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Abstract 

Artemether, a lipid-soluble derivative of artemisinin has been reported to possess 

anti-inflammatory properties. In this study, we have investigated the molecular 

mechanisms involved in the inhibition of neuroinflammation by the drug. The effects 

of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also 

investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on 

neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether 

(5-40µM) for 24 hours. ELISAs and western blotting were used to detect 

pro-inflammatory cytokines, nitric oxide, PGE2, iNOS, COX-2 and mPGES-1. BACE-

1 activity and Aβ levels were measured with ELISA kits. Protein levels of targets in 

NF-κB and p38 MAPK signalling, as well as HO-1, NQO1 and Nrf2 were also 

measured with western blot. NF-κB binding to the DNA was investigated using 

EMSA. MTT, DNA fragmentation and ROS assays in BV2-HT22 neuronal co-culture 

were used to evaluate the effects of artemether on neuroinflammation-induced 

neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was 

investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly 

suppressed pro-inflammatory mediators (NO/iNOS, PGE2/COX-2/mPGES-1, TNFα, 

and IL-6), Aβ and BACE-1 in BV2 cells following LPS stimulation. These effects of 

artemether were shown to be mediated through inhibition of NF-κB and p38MAPK 

signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 

microglia. The drug activated Nrf2 activity by increasing nuclear translocation of Nrf2 

and its binding to antioxidant response elements in BV2 cells. Transfection of BV2 

microglia with Nrf2 siRNA resulted in the loss of both anti-inflammatory and 

neuroprotective activities of artemether. We conclude that artemether induces Nrf2 

expression and suggest that Nrf2 mediates the anti-inflammatory effect of artemether 

in BV2 microglia. Our results suggest that this drug has a therapeutic potential in 

neurodegenerative disorders. 
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1 Background 

In the central nervous system (CNS), the microglia plays an important role in 

immune defence and tissue repair [1]. Under normal conditions, these cells provide 

surveillance whilst maintaining homeostasis in the brain [2]. In response to injury, 

harmful toxins, infection or inflammation, microglial cells become activated, secreting 

pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), 

reactive oxygen/nitrogen species and pro-inflammatory cytokines including IL-6 and 

TNFα [3, 4]. These pro-inflammatory mediators are mainly regulated by the 

transcription factor NF-κB [5]. NF-κB binds to the DNA and its transcriptional activity 

regulates several genes, which promote neuroinflammation. The p38 mitogen-

activated protein kinase (p38 MAPK) signalling pathway also plays an important role 

in the expression and activity of pro-inflammatory cytokines in microglial cells [6-8]. 

Excessive production of pro-inflammatory mediators generated during 

neuroinflammation can damage neighbouring neurons, and further activate the 

microglia, as well as other glia cells resulting in a self-perpetuating cycle [2, 4, 9]. 

Furthermore, activation of the microglia and the resulting neuroinflammation play a 

critical role in the pathogenesis of neurodegenerative disorders such as Alzheimer’s 

disease (AD) [10]. Consequently, pharmacological modulation of pro-inflammatory 

mediators generated by the microglia during chronic inflammation and modulation of 

the signalling pathways responsible for their production is an important target in 

treating severe neuroinflammatory disorders. 

Neuroinflammation has been reported to play a major role in the formation of amyloid 

beta (Aβ) [11]. Studies have also shown that lipopolysaccharide (LPS) can stimulate 

Aβ deposition [12-14], suggesting that neuroinflammation could be a causative 

contributor in the development and/or progression of AD.  

Recently, interests have focused on the nuclear factor-erythroid 2-related factor 2 

(Nrf2) signalling in antioxidant response element (ARE)-mediated regulation of gene 

expression. Nrf2 is a redox-sensitive transcription factor, which on activation under 

oxidant conditions binds to the ARE promoter and activates a battery of antioxidant 

and cytoprotective genes that include heme oxygenase-1 (HO-1). Nrf2 and its target 

genes modulate microglial phenotype, restore redox homeostasis and attenuate pro-

inflammatory phenotype in favour of anti-inflammatory phenotypes [15]. In a study 
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using HO-1 knockout mice, Kapturczak et al (2004) showed that a pro-inflammatory 

tendency was associated with HO-1 deficiency [16]. Hence, pharmacological 

induction of HO-1 via Nrf2 pathway might be an important strategy in modulating 

neuroinflammation. Considering the protective effects of Nrf2 against oxidative injury, 

recent studies have also implicated Nrf2 in neuroprotection [17, 18].  

Artemether (Figure 1) is the lipid-soluble derivative of artemisinin [19]. Although 

currently used in the treatment of malaria, experiments on experimental rheumatoid 

arthritis have shown that artemether could be offered as a second-line drug 

treatment of rheumatoid arthritis [20]. In addition, artemether has been shown to 

have anti-inflammatory effects in a mouse model of colitis [21]. In spite of studies 

showing anti-inflammatory potentials of artemether, we do not know whether this 

drug could interfere with signalling pathways involved in neuroinflammation in LPS-

activated microglia. Therefore, in this study, we have investigated the effects of 

artemether on neuroinflammation in LPS-activated BV2 microglial cells. We also 

investigated the effect of artemether on neuroinflammation-induced neurotoxicity in 

HT22 cells co-cultured with BV2 microglia. The roles of Nrf2/HO-1 activation on the 

anti-inflammatory and neuroprotective effects of artemether were further 

investigated. 

2. Methods 

2.1.  Cell culture 

BV2 mouse microglia cell line ICLC ATL03001 (Interlab Cell Line Collection, Banca 

Bilogica e Cell Factory, Italy) were maintained in RPMI 1640 medium with 10% fetal 

bovine serum (FBS) (Sigma), 2 mM L-glutamine (Sigma), 100 U/ml penicillin and 

100 mg/ml streptomycin (Sigma) in a 5 % CO2 incubator.  

HT22 mouse hippocampal cells were cultured in DMEM supplemented with 10 % 

FBS, 100 U/ml penicillin and 100 µg/ml streptomycin in a 5 % CO2 incubator at 37°C.  

2.2. Drugs and treatment 

Artemether (Sigma) was dissolved in dimethyl sulphoxide (DMSO) to a concentration 

of 0.1 M and aliquots stored in -80°C. BAY 11-7085 and SKF 86002 dihydrochloride 

were purchased from Tocris. In all experiments, cells were treated with artemether 

(5-40 µM) in the absence or presence of LPS (1 µg/ml). 
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2.3. BV2 microglia viability assay  

The colorimetric 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide 

(MTT) assay was performed to determine the viability of BV2 microglia incubated 

with or without LPS (1 µg/ml) in the presence of artemether (5-40 µM) for 24 h.  

Following drug treatment and stimulation with LPS, 200 µl MTT solution (5 mg/ml) 

was added to cells and incubated at 37°C for 4 h. Thereafter, 200 µl of medium was 

removed from each well without disturbing the cell clusters, and 150 µl of DMSO 

solution added to wells to dissolve the formazan crystals. Thorough mixing of the 

preparation was facilitated by shaking the plate for a few seconds before absorbance 

was read at 540 nm with a plate reader (Infinite F50, Tecan).  

