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Abstract 
 

The paper presents the development of an intelligent image 

processing algorithm capable of detecting fatigue defects 

from images of the rail surface. The links between the defect 

detection algorithm and 3D models for rail crack propagation 

are investigated, considering the influence of input parameters 
(materials, vehicle characteristics, loading conditions). 

The dynamic behaviour at the wheel-rail interface resulting in 

contact forces responsible for stressing and straining the rail 

material are imported from vehicle dynamics simulations. The 

integration of the simulated results from vehicle dynamics, 

contact and fracture mechanics models offer more reliable 

estimation of the stress intensity factors (SIF). Also the 

sensitivity analysis related to materials, vehicle 

characteristics, and loading conditions will provide further 

understanding of the factors that influence crack propagation 

in rails such as shear stresses, hydraulic pressure, fluid 
entrapment and squeeze film effect. 

This novel application of image processing for the detection 

of rail surface rolling contact fatigue (RCF) damage and 

automatic incorporation in a crack growth model represents 

an important contribution to the development of modern 

techniques for non-destructive rail inspection. This will result 

in improved planning/scheduling of future rail maintenance 

(e.g. rail grinding, renewal), less disruptions and reduced 

track maintenance costs in rail industry. 

 

1. Introduction 
 

A large proportion of derailments and service disruptions are 

caused by track-related issues. Increases in axle loads, 

vehicles primary yaw suspension stiffness, wheel-rail conicity 

and capacity have resulted in greater damage to the track. 

RCF cracks initiate in the surface or subsurface of rails and 

can propagate to cause rail failure, impacting on safety, 

maintenance and costs. The vision for Great Britain (GB) 
railway, as set out in the Rail Technical Strategy [1], 

emphasises the need for improvements in condition 

monitoring of rail assets from current inspection methods to 

more automated procedures (intelligent ‘self-monitoring’ 

systems) aimed at improving the efficiency of maintenance 

planning. To achieve this, manual inspection of rail defects 

should be replaced by more efficient non-destructive 

evaluation (NDE) techniques using visual cameras, ultrasonic 

probes, eddy currents etc. Papaelias et al [2] mentioned that 

the high-speed inspection of rails can be achieved with 

automated vision techniques and hybrid systems based on the 

simultaneous use of pulsed eddy current probes and 

conventional ultrasonic probes. Eddy current methods employ 
techniques such as Field Gradient Imaging, Alternating 

Current Field Measurement (ACFM), and Electromagnetic 

Acoustic Transducers (EMATs). The detection of surface 

defects is sensitive to lift off variation, which is practically 

problematic to control [3]. Hashmi et al [4] detected rail head 

spalling by morphological operations and optimal adaptive 

thresholding methods but did not extract the geometrical 

features of the detected defects. 

Wenyu et al [5] presented a shape based image processing 

algorithm which uses average smoothing filtering, 

thresholding and morphological opening for only detecting 

and classifying defects. 
A more robust visual inspection system (VIS) was described 

by Quingyoung et al [6]. It was focused on the local contrast 

enhancement in addition to segmentation by thresholding 

algorithm. However feature extraction of detected defects was 

not investigated. In [7] a VIS based on contrast enhancement, 

noise filtration and defect localisation by analysing the 

projection profile of the mean intensity of each transversal 

and longitudinal line pair forming a suspect rectangle (SR) 

was described. Defects were segmented using a thresholding 

rule. The method is capable of only the extraction of 

longitudinal and transverse positions of detected defects. 
Liu [8] used mean filtering, dynamic thresholding and 

morphological fill, followed by erosion for detection of 

defects. Furthermore a feature extraction was performed but 

limited to only the length of defects and calculations of 

percentage wear. Development of defect detection based on 

known properties of rail image was presented in [9]. However 

the authors only highlighted the application of filters for 

estimating the location and rectangular area of the defect. 

