_Impl_DataStruct_Out 37.770125 37.772458 0.002333 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 37.781642 37.787165 0.005523 Runnable_Swc04_Event_Expl_DataStruct_Out 37.781701 37.787151 0.005450

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 37.783726 37.787054 0.000980

Task_Event_Impl_Swc3to4_Infunc 37.791940 37.792990 0.001050

Task_Event_Expl_Swc4to3_Infunc 37.798187 37.799000 0.000813

Task_IoHw_Period_Impl_Swc5to6_Outfunc 37.804075 37.808543 0.004468 Runnable_Swc05_Period_Impl_DataDIN2_Out 37.804158 37.806286 0.002128 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 37.813483 37.817720 0.004237 Runnable_Swc06_Period_Expl_DataDIN3_Out 37.813562 37.817705 0.004143

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 37.815453 37.817603 0.000278

Task_IoHw_Period_Impl_Swc5to6_Infunc 37.823042 37.823420 0.000378

Task_IoHw_Period_Expl_Swc6to5_Infunc 37.828279 37.828873 0.000594

osIdleLoop 37.885536 38.737010 0.851474

16

17

18

19

162

 V2_0_1111 notification process 16 to 19 ms 11.7.14.

osActivate

Task

Entry in ms End in ms

Duration

in ms

osCheckInterru

ptEnabled

Entry in ms End in ms

Duration

in ms

osSchedule

Prio Entry in

ms End in ms

Duration in

ms

osDispateche

r Entry in ms End in ms Duration

Notification

Duration in ms

(without

ActivateTask)

Duration

notification

34.774375 34.776734 0.002359 Task_Event_Impl_Swc3to4_Outfunc

34.785319 34.787627 0.002308 34.777264 34.777536 0.000272 34.778612 34.779316 0.000704 34.780331 34.782218 0.001887 0.002863 Task_Event_Expl_Swc4to3_Outfunc

34.788313 34.788561 0.000248 34.789515 34.790180 0.000665 34.791084 34.792604 0.001520 0.002433 Task_Event_Impl_Swc3to4_Infunc 0.013158

34.794131 34.794490 0.000359 34.795433 34.796162 0.000729 34.797042 34.798490 0.001448 0.002536 Task_Event_Expl_Swc4to3_Infunc 0.008239

34.806838 34.808917 0.002079 34.799931 34.800190 0.000259 34.801291 34.802127 0.000836 34.802946 34.804536 0.001590 0.002685 Task_IoHw_Period_Impl_Swc5to6_Outfunc

34.816542 34.818469 0.001927 34.809476 34.809826 0.000350 34.810826 34.811609 0.000783 34.812455 34.814100 0.001645 0.002778 Task_IoHw_Period_Expl_Swc6to5_Outfunc

34.819013 34.819262 0.000249 34.820450 34.821288 0.000838 34.822217 34.823854 0.001637 0.002724 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011977

34.824646 34.824881 0.000235 34.825875 34.826609 0.000734 34.827387 34.828836 0.001449 0.002418 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007325

35.773201 35.775629 0.002428 Task_Event_Expl_Swc4to3_Outfunc

35.784321 35.786244 0.001923 35.776389 35.776688 0.000299 35.777953 35.778788 0.000835 35.779695 35.781272 0.001577 0.002711 Task_Event_Impl_Swc3to4_Outfunc

35.786612 35.786870 0.000258 35.787912 35.788681 0.000769 35.789526 35.791154 0.001628 0.002655 Task_Event_Expl_Swc4to3_Infunc 0.012576

35.792585 35.792834 0.000249 35.793914 35.794651 0.000737 35.795536 35.797054 0.001518 0.002504 Task_Event_Impl_Swc3to4_Infunc 0.007958

35.805921 35.807858 0.001937 35.798804 35.799088 0.000284 35.800282 35.801017 0.000735 35.801834 35.803395 0.001561 0.002580 Task_IoHw_Period_Expl_Swc6to5_Outfunc

35.815864 35.817562 0.001698 35.808534 35.808806 0.000272 35.810086 35.810925 0.000839 35.811853 35.813463 0.001610 0.002721 Task_IoHw_Period_Impl_Swc5to6_Outfunc

35.817915 35.818170 0.000255 35.819406 35.820125 0.000719 35.821018 35.822531 0.001513 0.002487 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011079

35.823529 35.823790 0.000261 35.824872 35.825607 0.000735 35.826572 35.828290 0.001718 0.002714 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007417