2.4. Nitrite determination  

BV2 cells were seeded out (2 × 105 cells/ml) and cultured for 48 h. Thereafter cells 

were pre-treated with artemether (5-40 µM) for 30 min and stimulated with LPS for 

24 h. Levels of nitrite in culture media were measured using commercially available 

Griess assay kit (Promega) according to manufacturer’s instructions. Absorbance 

was measured at 540 nm in a microplate reader (Infinite F50, Tecan).  

2.3. Determination of PGE2 production in BV2 microglia 

BV2 cells were seeded out (2 × 105 cells/ml) and cultured in 96-well plates for 48 h. 

Thereafter, cells were pre-treated with artemether (5-40 µM) for 30 min and 

stimulated with LPS for 24 h. Levels of PGE2 in culture medium were measured 

using commercially available enzyme immunoassay kit (Arbor Assays, Ann Arbor, 

Michigan, USA) according to manufacturer’s instructions. Absorbance was measured 

at 450 nm in a microplate reader (Infinite F50, Tecan).  

2.4. Determination of TNFα and IL-6 production in BV2 microglia 

Cultured BV2 microglia were pre-treated with artemether (5-40 µM) prior to 

stimulation with LPS (1 µg/ml). Twenty-four hours after stimulation, culture 

supernatants were collected and centrifuged. Concentrations of TNFα and IL-6 were 

measured with commercially available ELISA kits (BioLegend, UK), followed by 

measurements in a plate reader at a wavelength of 450 nm. 
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2.5. Reporter gene assays 

At confluence, cultured BV2 microglia were sub-cultured (at a ratio of 1:3) 24 h 

before transfection. Thereafter, cells were harvested and re-suspended at 4 x 105 

cells/ml in Opti-MEM containing 5% FBS. Cells were then seeded out in a solid white 

96-well plate and incubated with pGL4.32[luc2P/NF-κB-RE/Hygro] vector (Promega, 

UK), using Fugene 6 (Promega) transfection reagent and incubated for a further 16 h 

at 37°C. Following transfection, media was changed to OPTI-MEM and incubated for 

a further 8 h. Thereafter, transfected cells were treated with artemether (5-40 µM) or 

BAY 11-7085 (10 µM) and incubated for 30 min at 37°C followed by LPS (1 µg/ml) 

for 6 h. At the end of the stimulation, NF-κB-mediated gene expression was 

measured with One-Glo luciferase assay kit (Promega), according to the 

manufacturer’s instructions. 

To carry out the ARE-dependent reporter gene assay, BV2 microglia were seeded 

out and incubated in solid white 96-well at 37°C for 24 h. A transfection cocktail was 

made by diluting ARE vector (pGL4.37 [luc2P/ARE/Hygro]; Promega) at a 

concentration of 1 ng DNA/µl in Fugene 6 transfection reagent. The cocktail was 

incubated at room temperature for 20 min, and 8 µl to each well, followed by 

incubation for 18 h at 37°C. Thereafter, culture medium was changed to OPTI-MEM 

and incubated for 6 h at 37°C. Cells were then treated with artemether (5-40 µM) and 

incubated at 37°C for 8 h. Following incubation, plates were allowed to cool at room 

temperature for 15 min. Thereafter, 80 µl of luciferase buffer containing 

luminescence substrate was added to each well and luminescence read with 

FLUOstar OPTIM reader (BMG LABTECH). 

2.6. Isolation of nuclear extracts 

Nuclear extracts were prepared for experiments involving nuclear proteins, and was 

carried using a nuclear extraction kit (Abcam), according to the manufacturer’s 

instructions. 

2.7. Western blot 

Cytoplasmic protein extraction was performed on cells lysed in RIPA buffer 

containing 2 mM phenylmethylsulfonyl fluoride (PMSF) (Sigma). Lysates were 

centrifuged, and collected. Cell lysate (20 µg) were separated by SDS-PAGE, blotted 

onto polyvinylidene difluoride (pvdf) membrane (Millipore). Transferred proteins were 
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incubated with the following primary antibodies at 4°C: anti-rabbit iNOS (1:500, 

Santa Cruz), rabbit anti-COX-2 (1:500; Santa Cruz), rabbit anti-mPGES-1 (1:1000; 

Agri Sera), rabbit anti-phospho-p38 (1:250; Santa Cruz), rabbit anti-phospho-

MAPKAPK2 (1:200; Assay Biotechnology), rabbit anti-phospho- MKK3/6 (1:1000; 

Santa Cruz), rabbit phospho-IκBα (1:250; Santa Cruz, rabbit phospho-p65 NF-κB 

(1:500; Santa Cruz), rabbit HO-1 (1:1000; Santa Cruz), rabbit Nrf2 (1:500; Santa 

Cruz), rabbit NQO1 (1:500; Santa Cruz) and rabbit anti-actin (1:1000; Sigma). After 

extensive washing (three times for 15 min each in TBS-T), proteins were detected by 

incubation with Alexa Fluor 680 goat anti-rabbit secondary antibody (1:10000; Life 

Technologies) at room temperature for 1 h. Detection was done using a LICOR 

Odyssey Imager.  

2.8. Immunofluorescence 

Microglia cells were cultured in 24 well plates. At confluence, cells were pre-treated 

with artemether (5-40 µM) for 30 min followed by LPS (1 µg/ml) stimulation for 60 

min (NF-κB) and 24 h (Nrf2 activation). Cells were fixed with ice-cold 100% methanol 

for 15 min at -20°C and later washed 3 times for 5 min with PBS. Non-specific 

binding sites were blocked by incubating cells in 5% BSA blocking solution 

(containing 10% horse serum in 1X TBS-T) for 60 min at room temperature followed 

by washing with PBS. Thereafter, the cells were incubated with rabbit anti-NF-κB 

p65 (Santa Cruz; 1:100) antibody or anti-Nrf2 (Santa Cruz; 1:100) overnight at 4°C. 

Following overnight incubation, cells were washed 3 times with PBS and incubated 

for 2 h in dark with Alexa Fluor 488-conjugated donkey anti-rabbit IgG (Life 

Technologies; 1:500) secondary antibody. Thereafter, cells were washed with PBS 

and counterstained with 4', 6 diamidino-2-phenylindole dihydrochloride (50 nm, 

DAPI; Invitrogen) for 5 min. After rinsing cells with PBS, excess buffer was removed 

and gold antifade reagent (Invitrogen) was added. All staining procedures were 

performed at room temperature. Representative fluorescence images were obtained 

using EVOS® FLoid® cell imaging station. 

2.9. Electrophoretic mobility shift assays (EMSA) 

An ELISA-based DNA binding assay (EMSA) was used to investigate the effects of 

artemether on DNA binding of NF-κB. BV2 microglia were treated with 5, 10, 20 and 

40 µM artemether or BAY 11-7085 (10 µM). Thirty minutes later, cells were 
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stimulated with LPS (1 µg/ml). After 1 h, nuclear extracts were prepared using 

EpiSeeker Nuclear Extraction Kit (Abcam), according to the manufacturer's 

instructions. DNA binding assay was carried on nuclear extracts using the TransAM 

NF-κB transcription factor EMSA kit (Activ Motif, Belgium) according the 

manufacturer’s instructions. The EMSA kit employs a 96-well plate to which an 

oligonucleotide containing the NF-κB consensus site (5’ GGGACTTTCC-3’) has 

been immobilised. Briefly, 30 µl of complete binding buffer were added to each well, 

followed by 20 µg nuclear extract samples. The plate was covered and rocked 

(100 rpm) for 1 h at room temperature. This was followed by addition of NF-κB 

antibody (1:1000; 1 h) and HRP-conjugated antibody (1:1000; 1 h). Absorbance was 

read on a Tecan F50 microplate reader at 450 nm. 