FE simulation of crack growth rate was done by several 

authors [10, 11, and 12]. However the incorporation of RCF 

detection methods into crack propagation algorithms has not 

yet been explored. 
        This paper presents the development of an intelligent 

image processing algorithm capable of detecting fatigue 

defects from images of the rail surface. The algorithm 

generates statistical data (such as total number of detected 

defects per image, damage index of entire image, specific 

region of interest (ROI)). Adaptive histogram equalisation is 

used for the local contrast enhancement so the defect regions 

are clearly visible. Then an adaptive threshold method is 

employed to segment the defects. Geometrical properties 

(such as greatest length between boundary points, area, 

perimeter, boundary coordinates, orientation, minor and 
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major semi axis of each defect) are also identified. These 

parameters are automatically incorporated into a 3D  

wheel-rail crack growth model (S1002 wheel, 60E1 rail) 

containing the rail crack growth model. The FE model 

includes simulated wheel lateral displacement, roll angle, and 

vertical displacement extracted vehicle dynamics simulations 

using VAMPIRE. Estimates of Mode I and Mode II stress 

intensity factor (SIF) are processed in accordance with the 

crack growth laws to predict the crack growth rate and 

direction.  

 

2. Image processing algorithm for detection 

of geometrical properties of discrete 

surface defects  
Magel et al [13] describes the main challenges of applying 

image processing methods to images of rail defects, these 

include: inhomogeneous illumination; variation of reflection 

property on rail head caused by stains and rust. NRC Canada 

acquired rail defect images (see Figure 2) using a 

RAILSCOPE image acquisition system (IAS) with one 
camera per rail, minimum resolution of 2 Mega-pixel, field of 

view (FOV) 8 inch x 6 inch. The IAS is capable of acquiring 

blur free images at vehicle speeds up to 35 mph.  

Gim Joy [14] presents the use of VIS with IAS including 

vibration isolators (to reduce blurring of images) and multiple 

cameras per rail (to increase the number of extracted 

geometrical features).  

Figure 1 describes the steps of the image processing 

algorithm. The pre-processing of images is done by contrast 

enhancement. The local normalisation (LN) and adaptive 

histogram equalisation have been investigated as image 

enhancement techniques. Also binary segmentation by 
adaptive thresholding is used for crack segmentation. After 

the detection stage of the algorithm, the detected defects are 

further post-processed with image cleaning morphological 

operations (such as erosion and dilation of pixels, removal of 

false defects). Then the following geometrical properties of 

each defect are extracted: length (maximum distance between 

any two points along the boundary of the defect), orientation 

of the defect (orientation about x axis), area, and perimeter. 

The measured defect geometry is calibrated using the rail foot 

dimension. 

 
Figure 1. Image processing algorithm 

Pre-processing stage – Acquired images are mostly 

contaminated by unwanted noise due to climatic factors and 

grinding marks. In rail image processing applications these 

non-defects abnormalities (including illumination inequality) 

need to be addressed prior to actual defect detection. 

Frequency transform methods - such as Fast Fourier 

Transform (FFT) - remove both noise and unwanted defects 

by excluding particular frequencies. However these methods 

are susceptible to loss of important information.  

 

Pre-
processing 
technique 

Benefits Limitations 

Average 
filtering 

Easy to 
implement 
and efficiently 

smoothens the 

image and 
removes noise. 

Large size 

filters increase 

the 
computation  
time and 

blur image 
edges.  

Median 
filtering 

Masks of 
various  
shapes can be  
used helping to  
save line  
structures. 

Cannot keep 
the  
sharpness  
of the image. 

Gaussian 
smoothing 

Effective 
reduction of 
noise and edge 
blur.  

Time 
consuming  
and loss of 
detail in image. 

Table 1.Comparison between image filtering methods 

 

It was decided to use the median filtering technique after 

analysing the benefits and limitations of various techniques 

presented by [15] (see Table 1).   

 

  
Figure 2. Filtered heavy RCF damaged rail (NRC, Canada) 

Filtered image
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The contrast enhancement of initial photo (Figure 2) is 

performed by using LN method which is illumination 

independent. Figure 3 shows the simulated results after using 

an efficient implementation (WxW pixel block) of the LN 

functionality contained within MATLAB’s Image Processing 

Toolbox. 

 
Figure 3. Result of LN applied to initial photo 

 

Defect processing stage – The pre-processed image contains 

potential defects and other spots with local minimum gray 

levels. To differentiate between defects and other artefacts a 

number of edge detection methods were investigated, 

including: gradient method, Otsu method, adaptive 
thresholding and valley emphasis method. The Otsu method 

(global thresholding) though popular is biased towards the 

component with larger class variance or larger class 

probability. Adaptive thresholding [16] gives better results 

than the above mentioned methods but is susceptible to noise. 

