University of Huddersfield Repository

Bezin, Yann

Designing future turnouts – where research capabilities meet industry needs

Original Citation

This version is available at http://eprints.hud.ac.uk/28132/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Session 2: "Optimising opposite demands’

Designing future turnouts - where research capabilities meet industry needs

Speaker: Dr Y. Bezin (IRR Head of Research, Huddersfield, UK)
Content

• **Background**
 – Key WRI issues at Switches & Crossings

• **Key areas of research**
 – EU projects landscape

• **How to address key challenges**
 – Research tools and validation aspects
 – ‘Conflicting requirements’ for optimisation

• **Collaboration**
 – Challenges and opportunities
Background

Complexity
- Large # of parts
- Wide range of possible layout configuration
- Moving parts & exposed mechanisms
- Mechanical interfaces
- Weak structural components

Non-linearities
- Rail cross sections (bearing surface)
- Structural stiffness (rail bending stiffness, bearers length & ballast support)
- Rail inclination
- Track curvature
- Cant deficiency
Switch Panel

<table>
<thead>
<tr>
<th>Component</th>
<th>Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast manganese</td>
<td>transverse fatigue crack (foot or nose)</td>
</tr>
<tr>
<td>Casting</td>
<td></td>
</tr>
<tr>
<td>Crossing nose</td>
<td>wear, plastic deformation, shelling and spalling</td>
</tr>
<tr>
<td>Wing rail</td>
<td>wear, plastic deformation, shelling and spalling</td>
</tr>
<tr>
<td>Bearers</td>
<td>fatigue cracking, voids</td>
</tr>
<tr>
<td>Switch rails</td>
<td>lipping, head checks, squats, wear</td>
</tr>
<tr>
<td>Points</td>
<td>all the above + fracture by fatigue</td>
</tr>
<tr>
<td>Stock rails</td>
<td>lipping, head checks, squats, wear, spalling</td>
</tr>
<tr>
<td>Slide plates</td>
<td>poor movement (high friction) and ceisure</td>
</tr>
<tr>
<td>Bearers</td>
<td>fatigue cracking, voids</td>
</tr>
</tbody>
</table>

Crossing Panel

<table>
<thead>
<tr>
<th>Component</th>
<th>Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel</td>
<td></td>
</tr>
<tr>
<td>Control, electronic, hydraulics & detection</td>
<td>failed sensors/relay, loose/damaged/leaking hydraulics</td>
</tr>
<tr>
<td>Environment</td>
<td>environmental damage (water/ice, wind…)</td>
</tr>
</tbody>
</table>
S&C key components and damages

Spalling of stock rail

Subsurface initiated fatigue

Lipping of switch/stock rails

Reference: Capacity4Rail, D131 “Operational failures modes of S&Cs”
S&C key components and damages

- Plastic deformation of wing rails
- Spalling of crossings
- Spalling & plastic deformation of crossing nose

Reference: Capacity4Rail, D131 “Operational failures modes of S&Cs”
Root causes – dynamic WR Interaction

Poor compliance of W-R geometries

- Harsh interface
- Variable rails shapes
- \(\Rightarrow \) Jumps in contact
- \(\Rightarrow \) Multiple point contact
- \(\Rightarrow \) High normal & surface/subsurface shear stresses

Poor maintenance + support

- Cyclic top/alignment
- Voided/hanging bearers
- Uneven L/R loading
- Differential settlement
Root causes – dynamic WR Interaction

Poor compliance of W-R geometries

High rail/sleeper accelerations
Ballast void and settlement

Increased Dynamic Forces

High normal & shear stresses
rail wear, fatigue & deformation

Poor maintenance + support

Casting/nose fatigue cracking
Root causes – Influential factors

- **Design** (system level => vehicle-track…)
- **Environmental** (incl. extreme weather)
- **Installation/set-up** (human factor, tolerances…)
- **Maintenance** (mechanised/manual…)
- **Manufacturing** (processes/tolerances/…)
- **Operational** (speed, loading regime, traffic mix, tonnages…)

Reference: D131 Operational failure modes of SCs
Key areas of research & development

Eslöv-Sweden test site:
- Kinematic Gauge Optimisation
- Resilient stiffness

Haste-German test site:
- Crossing nose shape (e.g. MaKüDe)
- Material (built-up)

Simulation software:
- Benchmarking
- KGO optimisation
- Support stiffness variation

Simulation of:
- Derailment analysis
- Switch rail shape optimisation
- Impact of wheel shape
- Under sleeper pads
- Innovative structures

Material
- Higher steel grades

Concept evaluation:
- New switch concepts
- New drive and lock devices

Towards demonstration of key innovations

Erlangen, Germany, 26th Jan. 2016 - ‘Wheel/Rail Interface & Switches’
Available simulation technology

• Vehicle multibody system dynamics
 • Prediction of vehicle behaviour and WRI forces

• Vehicle-track interaction dynamics
 • Prediction of WRI forces based on simplified or detailed track response

• Wheel-rail contact conditions
 • WRI forces and contact conditions (normal and tangential)

• Wear/damage prediction & summation
 • Based on any of the above
Contact condition and contact stresses
Example key output SUSTRAIL

- Axle kinematic motion
- Vertical wheel motion => dip angle
- 3-dof wheel-track MBS model
- Dynamic F_{vertical} prediction => P2 force
Example key output SUSTRAIL

