Search:
Computing and Library Services - delivering an inspiring information environment

Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes

Long, Shaojun, Jirků, Milan, Mach, Jan, Ginger, Michael L., Sutak, Robert, Richardson, Des, Tachezy, Jan and Lukeš, Julius (2008) Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Molecular Microbiology, 69 (1). pp. 94-109. ISSN 0950-382X

Metadata only available from this repository.

Abstract

Frataxin is a small conserved mitochondrial protein; in humans, mutations affecting frataxin expression or function result in Friedreich's ataxia. Much of the current understanding of frataxin function comes from informative studies with yeast models, but considerable debates remain with regard to the primary functions of this ubiquitous protein. We exploit the tractable reverse genetics of Trypanosoma brucei in order to specifically consider the importance of frataxin in an early branching lineage. Using inducible RNAi, we show that frataxin is essential in T. brucei and that its loss results in reduced activity of the marker Fe–S cluster-containing enzyme aconitase in both the mitochondrion and cytosol. Activities of mitochondrial succinate dehydrogenase and fumarase also decreased, but the concentration of reactive oxygen species increased. Trypanosomes lacking frataxin also exhibited a low mitochondrial membrane potential and reduced oxygen consumption. Crucially, however, iron did not accumulate in frataxin-depleted mitochondria, and as T. brucei frataxin does not form large complexes, it suggests that it plays no role in iron storage. Interestingly, RNAi phenotypes were ameliorated by expression of frataxin homologues from hydrogenosomes of another divergent protist Trichomonas vaginalis. Collectively, the data suggest trypanosome frataxin functions primarily only in Fe–S cluster biogenesis and protection from reactive oxygen species

Item Type: Article
Subjects: Q Science > QH Natural history > QH301 Biology
Schools: School of Applied Sciences
Related URLs:
Depositing User: Michael Ginger
Date Deposited: 10 May 2016 08:18
Last Modified: 10 May 2016 08:18
URI: http://eprints.hud.ac.uk/id/eprint/28266

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©