The valley emphasis method [17] weights the objective 

function defined in the Otsu method with the neighbourhood 

gray level of the   threshold, and selects a threshold value that 

has small probabilities in its neighbourhood area and also 

maximises the variance between classes in the gray-level 

histogram. This method is robust for images containing 

Gaussian noise. The segmentation threshold in this paper is 
estimated by automatic iterative selection. 

 

Defect post-processing stage – Segmented defects are further 

post-processed to remove most of remnant noise and/or false 

defects by morphology. These false defects significantly 

affect the efficiency of the algorithms for rail maintenance 

inspection. At this stage the image is combined (intersection, 

union, difference, reflection and complement etc.) with some 

structuring elements to enhance the precision of the detected 

defects and to reduce the background noise detected at the 

same time [18].  
The MATLAB ‘bwmorph’ command was employed to 

perform morphological operations on binary images. The 

input arguments are ‘fillgap’ (to fill small gaps in edges), 

‘dilate’ (to dilate the image), ‘erode’ (to perform erosion), 

and ‘remove’ (to remove interior pixels) as presented in [19]. 

The image processing algorithm detected 228 defects from 

the initial image. Figure 4 shows a maximum detected defect 

length of 50 mm for defect number 100 and a length of 27 

mm for defect number 150. 

 

 
 

a) 

 

 
b) 

Figure 4. a) Defect length    b) Defect orientation    

 

Percentile 

 [%] 

Length 

 [mm] 

Area 

 [mm^2] 

Orientation 

 [deg] 

90 7.0845 9.383 90.000 

80 3.918 4.248 87.678 

70 3.100 2.600 82.024 

60 2.359 2.002 75.490 

50 1.893 1.640 71.882 

40 1.420 0.787 65.896 

30 0.724 0.367 58.865 

20 0.590 0.210 45.000 

10 0.362 0.131 0.000 

 

Table 2. 90th – 10th percentile of identified cracks 

 

Further analysis of post-processed image is done for defect 

number 100 and defect number 150. It is obvious that the 

peak values for crack lengths correspond to clusters of cracks 

in the post-processed image. Figure 5 shows the clusters of 
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discrete defects detected by the developed image processing 

algorithm. The severity of damage for the identified clusters 

is calculated by using a damage index function which 

employs binary mask for specified regions of interest (ROI). 

The ratio between the area of cluster and area of binary mask 

estimates the level of damage (with a maximum damage 

index of 1). 

                     
a)                                               b) 

Figure 5.  a) Cluster for defect 100   b) cluster for defect 150   

  

3. Prediction of rail crack propagation 

using 3D FE model for wheel-rail 

interface 
 

The quasi static simulation of wheel-rail interface is 

undertaken using the COMSOL software. The length of rail 

section is 600mm, Poisson ratio v = 0.3 for wheel and rail 

materials and Young’s modulus = 210 MPa. The wheel is 

initially positioned at the centre line of railhead and an axle 
load of 80 kN is applied on the wheel in load steps. An extra 

fine free tetrahedral mesh is used with maximum element size 

of 0.9 mm at the contact patch. The simulated values for 

wheel: vertical displacement, roll angle, and lateral 

displacement are included in the COMSOL model from 

VAMPIRE vehicle dynamics software. Afterwards these 

values are included in the COMSOL model. It is assumed that 

the lateral displacement of the right wheel is changing from 

central position in steps of 1mm until flange contact (see 

Figure 6).  

 

 
 

Figure 6. FE simulation of S1002 and 60E1 contact  

The COMSOL simulated contact pressure is compared with 

the contact data generated from VAMPIRE (see Figure 7). 