To investigate DNA binding of Nrf2, BV2 microglia were treated with artemether 

(5-40 µM). Nuclear extracts were added to 96-well plates on which has been 

immobilised oligonucleotide containing the ARE consensus binding site (5’ 

GTCACAGTGACTCAGCAGAATCTG-3’). Assay procedure was as described for 

NF-κB, using an Nrf2 antibody (1:1000; 1 h). 

2.10. GSH-Glo™ glutathione assay in BV2 microglia 

BV2 microglia were cultured in a 96-well plate (2 × 105 cells/ml). After 48 h, culture 

medium was changed to phenol red- and serum-free medium, treated with 

artemether (5-40 µM) and incubated for 24 h. At the end of the experiment, culture 

medium was removed and levels of GSH determined using GSH-Glo™ glutathione 

assay kit (Promega, Southampton), according to the manufacturer’s instruction. 

Briefly, 100 µl of 1X GSH-Glo™ reagent was added to each well and incubated with 

shaking at room temperature for 30 min. Thereafter, 100µl of luciferin detection 

reagent was added to each well and incubated with shaking at room temperature for 

15 min. Luminiscence was then read with with FLUOstar OPTIM reader (BMG 

LABTECH). 

2.11. Determination of Aβ and BACE-1 in LPS activated BV2 microglia 

To investigate the effect of artemether on Aβ and BACE-1 production BV2 cells were 

pre-treated with artemether (5-40 µM) followed by stimulation with LPS (1 µg/ml) for 

24 h. Thereafter, cell culture supernatants were collected, centrifuged and analysed 

for Aβ and BACE-1 using Aβ and BACE-1 ELISA kits (Life Technologies). 
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2.12. BV2 microglia/HT22 mouse hippocampal neuron co-culture 

Neuroprotective effects of artemether were investigated using a transwell co-culture 

system. BV2 cells were cultured at a density of 5 x 104 on transwell inserts (pore size 

0.4 µm; Corning) in 96-well plate placed above the HT22 neuronal layer. 

2.13. Determination of HT22 cell viability  

The effect of microglial activation on HT22 neuron viability was measured using the 

MTT assay. Twenty-four hours after establishing co-culture, BV2 cells were pre-

treated with artemether (5-40 µM) and then stimulated with LPS (1 µg/ml) for 24 h. 

After the experiment, 200 µl MTT solution (5 mg/ml) was added to each well 

containing HT22 neurons and incubated at 37°C for 4 h. Then, 200 µl of medium 

was removed from each well without disturbing the cell clusters, and 150 µl of DMSO 

solution added to wells to dissolve the formazan crystals. Thorough mixing of the 

preparation was facilitated by shaking the plate for a few seconds before absorbance 

was read at 540 nm with a plate reader. 

2.14. Measurement of Intracellular ROS production 

The effect of microglial activation on intracellular ROS levels in HT22 cells was 

performed using the fluorescent 2’,7’-dichlorofluorescin diacetate DCFDA-cellular 

reactive oxygen species detection assay kit (Abcam). Twenty-four hours after 

establishing transwell co-culture, HT22 neurons were incubated with 10 µM DCFDA 

for 30 min at 37°C. After removal of excess DCFDA, HT22 cells were washed and 

the microglial layer pre-treated with artemether (5-40 µM) for 30 min followed by 

stimulation with 1 µg/ml LPS for 4 h at 37°C. Intracellular production of ROS was 

measured by the fluorescence detection of dichlorofluorescein (DCF) as the oxidised 

product of DCFH on a microplate reader with an excitation wavelength of 485 nm 

and emission wavelength of 535 nm. 

2.15. Cellular DNA fragmentation assay 

The effect of microglial activation on cellular DNA fragmentation in HT22 cells was 

conducted using an assay kit (Roche Diagnostics, Mannheim, Germany), according 

to the manufacturer’s instructions. HT22 neurons were co-cultured with BV2 cells 

grown in transwells. Thereafter, the neurons were labelled with 5-bromo-2’-

deoxyuridine (BrdU) for 12 h. Following labelling, BV2 microglia were treated with 
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artemether (5-40 µM) 30 min prior to stimulation with LPS for 24 h. Cells were 

centrifuged at 250 g for 10 min and supernatants removed. The cells were then lysed 

with 200 µl of buffer and incubated for 30 min at room temperature. Cells were 

centrifuged again at 250 g for 10 min and supernatants removed. The labelled DNA 

in the supernatants as a result of DNA fragmentation was measured using ELISA 

with an anti-BrdU antibody. 

2.16. Nrf2 siRNA transfections  

Small interfering RNA (siRNA) targeted at Nrf2 (Santa Cruz Biotechnology) was 

used to knockout Nrf2. BV2 cells were cultured and incubated at 37°C in a 5% CO2 

incubator until 70-80 % confluent. Thereafter, 2 µl Nrf2 siRNA duplex were diluted 

into 100 µl of siRNA transfection medium (Santa Cruz Biotechnology). In a separate 

tube, 2 µl of transfection reagent (Santa Cruz biotechnology) was diluted into 100 µl 

of siRNA transfection medium. The dilutions were mixed gently and incubated for 30 

min at room temperature. Next, cells were incubated in Nrf2 siRNA transfection 

cocktail for 6 h at 37°C. Control BV2 microglia were transfected with control siRNA. 

Following transfection, media was changed in Nrf2 siRNA and control siRNA 

transfected cells to complete media and incubated for a further 18 h. Effects of 

artemether (40 µM) on NO, PGE2, TNFα and IL-6 production in LPS-stimulated 

control siRNA and Nrf2-siRNA-transfected BV2 cells were then determined. NF-κB 

DNA binding assays were also conducted in LPS-stimulated control siRNA and 

Nrf2-siRNA-transfected BV2 cells treated with artemether (40 µM). Transfection 

efficiency was determined by preparing nuclear extracts from both control siRNA and 

Nrf2-siRNA-transfected BV2 cells, and western blot carried out for levels of Nrf2 

protein. 

2.17. Statistical analysis 

Values of all experiments were represented as a mean ± SEM of at least 3 

experiments. Values were compared using one-way ANOVA followed by a post-hoc 

Student Newman-Keuls test. 
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3. Results  

3.1 Artemether treatment did not affect viability of BV2 microglia 

BV2 cells were stimulated with LPS (1 µg/ml) in the presence or absence of 

artemether (5-40 µM) for 24 h. Subsequent determination of cell viability showed that 

there was no significant difference in cell viability with arious treatments compared to 

the untreated cells (Figure 2). 

3.2 Artemether reduced iNOS-mediated NO production in LPS-stimulated 

microglial cells 

In LPS treated BV2 cells, there was a marked increase in NO production, when 

compared to unstimulated cells. Pre-treatment with artemether (5-40 µM) 

significantly reduced (p<0.01) nitrite production in a concentration-dependent 

manner (Figure 3a). With 10 µM of the drug, nitrite production was 42.3 %. 

Subsequent increases in concentration from 20 µM to 40 µM resulted in ~1.2 fold 

decrease in nitrite production. Further investigations showed with the lowest 

concentration (5 µM), artemether did not significantly inhibit levels of iNOS protein. 

