University of Huddersfield Repository

Lee, Hyunkook

Investigation on the Phantom Image Elevation Effect

Original Citation

This version is available at http://eprints.hud.ac.uk/26558/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Investigation on Phantom Image Elevation

Hyunkook Lee

h.lee@hud.ac.uk

Applied Psychoacoustics Lab (APL)
University of Huddersfield, UK
Contents

• Research background
• Experiment
• Summary
Pitch-Height Effect for “Real” Source

- The higher the frequency of a pure tone is, the higher the perceived image position is, regardless of the physical height of the loudspeaker. (Pratt 1930).

- Confirmed by Trimble (1934), Roffler and Butler (1968), etc.

From Roffler and Butler (1968a) - pure tones

![Graph showing judged image height vs. actual loudspeaker height for various pure tones]
Pitch-Height Effect for “Real” Source

- For **band-passed noise** signals, high frequency components (above 7kHz) are essential for accurate vertical localisation. (Roffler and Butler 1968b)

From Roffler and Butler (1968b)
- Low passed & high passed noise

- **HPF noise > 8k**
- **HPF noise > 2k**
- **Broadband**

- **LPF noise < 2kHz**

- **4.8kHz tone**
- **600Hz tone**
Pitch-Height Effect for “Real” Source

- Pitch height effect for octave band pink noise
 - Simplified from Cabrera and Tiley (2003); median plane results
Pitch-Height Effect for “Phantom” Source

- Pitch-height effect for horizontal **phantom** images from main and height layers (Lee 2015)
• Pitch-height effect for horizontal **phantom** image (Lee 2015)

Overall, the pitch-height effect operates in two separate regions.
• Reset at 1kHz → Back localisation (Blauert’s Directional bands)
Directional bands

- Blauert (1968): physical mapping between frequency bands and their perceived positions in the median plane.
Horizontal plane phantom images are elevated, not only for high frequencies but also for low frequencies (125Hz, 250Hz, 500Hz) → different from “real” source situations.
• Pitch height effect for octave bands
 – Simplified from Cabrera and Tiley (2003); median plane results
Horizontal Phantom Image Elevation
Vs.
Loudspeaker Base Angle & Sound Source
Previous studies

• de Boer (1947): Phantom centre image is perceived to be elevated, and the elevation angle increases as the loudspeaker base angle increases. (180° → overhead region)
Previous studies

- Previous studies reporting the elevation effect are limited in terms of sound sources or loudspeaker base angles tested.

<table>
<thead>
<tr>
<th>Source</th>
<th>Base angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Boer (1947)</td>
<td>0° to 180°</td>
</tr>
<tr>
<td>Damaske and Mellert (1969/1970)</td>
<td>0° to 360°</td>
</tr>
<tr>
<td>Jo et al. (2010)</td>
<td>60°, 220°</td>
</tr>
<tr>
<td>Frank (2014)</td>
<td>40°</td>
</tr>
<tr>
<td>Lee (2015)</td>
<td>60°</td>
</tr>
</tbody>
</table>
Aim of the Current Experiment

- To investigate the phantom image elevation effect for a wide range of sound sources, with base angles covering from 0° to 360°.

- Sound sources
 - Speech, Helicopter, Aeroplane, Thunder, Rain, Bird, Church Bell
 - Broadband pink noises (continuous and transient)
 - Broadband white noises (continuous and transient)
Test Method

- **Loudspeaker arrangement**
 - At the ear height in the horizontal plane, 0° to 360° at 30° interval.
Critical listening room
at the University of Huddersfield
(ITU-R BS.1116-Compliant)
Test Method

- GUI written in Max
 - Response method similar to Blauert (1968) but in a finer resolution
Test Method

- **Subjects**
 - 10 people comprising researchers and post-graduate students from the University of Huddersfield’s music technology courses.
 - All were much experienced in spatial quality evaluation but not trained for the particular task of the experiment.
Results

- Responses for all sources
 - The general trend agrees with the suggestions from the past research.
• Sound source dependency
 - Responses are most linear and consistent for source with a broad and flat spectrum.