The differences between simulated results could be due to the 

assumptions made by these two software packages. COMSOL 

software assumes that the wheel-rail interface model contains 

linear elastic material property, and therefore includes 

deformation in the contact patch. This increases the contact 

area and reduces the stresses. The VAMPIRE software 

assumes the wheel and rail material as being rigid and no 

deformation is included in the contact patch. As a result, the 

VAMPIRE contact data tends to be higher than the COMSOL 

data. The normal force at the contact patch appreciates as 
lateral displacement increases (as the wheel moves towards 

flange contact), due to the influence of contact angle. This 

corresponds to an increase in contact pressure and decrease in 

contact area in both models. The simulated results show the 

influence of non-linear effects as the wheel approaches flange 

contact for lateral displacements greater than 5mm. 

 

 
Figure 7. Validation of 3D FE contact model 

 

Evans et al [20] presented a flexible track model including the 

flexibility of rail track, sleeper mass, resilience of railpad, 
fastening elements and ballast stiffness. The rail length in 

between sleepers and sleeper spacing should be considered in 

the sensitivity analysis of the flexible track model. 

This paper describes an FE model for wheel-rail interface 

including sleeper mass and the stiffness and damping of rail 

pad and ballast (see Table 3). 

 

Parameter  Value 

Rail pad stiffness 

Rail pad damping 

200E6 [N/m]  

50E3 [N.s/m] 

Sleeper mass 314 [Kg]  

Ballast stiffness 

Ballast damping 

125E6 [N/m],  

310E3 [N.s/m] 

 

Table 3. Details of rail supporting structure. [21]  

 

The influence of including the rail substructures is observed 
to lower the contact pressure by only few MPa 

(approximately 3.173 MPa) when the rail substructures are 

included in the model. Also the total displacement of the rail 

is observed to increase to approximately 0.098 mm in the 

vertical direction. This can be attributed to the spring stiffness 
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and damping constant of the combined structures, which offer 

the rail more bending moment (see Figure 8). The increase of 

space between sleepers generates higher reaction forces and 

displacements in rail [20]. While increase in railpad stiffness 

decreases displacement of rail with a slight increase in 

support interaction forces. The contact forces at the wheel-rail 

interface are observed to decrease for decreasing ballast 

damping constant, as reported by Zakeri et al [22]. 

 

 

 
Figure 8. COMSOL simulated results for rail supported by 

pads, sleepers and ballast  

 

Finally a sensitivity analysis of the FE contact model at 
central position (0 mm lateral displacement) in relation to 

applied load is carried out. The contact pressure is directly 

proportional to the applied load due to linear elastic nature of 

the wheel and rail materials.   

 

3.1 Stress intensity factor estimation and

 crack growth rate calculations 

 
Figure 9. Fracture mechanics model 

The detailed crack propagation model utilises the Stress 

Intensity Factor (SIF) estimation based on the J-integral 

method. The relevant stress components are decomposed 

within a closed loop contour around the crack tip into modes 

I, II and III. The paper focuses on modes I and II (dominant 

loading modes on rail RCF).  

 

 
 

Figure 10. Inclined elliptical crack [20] 

 

Paolo, S Fausto [23] use J-integral method to calculate mode I 

SIF at the tip of the crack for a generic inclination angle 𝛽 as 

follows:   

                                

𝐽𝐼 =
𝐾𝐼

𝐸′ =
ʚ𝑛𝑜𝑚𝜋𝑎

𝐸′  𝑠𝑖𝑛2(𝛽)                  (1) 

 

where:, ʚ𝑛𝑜𝑚 is nominal stress component,  𝐾𝐼 : mode-I SIF, 

𝐸′ is the shear modulus,  𝐽𝐼 : J-integral for mode-I, 𝑎 is crack 

major semi axis, 𝑏 is minor semi axis of crack, 𝑐 = √𝑎2 − 𝑏2. 
The estimated mode I SIF for different crack inclination 

angles and axle loads is presented in Figure 11. As expected 

the largest Mode I SIF is calculated with a 90º crack angle. 

Figure 11. Estimated SIF for Mode I fracture 
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Mode-II SIF at the tip of the crack is estimated using the 

following equations: 

 

𝐽𝐼𝐼 =
𝐾𝐼𝐼

𝐸′ =
ʚ𝑛𝑜𝑚√𝜋𝑎

𝐸1  sin (𝛽)cos (𝛽)  (2)

    

where: ʚ𝑛𝑜𝑚 is nominal stress component,  𝐾𝐼𝐼 : mode-II SIF, 
𝐸′ is the shear modulus, 𝑎 is crack major semi axis, 𝑏 is minor 

semi axis of crack, 𝑐 = √𝑎2 − 𝑏2. The estimated mode II SIF for 

different crack inclination angles and axle loads is presented in 
Figure 12. Note that zero Mode II SIF is calculated for 90º crack 
angle due to the orientation of the crack relative to the applied load. 
 