At 10 µM, there was a slight reduction in the level of iNOS protein. However, with an 

increase in concentration to 20 and 40 µM, artemether significantly (p<0.001) 

reduced levels of iNOS protein following LPS stimulation (Figure 3b). 

3.3 Artemether inhibited COX-2 and mPGES-1 mediated PGE2 production in 

LPS-activated BV2 Microglia 

The activation of BV2 microglia with LPS resulted in a significant increase in PGE2 

production compared to untreated control after 24 h stimulation (Figure 4a). 

However, when pre-treated with artemether (5, 10, 20 and 40 µM), there was a 

significant (p<0.001) reduction in the production of PGE2 (Figure 4a). At 40 µM, 

PGE2 release was reduced ~2.2-fold, compared with LPS control (p<0.001).  

Following our observation that artemether reduced LPS-induced PGE2 production, 

we investigated the effect of the drug on the levels of COX-2 and mPGES-1 proteins 

in LPS-stimulated BV2 microglia. Figure 4b shows that there was a marked increase 

in COX-2 protein in LPS-activated BV2 microglia. Pre-treatment with 5 µM 

artemether produced a modest effect on LPS-induced COX-2 protein expression. 

However, an increase in concentrations of the drug to 10, 20 and 40 µM resulted in 
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significant reduction of COX-2 protein (~ 1.3-fold, p<0.001 at 10 µM; ~1.4-fold, 

p<0.001 at 20 µM; ~1.7-fold, p<0.001 at 40 µM) (Figure 4b). In addition, artemether 

(5-40 µM) significantly (p<0.001) suppressed levels of mPGES-1 protein following 

LPS activation at all concentrations (Figure 4c). At 40 µM, mPGES-1 expression was 

significantly reduced (~2.2-fold, p<0.001). 

3.4 Artemether reduced the production of TNFα and IL-6 

Following stimulation of BV2 microglia with LPS (1 µg/ml), levels of TNFα secreted 

into culture supernatants was significantly increased (p<0.001) (Figure 5a). However, 

pre-treatment with artemether (10, 20 and 40 µM) resulted in a significant and 

concentration-dependent reduction of TNFα production relative to the LPS control 

(~1.6-fold, p<0.01 at 10 µM; ~3-fold, p<0.001 at 20 µM; ~8-fold, p<0.001 at 40 µM). 

We also observed that LPS stimulation resulted in elevated levels of IL-6 production, 

which was significantly reduced when cells were pre-treated with artemether 

(5-40 µM) (~1.6-fold, p<0.01 at 5 µM; ~1.9-fold, p<0.01 at 10 µM; ~2.5-fold, p<0.001 

at 20 µM; ~3.7-fold, p<0.001 at 40 µM) (Figure 5b). 

3.5 Artemether inhibited nuclear transactivation of NF-κκκκB in BV2 microglia 

In order to determine whether artemether had any general effect on NF-κB mediated 

gene transcription, NF-κB luciferase reporter gene assay was conducted in BV2 

cells. Results obtained showed that artemether (5-40 µM) produced dose-dependent 

inhibition of NF-κB regulated luciferase reporter gene expression following 

stimulation with LPS (1 µg/ml) (Figure 6a). The specific NF-κB inhibitor, 

BAY 11-7085 (10 µM) produced ~3-fold inhibition of NF-κB transactivation.  

3.6 Artemether inhibited neuroinflammation by interfering with IκκκκB/NF-κκκκB 

signalling 

Experiments to further understand the molecular mechanisms involved in the 

inhibitory actions of artemether on neuroinflammation showed that the drug 

significantly inhibited IκB phosphorylation and degradation following LPS activation. 

Stimulation of BV2 microglia with LPS (1 µg/ml) resulted in marked increase in the 

level of phospho-IκB protein (Figure 6b). With 5 µM of artemether, there was no 

significant effect on IκB phosphorylation. However, pre-treatment with artemether 

(10-40 µM) resulted in a significant reduction (p<0.01) in the level of phospho-IκB 
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protein, when compared with LPS control (Figure 6b). LPS also induced degradation 

of IκB, which was significantly (p<0.01) by 10, 20 and 40 µM, but not 5 µM of 

artemether (6c). The NF-κB inhibitor, BAY 11-7085 (10 µM) inhibited LPS-induced 

phosphorylation and degradation of IκB to the same degree as artemether (40 µM). 

These results suggest that artemether inhibited LPS-induced IκB phosphorylation at 

higher concentrations than 5 µM. 

Subsequently, we investigated the effect of artemether on nuclear translocation of 

p65NF-κB sub-unit. Immunofluorescence experiments (Figure 6d) showed that LPS 

induced localisation of NF-κB in the nucleus. Pre-treatment with artemether (5-

40 µM) and BAY 11-7085 (10 µM) resulted in suppression of nuclear accumulation of 

NF-κB. Further investigations using western blot revealed that LPS stimulation of 

BV2 microglia resulted in a marked increase in levels of nuclear p65 subunit when 

compared to the unstimulated control (Figure 6d). There was no significant effect on 

LPS-induced nuclear translocation of NF-κB when cells were pre-treated with 5 µM 

of artemether. However, pre-treatment with 10, 20 and 40 µM of the drug resulted in 

significant suppression of nuclear translocation of p65 subunit. The degree of 

inhibition of nuclear translocation produced by artemether (40 µM) was similar to 

BAY 11-7085 (10 µM). 

We also investigated the effect of artemether on DNA binding of NF-κB using an 

ELISA-based EMSA. Figure 6f shows that stimulation of BV2 cells with LPS 

(1 µg/ml) resulted in an increase in DNA binding of NF-κB, when compared with 

unstimulated control cells. When cells were treated with artemether (5-40 µM), there 

was a dose-dependent and significant attenuation of DNA binding of NF-κB. The 

pronounced effect of artemether in this experiment seems to suggest that the impact 

of the drug on NF-κB signalling is more pronounced on DNA binding. 

3.7 Inhibition of p38 MAPK signalling contributes to the effect of artemether on 

activated BV2 microglia 

We investigated whether inhibition of p38 activity contributed to the anti-inflammatory 

effect of artemether and found that stimulation of BV2 microglia for 1 h resulted in a 

marked increase in the levels of phospho-p38 protein when compared to the 

untreated control (Figure 7a). However, pre-treatment with artemether resulted in a 
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significant reduction in the level of phospho-p38 (~0.5-fold, p<0.05 at 5 µM; ~1.2-

fold, p<0.01 at 10 µM; ~1.4-fold, p<0.001 at 20 µM; ~1.6-fold, p<0.001at 

40 µM). Levels of phopsho-p38 protein in cells pre-treated with the specific p38 

inhibitor, SKF86002 (1 µM) were similar to levels in artemether (40 µM)-treated cells. 

To further elucidate the effect of artemether on p38 MAPK signalling, we investigated 

its effect on the upstream kinase, MKK3/6. Results showed elevated levels of 

phosphorylated MKK3/6 in LPS-stimulated BV2 cells (Figure 7 b). However, this 

effect was significantly reduced by pre-treatment with artemether (~1.1-fold, p<0.05 

at 5 µM; ~1.2-fold, p<0.01 at 10 µM; ~1.4-fold, p<0.001 at 20 µM; ~1.6-fold, p<0.001 

at 40 µM) compared to the LPS control. 

