University of Huddersfield Repository

Petushek, Erich J., Cokely, Edward T., Ward, Paul, Durocher, John, Wallace, Sean and Myer, Gregory D.

Visual estimation of ACL injury risk: Efficient assessment method, group differences, and expertise mechanisms

Original Citation

This version is available at http://eprints.hud.ac.uk/26342/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Visual Estimation of ACL Injury Risk: Efficient Assessment Method, Group Differences, and Expertise Mechanisms

Erich J. Petushek¹, Edward T. Cokely², Paul Ward³, John Durocher⁴, Sean Wallace⁵, & Gregory D. Myer⁶

¹Michigan State University, USA ²University of Oklahoma, USA ³University of Huddersfield, UK ⁴Michigan Technological University, USA ⁵Illinois Institute of Technology, USA ⁶Cincinnati Children’s Hospital Medical Center, USA

Introduction

Impact
• Over 2 million ACL injuries occur worldwide annually.
• Approximately 1 in 30 female athletes participating in landing and cutting sports (basketball, soccer) will tear their ACL within one season of play.
• Annual costs in U.S. likely exceed $3 billion (majority pursue surgery).
• Osteoarthritis occurs at 10 times the normal rate.

Potential Solutions

1.) To create an efficient and effective visual screening system for ACL injury risk

2.) Ensure biomechanical feedback during prevention programs is accurate

3.) Reduce screening time and cost

Musculoskeletal Injury Prevention

• Osteoarthritis occurs at 10 times the normal rate.
• Annual costs in U.S. likely exceed $3 billion (majority pursue surgery).
• Over 2 million ACL injuries occur worldwide annually.

Introduction: Skilled Movement Analysis

Objectives
• Establish injury mechanisms
• Identify injury risk factors
• Develop efficient screening method

Methods

Participants

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExSci Student</td>
<td>48</td>
</tr>
<tr>
<td>ExSci Academic</td>
<td>30</td>
</tr>
<tr>
<td>S&C Coach</td>
<td>41</td>
</tr>
<tr>
<td>Athletic Trainer</td>
<td>52</td>
</tr>
<tr>
<td>Physical Therapist</td>
<td>59</td>
</tr>
<tr>
<td>Physician</td>
<td>39</td>
</tr>
<tr>
<td>Sport Coach</td>
<td>34</td>
</tr>
<tr>
<td>Parent of Athlete</td>
<td>26</td>
</tr>
<tr>
<td>Female Athlete</td>
<td>11</td>
</tr>
<tr>
<td>General Public</td>
<td>320</td>
</tr>
<tr>
<td>Total</td>
<td>660</td>
</tr>
</tbody>
</table>

Procedures

• Item Reduction
• Reliability Analysis
• Cross-Validation

Test Development

• Number of Items = 5
• Average Time (min:sec) = 2:24
• Test-retest (r) = .90
• Score Range = 0-100%
• Achieved Range = 26-95%

Results

Figure 2: Sample ACL-IQ item (snapshot of video sequence)

Group Differences

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Time (min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExSci Student</td>
<td>2:24</td>
</tr>
<tr>
<td>Physical Therapist</td>
<td>2:24</td>
</tr>
<tr>
<td>S&C Coach</td>
<td>2:24</td>
</tr>
<tr>
<td>Physician</td>
<td>2:24</td>
</tr>
<tr>
<td>Sport Coach</td>
<td>2:24</td>
</tr>
<tr>
<td>Parent of Athlete</td>
<td>2:24</td>
</tr>
<tr>
<td>Female Athlete</td>
<td>2:24</td>
</tr>
<tr>
<td>General Public</td>
<td>2:24</td>
</tr>
</tbody>
</table>

Discussion

• It will be important to target patients, athletes, coaches, and physicians for improving risk assessment performance or to adopt the ACL nomogram to aid their injury risk assessment in practice.

• The ACL-IQ is an assessment technology and feedback system for ACL injury risk prediction ability.

• Individuals can assess their ACL injury risk prediction ability with a short, free, and online (www.ACL-IQ.org) tool.

Moving Forward

• Future research will focus on developing efficient methods to improve visual risk prediction performance (e.g., see Decision Tree to the right) and establishing predictable evidence that individuals with high ACL-IQ can reduce ACL injuries.

Acknowledgments: This material is based upon work supported by the National Science Foundation, National Institutes of Health and the Research Council of Norway.