
University of Huddersfield Repository

Dafinoiu, A.A., Higgins, Joshua and Holmes, Violeta

Accelerating High-Throughput Computing through OpenCL

Original Citation

Dafinoiu, A.A., Higgins, Joshua and Holmes, Violeta (2016) Accelerating High-Throughput 
Computing through OpenCL. In: Proceedings of the EMerging Technology (EMiT) Conference 
2016. The Emerging Technology (EMiT) Conference, Manchester, pp. 46-49. ISBN 978-0-
9933426-3-9 

This version is available at http://eprints.hud.ac.uk/id/eprint/28627/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Accelerating High-Throughput Computing through
OpenCL

Andrei Dafinoiu, Joshua Higgins, Violeta Holmes
High-Performance Computing Research Group

University of Huddersfield
Huddersfield, United Kingdom

Abstract—As the computational trend diverges from standard
CPU computing, to encompass GPUs and other accelerators, the
need to integrate these unused resources within existing systems
becomes apparent. This paper presents the implementation of
a HTCondor pool with GPU execution capabilities through
OpenCL. Implementation is discussed from both the system
setup and the software design standpoint. The GPU landscape is
investigated and the efficiency of the system is evaluated via Fast-
Fourier Transform computations. Experimental results show that
HTCondor GPU performance matches a dedicated GPU cluster.

I. INTRODUCTION

In more recent years, the computing environment has seen a
shift from the traditional CPU based computing onto a much
divese, and more parallel architecture such as GPUs. As of
November 2015, two of the top ten supercomputers make use
of GPU accelerated computing[1].

However, not all computational tasks are based on raw exe-
cution performance. Thus the emergence of High-Throughput
Computing (HTC), a branch focusing on computational tasks
that require the use of resources over an extended period of
time.

The HTC community is not concerned about the execution
rate of jobs, but rather, the parallelism of discrete jobs, given
a much larger pool of resources. The interest is in how many
jobs can be executed over a given amount of time, not the
execution speed of a single job. HTC can take advantage of
opportunistic resources, for example idle PCs in a University
campus, to execute tasks, thus ”stealing” CPU time[2].

OpenCL is a heterogeneous programming framework for the
development of applications that span across multiple archi-
tectures, including CPUs, GPUs, DSPs, and other accelerators.
Whilst, from a computing standpoint, GPUs are being used
as accelerators in supercomputers, the commodity, general
purpose GPUs (GPGPUs) available in typical workstations
may not have a significant impact on the fast processing
required for High Performance Computing. In HTC, the fast
performance of individual units is not the most important
consideration, thus making HTC a better candidate for GPGPU
based acceleration[3].

Previous work has shown that middleware vendors support
the idea of GPU computing in HTC through built-in detection
methods of GPU capabilities, as it is the case with newer
versions of HTCondor[4]. Typically this relies on CUDA, the
proprietary GPU computing framework developed by NVidia.

However, CUDA is limited to newer NVidia GPUs, while also
requiring special packages to be installed on the system in
order to function[5]. In terms of general purpose PCs available
on a university campus, only a small number of workstations
may be capable of supporting CUDA. In order to exploit a
much larger and more diverse mix of computing resources,
OpenCL is a framework that can be used to exploit a much
larger pool of devices than CUDA.

While attempts have been made to create computing en-
vironments using commodity GPUs, these implementations
typically operate as dedicated clusters with the sole purpose
of emulating typical GPU clusters, thus requiring large invest-
ments to develop[6].

A significant number of UK universities deploy HTC pools
through HTCondor, including Oxford Unversity, Cambridge
University, and Manchester University[7], however there is
limited research output indicating the development of GPU
integration within these pools.

This research aims to expand the capabilities of the existing
HTC system by enabling use of the GPU resources in addition
to the CPU resources of the pool, to be utilised during
periods when they would otherwise be idle, supplementing the
dedicated GPU computing cluster. To evaluate the ease-of-use,
efficiency and flexibility of the OpenCL framework across the
heterogeneous HTCondor pool, an FFT computation test case
is implemented.

By increasing the amount of GPU resources available to
researchers it is anticipated that the system would be more
appealing, and GPU computing would be more accessible.
This, in turn, would encourage some of the researchers using
CPU intensive programs to shift to GPU instead, and improve
utilisation of dormant resources.