We also observed elevated levels of phospho-MAPKAPK2 protein expression 

following stimulation of BV2 cells with LPS (Figure 7c). Pre-treatment with 

artemether blocked phospho-MAPKAPK2 protein expression (~1.1-fold, p<0.05 at 

5 µM; ~1.1-fold, p<0.05 at 10 µM; ~1.4-fold, p<0.001 at 20 µM; ~1.7-fold, p<0.001 at 

40 µM) (Figure 7 c). 

3.8 Artemether inhibited LPS-induced Aβ and BACE-1 production 

To investigate the effects of artemether on levels of amyloid-related proteins, we 

tested the effect of the drug on Aβ production following stimulation with LPS 

(1 µg/ml). Figure 8a shows that stimulation with LPS resulted in a marked increase in 

Aβ production when compared to the untreated control. Pre-treatment with 

artemether (10-40 µM) resulted in a concentration-dependent and significant 

(p<0.01) reduction in Aβ production relative to the LPS control. 

Subsequent investigation of BACE-1 protein showed that stimulation of BV2 cells 

with LPS (1 µg/ml) resulted in a significant increase in the production of BACE-1. 

Pre-treatment with artemether (10-40 µM) caused a significant (p<0.05) reduction in 

BACE-1 production (Figure 8b). 

3.9 Artemether activated Nrf2 antioxidant protective mechanisms in BV2 

microglia 

We explored whether the Nrf2 antioxidant pathway played any role in the anti-

neuroinflammatory actions of artemether. First, the effect of artemether on the levels 

of HO-1 protein was investigated in BV2 microglia. Results from these experiments 
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showed that in comparison with untreated cells, levels of HO-1 was increased 3-fold 

24 hours after treatment with 40 µM artemether (Figure 9a). Next we investigated the 

effects of artemether on NQO1 protein expression in BV2 microglia. Interestingly, 

artemether (5-40 µM) produced a significant (p<0.001) and dose-dependent increase 

in the levels of NQO1 protein (Figure 9b). We also used a luminescence-based 

glutathione assay to demonstrate a dose-dependent increase in the levels of GSH in 

BV2 microglia by 5, 10, 20 and 40 µM artemether (Figure 9c). 

Encouraged by the outcome of experiments on the effects of artemether on protein 

levels of Nrf2-regulated antioxidant genes, we next tested whether the effects of the 

drug were mediated through activation of the antioxidant responsive elements by 

using a luciferase reporter which is under the control of a promoter containing the 

ARE consensus. Using this reporter assay, we observed that artemether produced a 

dose-dependent increase in ARE luciferase activity in BV2 microglia (Figure 9d) 

Based on this observation, we carried out experiments to determine whether 

artemether could enhance nuclear translocation of Nrf2. Using western blot, we were 

able to demonstrate that treatment of BV2 microglia with artemether (5-40 µM) 

resulted in a significant and dose-dependent increase in accumulation of Nrf2 protein 

in the nucleus (Figure 9e). This observation was further confirmed with results from 

immunofluorescence experiments (Figure 9f). Using an EMSA for Nrf2 which 

employs immobilised oligonucleotide containing the ARE binding site 5’ 

GTCACAGTGACTCAGCAGAATCTG-3’, we also showed that artemether (5-40 µM) 

produced a dose-related increase in DNA binding of Nrf2 (Figure 9g). 

3.10 Artemether prevented neuroinflammation-mediated neurotoxicity in 

HT22 cells 

Encouraged by the observation that artemether could block LPS-induced 

neuroinflammation in LPS-activated microglia, we went further to investigate whether 

the drug could prevent neuroinflammation-mediated neuronal death in a 

BV2 microglia/HT22 neuron co-culture. Following stimulation of BV2 microglia with 

LPS (1 µg/ml), there was a marked reduction in the viability of co-cultured HT22 cells 

(Figure 10a). Pre-treatment of BV2 microglia with artemether (10-40 µM) significantly 

(p<0.05) prevented toxicity to HT22 cells, as a result of stimulating BV2 microglia 

with LPS.  
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Further experiments on DNA fragmentation showed that LPS-stimulation of BV2 

cells significantly increased DNA fragmentation in HT22 cells (Figure 10b). 

Treatment of BV2 cells with artemether prior to LPS stimulation resulted in a 

significantly (p<0.05) reduction in HT22 DNA fragmentation. We also found that 

stimulation of BV2 cells with LPS (1 µg/ml) significantly (p<0.001) increased 

intracellular ROS production in HT22 neurons (Figure 10c). Generation of cellular 

ROS was inhibited in a concentration-dependent manner with 5 and 10 µM of 

artemether. However, as the concentration of the drug was increased to 20 and 

40 µM, a significant inhibition of ROS generation was still observed, but the potency 

of the drug diminished. 

3.11 Anti-neuroinflammatory activity of artemether is dependent on Nrf2 

activity in LPS-activated BV2 microglia. 

Encouraged by the outcome of our experiments on the effects of artemether on Nrf2, 

we next wanted to determine whether anti-inflammatory effect of the drug was 

dependent on Nrf2 activity. To achieve this, control siRNA- and Nrf2 siRNA-

transfected BV2 cells were pre-treated with artemether (40 µM) and stimulated with 

LPS for 24 h. Western blot experiments to determine transfection efficiency showed 

that BV2 microglia transfected with control siRNA expressed nuclear Nrf2 protein. 

However, following transfection of BV2 microglia with Nrf2 siRNA, there was a 

marked reduction in the levels of nuclear Nrf2 in the cells (Figure 11a). Figure 11b 

shows that artemether (40 µM) produced significant reduction in LPS-induced PGE2 

production in control siRNA transfected cells. In Nrf2 siRNA transfected cells 

however, the suppressive effects of the same concentration of artemether was 

significantly reversed. Similar trends were observed in experiments to determine the 

effects of Nrf2 knockout on the inhibition of TNFα (Figure 11c) and IL-6 (Figure 11d) 

production, as well as NF-κB-DNA binding (Figure 11e) by artemether (40 µM).  

3.12 Neuroprotective effects of artemether is dependent on Nrf2 activity 

Having shown that Nrf2 is required for the anti-inflammatory effect of artemether, we 

also sought to know if this transcription factor was needed for the neuroprotective 

activity of the drug in a BV2 microglia-HT22 neuron co-culture. Control siRNA-and 

Nrf2 siRNA-transfected microglia were co-cultured with HT22 mouse hippocampal 

neurons. BV2 microglia were then stimulated with LPS (1 µg/ml), as described 
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earlier. Figure 12a shows that pre-treatment of BV2 microglia with artemether 

(40 µM) prior to LPS stimulation of control siRNA-transfected cells resulted in 

protection of HT22 neurons from toxicity. In Nrf2 siRNA-transfected cells, the 

neuroprotective effect of artemether was significantly lost, in comparison with control 

siRNA-transfected cells. 

Results obtained from DNA fragmentation experiments showed that DNA 

fragmentation was increased in HT22 cells co-cultured with Nrf2 knockout BV2 

microglia pre-treated with artemether (40 µM) prior to LPS stimulation compared with 

neurons co-cultured with control siRNA-transfected BV2 microglia (Figure 12b). This 

suggests that the inhibitory effect of artemether on neuroinflammation-induced DNA 

fragmentation in the neurons was reversed following Nrf2 knockout in BV2 microglia.  