36.772858 36.775206 0.002348 Task_Event_Impl_Swc3to4_Outfunc

36.783810 36.785705 0.001895 36.775729 36.776025 0.000296 36.777224 36.777944 0.000720 36.778933 36.780709 0.001776 0.002792 Task_Event_Expl_Swc4to3_Outfunc

36.786325 36.786579 0.000254 36.787718 36.788525 0.000807 36.789422 36.790945 0.001523 0.002584 Task_Event_Impl_Swc3to4_Infunc 0.012799

36.792673 36.792991 0.000318 36.793963 36.794790 0.000827 36.795616 36.797227 0.001611 0.002756 Task_Event_Expl_Swc4to3_Infunc 0.008254

36.805330 36.807321 0.001991 36.798632 36.798909 0.000277 36.800011 36.800836 0.000825 36.801593 36.802981 0.001388 0.002490 Task_IoHw_Period_Impl_Swc5to6_Outfunc

36.814455 36.816241 0.001786 36.807766 36.808018 0.000252 36.808976 36.809654 0.000678 36.810475 36.812045 0.001570 0.002500 Task_IoHw_Period_Expl_Swc6to5_Outfunc

36.816684 36.816908 0.000224 36.817969 36.818797 0.000828 36.819696 36.821299 0.001603 0.002655 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011367

36.822121 36.822391 0.000270 36.823393 36.824126 0.000733 36.824896 36.826345 0.001449 0.002452 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007151

37.773288 37.775697 0.002409 Task_Event_Impl_Swc3to4_Outfunc

37.784584 37.786932 0.002348 37.776228 37.776515 0.000287 37.777669 37.778397 0.000728 37.779453 37.781431 0.001978 0.002993 Task_Event_Expl_Swc4to3_Outfunc

37.787462 37.787708 0.000246 37.788590 37.789279 0.000689 37.790184 37.791759 0.001575 0.002510 Task_Event_Impl_Swc3to4_Infunc 0.013435

37.793354 37.793626 0.000272 37.794605 37.795452 0.000847 37.796371 37.797981 0.001610 0.002729 Task_Event_Expl_Swc4to3_Infunc 0.008637

37.806401 37.808526 0.002125 37.799458 37.799762 0.000304 37.800783 37.801490 0.000707 37.802325 37.803899 0.001574 0.002585 Task_IoHw_Period_Impl_Swc5to6_Outfunc

37.815615 37.817487 0.001872 37.808886 37.809126 0.000240 37.810053 37.810734 0.000681 37.811659 37.813268 0.001609 0.002530 Task_IoHw_Period_Expl_Swc6to5_Outfunc

37.818016 37.818244 0.000228 37.819528 37.820388 0.000860 37.821281 37.822818 0.001537 0.002625 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011517

37.823811 37.824099 0.000288 37.825078 37.825816 0.000738 37.826677 37.828077 0.001400 0.002426 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007301

18

19

16

17

163

 V2_0_1111 read-process 16 to 19 ms 11.7.15.

Runnable In

Entry in

ms End in ms Duration in ms Read function Entry in ms End in ms

Duration in

ms

Communicati

on (write +

read only)

sum in ms

Communic

ation

(w,r,n)

0.000000 0.013158

0.001583 0.009822

Runnable_Swc04_Odr_Impl_DataStruct_In 34.793272 34.793728 0.000456 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 34.798734 34.799528 0.000794

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 34.798830 34.799420 0.000590

0.000000 0.011977

0.000427 0.007752

Runnable_Swc06_Odr_Impl_DataDIN2_In 34.824223 34.824307 0.000084 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 34.829170 34.829563 0.000393

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 34.829312 34.829456 0.000144

0.001614 0.014190

0.000000 0.007958

Runnable_Swc03_Odr_Expl_DataStruct_In 35.791389 35.792182 0.000793

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 35.791485 35.792074 0.000589

Runnable_Swc04_Odr_Impl_DataStruct_In 35.797779 35.798288 0.000509 Macros no functions 0.000000 0.000000 0.000000

0.000491 0.011570

0.000000 0.007417

Runnable_Swc05_Odr_Expl_DataDIN3_In 35.822842 35.823232 0.000390

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 35.822985 35.823129 0.000144

Runnable_Swc06_Odr_Impl_DataDIN2_In 35.828673 35.828761 0.000088 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.012799

0.001418 0.009672

Runnable_Swc04_Odr_Impl_DataStruct_In 36.791659 36.792143 0.000484 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 36.797496 36.798271 0.000775

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 36.797589 36.798165 0.000576

0.000000 0.011367

0.000420 0.007571

Runnable_Swc06_Odr_Impl_DataDIN2_In 36.821669 36.821753 0.000084 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 36.826679 36.827073 0.000394

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 36.826822 36.826965 0.000143

0.000000 0.013435

0.001519 0.010156

Runnable_Swc04_Odr_Impl_DataStruct_In 37.792475 37.792972 0.000497 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 37.798245 37.798977 0.000732

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 37.798333 37.798872 0.000539

0.000000 0.011517

0.000445 0.007746

Runnable_Swc06_Odr_Impl_DataDIN2_In 37.823280 37.823401 0.000121 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 37.828417 37.828859 0.000442

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 37.828589 37.828756 0.000167

18

19

16

17

164

 V2_0_1111 write-process 20 to 23 ms 11.7.16.