II. BACKGROUND

A. HTCondor

HTCondor is a workload management system used primar-
ily for executing processes in a opportunistic environment,
where tasks are distributed between resources as they become
available, allowing the user to take advantage of otherwise
idle resources. It features execution queues, job scheduling,
priority, and resource discovery and management[2].

HTCondor employs cycle-stealing, the ability to use general
workstations whilst they are unused for their specific purpose
and would otherwise sit idle. HTCondor also contains a



checkpoint system that allows it to migrate jobs to different
machines once a machine starts to be used by the owner.

Submitted jobs are matched to resources by using the
ClassAd mechanism, a framework that allows both jobs and
machines to specify requirements and or preferences in regards
to resource allocation.

The University of Huddersfield implements a HTCondor
pool across all workstations available on campus, ranging from
low-end library dedicated PCs to high-performance worksta-
tions in the design laboratories[7]. The university has a policy
in place setting the minimum core count of a processor to 4,
however no restrictions apply to the GPU components. The
system is accessed via SSH authentication on the HTCondor
headnode, and user data storage is offered via a GLUSTER
based mirrored storage.

The HTCondor pool actively updates available resources,
with offline machines being removed from the HTCondor pool.
There are approximately 7000 CPU cores registered within
the pool, however, the number of available cores changes
constantly based on the availability of PCs on campus. On
average, between 700 and 3000 are available for opportunistic
jobs at peak times.

B. OpenCL
OpenCL is an open source framework for developing het-

erogeneous programs, created by a consortium of leading com-
panies to develop standards for graphic acceleration and paral-
lel computation, which has grown to include most commodity
CPU/GPU providers, as well as specialised accelerators in the
form of FPGAs and DSPs[3].

Since OpenCL has wide device support, workstation speci-
fications are not as relevant at the programming stage of devel-
opment, making OpenCL a viable solution for environments
that contain more than one architecture or operating system.
Its ability to operate using base drivers promises a much faster
integration with existing systems.

Development of OpenCL applications is split into two
different files. The host file is a C code that deals with the
outer control logic of the system, dispatching work kernels
to the compute units, controlling memory read/writes and
executing the serial segments of the code. The kernel is also
written in C, however it also incorporates OpenCL specific
syntax. It represents the parallel component of the program,
to be executed on the compute nodes, and can be compiled at
run time by the host, to allow for a more diverse execution
environment.

The flexibility of OpenCL allows for the creation of pro-
grams targeting machines with CPUs and GPUs (used individ-
ually or together), CPUs and other accelerators, or dedicated
clusters that contain multiple GPUs (or CPUs) within each
node.

III. OPENCL ON HTCONDOR

In order to evaluate feasibility of OpenCL within a HT-
Condor pool, a test case was designed around the use of
Fast-Fourier Transforms, as they are the basis for many
computational algorithms in scientific software[8].

A. Configuring Condor

A HTCondor job must be scheduled for execution within a
’slot’. The default implementation advertises separate slots for
each CPU core in a machine. The HTCondor ClassAd could be
modified to add information about the GPU resource. HTCon-
dor recommends that the GPU is appended to one of the CPU
slots,[9] so that a machine may run both OpenCL and regular
CPU jobs at the same time, as can be seen in Figure 1. During
preliminary testing of this environment, it was determined that
such an implementation slows down the OpenCL execution,
for example where multi core CPU parallelism is employed,
hence a different approach was considered.

Therefore, we configured a slot that allows an OpenCL
program to block the entire machine, using all available
resources. This was done alongside the existing slots, allowing
a computer to either act as a CPU resource, advertising each
CPU node individually, or as a single OpenCL entity, as shown
in Figure 1. This dual setup is mutually exclusive, meaning
that a machine that has started running a CPU job will be
unavailable for OpenCL jobs, and vice versa.

CPU

CPU

CPU

CPU

GPU

CPU Slot

CPU Slot

CPU Slot with 
attached GPU

CPU

CPU

CPU

CPU

GPU
OpenCL 
slot

HTCondor Suggested Structure Implemented Structure

CPU

CPU

CPU

CPU

CPU Slot

CPU Slot

CPU Slot

CPU Slot

CPU Slot

or

Fig. 1. HTCondor Slot Structure

B. Implementing OpenCL

The host file is created in order to setup the OpenCL
environment, control execution and manage data transfers.
Multiple segments of the host file are reusable across different
OpenCL programs, mainly those that deal in environment
setup and data transfers. Memory sizes, work-flow and optimi-
sations depend on the targeted architecture and device. Within
the host file, the command queue which controls execution is
defined. It creates the execution kernels and enqueues them,
either sequentially or parallel, also transferring memory buffers
between devices and the host.

