University of Huddersfield Repository

Bevan, Adam

Use of Magnetic Flux Techniques to Detect Wheel Tread Damage

Original Citation

This version is available at http://eprints.hud.ac.uk/26468/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Use of Magnetic Flux Techniques to Detect Wheel Tread Damage

Dr Adam Bevan – Institute of Railway Research
Stephanie Klecha – MRX Technologies
Overview

- Background
- Wheel tread damage
- SCM development
- Theory of SCM
- Wheel handheld unit
- Damage types
- Summary
- Acknowledgements
Background

- Wheelset account for a large proportion of a fleet's whole-life costs
- Wheelsets are routinely maintained to ensure safe operation and prolong life
- This includes measurements to inspect:
 - Roundness
 - Profile shape
 - Rim thickness
 - Visual inspection of surface damage
Wheel Tread Damage

- Surface damage is difficult to classify through visual inspections
 - Not possible to establish depth of damage
- Wheelsets are re-profiling to remove any identified damage
- Crucial balance exists:
 - Removing enough material to eliminate the damage
 - Minimising cut depth to preserve the rim thickness
- Taking multiple smaller cuts increases time at wheel lathe
Cut Depths

- Example radial material loss during turning
SCM Development

- MRX’s Surface Crack Measurement (SCM) technology has been in use on rails for 8+ years
- Technology has been adapted to measure surface damage on wheels using a hand held device
- Funding awarded through the RSSB/Future Railway ‘Rail Operator Challenge Competition’ to validate and further develop the product in collaboration with:
 - Bombardier Transportation
 - Institute of Rail Research, University of Huddersfield
 - Arriva Trains
Theory of SCM – 1

- Magnetic Particle Inspection (MPI) and SCM are similar
- They involve magnetizing the specimen surface
- This introduces lines of magnetic flux into the specimen
Theory of SCM – 2

- In a defect free specimen, these lines travel undisturbed through the specimen.
- If a defect is present, the flux cannot travel as easily through it.
- This causes some flux to leak at the position of the defect.
Wheel Handheld Unit – 1

- Wheel SCM uses 16 magnetic field sensors to measure and record the leaking flux
- Reports the depth of the deepest artifact in the scan
 - Amount of material to remove from the wheel to eliminate the damage
• Handheld unit specification:
 - 1mm = Lower Detection Limit (shallowest artifact)
 - 10mm = Upper Detection Limit (deepest artifact)
 - +/-0.5mm = System Accuracy
Damage Types – 1

- Surface breaking and near-surface damage
 - Cracking and cavities
Damage Types – 2

- Surface breaking and near-surface damage
 - Rolling contact fatigue (RCF) cracking
Damage Types – 3

- Surface breaking and near-surface damage
 - Rolling contact fatigue (RCF) cracking
 - Thermal cracking and cavities
Non-visible Damage – 1

- HHU reveals damage not visible on uncut wheel

Max. Measured Depth ~ 4.2mm
Non-visible Damage – 2

• HHU reveals damage not visible on uncut wheel

Max. Measured Depth ~ 7.3mm
Damage Free Wheel

• Confirms when wheel is damage free
Summary

- SCM technology has been adapted to evaluate surface and sub-surface defects in wheels
- Potential uses include:
 - *Replacing visual inspection during routine maintenance exams*
 - Repeatable, not reliant on judgement
 - Reveals damage that is not obvious/visible on uncut tread
 - *Optimisation of cut depths at wheel lathe*
 - Reduce risk of overcutting and also saves time removing defects
 - *Trending to understand RCF development and growth rates*
 - Improved planning of maintenance
 - Highlight problem wheels/vehicles
 - *Supporting specific case studies*
 - New profiles, steels etc. (monitor performance)
Next Steps

• Further wheel lathe trials to confirm damage depth readings and access constraints etc.
• Further developments of prototype HHU
• Assessment of scrap wheels:
 – Samples to be examined optically to determine deformation depth, crack length and crack depth
 – Micro-hardness testing
 – Correlation HHU readings with measured damage
• Business case detailing the benefits of the data for trending and maintenance planning
Acknowledgments

- The results and findings presented were developed as part of the RSSB/Future Railway managed ‘Rail Operator Challenge Competition’

- For further information visit us at the blue-sky village exhibition or contact:
 - a.j.bevan@hud.ac.uk
 - sek@mrxtech.co.uk