Search:
Computing and Library Services - delivering an inspiring information environment

The active site of cellobiohydralase Ce16A from Trichorderma reesei: the roles of aspartic acids D221 and D175

Koivula, Anu, Ruohonen, L., Wohlfahrt, G., Reinekainen, T., Teeri, T.T., Piens, K., Claeyssens, Marc, Weber, M., Vasella, A., Becker, D., Sinnott, Michael L., Zou, J., Kleywegt, G.J., Szardenings, M., Stahlberg, J. and Jones, T.A. (2002) The active site of cellobiohydralase Ce16A from Trichorderma reesei: the roles of aspartic acids D221 and D175. Journal of the American Chemical Society, 124 (34). pp. 10015-10024. ISSN 0002-7863

[img] PDF
Restricted to Registered users only

Download (791kB)

    Abstract

    Trichoderma reesei cellobiohydrolase Cel6A is an inverting glycosidase. Structural studies have
    established that the tunnel-shaped active site of Cel6A contains two aspartic acids, D221 and D175, that
    are close to the glycosidic oxygen of the scissile bond and at hydrogen-bonding distance from each other.
    Here, site-directed mutagenesis, X-ray crystallography, and enzyme kinetic studies have been used to
    confirm the role of residue D221 as the catalytic acid. D175 is shown to affect protonation of D221 and to
    contribute to the electrostatic stabilization of the partial positive charge in the transition state. Structural
    and modeling studies suggest that the single-displacement mechanism of Cel6A may not directly involve
    a catalytic base. The value of D2O(V) of 1.16 ( 0.14 for hydrolysis of cellotriose suggests that the large
    direct effect expected for proton transfer from the nucleophilic water through a water chain (Grotthus
    mechanism) is offset by an inverse effect arising from reversibly breaking the short, tight hydrogen bond
    between D221 and D175 before catalysis.

    Item Type: Article
    Additional Information: UoA 18 (Chemistry) © 2002 American Chemical Society
    Subjects: Q Science > QD Chemistry
    Schools: School of Applied Sciences
    School of Applied Sciences > Biomolecular Sciences Research Centre
    Related URLs:
    References:

    (1) Wood, T. M.; Garcia-Campayo, V. Biodegradation 1990, 1, 147-161.
    (2) Teeri, T. T. Trends Biotechnol. 1997, 15, 160-167.
    (3) Henrissat, B.; Teeri, T. T.; Warren, R. A. FEBS Lett. 1998, 425, 352-4.
    (4) Rouvinen, J.; Bergfors, T.; Teeri, T.; Knowles, J. K.; Jones, T. A. Science
    1990, 249, 380-6.
    (5) Srisodsuk, M.; Kleman-Leyer, K.; Keranen, S.; Kirk, T. K.; Teeri, T. T.
    Eur. J. Biochem. 1998, 251, 885-92.
    (6) Kleman-Leyer, K.; Siika-aho, M.; Teeri, T. T.; Kirk, T. K. Appl. EnViron.
    Microbiol. 1996, 62, 2883-2887.
    (7) Divne, C.; Stahlberg, J.; Reinikainen, T.; Ruohonen, L.; Pettersson, G.;
    Knowles, J. K.; Teeri, T. T.; Jones, T. A. Science 1994, 265, 524-8.
    (8) Divne, C.; Stahlberg, J.; Teeri, T. T.; Jones, T. A. J. Mol. Biol. 1998, 275,
    309-25.
    (9) Barr, B. K.; Wolfgang, D. E.; Piens, K.; Claeyssens, M.; Wilson, D. B.
    Biochemistry 1998, 37, 9220-9.
    Published on Web 08/02/2002
    (10) Koshland, D. E. Biol. ReV. 1953, 28, 416-436.
    (11) Knowles, J. K. C.; Lehtovaara, P.; Murray, M.; Sinnott, M. L. J. Chem.
    Soc., Chem. Commun. 1988, 1401-1402.
    (12) Claeyssens, M.; Tomme, P.; Brewer, C. F.; Hehre, E. J. FEBS Lett. 1990,
    263, 89-92.
    (13) McCarter, J. D.; Withers, S. G. Curr. Opin. Struct. Biol. 1994, 4, 885-92.
    (14) Koivula, A.; Lappalainen, A.; Virtanen, S.; Ma¨ntyla¨, A. L.; Suominen, P.;
    Teeri, T. T. Protein Expression Purif. 1996, 8, 391-400.
    (15) Koivula, A.; Kinnari, T.; Harjunpaa, V.; Ruohonen, L.; Teleman, A.;
    Drakenberg, T.; Rouvinen, J.; Jones, T. A.; Teeri, T. T. FEBS Lett. 1998,
    429, 341-6.
    (16) Ståhlberg, J.; Divne, C.; Koivula, A.; Piens, K.; Claeyssens, M.; Teeri, T.
    T.; Jones, T. A. J. Mol. Biol. 1996, 264, 337-49.
    (17) Varrot, A.; Schulein, M.; Davies, G. J. Biochemistry 1999, 38, 8884-91.
    (18) Zou, J.-y.; Kleywegt, G. J.; Ståhlberg, J.; Driguez, H.; Nerinckx, W.;
    Claeyssens, M.; Koivula, A.; Teeri, T. T.; Jones, T. A. Structure 1999, 7,
    1035-1045.
    (19) Harjunpaa, V.; Teleman, A.; Koivula, A.; Ruohonen, L.; Teeri, T. T.;
    Teleman, O.; Drakenberg, T. Eur. J. Biochem. 1996, 240, 584-91.
    (20) Koivula, A.; Reinikainen, T.; Ruohonen, L.; Valkeajarvi, A.; Claeyssens,
    M.; Teleman, O.; Kleywegt, G. J.; Szardenings, M.; Rouvinen, J.; Jones,
    T. A.; Teeri, T. T. Protein Eng. 1996, 9, 691-9.
    (21) Teleman, A.; Koivula, A.; Reinikainen, T.; Valkeajarvi, A.; Teeri, T. T.;
    Drakenberg, T.; Teleman, O. Eur. J. Biochem. 1995, 231, 250-8.
    (22) Marquart, D. W. J. Soc. Ind. Appl. Math. 1963, 11, 431-441.
    (23) Konstantinidis, A.; Sinnott, M. L. Biochem. J. 1991, 279, 587-93.(24) Becker, D.; Johnson, K. S.; Koivula, A.; Schulein, M.; Sinnott, M. L.
    Biochem. J. 2000, 345 Pt 2, 315-9.
    (25) van Tilbeurgh, H.; Pettersson, G.; Bhikabhai, R.; De Boeck, H.; Claeyssens,
    M. Eur. J. Biochem. 1985, 148, 329-34.
    (26) Schomburg, D.; Reichelt, J. J. Mol. Graphics 1988, 6, 161-165.
    (27) Pearlman, D. A.; Case, D. A.; Caldwell, J. C.; Seibel, G. L.; Singh, U. C.;
    Weiner, P.; K.P.A. AMBER, 4.0 ed.; University of California: San
    Francisco, 1991.
    (28) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.;
    Ferguson, D. M. S.; D.C.F., T.; Caldwell, J. W.; Kollman, P. A. J. Am.
    Chem. Soc. 1995, 117, 5179-5197.
    (29) Woods, R. J.; Dwek, R. A.; Fraser-Reid, B. J. Phys. Chem. 1995, 99, 3832-
    3840.
    (30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B.
    G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.;
    Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V.
    G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
    Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
    Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
    Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
    Gordon, M.; Gonzalez, C.; A., P. J. Gaussian 94, revision B.3; Gaussian,
    Inc: Pittsburgh, PA, 1995.
    (31) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem.
    1993, 97, 10296-10280.
    (32) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Imey, R.; Klein, M. J.
    Chem. Phys. 1983, 79, 926-935.
    (33) Ryckaert, J. P.; Cicotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977,
    23, 327-341.
    Table 1. Kinetic Parameters for the wt Cel6A and Mutant Enzymes D221A and D175A on Cello-oligosaccharides (Glcn, n ) 4-6)
    Measured in 10 mM Sodium Acetate Buffer, pH 5.0 at 27 °Ca
    wt Cel6A D221A D175A
    substrate kcat (s-1) Km (íM) kcat/Km (s-1 íM-1) kcat (s-1) kcat (s-1) Km (íM) kcat/Km (s-1 íM-1)