The kernel file, executed on the compute device, represents
the parallel segment of the program. It encapsulates the com-
putations to be executed and is directly controlled by the host.
The kernel file does not change across different architectures or
devices, and is only influenced by the type of parallelism used.
The kernel file functions as a C function, that is executed inside
a loop, either synchronously or asynchronously. Kernels can
be task parallel, executing multiple functions simultaneously



or data parallel, executing a single function on multiple data
elements.

There are two methods of compiling the kernel file. The
file can be compiled before execution, at the same time as
the host file, reducing setup latency but limiting execution to
the chosen architecture and device. Alternatively, the host file
can be allowed to compile the kernel at run time to allow for
execution across multiple devices and architectures. Figure 2
illustrates the compute device selection segment of the host
code. The arguments passed to the function determine the
selected device. As an example, assuming that a machine
has both a CPU and a GPU, to execute the kernel on one
or the other only requires a change in the arch variable in
Figure 2. In reality, this results in a functional, yet unoptimised
program. However, this example emphasises the flexibility of
the OpenCL.

Fig. 2. OpenCL host code excerpt

C. GPU discovery and landscape

HTCondor implements a function for GPU detection, how-
ever this relies primarily on CUDA and while also offering
minimal support for OpenCL, returns insufficient device de-
tails to make optimisation decisions. For this reason, a program
was designed to poll the target computer for available OpenCL
devices and record their specifications.

Since OpenCL can run on CUDA drivers, there is no
need to implement a separate CUDA program. The detection
program was executed on 1000 machines, and, as seen in
Table I, the GPU landscape discovered is quite diverse. Of the
investigated machines, 300 failed to return information about
their GPUs. This could be due to a lack of up-to-date drivers
supporting OpenCL, or unsupported GPUs. The majority of
devices are mid-range GPGPUs, mostly released around 2011.
However, the program also identified a number of much newer
generation NVIDIA GPUs, which feature a large number of
cores that are more suited for efficient parallel execution.

D. Application

The Fast-Fourier Transform technique is used to convert
time-domain signals into frequency-domain signals, and is
widely adopted by researchers in engineering and science. For
this reason it was chosen as a test-case for the system, which
will be used in the aforementioned fields[8].

To better represent a real-world use case, GPU bench-
marking was executed in a live environment, meaning that
HTCondor resources became available only when idle, and
jobs stopped when users returned to their machines. Tests were
run using using the OpenCL Fast-Fourier Transform library on

TABLE I
GPU LANDSCAPE

GPU Nr
AMD 5600 8
NVIDIA Quadro K600 42
NVIDIA GTX 610 40
NVIDIA GTX 670 75
NVIDIA GTX 750 Ti 77
NVIDIA GTX 970 133
AMD 6500 137
AMD 6400 189
Not detected 299
Total 1000

single dimensional FFTs[10]. To exploit the high number of
available compute cores present in GPUs, FFT calculations
were batched together until they filled the available memory
size. The results are displayed in GFLOPs, calculated based
on the FFTW benchmarking methodology[11]. To ensure the
accuracy of the results, each FFT calculation was iterated 1000
times.

The challenge when using HTCondor is that the resource
used for execution is unknown in advance, thus increasing
the difficulty of optimizing the application for each individual
GPU found through the discovery. For this experiment, the
lowest GPU specification was used, to ensure execution across
the entire system. For example, executing the program with a
batch size lower than the GPU maximum will not exploit the
best performance, however, using a batch size higher than the
maximum will prevent execution.

Initial testing of CPU performance has shown between
0.6 and 1.7 GFLOPs on a standard Intel i5 CPU, shown
in Figure 3. CPU benchmarking of the FFT implementation
was not executed on a similar scale to the GPU since it
would be beyond the scope of this work. More extensive CPU
benchmarking has already been carried out by [12].

27 210 213 216 219 222 225

0.5

1

1.5

Size of FFT

G
FL

O
PS

Intel i5 CPU

Fig. 3. CPU FFT execution

IV. BENCHMARKING RESULTS

A. Fast-Fourier Transforms on HTCondor GPUs

The performance diversity of the GPU landscape can be
noted in Figure 4, with the fastest GPU being an NVIDIA
GTX 970 GPU, released in 2014, and the slowest being an
AMD 5600 GPU, released in 2009. Newer generation GPUs
benefit from higher clock speeds, more internal cores, and
bigger memory buffers.