Figure 12. Estimated SIF for Mode II fracture mode  

 

Lewis and Olofsson [24] presented crack growth laws for 

RCF cracks on rails after extensive testing using biaxial 

fatigue specimens of normal grade rail steel cut from the rail 

web. Equation (5) calculates the change in equivalent SIF 

which is used to formulate the mixed mode loading of modes 

I and II SIF. The equivalent SIF will is used to estimate 

growth rate due to combined fracture modes I and II.  

  

             ∆𝐾𝑒𝑞 = √∆𝐾𝐼
2 + [

614

507
∆𝐾𝐼𝐼

3.21]
2

3.74⁄
         (3) 

Where  

∆𝐾𝑒𝑞: is change in equivalent SIF 

∆𝐾𝐼: change in mode I SIF 

∆𝐾𝐼𝐼: change in mode II SIF 

 

3.2 Incorporating defect detection algorithm        

   with FE wheel – rail model  
 

This section presents the automatic incorporation of defect 

detection algorithm results into the wheel-rail contact model. 

The growth rate of the defect is estimated based on linear 

elastic fracture mechanics (LEFM). The link between defect 
detection algorithm and wheel-rail contact model could 

contribute to the enhancement of the maintenance procedures 

for rails. Two separate tasks - detection and prediction of 

critical rail damage – can be combined.   

The LiveLink™ for MATLAB enables the exportation of 

COMSOL global expressions to MATLAB workspace and 

vice versa. This allows the simulated values from COMSOL 

wheel-rail contact model (including the rail crack) to be 

imported in MATLAB. The steps for linking the MATLAB 

defect detection algorithm to 3D COMSOL crack growth 

model are as follows:- 

Step 1 – Run image processing algorithm 

Step 2 – Select a defect of interest 

Step 3 – Use LiveLink™ to integrate COMSOL (FE) with   

MATLAB (image processing) 

Step 4 – Run integrated COMSOL model 
Step 5 – Predict crack growth rate and orientation in 

MATLAB and COMSOL. 

 

 
Figure 13. COMSOL results after linking the defect detection 

algorithm with 3D crack growth model 

 

Figure 13 shows how the elliptical equivalent crack (detected 

by the image processing algorithm) is automatically 

incorporated within the 3D FE wheel-rail contact model. The 

major, minor axis and orientation are exported to COMSOL 

from MATLAB using the LiveLink™.  

 

 

Figure 14. Surface crack growth rate 
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The crack growth rate is estimated as a function of stresses 

where cracking is inclined at an angle to the applied load [21], 

as detailed in Equation (6). This paper considers a case study 

of crack orientation ranging from:  
𝜋

4
< 𝛽 <

𝜋

2
 .  

𝑑𝑎

𝑑𝑁
= 0.000507(∆𝐾𝑒𝑞

3.74 − ∆𝐾𝑡ℎ
3.74) (4) 

 

Where  
𝑑𝑎

𝑑𝑁
: crack growth rate 

∆𝐾𝑡ℎ: change in SIF threshold 

 

The growth rate of inclined cracks as shown in Figure 14 

indicates an increase in surface growth rate as inclination 

angle decreases for an elliptical crack with major axis length 
of 3.5 mm and minor axis length of 0.5 mm. Similar 

conclusion has been presented in [27]. 

 The overall crack growth direction for the inclined elliptical 

crack is determined by the dominant tensile (or shear 

equivalent SIF) as shown in [21].  

 

𝜃 = 2 × atan (
𝐾𝐼−√𝐾𝐼

2+8𝐾𝐼𝐼
2

4𝐾𝐼𝐼
)  (5) 

 

Figure 15. Surface crack growth direction 

 

The surface direction of propagation (see Figure 15) confirms 

that for tensile loading case, the highest branch angle is 

observed at mixed I and II fracture modes (when 𝐾𝐼𝐼 is 

maximum i.e. β=
𝜋

4
). While the symmetry of the deformation 

in mode I loading (where β=
𝜋

2
) implies that the crack growth 

direction can only be perpendicular to the direction of applied 

load [26].  

