University of Huddersfield Repository

Stetsyuk, V., Crua, C., de Sercey, G. and Turner, J.

Measurement of droplet sizes in the near-nozzle region of an ECN Spray A injector

Original Citation

This version is available at http://eprints.hud.ac.uk/27906/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Measurement of droplet sizes in the near-nozzle region of an ECN Spray A injector

Viacheslav Stetsyuk, Cyril Crua, Guillaume de Sercey, Jack Turner
Centre for Automotive Engineering
University of Brighton

23rd, September, 2015, UnICEG- The Universities’ Internal Combustion Engines Group
Optical Diagnostics and Sensors applied to IC Engines
Introduction

1. Objectives
2. Operating conditions
3. Spray A injector
4. Experimental setup
5. Image processing and analysis
6. Results
7. Conclusions
Experimental Objectives

- Focus on the near nozzle region within first 10 mm
- Concentrate on non-vaporizing experiments

- Provide boundary conditions for initializing the simulations for both Spray A and Spray B
 - Nozzle geometry
 - Rate of injection
 - Needle lift & off-axis motion
 - Injection pressure vs. time

- Provide data for validation for both Spray A and Spray B
 - Liquid mass distribution at nozzle exit and in the spray region
 - Droplet sizes
 - Qualitative physics to understand the spray processes
 - Liquid penetration

- Assess the uncertainties for all of these parameters
Operating conditions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Spray A standard</td>
<td>0%, 15%</td>
<td>900</td>
<td>22.8</td>
<td>1500</td>
<td>n-dodecane</td>
<td>1.5</td>
<td>0.090 mm, axial hole</td>
</tr>
<tr>
<td>2</td>
<td>21%</td>
<td>800</td>
<td>15.2</td>
<td>1000</td>
<td>n-heptane</td>
<td>4</td>
<td>3-hole, 145 angle, Spray B</td>
</tr>
<tr>
<td>3</td>
<td>13%</td>
<td>1000</td>
<td>7.6</td>
<td>500</td>
<td>77% n-dodecane, 23% m-xylene</td>
<td>0.5/0.5 dwell/0.5</td>
<td>0.2 mm Spray C</td>
</tr>
<tr>
<td>4</td>
<td>19%</td>
<td>1200</td>
<td>45.6</td>
<td>2000</td>
<td>50% n-dodecane, 50% iso-octane</td>
<td>0.3/0.5 dwell/1.2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>17%</td>
<td>700</td>
<td>30.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>11%</td>
<td>950</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>850</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>750</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend

- **Completed**
- **In progress**
- **Not met**

Fuel temperature at nozzle

363 K (90°C) ➔ 403 K (130°C)

Common rail

GM Part number 97303659

Common rail volume/length

22 cm³/28 cm

Distance from injector inlet to common rail

24 cm

Tubing inside and outside diameters

Inside: 2.4 mm. Outside: 6-6.4 mm.

Fuel pressure measurement

7 cm from injector inlet / 24 cm from nozzle
Spray A injector

- **Injector: Spray A.2 nozzle #201.02**
 - From second batch of Spray A injectors, purchased by IFPEN (Malbec et al. 2013 papers.sae.org/2013-24-0037)
 - New STL file for #201.02 generated by University of Bergamo (Prof. Santini)

<table>
<thead>
<tr>
<th>Injector Serial #</th>
<th>Exit diameter [μm]</th>
<th>K-factor</th>
<th>Inlet radius [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.02</td>
<td>93.9</td>
<td>1.8</td>
<td>30</td>
</tr>
</tbody>
</table>

X-ray μCT
(University of Bergamo)

Optical microscopy
(University of Brighton)
Experimental setup – Rapid compression machine

- Reciprocating RCM based on Ricardo Proteus (2 stroke engine)
- Operated at 500 rpm
- TDC conditions: 5 MPa, 720 K
- Quiescent air motion at start of injection (no swirl)
- 3 optical accesses
- Multiple injection strategy/injection frequency

Temperature at TDC was computed by Ricardo WAVE by fitting measured ICP with simulated ICP (WAVE)
Experimental setup – Fuel temperature control

Instrumented Siemens injector was used to measure injector tip temperature

- Measured tip temperature: 195-220 °C
- ECN target 90 °C
- Injector cooling was needed

Fuel channel thermocouple
Tip thermocouple

Injector tip and fuel channel temperatures

working range
Experimental setup – Fuel temperature control

Fuel line temperature as a function of time for cooled and uncooled injectors

- Directly cooled injector stem
- ΔT tip \approx 80-100 $^\circ$C
- 130$^\circ$C $<$ Tip temperature $<$ 135 $^\circ$C for 120 min
Experimental setup – High-speed video