4. Discussion 

Microglial activation is known to play a crucial role in neuroinflammation through 

excessive production of pro-inflammatory mediators. Microglial-mediated 

inflammation has also been linked to the pathogenesis of CNS diseases [22]. 

Consequently, we have investigated the anti-neuroinflammatory property of 

artemether in LPS-activated BV2 cells.  

Activated microglia produce various pro-inflammatory mediators including 

prostaglandins, cytokines, reactive oxygen species, and reactive nitrogen species 

such as nitric oxide (NO), all of which promote neuronal damage [23]. We have 

shown that artemether reduced the production of nitric oxide, PGE2, TNFα and IL-6 

in LPS-activated BV2 microglia. Earlier studies in rats showed that artemether 

reduced collagen-induced paw oedema and nitric oxide formation [20]. This would be 

the first attempt at elucidating the possible mechanisms involved in the anti-

inflammatory property of artemether as reported by Cuzzocrea et al. Further 

experiments showed that artemether reduced the levels of iNOS protein, 

demonstrating that the effect of the drug on NO production was due to its ability to 

inhibit iNOS protein. Coupled with epidemiological studies linking COX-2 inhibition to 

moderation in the onset of diseases like AD, several reports have suggested that 

mPGES-1 could be a strategy in treating this condition. For example, Aβ has been 

shown to induce mPGES-1 expression in rat astrocytes and mouse cerebral 

neuronal cells [24]. In this study, we have also shown for the first time that 



 

19 
 

artemether reduced the levels of both COX-2 and mPGES-1 protein in LPS-activated 

microglia. The outcome showing that this drug targets both enzymes that act 

sequentially in the biosynthesis of PGE2 during inflammation suggests that it might 

be acting on a central factor which regulates the genes encoding both proteins. 

The NF-κB signalling pathway is known to regulate the genes involved in the 

production of pro-inflammatory mediators including the pro-inflammatory cytokines, 

iNOS, COX-2 and mPGES-1. Pharmacological inhibition of this transcription factor 

as been shown to block the production of these mediators [25-27]. In this study, 

artemether has been shown to attenuate the production of NO/iNOS, PGE2/COX-

2/mPGES-1, as well as the pro-inflammatory cytokines TNFα and IL-6. We therefore 

explored its effect on NF-κB activity. Reporter gene assays on LPS-stimulated BV2 

microglia transfected with an NF-κB vector showed that artemether inhibited NF-κB-

driven luciferase expression, suggesting that the drug might possess inhibitory 

actions against the NF-κB signalling pathway. We further demonstrated that 

artemether suppressed phosphorylation and degradation of IκB. The highest 

concentration of artemether used in our investigation (40 µM) produced affected IκB 

to the same degree as BAY 11-7085, a specific inhibitor of NF-κB. Artemether also 

inhibited nuclear translocation and DNA binding of NF-κB in LPS-activated BV2 

microglia. These results suggest that artemether targets NF-κB signalling in 

activated microglia through mechanisms involving upstream targets resulting in 

nuclear translocation, as well as DNA binding of NF-κB. We have shown earlier that 

a water-soluble semi-synthetic derivative of artemisinin, artesunate inhibited IκB 

phosphorylation and degradation as well as nuclear p65 translocation to the nucleus 

following stimulation of BV2 microglia with LPS/IFNγ [26]. Studies by Zhu et al. 

(2012) also showed that artemisinin inhibited IκB phosphorylation and p65 NF-κB 

translocation to the nucleus in LPS activated primary microglia cells [28]. It therefore 

appears that artemisinin derivatives, including artemether might be inhibiting LPS-

induced neuroinflammation by targeting similar mechanisms involving the NF-κB 

signalling pathway.  

Mitogen-activated protein kinases are intracellular enzymes that allow cells to 

respond to stimuli from the extracellular environment [29]. The p38MAPK signalling 

has been shown to be critical in the expression and activity of pro-inflammatory 
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cytokines in the CNS [30]. In addition, p38 is involved in regulating the production of 

crucial inflammatory mediators such as COX-2 in macrophages [31]. Furthermore, 

studies have shown that pharmacological inhibition of p38α MAPK in an AD mouse 

model decreases brain pro-inflammatory cytokine production and attenuates 

synaptic protein loss [29]. Studies also showed that the deficiency of microglial p38α 

MAPK rescued neurons and reduces synaptic protein loss by suppressing LPS-

induced TNFα production [30]. Consequently, pharmacological modulation of 

p38MAPK signalling following LPS stimulation of the microglia is an important 

strategy in preventing neurodegeneration. We showed that artemether produced 

negative modulation of p38 signalling pathway following stimulation of BV2 microglia, 

through inhibition of phosphorylation of p38 and its upstream kinase MKK3/6. At a 

concentration of 40 µM, the degree of inhibition was similar to that produced by 

SKF86002 (1 µM). We also showed that artemether inhibited MAPKAPK2, the 

kinase which acts on p38. These results suggest that the anti-inflammatory action of 

artemether in LPS-activated microglia is mediated in part through the interference of 

p38 MAPK signalling pathway.  

Neuroinflammation is associated with the generation of Aβ in the brains of AD 

patients [32]. Furthermore, NF-κB controls the expression of BACE-1 and thus Aβ 

formation [33]. In addition, studies have shown that amyloid-β and BACE-1 were 

detected in microglia following LPS stimulation [34]. Previous studies have reported 

that AD brains contain increased levels of BACE-1 and NF-κB p65, and that NF-κB 

p65 expression leads to an increase in BACE-1 promoter activity and BACE-1 

transcription [35. Artemether decreased the production of Aβ and BACE-1 following 

LPS stimulation, suggesting that the ability of the drug to suppress these proteins of 

amyloidogenesis was closely linked to its anti-neuroinflammatory effect. 

The antioxidant transcription factor, Nrf2 which binds to the antioxidant response 

element (ARE) in gene promoters is known to regulate various endogenous 

cytoprotective genes, including those encoding for anti-inflammatory proteins. Nrf2 

activity has been reported to be crucial in the down-regulation of neuroinflammation 

[36]. Several studies have suggested that Nrf2 may have a modulatory effect on 

activation of NF-κB during neuroinflammation. Also, compounds which inhibit NF-κB 

activation have been shown to activate Nrf2. For instance, we have reported that 

tiliroside, a compound which inhibited NF-κB in BV2 microglia, also activated Nrf2 
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[27]. In addition, Foresti et al. (2013) showed that small molecule activators of the 

Nrf2-HO-1 antioxidant axis modulate inflammation in BV2 microglia cells [37]. 

Consequently, we were interested to know if artemether also had a similar effect in 

BV2 microglia. Firstly, we demonstrated that artemether increased levels of HO-1, a 

protein that has been shown to increase cellular resistance to inflammation [38]. This 

observation seems to suggest that artemether could be suppressing 

neuroinflammation through mechanisms that increase levels of HO-1 in the 

microglia. We also showed that artemether increased levels of antioxidant protein, 

NQO1, as well as endogenous levels of GSH. 