Name

Entry in

msec End in ms

Duration in

ms Runnable Out Entry in ms End in ms

Duration in

ms Write function Entry in ms End in ms

Duration

in ms

Task_Event_Expl_Swc4to3_Outfunc 38.779210 38.785498 0.006288 Runnable_Swc04_Event_Expl_DataStruct_Out 38.779326 38.785472 0.006146

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct
38.782050 38.785356 0.000987

Task_Event_Impl_Swc3to4_Outfunc 38.791301 38.795873 0.004572 Runnable_Swc03_Event_Impl_DataStruct_Out 38.791378 38.793462 0.002084 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 38.800833 38.801683 0.000850

Task_Event_Impl_Swc3to4_Infunc 38.806441 38.807512 0.001071

Task_IoHw_Period_Expl_Swc6to5_Outfunc 38.812621 38.817295 0.004674 Runnable_Swc06_Period_Expl_DataDIN3_Out 38.812709 38.817279 0.004570

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 38.814876 38.817169 0.000352

Task_IoHw_Period_Impl_Swc5to6_Outfunc 38.822436 38.826557 0.004121 Runnable_Swc05_Period_Impl_DataDIN2_Out 38.822510 38.824504 0.001994 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 38.831593 38.832128 0.000535

Task_IoHw_Period_Impl_Swc5to6_Infunc 38.837386 38.837651 0.000265

Task_Period_Expl_Swc2to1_Outfunc 38.842490 38.845530 0.003040 Runnable_Swc02_Period_Expl_DataStruct_Out 38.842560 38.845515 0.002955

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Period_

Expl_DataStruct 38.842666 38.845411 0.000901

Task_Period_Impl_Swc1to2_Outfunc 38.850399 38.852949 0.002550 Runnable_Swc01_Period_Impl_DataStruct_Out 38.850654 38.850669 0.000015 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1_Infunc 38.857659 38.858855 0.001196

Task_Period_Impl_Swc1to2_Infunc 38.863684 38.864605 0.000921

osIdleLoop 38.918663 39.737083 0.818420

Task_Event_Expl_Swc4to3_Outfunc 39.770629 39.777278 0.006649 Runnable_Swc04_Event_Expl_DataStruct_Out 39.770748 39.777257 0.006509

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 39.773506 39.777147 0.001098

Task_Event_Impl_Swc3to4_Outfunc 39.782736 39.787330 0.004594 Runnable_Swc03_Event_Impl_DataStruct_Out 39.782811 39.784853 0.002042 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 39.792306 39.793168 0.000862

Task_Event_Impl_Swc3to4_Infunc 39.798185 39.799138 0.000953

Task_IoHw_Period_Expl_Swc6to5_Outfunc 39.804092 39.808609 0.004517 Runnable_Swc06_Period_Expl_DataDIN3_Out 39.804171 39.808591 0.004420

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 39.806284 39.808478 0.000286

Task_IoHw_Period_Impl_Swc5to6_Outfunc 39.813856 39.818125 0.004269 Runnable_Swc05_Period_Impl_DataDIN2_Out 39.813936 39.816136 0.002200 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 39.823257 39.823665 0.000408

Task_IoHw_Period_Impl_Swc5to6_Infunc 39.828731 39.828994 0.000263

osIdleLoop 39.974972 40.737192 0.762220

Task_Event_Impl_Swc3to4_Outfunc 40.771059 40.777476 0.006417 Runnable_Swc03_Event_Impl_DataStruct_Out 40.771188 40.773916 0.002728 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 40.783471 40.789025 0.005554 Runnable_Swc04_Event_Expl_DataStruct_Out 40.783539 40.789008 0.005469

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 40.785800 40.788902 0.000991