- Common rail GM (part number 97303659)
- Fuel pressure measurement point
- High-speed camera or high resolution dual frame camera
- K2 DistaMax™ long-distance microscope system
- Light source
- Rapid compression machine
- ECN Spray A coordinate system

Graph showing penetration length vs. time for different conditions:
- Bright 201.02 vapour
- IFPEN 201.02 vapour
- IFPEN 201.02 liquid
Shadowgraphy setup based on Crua et al. (2015) *Fuel* 157 doi.org/4F3

- New camera: 29 megapixel (4400x6600 pixels) dual-frame
- Scale factor: 0.56 µm/pixel (2.46x3.70 mm)
- MTF at 10%: 250 cycles/mm \(\Rightarrow\) 2 µm object

![Experimental setup – Long distance microscopy](image-url)
Acquired ~7,400 dual-frame images for Spray A (815 GB)
Data set covers $x = 0$ to 8 mm ($y = \pm 1.2$ mm; $z = \pm 10$ µm)

Currently processing for droplet size distributions
Still need to process velocity fields, and acquire Spray B data

Test conditions for long-distance microscopy

<table>
<thead>
<tr>
<th></th>
<th>Spray A</th>
<th>Spray B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500 bar</td>
<td>1500 Bar</td>
</tr>
<tr>
<td></td>
<td>1000 bar</td>
<td>1000 bar</td>
</tr>
<tr>
<td></td>
<td>500 bar</td>
<td>500 bar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Spray A</th>
<th>Spray B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of injection</td>
<td>acquired,</td>
<td>in progress</td>
</tr>
<tr>
<td>SOI+0.5ms</td>
<td>completed</td>
<td>not planned</td>
</tr>
<tr>
<td>End of injection</td>
<td>processed</td>
<td>in progress</td>
</tr>
</tbody>
</table>

![Diagram of injection system]
Image processing

1. Convolution with wavelet
2. Threshold at 30% of intensity range
3. Measure droplet’s projected area
4. Calculate eq. diameter \(d = \sqrt{\frac{A}{\pi}} \)
5. Correct diameters based on NIST-calibrated target (1.9 to 101.6 µm)
Image processing (0.5 ms after start of injection)

- Algorithm correctly identifies many of the small liquid structures (left of figure below), without producing significant false positives in blurred regions (right of figure below)
Results: Start of injection – 1500 bar

- Vapour emerges with vortex ring motion
- Followed by liquid jet and droplets
- Liquid tip becomes more defined (coalescence)
- Droplets present at liquid interface
Results: 0.5 ms after start of injection – 1500 bar

- Droplets visible at spray periphery
- Surrounded by vaporised fuel

- Pressure waves often visible along spray periphery.
- Not expected to occur for multi-hole nozzles, but could affect Spray A droplet formation, mixing and optical resolution.
Results: Steady-state phase 1500 bar

- $1,575$ images $\Rightarrow 619,756$ droplets
- Droplet data merged into $50 \times 50 \mu m^2$ bins
- Droplet count: 200-1000 droplets/bin
- SMD in the optically-thin periphery of the spray is $6 – 8 \mu m$

Median diameter $= 5.8 \mu m$
Results: Steady-state phase – 1500 bar

Statistics for $x = 1, 2, 4, 6 \pm 0.25$ mm ($y = \pm 1.2$ mm; $z = \pm 10$ µm) from orifice
Analysis – Comparison between 500 and 1500 bar

- Marginally larger SMD at 500 bar, compared to 1500 bar, especially after 6 mm

- Asymmetrical distributions observed in both cases (SMD, drop count, median diameter)
Results: End of injection – 1500 bar

- Large variations in
 - droplet position
 - droplet size
 - droplet shape
Conclusions

- Droplet size distributions measured in near-nozzle, optically-thin (≈ 100 µm), regions
- Droplet sizes appear normally distributed, and independent of radial position
- Processed data available for ECN4

Comparison with simulations
- Data processing is ongoing: can still produce new droplet binning, locations, etc…

Future plans
- Spray B in progress, expected to be completed after ECN4 meeting
- Velocimetry data (Sprays A and B)
- Droplet shape analysis for end of injection (Sprays A and B)
- All raw & processed data will be made public to promote comparison with simulations, and development of new image analysis techniques
Acknowledgments

Equipment

EPSRC Engineering Instrument Pool

BP Global Fuels Technology

Funding

BP Global Fuels Technology

EPSRC (grant EP/K020528/1)