Encouraged by the effects of artemether on antioxidant proteins, we proceeded to 

fully understand whether Nrf2 played any roles in the observed effects. Our first 

efforts showed that the activity of the antioxidant responsive element was increased 

by artemether, suggesting that the drug enhanced ARE-promoter dependent 

transcription. On activation, Nrf2 is translocated to the nucleus where it binds to ARE 

to induce the expression of ARE-dependent genes [39]. We therefore thought that 

the next step in our investigation was to determine the effects of artemether on 

nuclear translocation of Nrf2. Artemether increased nuclear translocation of Nrf2, as 

well as its binding to ARE in the microglia. Taken together, our results show that 

artemether enhances the transcriptional activity of Nrf2 in BV2 microglia. Artesunate, 

which is related drug to artemether has been reported to activate Nrf2 in BV2 

microglia [40], and in mice lungs [41, 42]. It would therefore be interesting to 

elucidate the relationship between the chemical nature of these drugs and their 

effects on Nrf2 signalling. 

Chronic neuroinflammation results in the production of pro-inflammatory mediators 

including cytokines which are neurotoxic to adjacent neurons [43]. In theory, drugs 

which inhibit neuroinflammation and hence the production of neurotoxic mediators 

would be expected to exhibit some neuroprotective effects. The most effective 

approach to test the neuroprotective effect of an anti-inflammatory drug is to use a 

neuron-microglia co-culture, which provides a system for both cells to be grown in 

close proximity. Using this approach, we cultured BV2 microglia in a transwell 

system that was placed above an HT22 neuronal layer. Using this model, we 

showed that stimulating BV2 microglia with LPS resulted in reduced viability of HT22 

hippocampal neurons. Treatment with artemether prior to stimulation of BV2 
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microglia however prevented death of adjacent HT22 in the co-culture, an outcome 

that might suggest that artemether prevented neurotoxicity due to its anti-

inflammatory effect in the microglia. These observations were further confirmed in 

experiments showing that artemether prevented inflammation-induced DNA 

fragmentation in HT22 cells. Results obtained from experiments on the production of 

ROS by HT22 following LPS activation of co-cultured BV2 microglia was however 

different. While the effects of artemether on HT22 neuron viability and DNA 

fragmentation were dose-dependent, we observed that pre-treatment with the drug 

reduced ROS production by HT22 neurons in a dose-related fashion up to 10 µM. 

However, as the concentration was increased to 20 and 40 µM, the ROS 

suppressive effect of the drug was reduced. There have been suggestions in 

scientific literature that artemisinin-related drugs have an endoperoxide bridge 

whose cleavage results in the generation of ROS in cancer cells [44]. While there is 

no evidence about the direct effects of artemether on ROS generation in neurons, 

we propose that the ability of the drug to reduce inflammation-induced ROS in 

neurons is reduced at high concentrations, possibly due to the increased influence of 

the endoperoxide bridge.  

Our studies have shown that artemether inhibits neuroinflammation and activates 

Nrf2 in BV2 microglia. Consequently, we were interested in establishing a direct link 

between the two activities of the drug. We compared the effects of the drug in BV2 

microglia transfected with control siRNA (non-targeting siRNA) and cells transfected 

with mouse Nrf2 siRNA. Western blot analysis showed that Nrf2 gene was 

successfully knocked down in these experiments. BV2 microglia transfected with 

control siRNA expressed Nrf2 protein, while there was a clear downregulation of the 

protein in the knockout cells. 

Our results showed that artemether reduced the production of pro-inflammatory 

cytokines (TNFα and IL-6), and PGE2 in control siRNA-transfected cells. However, 

Nrf2 knockout reversed the observed inhibitory effects of artemether on the 

production of inflammatory mediators in LPS-activated microglia. To our knowledge, 

this was the first report linking the anti-inflammatory property of artemether in LPS-

activated microglia to Nrf2 activity. Similar to results obtained in BV2 microglia 

monoculture, we showed that knockout of Nrf2 in the BV2 microglia resulted in the 

loss of protective effect by artemether in HT22 cells in a co-culture. This further 
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confirmed that artemether produces neuroprotective effect by inhibiting 

neuroinflammation. 

We conclude that artemether inhibits neuroinflammation as well as the resulting 

amyloidogenesis and neurotoxicity. It is suggested that the drug acts through 

multiple targets involving both NF-κB and p38 MAPK signalling. The study further 

established that the effects of artemether are dependent on Nrf2 antioxidant 

protective mechanisms suggesting that the drug might be a potential therapeutic 

strategy in neurodegenerative conditions like AD. 

Conflict of Interest: The authors declare that they have no conflict of interest. 



 

24 
 

List of Abbreviations: 

AA  Arachidonic acid 

AD  Alzheimer’s disease 

ANOVA Analysis of variance 

BACE-1 beta-site amyloid precursor protein cleaving enzyme 1 

CNS  Central Nervous System 

COX  Cyclooxygenase 

DMSO Dimethyl sulphoxide 

FBS  Foetal bovine serum 

HEK 293 Human Embryonic Kidney 293  

IκB  Inhibitor of Kappa B 

IKK  IκB kinase 

IL   Interleukin 

iNOS  Inducible nitric oxide synthase 

LPS  Lipopolysaccharide 

MAPK  Mitogen-activated protein kinase 

HO-1  Heme oxygenase-1 

NO  Nitric oxide 

Nrf2  Nuclear factor-erythroid 2-related factor 2 

NF-κB    Nuclear Factor kappa B 

TNF-α  Tumour necrosis factor-alpha 
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Figure Legends 

Figure 1: Chemical structure of artemether 

Figure 2: Artemether did not affect the viability of BV2 cells. BV2 cells were 

pre-treated with artemether (5-40 µM) for 30 min and subsequently stimulated with 

LPS (1 µg/ml) for 24 h. Thereafter, MTT viability assay was performed. All values are 

expressed as mean ± SEM for at least 3 independent experiments. Data were 

analysed using one-way ANOVA for multiple comparisons with post-hoc Student 

Newman-Keuls test. 

Figure 3: Artemether suppressed iNOS-mediated NO production in LPS-activated 

BV2 cells. Cells were stimulated with LPS (1 µg/ml) in the presence or absence of 

artemether (5-40 µM) for 24 h. Subsequently, culture supernatants and cell lysates 

were collected and analysed. (a) Artemether reduced NO production in 

LPS-activated BV2 cells. (b) Artemether inhibited levels of iNOS protein in 

LPS-activated BV2 cells. Cell lysates were analysed for iNOS protein using western 

blot. All values are expressed as mean ± SEM for three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparison with post hoc 

Student Newman-Keuls test. *p < 0.05, ***p<0.001 in comparison with LPS control. 

Figure 4: Artemether reduced PGE2 production (a) through suppression of COX-2 

(b) and mPGES-1 (c) expression in LPS-activated BV2 microglia cells. BV2 cells 

were pre-treated with artemether (5-40 µM) and stimulated with LPS (1 µg/ml) for 

24 h. PGE2 was measured in cell supernatants using PGE2 EIA. COX-2 and 

mPGES-1 protein levels were determined with western blot. All values are expressed 

as mean ± SEM for three independent experiments. Data were analysed using one-

way ANOVA for multiple comparison with post hoc Student Newman-Keuls test. 