Task_Event_Impl_Swc3to4_Infunc 40.793785 40.794788 0.001003

Task_Event_Expl_Swc4to3_Infunc 40.799609 40.800592 0.000983 0.000000

Task_IoHw_Period_Impl_Swc5to6_Outfunc 40.805493 40.809961 0.004468 Runnable_Swc05_Period_Impl_DataDIN2_Out 40.805576 40.807695 0.002119 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 40.814627 40.818966 0.004339 Runnable_Swc06_Period_Expl_DataDIN3_Out 40.814703 40.818955 0.004252

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 40.816534 40.818850 0.000313

Task_IoHw_Period_Impl_Swc5to6_Infunc 40.824159 40.824517 0.000358

Task_IoHw_Period_Expl_Swc6to5_Infunc 40.829519 40.830035 0.000516

osIdleLoop 40.998327 41.737294 0.738967

Task_Event_Expl_Swc4to3_Outfunc 41.770661 41.777856 0.007195 Runnable_Swc04_Event_Expl_DataStruct_Out 41.770800 41.777832 0.007032

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 41.773810 41.777727 0.001247

Task_Event_Impl_Swc3to4_Outfunc 41.783901 41.788776 0.004875 Runnable_Swc03_Event_Impl_DataStruct_Out 41.783979 41.786235 0.002256 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 41.794133 41.794991 0.000858

Task_Event_Impl_Swc3to4_Infunc 41.800194 41.801147 0.000953

Task_IoHw_Period_Impl_Swc5to6_Outfunc 41.806585 41.810866 0.004281 Runnable_Swc05_Period_Impl_DataDIN2_Out 41.806670 41.808667 0.001997 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 41.815635 41.819875 0.004240 Runnable_Swc06_Period_Expl_DataDIN3_Out 41.815706 41.819860 0.004154

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 41.817567 41.819758 0.000274

Task_IoHw_Period_Impl_Swc5to6_Infunc 41.824940 41.825199 0.000259

Task_IoHw_Period_Expl_Swc6to5_Infunc 41.830002 41.830408 0.000406

osIdleLoop 41.935127 42.737349 0.802222

20

21

22

23

165

 V2_0_1111 notification process 20 to 23 ms 11.7.17.

osActivate

Task

Entry in ms End in ms

Duration

in ms

osCheckInterru

ptEnabled

Entry in ms End in ms

Duration

in ms

osSchedule

Prio Entry in

ms End in ms

Duration in

ms

osDispateche

r Entry in ms End in ms Duration

Notification

Duration in ms

(without

ActivateTask)

Duration

notification

38.782891 38.785210 0.002319 Task_Event_Expl_Swc4to3_Outfunc

38.794089 38.795850 0.001761 38.786030 38.786324 0.000294 38.787530 38.788353 0.000823 38.789345 38.791090 0.001745 0.002862 Task_Event_Impl_Swc3to4_Outfunc

38.796330 38.796606 0.000292 38.797678 38.798488 0.000688 38.799311 38.800649 0.001574 0.002554 Task_Event_Expl_Swc4to3_Infunc
0.012307

38.802067 38.802335 0.000266 38.803314 38.804151 0.000829 38.804958 38.806254 0.001359 0.002454 Task_Event_Impl_Swc3to4_Infunc 0.007619

38.815044 38.816985 0.001941 38.807996 38.808263 0.000351 38.809325 38.810053 0.000797 38.810871 38.812431 0.001477 0.002625 Task_IoHw_Period_Expl_Swc6to5_Outfunc

38.824616 38.826537 0.001921 38.817619 38.817863 0.000243 38.818985 38.819724 0.000855 38.820630 38.822227 0.001547 0.002645 Task_IoHw_Period_Impl_Swc5to6_Outfunc

38.826947 38.827281 0.000296 38.828224 38.829007 0.000761 38.829909 38.831409 0.001577 0.002634 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011341

38.832411 38.832670 0.000379 38.833788 38.834644 0.000731 38.835562 38.837172 0.001670 0.002780 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007870

38.843355 38.845199 0.001844 38.837988 38.838218 0.000282 38.839295 38.840072 0.000916 38.840841 38.842277 0.001775 0.002973 Task_Period_Expl_Swc2to1_Outfunc

38.851227 38.852933 0.001706 38.845840 38.846072 0.000240 38.847014 38.847812 0.000744 38.848734 38.850145 0.001498 0.002482 Task_Period_Impl_Swc1to2_Outfunc

38.853258 38.853499 0.000228 38.854487 38.855296 0.000829 38.856113 38.857454 0.001444 0.002501 Task_Period_Expl_Swc2to1_Infunc 0.009377

38.859225 38.859572 0.000228 38.860469 38.861190 0.000829 38.861995 38.863504 0.001444 0.002501 Task_Period_Impl_Swc1to2_Infunc 0.007904