Further development of the integrated defect detection 

algorithm and crack growth model will focus on the 

monitoring/prediction of the actual surface condition of rail 

head. This will include the incorporation of more realistic 

vehicle, loading, and environmental characteristics. Also, the 

application of the developed algorithms for real-time 

condition monitoring will be investigated by simplifying the 

assumption of the FE contact model (linear elastic model 

accounting for deformation in the contact model), which is 

already known to be time consuming as compared to Hertz 

theory (rigid bodies in contact with no deformation). 

 

4. Conclusions 

 
Visual inspection systems (VIS), though susceptible to the 

reflection property of rail head (specular or diffuse), have 

advantages (e.g. fast computational time) over other 

monitoring techniques for the detection of rail surface 

condition. The paper described the development of a VIS 

which combines an intelligent image processing algorithm, 

capable of detecting fatigue defects from images of the rail 
surface, with a FE crack growth model. The computational 

requirements of the combined model (surface defect detection 

and fracture mechanics) can be summarised as shown in 

Table 4 below. Although the high computation requirement of 

the fracture mechanics model can be reduced considerably 

with larger mesh size’s (at the expense of accuracy). Further 

investigation of alternative means of estimating the contact 

stresses and strains will improve the readiness level of this 

application being adopted in industry. 

 

 

Component Computational 
time 

Speed 

RAILSCOPE 
IAS 

40-60 µsecond 

(static-dynamic 

shutter speed)   

High 

Image 
processing  
algorithm 

1.055 seconds 

(including idle 
time) 

Medium 

Fracture 
mechanics 
model 

4hr 35mins 21 
secs 

(At 0.9mm rail 
head element 
size) 

Slow 

 

 Table 4. Computational requirements of integrated model 

 

During the development of the image processing algorithms, 

the adaptive histogram approach to image enhancement was 

shown to give the best results as compared with other 

enhancement techniques such as, FFT and normalisation 
methods. Also, the adaptive thresholding method used in this 

research work shows good correlation with Otsu's 

segmentation. Regions of the defect image (original) that are 

corrupted by excess illumination on the rail head makes 

individual defect detection in those regions impossible, rather 

in such regions, clusters of defects are observed. 

Validation of FE wheel-rail contact model shows good 

agreement with the VAMPIRE contact data (approximately 

12% variation at mesh size of 0.9mm). The variation in the 

results is proportional to the mesh size, simulation time and 

assumptions in the wheel-rail contact algorithms. Comparing 
the SIF obtained from the analytical solution of the J-integral 
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method in COMSOL and that presented by Dhalberg and 

Ekberg [25] shows good agreement. The estimated SIF (mode 

I and mode II) are combined to estimate the surface crack 

growth rate and surface direction. 

The results of this study verify the potential benefits of 

linking non-destructive rail inspection techniques to detailed 

crack growth prediction model. This paper serves as an intital 

study demonstrating the viability of the proposed 

incorporation of non-destructive inspection methods to crack 

growth models aimed at improving safety of operations and 

maintenance requirement in terms of damage levels and 

critical defect length predictions. The current work is to be 
further developed to explore more links that can be 

established between other non-destructive inspection methods 

of rail condition and crack growth models. Automated 

validation of measured geometrical features of each detected 

defect will also be required. This may include comparison of 

the simulated results to actual field measurements of crack 

growth over a known time interval. 

Investigation and inclusion of fluid structure interaction is 

essential to the overall aims of research. This will enable the 

critical understanding of crack propagation under different 

environmental conditions. Ways to improve the developed 
algorithm, enabling detection of individual cracks within a 

cluster of defects. Further comparison of the COMSOL model 

with other available contact models, such as FastSim and 

CONTACT, will also be carried out. Finally, optimisation of 

the incorporated model (image processing, wheel-rail contact 

and fracture mechanics) is essential. This will include a 

sensitivity analysis of each component of the integrated 

model to its influential parameters and will elaborate on the 

practical limitations of this approach to non-destructive rail 

inspection in industry. 
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