***p<0.001 in comparison with LPS control. 

Figure 5: Artemether inhibited the production of pro-inflammatory cytokines in 

LPS-activated BV2 microglia cells. BV2 cells were stimulated with LPS (1 µg/ml) in 

the presence or absence of artemether (5-40 µM) for 24 h. Culture supernatants 

were collected and analysed for cytokine production using ELISA. All values are 

expressed as mean ± SEM for three independent experiments. Data were analysed 

using one-way ANOVA for multiple comparison with post hoc Student Newman-

Keuls test. **p<0.01, ***p<0.001 in comparison with LPS control.  
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Figure 6: Artemether inhibited neuroinflammation by targeting IκB/NF-κB signalling 

in LPS-activated BV2 microglia. (a) Artemether supressed NF-κB luciferase activity 

in BV2 cells transfected with pGL4.32[luc2P/NF-κB-RE/Hygro] vector and stimulated 

with LPS (1 µg/ml) in the absence or presence of artemether (5-40 µM) for 6 h. (b 

and c) IκBα phosphorylation and degradation in LPS-activated microglia was 

suppressed by artemether. Protein levels of phospho- and total IκB was measured 

with western blot, using rabbit anti-phospho-IκB and rabbit total IκB antibody. (d) 

Artemether suppressed p65 translocation in LPS-activated BV2 microglial cells. BV2 

cells were treated with artemether (5-40 µM) prior to LPS (1 µg/ml) for 1 h. 

Immunofluorescence experiments were carried out to detect p65 protein localisation 

using an anti-p65 antibody and Alexa Fluor 488-conjugated donkey anti-rabbit IgG 

antibodies. Cells were counterstained with DAPI and fluorescence images acquired 

with an EVOS® FLoid® cell imaging station (scale bar: 100 µm). (e) Western blot 

showing inhibition of p65 translocation to the nucleus by artemether (5-40 µM) in 

LPS-stimulated BV2 microglia. (f) Artemether inhibited DNA binding of NF-κB in 

LPS-stimulated BV2 microglia. Nuclear extracts from cells were added to 96-well 

plates to which an oligonucleotide containing the NF-κB consensus site (5’ 

GGGACTTTCC-3’) has been immobilised, followed by addition of NF-κB and HRP-

conjugated antibodies. Absorbance was read in a microplate reader. All values are 

expressed as mean ± SEM for at least 3 independent experiments. Data were 

analysed using one-way ANOVA for multiple comparisons with post-hoc Student 

Newman-Keuls test. *p<0.05, **p<0.01, ***p<0.001 in comparison with LPS control.  

Figure 7: Artemether inhibited p38MAPK-signalling pathway by reducing phospho-

p38 protein (a), phospho-MKK3/6 protein (b) and phospho-MAPKAPK2 protein (c) in 

LPS-activated BV2 microglia cells. All values are expressed as mean ± SEM for 3 

independent experiments. All values are expressed as mean ± SEM for at least 3 

independent experiments. Data were analysed using one-way ANOVA for multiple 

comparisons with post-hoc Student Newman-Keuls test. *p<0.05, **p<0.01, 

***p<0.001 in comparison with LPS control.  

Figure 8: Artemether inhibited LPS-induced Aβ (a) and BACE-1 (b) levels in 

LPS-stimulated BV2 cells. All values are expressed as mean ± SEM for at least 3 

independent experiments. Data were analysed using one-way ANOVA for multiple 
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comparisons with post-hoc Student Newman-Keuls test. *p<0.05, **p<0.01, 

***p<0.001 in comparison with LPS control.  

Figure 9: Artemether (5-40 µM) increased levels of HO-1 and NQO1 proteins in BV2 

microglia (a, b). Cells lysates were analysed using western blots with anti-HO-1 and 

anti-NQO1 antibodies. (c) Artemether increases cellular levels of GSH in BV2 

microglia. (d) Artemether activated ARE luciferase activity in BV2 cells transfected 

with pGL4.37 [luc2P/ARE/Hygro vector for 18 h. Thereafter, cells were treated with 

artemether (5-40 µM) for 8 h and luciferase activity measured. (e) Artemether 

(5-40 µM) increased levels of Nrf2 protein in BV2 microglia. Nuclear extracts 

analysed for Nrf2 protein using western blot with anti-Nrf2 antibody. (f) 

Immunofluorescence experiments were carried out to detect Nrf2 protein localisation 

using an anti-Nrf2 antibody and Alexa Fluor 488-conjugated donkey anti-rabbit IgG 

antibodies. Cells were counterstained with DAPI and fluorescence images acquired 

with an EVOS® FLoid® cell imaging station (scale bar: 100 µm). (g) Nuclear extracts 

from cells were added to 96-well plates to which an oligonucleotide containing the 

ARE consensus binding site (5’ GTCACAGTGACTCAGCAGAATCTG-3’) has been 

immobilised, followed by addition of Nrf2 and HRP-conjugated antibodies. 

Absorbance was read in a microplate reader. All values are expressed as mean ± 

SEM for at least 3 independent experiments. Data were analysed using one-way 

ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 

*p<0.05, **p<0.01, ***p<0.001 in comparison with untreated control.  

Figure 10: Artemether produced neuroprotective effects against neuronal damage 

induced by LPS activation of BV2 microglia. BV2 cells were co-cultured on transwell 

inserts with HT22 hippocampal neurons. Microglia were stimulated with LPS 

(1 µg/ml) after treatment with artemether (5-40 µM). (a) MTT assay revealed an 

increase in HT22 viability in cells treated with artemether, in comparison with control. 

(b) Reduction in DNA fragmentation in HT22 cells co-cultured with LPS-stimulated 

BV2 microglia which were pre-treated with artemether (c) Artemether treatment 

caused a reduction in cellular ROS generation in HT22 cells. All values are 

expressed as mean ± SEM for at least 3 independent experiments. Data were 

analysed using one-way ANOVA for multiple comparisons with post-hoc Student 

Newman-Keuls test. *p<0.05, **p<0.01, ***p<0.001 in comparison with LPS control. 

θp<0.001 in comparison with untreated control  
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Figure 11: Contribution of Nrf2 to the anti-inflammatory effect of artemether. Control 

siRNA- and Nrf2 siRNA-transfected BV2 cells were pre-treated with artemether 

(40 µM) and stimulated with LPS for 24 h. (a) Western blot experiments on nuclear 

extracts shows knockout efficiency. Transfection of BV2 microglia with Nrf2 siRNA 

reversed suppressive effects of artemether (40 µM) on PGE2 (b), TNFα (c) IL-6 (d) 

production, NF-κB DNA binding (e) following LPS stimulation. All values are 

expressed as mean ± SEM for at least 3 independent experiments. Data were 

analysed using one-way ANOVA for multiple comparisons with post-hoc Student 

Newman-Keuls test. **p<0.01, ***p<0.001 in comparison with control siRNA-

transfected cells. θp<0.001, compared with unstimulated control siRNA-transfected 

cells. 

Figure 12: Contribution of Nrf2 to the neuroprotective effect of artemether in a BV2 

microglia/HT22 hippocampal neuron co-culture. Control siRNA- and Nrf2 siRNA-

transfected BV2 cells were co-cultured with HT22 neurons and pre-treated with 

artemether (40 µM) followed by stimulation with LPS for 24 h. Subsequently, MTT (a) 

and DNA fragmentation (b) assays were carried out. All values are expressed as 

mean ± SEM for at least 3 independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post-hoc Student Newman-Keuls test. 

**p<0.01, ***p<0.001 in comparison with control siRNA-transfected cells. θp<0.001, 

compared with unstimulated control siRNA-transfected cells.
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Figure 12a 
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Figure 12b 
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