- Parametric study: 800+ wheel pairs
 - Prediction of dip angle and P2 force levels

References:

Example key activities Capacity4Rail

<table>
<thead>
<tr>
<th>Switch</th>
<th>Natural</th>
<th>Actual</th>
<th>Lead L2 Toe to nose</th>
<th>nose across a 1970 interval</th>
<th>Toe to toe</th>
<th>Planing radius</th>
<th>Switch radius</th>
<th>Turnout radius</th>
<th>Length of Plannin g P</th>
<th>Length of transit on</th>
<th>Length of straight to nose</th>
<th>Turnout Speed /kph</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>9.25</td>
<td>10.75</td>
<td>25448</td>
<td>5360</td>
<td>56256</td>
<td>287251</td>
<td>245767</td>
<td>245767</td>
<td>4250</td>
<td>7366</td>
<td>584</td>
<td>32</td>
</tr>
<tr>
<td>DV</td>
<td>9.25</td>
<td>13</td>
<td>27007</td>
<td>6513</td>
<td>60526</td>
<td>287251</td>
<td>245767</td>
<td>245767</td>
<td>4250</td>
<td>13000</td>
<td>3271</td>
<td>40</td>
</tr>
<tr>
<td>EV</td>
<td>10.75</td>
<td>13</td>
<td>30125</td>
<td>6513</td>
<td>66762</td>
<td>367038</td>
<td>331687</td>
<td>331687</td>
<td>5000</td>
<td>17455</td>
<td>2534</td>
<td>48</td>
</tr>
<tr>
<td>EV</td>
<td>10.75</td>
<td>15</td>
<td>31713</td>
<td>7533</td>
<td>70960</td>
<td>367038</td>
<td>331687</td>
<td>331687</td>
<td>5000</td>
<td>17455</td>
<td>2534</td>
<td>48</td>
</tr>
<tr>
<td>EV</td>
<td>15</td>
<td>18.5</td>
<td>42017</td>
<td>9313</td>
<td>93349</td>
<td>739696</td>
<td>645116</td>
<td>645116</td>
<td>7000</td>
<td>16255</td>
<td>1560</td>
<td>56</td>
</tr>
<tr>
<td>EV</td>
<td>15</td>
<td>21</td>
<td>44066</td>
<td>10585</td>
<td>98718</td>
<td>739696</td>
<td>645116</td>
<td>645116</td>
<td>7000</td>
<td>24555</td>
<td>3605</td>
<td>64</td>
</tr>
</tbody>
</table>

Freight vehicle model – non-linear dry friction Y-series bogies

Vehicle speed (V)

Crossing geometry

Turnout layout

Check rail
Example key activities Capacity4Rail

Time simulation

Prediction of contact condition using multi-Hertzian non-elliptical contact

LATERAL FORCE - right rail

VERTICAL FORCE - right rail

CONTACT STRESS - right rail
Example key activities Capacity4Rail

Damage indices prediction along crossing panel:
- Equivalent Hertzian pressure,
- Fi-surf,
- Fi-sub,
- T_γ damage (RCF/wear)

Visualisation of contact conditions and damage level:
- Position and size of contact patch(es),
- Colour coded damage level,
- Creep vectors,
Key conflicting requirements

- Engineering design vs cost
 - Highly engineered material specification (at what cost?)
 - Resilient track construction (at what cost)?
 - Standardisation versus customisation?
- Through vs diverging route
 - Traffic mix consideration in design vs generic design!
 - Trade-off in rail shapes and layout geometry optimisation
- Facing vs trailing move
 - Trade-off in rail shape and layout geometry optimisation
- Wear vs RCF
 - Competing phenomena
Validation Challenges

- **Validation of rail damage prediction**
 - Based on specific site observation + stochastic data collection
 - Fast and reliable data collection (vehicle inspection vehicles?)

- **Material characterisation data and experiments**
 - Twin disc rigs for:
 - Wide range of traction and normal pressure
 - full scale where possible…
 - Replicating S&C ‘harsh’ conditions (high curvature)
 - Replicating S&C materials (cast Mn, EDH, hardened steel e.g. 350HT)
 - Plastic deformation
 - Residual strains in highly stressed contained material

- **Full scale testing for close to reality WRI conditions…**
Validation Challenges

Centre for Innovation in Rail,
University of Huddersfield
Few words of conclusion

- Key damage mechanisms in S&C relate to wheel-rail interface => *heavily strained interface!*
- Key areas of collaborative research are *geometry/shape optimisation* and *improved support stiffness* (upgrade to ballasted & novel track forms)
- Available simulation techniques enable *predicting key damages* (location, intensity and accumulation)
- exchange of *data* and *testing resources* is key to validation as a first step towards innovation selection and evaluation
- This is a system - consider both sides of the interface!
- Successful innovations depend on *exchange, collaboration, openness*, as well as *individual/corporate motivation to achieve a common goal*
Contact: Yann Bezin (y.bezin@hud.ac.uk)

Acknowledgements:
Support from European Grants SCPO-GA-2011-265740 (SUSTRAIL), SCP3-GA-2013-60560 (Capacity4Rail) are gratefully acknowledged.
Software used: Vi-Rail (www.vi-grade.com) and ArgeCare (argecare.com)