39.774451 39.776994 0.002543 Task_Event_Expl_Swc4to3_Outfunc

39.785484 39.787315 0.001831 39.777695 39.777979 0.000284 39.779236 39.780079 0.000843 39.780963 39.782527 0.001564 0.002691 Task_Event_Impl_Swc3to4_Outfunc

39.787640 39.787897 0.000257 39.788917 39.789699 0.000782 39.790539 39.792131 0.001592 0.002631 Task_Event_Expl_Swc4to3_Infunc 0.012459

39.793491 39.793725 0.000234 39.794842 39.795697 0.000855 39.796553 39.797981 0.001428 0.002517 Task_Event_Impl_Swc3to4_Infunc 0.007841

39.806451 39.808359 0.001908 39.799522 39.799772 0.000250 39.800818 39.801536 0.000718 39.802345 39.803881 0.001536 0.002504 Task_IoHw_Period_Expl_Swc6to5_Outfunc

39.816225 39.818108 0.001883 39.808980 39.809236 0.000256 39.810379 39.811190 0.000811 39.812021 39.813645 0.001624 0.002691 Task_IoHw_Period_Impl_Swc5to6_Outfunc

39.818468 39.818708 0.000240 39.819851 39.820597 0.000746 39.821505 39.823077 0.001572 0.002558 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011426

39.823954 39.824190 0.000236 39.825200 39.825944 0.000744 39.826892 39.828540 0.001648 0.002628 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007477

40.774861 40.777451 0.002590 Task_Event_Impl_Swc3to4_Outfunc

40.786667 40.788778 0.002111 40.777968 40.778261 0.000293 40.779461 40.780234 0.000773 40.781283 40.783263 0.001980 0.003046 Task_Event_Expl_Swc4to3_Outfunc

40.789368 40.789626 0.000258 40.790476 40.791148 0.000672 40.792011 40.793581 0.001570 0.002500 Task_Event_Impl_Swc3to4_Infunc 0.013690

0.000000 40.795219 40.795590 0.000371 40.796481 40.797190 0.000709 40.797981 40.799431 0.001450 0.002530 Task_Event_Expl_Swc4to3_Infunc 0.008144

40.807812 40.809944 0.002132 40.800976 40.801244 0.000268 40.802291 40.803009 0.000718 40.803799 40.805281 0.001482 0.002468 Task_IoHw_Period_Impl_Swc5to6_Outfunc

40.816729 40.818732 0.002003 40.810305 40.810545 0.000240 40.811503 40.812181 0.000678 40.812969 40.814445 0.001476 0.002394 Task_IoHw_Period_Expl_Swc6to5_Outfunc

40.819175 40.819399 0.000224 40.820564 40.821405 0.000841 40.822312 40.823936 0.001624 0.002689 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011554

40.824874 40.825109 0.000235 40.826193 40.827051 0.000858 40.827891 40.829299 0.001408 0.002501 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007551

41.774935 41.777605 0.002670 Task_Event_Expl_Swc4to3_Outfunc

41.786875 41.788760 0.001885 41.778327 41.778624 0.000297 41.779942 41.780806 0.000864 41.781834 41.783722 0.001888 0.003049 Task_Event_Impl_Swc3to4_Outfunc

41.789086 41.789342 0.000256 41.790466 41.791294 0.000828 41.792301 41.793949 0.001648 0.002732 Task_Event_Expl_Swc4to3_Infunc 0.013326

41.795449 41.795742 0.000293 41.796775 41.797499 0.000724 41.798351 41.800013 0.001662 0.002679 Task_Event_Impl_Swc3to4_Infunc 0.008154

41.808779 41.810851 0.002072 41.801625 41.801924 0.000299 41.803101 41.803835 0.000734 41.804688 41.806372 0.001684 0.002717 Task_IoHw_Period_Impl_Swc5to6_Outfunc

41.817724 41.819641 0.001917 41.811169 41.811417 0.000248 41.812329 41.813118 0.000789 41.813911 41.815427 0.001516 0.002553 Task_IoHw_Period_Expl_Swc6to5_Outfunc

41.820171 41.820399 0.000228 41.821409 41.822107 0.000698 41.823056 41.824727 0.001671 0.002597 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011462

41.825563 41.825799 0.000236 41.826800 41.827536 0.000736 41.828315 41.829790 0.001475 0.002447 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007220

23

20

21

22

166

 V2_0_1111 read-process 20 to 23 ms 11.7.18.

