Computing and Library Services - delivering an inspiring information environment

Engineering of a glycosidase family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reeseis Ce17A and its E223S/A224/L225V/T226A/D262G mutant

Becker, D., Braet, C., Brumer, H., Claeyssens, Marc, Divine, Christina, Fagerstroms, B.R., Harris, Mark, Jones, T.A., Kleywegt, G.J., Koivula, Anu, Mahdi, Sabah, Piens, K., Sinnott, Michael L., Stahlberg, J., Teeri, T.T., Underwood, M. and Wohlfahrt, G. (2001) Engineering of a glycosidase family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reeseis Ce17A and its E223S/A224/L225V/T226A/D262G mutant. Biochemical Journal, 356. pp. 19-30. ISSN 0264-6021

[img] PDF
Restricted to Registered users only

Download (458kB)


    The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala224) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 Å (= 0.1nm) closer to the acid/base Glu217 residue, with a 3.1 Å contact between Ne2 and Oe1. The pH variation of kcat/Km for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK1 shifting from 2.22±0.03 in the wild-type to 3.19±0.03 in the mutant, and pK2 shifting from 5.99±0.02 to 6.78±0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative kcat for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower kcat/Km values for both lactosides and cellobiosides, and a marginally lower stability. However, kcat values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.

    Item Type: Article
    Additional Information: UoA 18 (Chemistry) © 2001 Biochemical Society
    Subjects: Q Science > QD Chemistry
    Schools: School of Applied Sciences
    School of Applied Sciences > Biomolecular Sciences Research Centre
    Related URLs:

    1 Davies, G., Sinnott, M. L. and Withers, S. G. (1998) Glycosyl transfer. In
    Comprehensive Biological Catalysis (Sinnott, M. L., ed.), vol. 1, pp. 119±208,
    Academic Press, London
    2 Alberty, R. A. and Bloom®eld, V. (1963) Multiple intermediates in steady state
    kinetics. V. Effect of pH on the rate of a simple enzymatic reaction. J. Biol. Chem.
    238, 2804±2810
    3 Be! guin, P. and Lemaire, M. (1996) The cellulosome : an exocellular, multiprotein
    complex specialized in cellulose degradation. CRC Crit. Rev. Biochem. Mol. Biol. 31,
    4 Henrissat, B., Teeri, T. T. and Warren, R. A. (1998) A scheme for designating
    enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett.
    425, 352±354
    5 Claeyssens, M., Nerinckx, W. and Piens, K. (eds.) (1998) Carbohydrases from
    Trichoderma reesei and Other Microorganisms, Royal Society of Chemistry,
    6 Henrissat, B. and Bairoch, A. (1996) Updating the sequence-based classi®cation of
    glycosyl hydrolases. Biochem. J. 316, 695±696
    7 Henrissat, B. and Davies, G. J. (1997) Structural and sequence-based classi®cation of
    glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637±644
    8 Divne, C., Sta/ hlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles,
    J. K. C., Teeri, T. T. and Jones, T. A. (1994) The three-dimensional structure of the
    catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265, 524±528
    9 Divne, C., Sta/ hlberg, J., Teeri, T. T. and Jones, T. A. (1998) High resolution crystal
    structures reveal how a cellulose chain is bound in the 50 A / long tunnel of
    cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275, 309±325
    10 Barr, B. K., Hsieh, Y.-L., Ganem, B. and Wilson, D. B. (1996) Identi®cation of two
    functionally distinct classes of exocellulases. Biochemistry 35, 586±592
    11 Boisset, C., Fraschini, C., Schu$ lein, M., Henrissat, B. and Chanzy, H. (2000) Imaging
    the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of
    the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with
    cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 66, 1444±1452
    12 Kleywegt, G. J., Zou, J.-Y., Divne, C., Davies, G. J., Sinning, I., Sta/ hlberg, J.,
    Reinikainen, T., Srisodsuk, M., Teeri, T. T. and Jones, T. A. (1997) The crystal
    structure of the catalytic core domain of endoglucanase I from Trichoderma reesei
    at 3.6 A / resolution, and a comparison with related enzymes. J. Mol. Biol. 272,
    13 MacKenzie, L. F., Sulzenbacher, G., Divne, C., Jones, T. A., Wo$ ldike, H. F., Schu$ lein,
    M., Withers, S. G. and Davies, G. J. (1998) Crystal structure of the family 7
    endoglucanase I (Cel7B) from Humicola insolens at 2.2 A / resolution and identi®cation
    of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate.
    Biochem. J. 335, 409±416
    14 Schu$ lein, M. (1997) Enzymatic properties of cellulases from Humicola insolens.
    J. Biotech. 57, 71±81
    15 Margolles-Clark, E., Hayes, C. K., Harman, G. E. and Penttila$ , M. (1996) Improved
    production of Trichoderma harzianum endochitinase by expression in Trichoderma
    reesei Appl. Environ. Microbiol. 62, 2145±2151
    16 Mach, R. L., Schindler, M. and Kubicek, C. P. (1994) Transformation of Trichoderma
    reesei based on hygromycin B resistance using homologous expressional signals.
    Curr. Genet. 25, 567±570
    17 Sta/ hlberg, J., Divne, C., Koivula, A., Piens, K., Claeyssens, M., Teeri, T. T. and Jones,
    T. A. (1996) Activity studies and crystal structures of catalytically de®cient mutants of
    cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 264, 337±349
    18 Tomme, P., van Tilbeurgh, H., Pettersson, G., van Damme, J., Vanderkerckhove, J.,
    Knowles, J., Teeri, T. and Claeyssens, M. (1988) Studies of the cellulolytic system of
    Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases
    by limited proteolysis. Eur. J. Biochem. 170, 575±581
    19 Koivula, A., Lappalainen, A., Virtanen, S., Ma$ ntyla$ , A. L., Suominen, P. and Teeri,
    T. T. (1996) Immunoaffinity chromatographic puri®cation of cellobiohydrolase II
    mutants from recombinant trichoderma reesei strains devoid of major endoglucanase
    genes. Protein Expression Purif. 8, 391±400
    20 van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, T. and Pettersson, G.
    (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei.
    Separation of functional domains. FEBS Lett. 204, 223±227
    21 McPherson, A. (1982) Preparation and Analysis of Protein Crystals. Wiley, New York
    22 Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in
    oscillation mode. Methods Enzymol. 276, 307±326
    23 Bru$ nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve,
    R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S. et al. (1998)
    Crystallography & NMR system : A new software suite for macromolecular structure
    determination. Acta Crystallogr. Sect. D 54, 905±921
    24 Jones, T. A., Zou, J.-Y., Cowan, S. W. and Kjeldgaard, M. (1991) Improved methods
    for building protein models in electron density maps and the location of errors in
    these models. Acta Crystallogr. Sect. A 47, 110±119
    25 Bru$ nger, A. T. (1992) Free R value : a novel statistical quantity for assess the
    accuracy of crystal structures. Nature (London) 355, 472±475
    26 Kleywegt, G. J. and Bru$ nger, A. T. (1996) Checking your imagination : applications of
    the free R value. Structure 4, 897±904
    27 Wolfram, S. (1996) The Mathematica Book, 3rd edn. Wolfram Media/University Press,
    28 Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, Jr., R. C., Warren, R. A. J.
    and Kilburn, D. G. (1992) The adsorption of a bacterial cellulase and its isolated
    domains to crystalline cellulose. J. Biol. Chem. 267, 6743±6749
    29 Lever, M. (1972) A new reaction for colorimetric determination of carbohydrates.
    Anal. Biochem. 47, 273±279
    30 Teleman, A., Koivula, A., Reinikainen, T., Valkeaja$ rvi, A., Teeri, T. T., Drakenberg, T.
    and Teleman, O. (1995) Progress curve analysis shows that glucose inhibits the
    cellotriose hydrolysis catalysed by cellobiohydrolase II from Trichoderma reesei.
    Eur. J. Biochem. 231, 250±258
    31 Srisodsuk, M., Kleman-Leyer, K., Kera$ nen, S., Kirk, T. K. and Teeri, T. T. (1998)
    Modes of action on cotton and bacterial cellulose of a homologous
    endoglucanase±exoglucanase pair from Trichoderma reesei. Eur. J. Biochem. 251,
    32 Sulzenbacher, G., Driguez, H., Henrissat, B., Schu$ lein, M. and Davies, G. J. (1996)
    Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable
    substrate analogue : substrate distortion gives rise to the preferred axial orientation
    for the leaving group. Biochemistry 35, 15280±15287
    # 2001 Biochemical Society
    30 D. Becker and others
    33 Schu$ lein, M., Kauppinen, M. S., Lange, L., Lassen, S. F., Andersen, L. N., Klysner, S.
    and Nielsen, J. B. (1998) Characterisation of fungal cellulases for ®bre modi®cation.
    In Enzyme Applications in Fibre Processing (Eriksson, K.-E. L. and Cavaco-Paulo, A.,
    eds.), ACS Symposium Series vol. 687, pp. 66±74, American Chemical Society,
    Columbus, OH
    34 Mackenzie, L. F., Davies, G. J., Schu$ lein, M. and Withers, S. G. (1997) Identi®cation
    of the catalytic nucleophile of endoglucanase I from Fusarium oxysporum by mass
    spectrometry. Biochemistry 36, 5893±5901
    35 van Tilbeurgh, H. (1986) Studie van het cellulasecomplex uit Trichoderma reesei.
    Ph.D. Thesis, University of Ghent
    36 Claeyssens, M., van Tilbeurgh, H., Tomme, P., Wood, T. M. and McRae, S. I. (1989)
    Fungal cellulase systems. Comparison of the speci®cities of the cellobiohydrolases
    isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261,
    Received 13 July 2000/26 January 2001 ; accepted 2 March 2001
    37 Mock, W. L. and Stanford, D. J. (1996) Arazoformyl dipeptide substrates for
    thermolysin. Con®rmation of a reverse protonation catalytic mechanism. Biochemistry
    35, 7369±7377
    38 Joshi, M. D., Sidhu, G., Pot, I., Brayer, G. D., Withers, S. G. and McIntosh, L. P.
    (2000) Hydrogen bonding and catalysis : a novel explanation for how a single amino
    acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 299,
    39 Vonhoff, S., Piens, K., Pipelier, M., Braet, C., Claeyssens, M. and Vasella, A. (1999)
    Inhibition of cellobiohydrolases from Trichoderma reesei. Synthesis and evaluation of
    some glucose-, cellobiose-, and cellotriose-derived hydroximolactams and imidazoles.
    Helv. Chim. Acta 82, 963±980
    40 Roberge, M., Shareck, F., Morosoli, R., Kluepfel, D. and Dupont, C. (1998) Sitedirected
    mutagenesis study of a conserved residue in family 10 glycanases : histidine
    86 of xylanase A from Streptomyces lividans. Protein Eng. 11, 399±404

    Depositing User: Briony Heyhoe
    Date Deposited: 13 Jul 2007
    Last Modified: 15 Sep 2010 13:45


    Downloads per month over past year

    Repository Staff Only: item control page

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©