The average execution duration of the entire benchmark was
50 minutes. The first 40 % of jobs finished within 12 hours,



27 210 213 216 219 222 225

0

50

100

150

200

Size of FFT

G
FL

O
PS

GTX 970
AMD 5600

Total Average

Fig. 4. GPU Benchmarking across 700 machines

with the other 60 % taking as long as 24 hours to complete.
This is due to the fact that a job will be preempted when a
real user accesses the machine.

B. Comparison with dedicated GPU cluster

In order to compare the available compute power of the
GPUs inside HTCondor, the system needs to be compared
against an existing GPU cluster. As such, the same benchmark
program was executed on the NVIDIA C2050 GPU compute
module inside VEGA, the dedicated GPU cluster at the UoH.
In Figure 5, it can be seen that the average Condor GPU
equals the performance of the single GPU compute module.
However, the AMD GPUs are significantly slower overall,
whilst some NVIDIA GPUs based on a newer architecture
than the compute module achieve better performance.

27 210 213 216 219 222 225
0

20

40

60

80

100

120

140

Size of FFT

G
FL

O
PS

AMD
NVIDIA
VEGA

POOL AVG

Fig. 5. Average Results by GPU Manufacturer

V. SUMMARY

The successful integration of HTCondor with OpenCL has
revealed a multitude of GPU resources that can be used to
increase overall system performance for parallelizable appli-
cations, while also making GPUs more accessible in terms of
physical usage and programming.

This work has shown that newer generation GPGPUs are
able to match the performance of older dedicated GPU re-
sources. However, due to the opportunistic nature of HTCon-
dor, maximizing performance across such a system is difficult.

The flexibility and ease-of-use of OpenCL make it a promis-
ing framework for developing GPU applications across a
diverse, and constantly evolving, environment.

VI. FUTURE WORK

Further develop the HTCondor implementation to facilitate
access to GPU resources, by using the ClassAd system to
advertise more GPU specific information for each machine,
allowing users to optimise implementations for specific GPUs.
Also, by exploiting the HTCondor ranking system, execution
can be prioritised on machines with better capable GPUs
foremost.

Improve performance of OpenCL applications by automat-
ing optimisations within the host file to increase performance
within the HTCondor environment, whilst also documenting
best-practise approaches and device-specific optimisations.

ACKNOWLEDGMENT

The authors would like to thank the QueensGate Grid at the
University of Huddersfield

REFERENCES

[1] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“Gpus and the future of parallel computing,” IEEE Micro, no. 5, pp. 7–
17, 2011.

[2] M. Livny, J. Basney, R. Raman, and T. Tannenbaum, “Mechanisms for
high throughput computing,” SPEEDUP journal, vol. 11, no. 1, pp. 36–
40, 1997.

[3] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 1-3, pp. 66–73, 2010.

[4] “condor gpu discovery.” http://http://research.cs.wisc.edu/htcondor/
manual/current/condor\ gpu\ discovery.html. Accessed: 2016-01-16.

[5] C. Nvidia, “Programming guide,” 2008.
[6] S. Guba, M. Őry, and I. Szeberényi, “Harnessing wasted computing

power for scientific computing,” in Large-Scale Scientific Computing,
pp. 491–498, Springer, 2013.

[7] D. Gubb, “Implementation of a condor pool at the university of hudder-
sfielod that conforms to a green it policy,” Master’s thesis, University
of Huddersfield, 7 2013.

[8] V. U. Reddy, “On fast fourier transform,” RESONANCE, vol. 3, no. 10,
pp. 79–88, 1998.

[9] “Htcondorwiki: How to manage gpus in series
seven.” https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=
HowToManageGpusInSeriesSeven. Accessed: 2015-12-03.

[10] “clfft: Opencl fast fourier transforms(ffts).” http://clmathlibraries.github.
io/clFFT/. Accessed: 2016-02-11.

[11] “Fft benchmark methodology.” http://www.fftw.org/speed/method.html.
Accessed: 2015-12-13.

[12] C. Cullinan, C. Wyant, T. Frattesi, and X. Huang, “Com-
puting performance benchmarks among cpu, gpu, and fpga,”
Internet: www. wpi. edu/Pubs/E-project/Available/E-project-030212-
123508/unrestricted/Benchmarking Final, 2013.