Runnable In

Entry in

ms End in ms Duration in ms Read function Entry in ms End in ms

Duration in

ms

Communicati

on (write +

read only)

sum in ms

Communic

ation

(w,r,n)

0.001556 0.013863

0.000000 0.007619

Runnable_Swc03_Odr_Expl_DataStruct_In 38.800895 38.801664 0.000769

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 38.800987 38.801556 0.000569

Runnable_Swc04_Odr_Impl_DataStruct_In 38.806979 38.807487 0.000508 Macros no functions 0.000000 0.000000 0.000000

0.000501 0.011842

0.000000 0.007870

Runnable_Swc05_Odr_Expl_DataDIN3_In 38.831712 38.832114 0.000402

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 38.831862 38.832011 0.000149

Runnable_Swc06_Odr_Impl_DataDIN2_In 38.837548 38.837635 0.000087 Macros no functions 0.000000 0.000000 0.000000

0.001740 0.011117

0.000000 0.007904

Runnable_Swc01_Odr_Expl_DataStruct_In 38.857751 38.858836 0.001085

Rte_Read_SwcPeriod01_R_Swc01_DataStruct_Odr_

Expl_DataStruct 38.857890 38.858729 0.000839

Runnable_Swc02_Odr_Impl_DataStruct_In 38.864152 38.864589 0.000437 Macros no functions 0.000000 0.000000 0.000000

0.001681 0.014140

0.000000 0.007841

Runnable_Swc03_Odr_Expl_DataStruct_In 39.792369 39.799119 0.006750

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 39.792464 39.793047 0.000583

Runnable_Swc04_Odr_Impl_DataStruct_In 39.798667 39.799119 0.000452 Macros no functions 0.000000 0.000000 0.000000

0.000396 0.011822

0.000000 0.007477

Runnable_Swc05_Odr_Expl_DataDIN3_In 39.823340 39.823650 0.000310

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 39.823444 39.823554 0.000110

Runnable_Swc06_Odr_Impl_DataDIN2_In 39.828887 39.828974 0.000087 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.013690

0.001668 0.009812

Runnable_Swc04_Odr_Impl_DataStruct_In 40.794291 40.794766 0.000475 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 40.799683 40.800573 0.000890

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 40.799795 40.800472 0.000677

0.000000 0.011554

0.000457 0.008008

Runnable_Swc06_Odr_Impl_DataDIN2_In 40.824385 40.824499 0.000114 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 40.829633 40.830022 0.000389

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 40.829776 40.829920 0.000144

0.001816 0.015142

0.000000 0.008154

Runnable_Swc03_Odr_Expl_DataStruct_In 41.794195 41.794968 0.000773

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 41.794287 41.794856 0.000569

Runnable_Swc04_Odr_Impl_DataStruct_In 41.800671 41.801123 0.000452 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.011462

0.000384 0.007604

Runnable_Swc06_Odr_Impl_DataDIN2_In 41.825096 41.825181 0.000085 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 41.830085 41.830394 0.000309

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 41.830189 41.830299 0.000110

23

20

21

22

167

 V2_0_1111 write-process 24 to 25 ms 11.7.19.

Name

Entry in

msec End in ms

Duration in

ms Runnable Out Entry in ms End in ms

Duration in

ms Write function Entry in ms End in ms

Duration

in ms

Task_Event_Expl_Swc4to3_Outfunc 42.771070 42.778041 0.006971 Runnable_Swc04_Event_Expl_DataStruct_Out 42.771208 42.778011 0.006803

Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex

pl_DataStruct 42.774199 42.777899 0.001161

Task_Event_Impl_Swc3to4_Outfunc 42.783993 42.788629 0.004636 Runnable_Swc03_Event_Impl_DataStruct_Out 42.784079 42.786189 0.002110 Macros no functions 0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Infunc 42.793670 42.794517 0.000847

Task_Event_Impl_Swc3to4_Infunc 42.799431 42.800509 0.001078

Task_IoHw_Period_Expl_Swc6to5_Outfunc 42.805878 42.810334 0.004456 Runnable_Swc06_Period_Expl_DataDIN3_Out 42.805973 42.810321 0.004348

Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri

od_Expl_D_CAN0_D_Input_DIN3_Swi 42.808169 42.810214 0.000265

Task_IoHw_Period_Impl_Swc5to6_Outfunc 42.815337 42.819485 0.004148 Runnable_Swc05_Period_Impl_DataDIN2_Out 42.815413 42.817331 0.001918 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Infunc 42.824419 42.824938 0.000519

