Computing and Library Services - delivering an inspiring information environment

Engineering of a glycosidase family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reeseis Ce17A and its E223S/A224/L225V/T226A/D262G mutant

Becker, D., Braet, C., Brumer, H., Claeyssens, Marc, Divine, Christina, Fagerstroms, B.R., Harris, Mark, Jones, T.A., Kleywegt, G.J., Koivula, Anu, Mahdi, Sabah, Piens, K., Sinnott, Michael L., Stahlberg, J., Teeri, T.T., Underwood, M. and Wohlfahrt, G. (2001) Engineering of a glycosidase family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reeseis Ce17A and its E223S/A224/L225V/T226A/D262G mutant. Biochemical Journal, 356. pp. 19-30. ISSN 0264-6021

[img] PDF
Restricted to Registered users only

Download (469kB)


The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala224) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 Å (= 0.1nm) closer to the acid/base Glu217 residue, with a 3.1 Å contact between Ne2 and Oe1. The pH variation of kcat/Km for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK1 shifting from 2.22±0.03 in the wild-type to 3.19±0.03 in the mutant, and pK2 shifting from 5.99±0.02 to 6.78±0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative kcat for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower kcat/Km values for both lactosides and cellobiosides, and a marginally lower stability. However, kcat values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.

Item Type: Article
Additional Information: UoA 18 (Chemistry) © 2001 Biochemical Society
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:

1 Davies, G., Sinnott, M. L. and Withers, S. G. (1998) Glycosyl transfer. In
Comprehensive Biological Catalysis (Sinnott, M. L., ed.), vol. 1, pp. 119±208,
Academic Press, London
2 Alberty, R. A. and Bloom®eld, V. (1963) Multiple intermediates in steady state
kinetics. V. Effect of pH on the rate of a simple enzymatic reaction. J. Biol. Chem.
238, 2804±2810
3 Be! guin, P. and Lemaire, M. (1996) The cellulosome : an exocellular, multiprotein
complex specialized in cellulose degradation. CRC Crit. Rev. Biochem. Mol. Biol. 31,
4 Henrissat, B., Teeri, T. T. and Warren, R. A. (1998) A scheme for designating
enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett.
425, 352±354
5 Claeyssens, M., Nerinckx, W. and Piens, K. (eds.) (1998) Carbohydrases from
Trichoderma reesei and Other Microorganisms, Royal Society of Chemistry,
6 Henrissat, B. and Bairoch, A. (1996) Updating the sequence-based classi®cation of
glycosyl hydrolases. Biochem. J. 316, 695±696
7 Henrissat, B. and Davies, G. J. (1997) Structural and sequence-based classi®cation of
glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637±644
8 Divne, C., Sta/ hlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles,
J. K. C., Teeri, T. T. and Jones, T. A. (1994) The three-dimensional structure of the
catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265, 524±528
9 Divne, C., Sta/ hlberg, J., Teeri, T. T. and Jones, T. A. (1998) High resolution crystal
structures reveal how a cellulose chain is bound in the 50 A / long tunnel of
cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275, 309±325
10 Barr, B. K., Hsieh, Y.-L., Ganem, B. and Wilson, D. B. (1996) Identi®cation of two
functionally distinct classes of exocellulases. Biochemistry 35, 586±592
11 Boisset, C., Fraschini, C., Schu$ lein, M., Henrissat, B. and Chanzy, H. (2000) Imaging
the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of
the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with
cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 66, 1444±1452
12 Kleywegt, G. J., Zou, J.-Y., Divne, C., Davies, G. J., Sinning, I., Sta/ hlberg, J.,
Reinikainen, T., Srisodsuk, M., Teeri, T. T. and Jones, T. A. (1997) The crystal
structure of the catalytic core domain of endoglucanase I from Trichoderma reesei
at 3.6 A / resolution, and a comparison with related enzymes. J. Mol. Biol. 272,
13 MacKenzie, L. F., Sulzenbacher, G., Divne, C., Jones, T. A., Wo$ ldike, H. F., Schu$ lein,
M., Withers, S. G. and Davies, G. J. (1998) Crystal structure of the family 7
endoglucanase I (Cel7B) from Humicola insolens at 2.2 A / resolution and identi®cation
of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate.
Biochem. J. 335, 409±416
14 Schu$ lein, M. (1997) Enzymatic properties of cellulases from Humicola insolens.
J. Biotech. 57, 71±81
15 Margolles-Clark, E., Hayes, C. K., Harman, G. E. and Penttila$ , M. (1996) Improved
production of Trichoderma harzianum endochitinase by expression in Trichoderma
reesei Appl. Environ. Microbiol. 62, 2145±2151
16 Mach, R. L., Schindler, M. and Kubicek, C. P. (1994) Transformation of Trichoderma
reesei based on hygromycin B resistance using homologous expressional signals.
Curr. Genet. 25, 567±570
17 Sta/ hlberg, J., Divne, C., Koivula, A., Piens, K., Claeyssens, M., Teeri, T. T. and Jones,
T. A. (1996) Activity studies and crystal structures of catalytically de®cient mutants of
cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 264, 337±349
18 Tomme, P., van Tilbeurgh, H., Pettersson, G., van Damme, J., Vanderkerckhove, J.,
Knowles, J., Teeri, T. and Claeyssens, M. (1988) Studies of the cellulolytic system of
Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases
by limited proteolysis. Eur. J. Biochem. 170, 575±581
19 Koivula, A., Lappalainen, A., Virtanen, S., Ma$ ntyla$ , A. L., Suominen, P. and Teeri,
T. T. (1996) Immunoaffinity chromatographic puri®cation of cellobiohydrolase II
mutants from recombinant trichoderma reesei strains devoid of major endoglucanase
genes. Protein Expression Purif. 8, 391±400
20 van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, T. and Pettersson, G.
(1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei.
Separation of functional domains. FEBS Lett. 204, 223±227
21 McPherson, A. (1982) Preparation and Analysis of Protein Crystals. Wiley, New York
22 Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in
oscillation mode. Methods Enzymol. 276, 307±326
23 Bru$ nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve,
R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S. et al. (1998)
Crystallography & NMR system : A new software suite for macromolecular structure
determination. Acta Crystallogr. Sect. D 54, 905±921
24 Jones, T. A., Zou, J.-Y., Cowan, S. W. and Kjeldgaard, M. (1991) Improved methods
for building protein models in electron density maps and the location of errors in
these models. Acta Crystallogr. Sect. A 47, 110±119
25 Bru$ nger, A. T. (1992) Free R value : a novel statistical quantity for assess the
accuracy of crystal structures. Nature (London) 355, 472±475
26 Kleywegt, G. J. and Bru$ nger, A. T. (1996) Checking your imagination : applications of
the free R value. Structure 4, 897±904
27 Wolfram, S. (1996) The Mathematica Book, 3rd edn. Wolfram Media/University Press,
28 Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, Jr., R. C., Warren, R. A. J.
and Kilburn, D. G. (1992) The adsorption of a bacterial cellulase and its isolated
domains to crystalline cellulose. J. Biol. Chem. 267, 6743±6749
29 Lever, M. (1972) A new reaction for colorimetric determination of carbohydrates.
Anal. Biochem. 47, 273±279
30 Teleman, A., Koivula, A., Reinikainen, T., Valkeaja$ rvi, A., Teeri, T. T., Drakenberg, T.
and Teleman, O. (1995) Progress curve analysis shows that glucose inhibits the
cellotriose hydrolysis catalysed by cellobiohydrolase II from Trichoderma reesei.
Eur. J. Biochem. 231, 250±258
31 Srisodsuk, M., Kleman-Leyer, K., Kera$ nen, S., Kirk, T. K. and Teeri, T. T. (1998)
Modes of action on cotton and bacterial cellulose of a homologous
endoglucanase±exoglucanase pair from Trichoderma reesei. Eur. J. Biochem. 251,
32 Sulzenbacher, G., Driguez, H., Henrissat, B., Schu$ lein, M. and Davies, G. J. (1996)
Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable
substrate analogue : substrate distortion gives rise to the preferred axial orientation
for the leaving group. Biochemistry 35, 15280±15287
# 2001 Biochemical Society
30 D. Becker and others
33 Schu$ lein, M., Kauppinen, M. S., Lange, L., Lassen, S. F., Andersen, L. N., Klysner, S.
and Nielsen, J. B. (1998) Characterisation of fungal cellulases for ®bre modi®cation.
In Enzyme Applications in Fibre Processing (Eriksson, K.-E. L. and Cavaco-Paulo, A.,
eds.), ACS Symposium Series vol. 687, pp. 66±74, American Chemical Society,
Columbus, OH
34 Mackenzie, L. F., Davies, G. J., Schu$ lein, M. and Withers, S. G. (1997) Identi®cation
of the catalytic nucleophile of endoglucanase I from Fusarium oxysporum by mass
spectrometry. Biochemistry 36, 5893±5901
35 van Tilbeurgh, H. (1986) Studie van het cellulasecomplex uit Trichoderma reesei.
Ph.D. Thesis, University of Ghent
36 Claeyssens, M., van Tilbeurgh, H., Tomme, P., Wood, T. M. and McRae, S. I. (1989)
Fungal cellulase systems. Comparison of the speci®cities of the cellobiohydrolases
isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261,
Received 13 July 2000/26 January 2001 ; accepted 2 March 2001
37 Mock, W. L. and Stanford, D. J. (1996) Arazoformyl dipeptide substrates for
thermolysin. Con®rmation of a reverse protonation catalytic mechanism. Biochemistry
35, 7369±7377
38 Joshi, M. D., Sidhu, G., Pot, I., Brayer, G. D., Withers, S. G. and McIntosh, L. P.
(2000) Hydrogen bonding and catalysis : a novel explanation for how a single amino
acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299,
39 Vonhoff, S., Piens, K., Pipelier, M., Braet, C., Claeyssens, M. and Vasella, A. (1999)
Inhibition of cellobiohydrolases from Trichoderma reesei. Synthesis and evaluation of
some glucose-, cellobiose-, and cellotriose-derived hydroximolactams and imidazoles.
Helv. Chim. Acta 82, 963±980
40 Roberge, M., Shareck, F., Morosoli, R., Kluepfel, D. and Dupont, C. (1998) Sitedirected
mutagenesis study of a conserved residue in family 10 glycanases : histidine
86 of xylanase A from Streptomyces lividans. Protein Eng. 11, 399±404

Depositing User: Briony Heyhoe
Date Deposited: 13 Jul 2007
Last Modified: 21 Aug 2015 23:44


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©