    Glc3 0.06 ( 0.01 17 ( 5 0.004 ( 0.002 e0.0001 e0.0003 nd
    Glc4 4.1 ( 0.5 2.6 ( 0.5 2.0 ( 0.5 e0.0012 0.0013 ( 0.0010 4 ( 1 0.0003 ( 0.0004
    Glc5 1.1 ( 0.2 1.3 ( 0.4 0.8 ( 0.5 e0.0010 0.025 ( 0.001 1.4 ( 0.7 0.02 ( 0.01
    Glc6 14 (2 14 ( 6 1.0 ( 0.7 e0.0007 0.020 ( 0.001 nd
    aOwing to low activity, Km values could not be measured for the D221A mutant. Kinetic constants were calculated by a nonlinear regression data analysis
    program (Enzfit), which also gives the standard deviation. nd ) not determined.
    Catalytic Mechanism of T. reesei Cel6A A R T I C L E S
    (35) Davies, G.; Sinnott, M. L.; Withers, S. G. In ComprehensiVe biological
    catalysis; Sinnott, M. L., Ed.; Academic Press: London, 1998; Vol. I, pp
    119-208.
    (36) Sulzenbacher, G.; Driguez, H.; Henrissat, B.; Schulein, M.; Davies, G. J.
    Biochemistry 1996, 35, 15280-7.
    Figure 5. Snapshots of the molecular dynamics simulations of the proposed catalytic states. Only the residues in the -1 and +1 sites are shown. All
    hydrogens and the backbone atoms of Y169, D175, and D221 are omitted for clarity. Important hydrogen bonds are shown as green dots, and the interaction
    between water and C1, important for the nucleophilic attack, is shown in orange. The models of different reaction states show (a) the ground state with the
    -1 site sugar in a skew-boat conformation (2S0), (b) the ground state with the D221 side chain rotated toward the glycosidic oxygen, (c) an oxycarbenium
    ion intermediate modeled in a boat conformation (2,5B) as an analogue to the transition state, and (d) two sugars of the reaction products (R-cellobiose in the
    -1 and -2 sites and â-cellobiose in the +1 and +2 sites).
    A R T I C L E S Koivula et al.
    (37) Konstantinidis, A. K.; Marsden, I.; Sinnott, M. L. Biochem. J. 1993, 291,
    883-8.
    (38) Sweilem, N. S.; Sinnott, M. L. In Carbohydrases from Trichoderma and
    other microorganisms; Claeyssens, M., Nierinckx, W., Piens, K., Eds.;
    Royal Society of Chemistry: London, 1998; pp 13-20.
    (39) Banting, G.; Higgins, S. J. Tetrahedron Lett. 2000, 28, 35.
    (40) Hehre, E. J. In Enzymatic degradation of insoluble carbohydrates; Saddler,
    J. N., Penner, M. H., Eds.; ACS Symposium Series 618; American Chemical
    Society: Washington, DC, 1995; pp 68-78.
    (41) Damude, H. G.; Ferro, V.; Withers, S. G.; Warren, R. A. Biochem. J. 1996,
    315, 467-72.
    (42) Damude, H. G.; Withers, S. G.; Kilburn, D. G.; Miller, R. C., Jr.; Warren,
    R. A. Biochemistry 1995, 34, 2220-4.
    (43) Wolfgang, D. E.; Wilson, D. B. Biochemistry 1999, 38, 9746-9751.
    (44) Varrot, A.; Hastrup, S.; Schulein, M.; Davies, G. J. Biochem. J. 1999, 337,
    297-304.
    (45) Davies, G. J.; Brzozowski, A. M.; Dauter, M.; Varrot, A.; Schulein, M.
    Biochem. J. 2000, 348 Pt 1, 201-7.(46) Sinnott, M. L. In Recent adVances in carbohydrate bioengineering; Gilbert,
    H. J., Davies, G. J., Henrissat, B., Svensson, B., Eds.; Royal Society of
    Chemistry: London, 1999; pp 45-61.
    (47) Konstantinidis, A. K.; Sinnott, M. L.; Hall, B. G. Biochem. J. 1993, 291,
    15-17.
    (48) Rakus, K.; Verevkin, S. P.; Peng, W. H.; Beckhaus, H.-D.; Ruchardt, C.
    Liebings Ann. 1995, 2059-2067.
    (49) Schaffer, F.; Verevkin, S. P.; Rieger, H. J.; Beckhaus, H. D.; Ruchardt, C.
    Liebigs Ann. 1997, 1333-1334.(50) Bakthavachalam, V.; Lin, L. G.; Cherian, X. M.; Czarnik, A. W. Carbohydr.
    Res. 1987, 170, 124-35.
    (51) Cherian, X. M.; Van Arman, S. A.; Czarnik, A. W. J. Am. Chem. Soc.
    1988, 110, 6566-6568.
    (52) Capon, B.; Smith, M. C.; Anderson, E.; Dahm, R. H.; Sankey, G. H. J.
    Chem. Soc. 1969, B, 1038-1047.
    (53) Anderson, E.; Fife, T. H. J. Am. Chem. Soc. 1969, 91, 7163-7166.
    (54) Fife, T. H.; Brod, L. H. J. Am. Chem. Soc. 1970, 92, 1681-1684.
    (55) Lee, I.; Koh, J.; Park, Y. S.; Lee, H. W. J. Chem. Soc., Perkin Trans.
    1993, 2, 1575-1582.
    (56) Zhu, J.; Bennet, A. J. J. Am. Chem. Soc. 1998, 120, 3887-3893.
    (57) Huang, X.; Surry, C.; Hiebert, T.; Bennet, A. J. J. Am. Chem. Soc. 1995,
    117, 10614-10621.
    (58) Markley, J. L.; Westler, W. M. Biochemistry 1996, 35, 11092-7.
    (59) Harris, M.; Jones, T. A. J. Acta Crystallogr. 2001, D57, 1201-1203.
    (60) Nicholls, A.; Sharp, K.; Honig, B. Proteins: Struct., Funct., Genet. 1991,
    11, 281.

    Depositing User: Briony Heyhoe
    Date Deposited: 13 Jul 2007
    Last Modified: 10 Sep 2010 10:03
    URI: http://eprints.hud.ac.uk/id/eprint/262

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©