Task_IoHw_Period_Impl_Swc5to6_Infunc 42.829759 42.830023 0.000264

osIdleLoop 42.894045 43.737456 0.843411

Task_Event_Impl_Swc3to4_Outfunc 43.779999 43.785825 0.005826 Runnable_Swc03_Event_Impl_DataStruct_Out 43.780108 43.782595 0.002487

Macros no functions

0.000000 0.000000 0.000000

Task_Event_Expl_Swc4to3_Outfunc 43.791842 43.797244 0.005402 Runnable_Swc04_Event_Expl_DataStruct_Out 43.791905 43.797226 0.005321 Rte_Write_SwcEvent04_P_Swc04_DataStruct_Event_Ex 43.793980 43.797120 0.000928

Task_Event_Impl_Swc3to4_Infunc 43.802485 43.803508 0.001023

Task_Event_Expl_Swc4to3_Infunc 43.808341 43.809136 0.000795

Task_IoHw_Period_Impl_Swc5to6_Outfunc 43.814114 43.818525 0.004411 Runnable_Swc05_Period_Impl_DataDIN2_Out 43.814210 43.816349 0.002139 Macros no functions 0.000000 0.000000 0.000000

Task_IoHw_Period_Expl_Swc6to5_Outfunc 43.823300 43.827729 0.004429 Runnable_Swc06_Period_Expl_DataDIN3_Out 43.823376 43.827714 0.004338 Rte_Write_SwcIoHwPeriod06_P_Swc06_DataDIN3_Peri 43.825341 43.827605 0.000323

Task_IoHw_Period_Impl_Swc5to6_Infunc 43.832913 43.833270 0.000357

Task_IoHw_Period_Expl_Swc6to5_Infunc 43.838135 43.838746 0.000611

Task_Period_Impl_Swc1to2_Outfunc 43.843952 43.846528 0.002576 Runnable_Swc01_Period_Impl_DataStruct_Out 43.844163 43.844179 0.000016 Macros no functions 0.000000 0.000000 0.000000

Task_Period_Expl_Swc2to1_Outfunc 43.851402 43.854587 0.003185 Runnable_Swc02_Period_Expl_DataStruct_Out 43.851483 43.854566 0.003083

Rte_Write_SwcPeriod02_P_Swc02_DataStruct_Period_

Expl_DataStruct 43.851606 43.854456 0.000914

Task_Period_Impl_Swc1to2_Infunc 43.859358 43.860351 0.000993

Task_Period_Expl_Swc2to1_Infunc 43.865302 43.866363 0.001061

osIdleLoop 43.914072 44.737563 0.823491

25

24

168

 V2_0_1111 notification process 24 to 25 ms 11.7.20.

osActivate

Task

Entry in ms End in ms

Duration

in ms

osCheckInterru

ptEnabled

Entry in ms End in ms

Duration

in ms

osSchedule

Prio Entry in

ms End in ms

Duration in

ms

osDispateche

r Entry in ms End in ms Duration

Notification

Duration in ms

(without

ActivateTask)

Duration

notification

42.775210 42.777749 0.002539 Task_Event_Expl_Swc4to3_Outfunc

42.786806 42.788610 0.001804 42.778633 42.778961 0.000328 42.780226 42.781085 0.000859 42.782120 42.783813 0.001693 0.002880 Task_Event_Impl_Swc3to4_Outfunc

42.789020 42.789272 0.000252 42.790169 42.790844 0.000675 42.791804 42.793486 0.001682 0.002609 Task_Event_Expl_Swc4to3_Infunc 0.012664

42.794787 42.795025 0.000238 42.796090 42.796825 0.000735 42.797727 42.799245 0.001518 0.002491 Task_Event_Impl_Swc3to4_Infunc 0.007751

42.808316 42.810096 0.001780 42.801061 42.801379 0.000318 42.802609 42.803436 0.000827 42.804226 42.805686 0.001460 0.002605 Task_IoHw_Period_Expl_Swc6to5_Outfunc

42.817444 42.819470 0.002026 42.810590 42.810826 0.000236 42.811984 42.812732 0.000748 42.813623 42.815163 0.001540 0.002524 Task_IoHw_Period_Impl_Swc5to6_Outfunc

42.819795 42.820044 0.000249 42.821053 42.821854 0.000801 42.822675 42.824222 0.001547 0.002597 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.011049

42.825235 42.825572 0.000337 42.826500 42.827226 0.000726 42.828036 42.829572 0.001536 0.002599 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.007741

43.783433 43.785799 0.002366 Task_Event_Impl_Swc3to4_Outfunc

43.794733 43.796945 0.002212 43.786357 43.786670 0.000313 43.787935 43.788770 0.000835 43.789777 43.791636 0.001859 0.003007 Task_Event_Expl_Swc4to3_Outfunc