![White noise graph](chart1.png)

![Rain graph](chart2.png)
• Sound source dependency
 – Responses are most linear and consistent for source with a broad and flat spectrum.

Perceived elevation angle = Loudspeaker base angle / 2
Sound source dependency
- The elevation effect is weaker for sources with more low frequency energy. (no strong “aboveness”)
• Sound source dependency
 – The elevation effect is weaker for sources with more low frequency energy. (no strong “aboveness”)
Phantom Image Elevation

- **Sound source dependency**
 - The elevation effect is weaker for sources with more low frequency energy. (no strong “aboveness”)

![Graphs showing sound elevation for Airplane and Thunder](image-url)
• Sound source dependency
 – The elevation effect is weaker for sources with more low frequency energy. (no strong “aboveness”)
Phantom Image Elevation

- Sound source dependency
 - Responses are most inconsistent for sources with narrow spectrum or steady-state nature.
- Sound source dependency
 - Responses are most inconsistent for sources with narrow spectrum or steady-state nature.
- Expectancy bias
 - Subjective responses affected by the likely auditory or visual positions of the sound sources in real life.

No “directly above” for speech
Perceived lower than rain
Theoretical explanations

- **Spectral energy distribution of ear signal**

 - Delta HRTF (60°–0°)
 - (120°–0°)
 - (180°–0°)
 - (240°–0°)
 - (300°–0°)
 - (360°–0°)

- **As the base angle increases up to 240°, 8kHz energy increases while 4kHz energy decreases. → Increasing “aboveness” & decreasing “frontness”**.
Theoretical explanations

• However, spectral energy distribution does not explain the phantom image elevation for **low frequencies**.
 – Phantom image elevation is also perceived for low-frequency dominant sources and for octave-bands such 250Hz and 500Hz bands.
Theoretical explanations

• A new hypothesis from a **cognitive** perspective
 – The brain interprets the acoustic crosstalk delay as a shoulder reflection delay for a real elevated source.
 – Shoulder reflection delay is the main cue for elevation perception for low frequencies in the median plane (Algazi et al. 2001)
Theoretical explanations

• A new hypothesis from a cognitive perspective
 – As the loudspeaker base angle increases, acoustic crosstalk delay increases (max. around 0.7ms for 180°)
 – As the real source elevation angle increases, should reflection delay increases (max. around 0.7ms for right above).
Theoretical explanations

- A new hypothesis from a **cognitive** perspective
 - As the loudspeaker base angle increases, acoustic crosstalk delay increases (max. around 0.7ms for 180°)
 - As the real source elevation angle increases, should reflection delay increases (max. around 0.7ms for a source right above).
Theoretical explanations

• A new hypothesis from a **cognitive** perspective

 – Low frequencies: Cognitive effect (crosstalk – shoulder delay)
 – High frequencies: Hard-wired effect (HRTF, directional bands, etc.)
Applications for 3D music production

• Simply routing overhead sources to the side or rear speaker pair in the conventional 5.1 or 7.1 format can create a virtual overhead image.
 – 3D mix without overhead speakers
 – 3D to 2D downmixing
 – 2D to 3D upmixing
 – Etc.
Conclusions

• Phantom image elevation effect depends on the loudspeaker base angle and sound source characteristics.

• Base angles around 180° produces a virtual overhead image.
 → This is most effective for sound sources with a broad and flat frequency spectrum. (e.g. rain, white noise like sources)
 → Phantom image elevation is weaker for sources with low frequency dominance, narrow bandwidth or steady-state characteristics.

• Phantom image elevation can be explained by spectral energy distribution at HF, whereas it is more of a cognitive effect at LF.
Ongoing work

• Relative weighting between different frequency bands in terms of phantom image elevation

• Verification of the cognitive hypothesis

• Virtual overhead panning method
References

Free download links for useful tools

- **HULTI-GEN** http://eprints.hud.ac.uk/24809
- **HAART** http://eprints.hud.ac.uk/24579
- **IAR** http://eprints.hud.ac.uk/25547

Please contact us for more information:

Hyunkook Lee
h.lee@hud.ac.uk