43.797601 43.797851 0.000292 43.798886 43.799662 0.000688 43.800529 43.802268 0.001574 0.002554 Task_Event_Impl_Swc3to4_Infunc 0.013329

43.803952 43.804309 0.000266 43.805214 43.805927 0.000829 43.806712 43.808159 0.001359 0.002454 Task_Event_Expl_Swc4to3_Infunc 0.008243

43.816461 43.818508 0.002047 43.809412 43.809627 0.000351 43.810727 43.811563 0.000797 43.812363 43.813899 0.001477 0.002625 Task_IoHw_Period_Impl_Swc5to6_Outfunc

43.825546 43.827487 0.001941 43.818876 43.819109 0.000243 43.820066 43.820745 0.000855 43.821566 43.823113 0.001547 0.002645 Task_IoHw_Period_Expl_Swc6to5_Outfunc

43.828025 43.828245 0.000296 43.829314 43.830025 0.000761 43.830979 43.832690 0.001577 0.002634 Task_IoHw_Period_Impl_Swc5to6_Infunc 0.011755

43.833701 43.834099 0.000379 43.835108 43.835845 0.000731 43.836597 43.837940 0.001670 0.002780 Task_IoHw_Period_Expl_Swc6to5_Infunc 0.007712

43.844764 43.846514 0.001750 43.839029 43.839252 0.000282 43.840537 43.841381 0.000916 43.842207 43.843740 0.001775 0.002973 Task_Period_Impl_Swc1to2_Outfunc

43.852403 43.854339 0.001936 43.846811 43.847052 0.000240 43.848036 43.848724 0.000744 43.849614 43.851181 0.001498 0.002482 Task_Period_Expl_Swc2to1_Outfunc

43.855012 43.855263 0.000228 43.856169 43.856843 0.000829 43.857726 43.859186 0.001444 0.002501 Task_Period_Impl_Swc1to2_Infunc 0.009918

43.860681 43.861035 0.000228 43.861977 43.862769 0.000829 43.863644 43.865113 0.001444 0.002501 Task_Period_Expl_Swc2to1_Infunc 0.007931

24

25

169

 V2_0_1111 read-process 24 to 25 ms 11.7.21.

Runnable In

Entry in

ms End in ms Duration in ms Read function Entry in ms End in ms

Duration in

ms

Communicati

on (write +

read only)

sum in ms

Communic

ation

(w,r,n)

0.001737 0.014401

0.000000 0.007751

Runnable_Swc03_Odr_Expl_DataStruct_In 42.793732 42.794504 0.000772

Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E

xpl_DataStruct 42.793826 42.794402 0.000576

Runnable_Swc04_Odr_Impl_DataStruct_In 42.799970 42.800482 0.000512 Macros no functions 0.000000 0.000000 0.000000

0.000409 0.011458

0.000000 0.007741

Runnable_Swc05_Odr_Expl_DataDIN3_In 42.824533 42.824923 0.000390

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 42.824676 42.824820 0.000144

Runnable_Swc06_Odr_Impl_DataDIN2_In 42.829921 42.830007 0.000086 Macros no functions 0.000000 0.000000 0.000000

0.000000 0.013329

0.001463 0.009706

Runnable_Swc04_Odr_Impl_DataStruct_In 43.803001 43.803485 0.000484 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc03_Odr_Expl_DataStruct_In 43.808399 43.809122 0.000723 Rte_Read_SwcEvent03_R_Swc03_DataStruct_Odr_E 43.808485 43.809020 0.000535

0.000000 0.011755

0.000495 0.008207

Runnable_Swc06_Odr_Impl_DataDIN2_In 43.833133 43.833248 0.000115
Macros no functions

0.000000 0.000000 0.000000

Runnable_Swc05_Odr_Expl_DataDIN3_In 43.838278 43.838732 0.000454

Rte_Read_SwcIoHwPeriod05_R_Swc05_DataDIN3_P

eriod_Expl_D_CAN0_D_Input_DIN3_Swi 43.838457 43.838629 0.000172

0.000000 0.009918

0.001656 0.009587

Runnable_Swc02_Odr_Impl_DataStruct_In 43.859864 43.860334 0.000470 Macros no functions 0.000000 0.000000 0.000000

Runnable_Swc01_Odr_Expl_DataStruct_In 43.865383 43.866349 0.000966

Rte_Read_SwcPeriod01_R_Swc01_DataStruct_Odr_

Expl_DataStruct 43.865505 43.866247 0.000742

24

25

