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Abstract— For accurate fault detection and diagnosis, this 
paper focuses on the study of bearing vibration responses 
under increasing radial clearances due to investable wear 
and different bearing grades. A nonlinear dynamic model 
incorporating with local defects and clearance increments is 
developed for a deep groove ball bearing. The model treats 
the inner race-shaft and outer race-housing as two lumped 
masses which are coupled by a nonlinear spring formalized 
by the Hertzian contact deformation between the balls and 
races. The solution of the nonlinear equation is obtained by 
a Runge-Kutta method in Matlab. The results show that the 
vibrations at fault characteristic frequencies exhibit 
significant changes with increasing clearances. However, an 
increased vibration is found for the outer race fault whereas 
a decreased vibration is found for inner race fault. 
Therefore, it is necessary to take into account these changes 
in determining the size of faults.   

Keywords- radial clearance; contact deformation; 
condition monitoring; bearing defects 

I.  INTRODUCTION  
A large number of papers have been focused on 

developing signal processing techniques to detect and 
isolate faults of bearings with high degree of accuracy. 
But relatively few studies have presented a mathematical 
(physics-based) model, where faults can be simulated 
under different operating conditions rather than waiting 
for their natural occurrence, or alternatively having them 
seeded for laboratory testing. 

Different mathematical models have been developed 
to study the dynamic effects on the roller bearing. In 1984, 
McFadden and Smith developed a model which described 
the vibration produced by a single point defect on the 
inner race of a rolling element bearing under constant 
radial load [1]. Purohit et al. (2006) [2] studied the radial 
and axial vibrations of a rigid shaft supported ball bearing. 
In the analytical formulation the contacts between the 
balls and the races are considered as nonlinear springs, 
whose stiffness is obtained by using the Hertzian elastic 
contact deformation theory.  Culita et al. (2007) [3] 
presented the McFadden- Smith vibration model, one of 
the first valid models of vibration generated by single 
point defects in bearings. They presented how the defect is 
encoded by vibration in a more accurate and natural 
manner than previous models. A significant important 
contribution was brought by S. Sassi et al. (2007) [4]. 
They developed a numerical model with the assumption 
that the dynamic behavior of the bearing can be 

represented by a coupled three-degree-of-freedom system. 
Upadhyan et al. (2009) [5] studied the dynamic behavior 
of a high speed unbalanced rotor supported on roller 
bearings with damping. The non-linearity in the rotor 
bearing system has been considered mainly due to 
Hertzian contact, unbalanced rotor effect and radial 
internal clearance. Patil et al. (2010) [6] presented an 
analytical model for predicting the effect of a localized 
defect on the ball bearing vibrations. In the analytical 
formulation, the contacts between the ball and the races 
are considered as non-linear springs. Dougdag et al. 
(2012) [7] presented an experimental verification of a 
simplified model of a nonlinear stiffness ball bearing in 
both static and dynamic modes and tested its capabilities 
to simulate accurately fault effects. Results of defects 
simulation and model behavior in statics and dynamics are 
compared to experimental results. Patel et al. (2013) [8] 
reported a theoretical and experimental vibration study of 
dynamically loaded deep groove ball bearings having 
local circular shape defects. The shaft, housing, raceways 
and ball masses are incorporated in the proposed 
mathematical model. Coupled solutions of governing 
equations of motion had been achieved using Runge-Kutta 
method.  

The objective of this paper is to develop a relatively 
more realistic dynamic model of deep grove ball bearing 
in presence of different internal radial clearances and 
localized defects.   

II. DYNAMIC MODEL WITH BEARING DEFECTS  
A single ball bearing consists of a number of parts. 

The description of each component can lead to a 
simulation model with a large number of degrees of 
freedom (DOF). The free body diagram of the shaft 
bearing system is provided in Fig. 1. Moreover, the deep 
grove ball bearing (6206) is the studied bearing. The 
model of the study bearing system is carried out using 
springs and lumped masses. The proposed model 
incorporates the following realistic assumptions and 
considerations. 

• Balls are positioned equi-spaced balls around the 
shaft and there is no interaction between them. 

• There is no slipping of the balls during rolling on 
the surface of races. 

• The mass of the ball is negligible because it is 
relatively small compared with other bearing 
parts refer to the Table I.  
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• The study bearing operates under isothermal 
conditions. 

• Forces act in radial directions along X and Y 
axes. 

• The mass of the inner race is included in the mass 
of the shaft, and the mass of the housing 
incorporates the mass of the outer race. 

• The shaft-housing under study is modelled using 
two masses ( sM and hM ), which yields a 2-DOF 
system.  

• Nonlinear Hertzian contact deformations are 
considered at the contacts formed between balls 
and races.  

• Damping due to lubricant film is ignored.  
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Figure 1.  Free body diagram of the shaft-housing system 

The geometric and physical properties of the studied 
bearing are presented in Table I. 

TABLE I.  GEOMETRIC AND PHYSICAL PROPERTIES USED FOR THE 
BALL BEARINGS 

Geometric properties 

 

Physical properties 
Symbol value Unit Symbol value Unit 

sd  30 mm E 210 2/ mmKN  

id  37.48 mm ν  0.3 - 

od  56.45 mm oM  59.84 g 

md  46.96 mm iM  32.4 g 

D  9.48 mm bM  2.95 g 

d
p  0.01 mm sM  5.26 Kg 

bN  9 - hM  1 Kg 

 
where oM , iM , bM , sM  and  hM  are the masses of 
outer race, inner race, ball, shaft and housing 
respectively.   

A. Load Deflection and Stiffness 
Hertzian load deformation relationship is used in 

calculation of deformation at the contacts formed between 
ball and races of the bearing under investigation. The used 
relation is expressed as the following [9]: 

nKQ δ=     (1) 

where K  is the load deflection factor or constant for 
Hertzian contact elastic deformation, δ  is the radial 
deflection or contact deformation and n  is the load 

deflection exponent, 2/3=n  for ball bearing and 9/10  
for roller bearing [9]. 

The stiffness coefficient at the contacts formed 
between races and the ith ball are evaluated using the 
following relation [10, 11]:   
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where oiK , is inner and outer raceways to ball contact 

stiffness respectively,∑ρ is the curvature sum which is 
calculated using the radii of curvature in a pair of principal 
planes passing through the point contact. *δ  is the 
dimensionless contact deflection obtained using curvature 
difference (Refer Table 6.1, Rolling Bearing Analysis, 
Tedric Harris,  Fourth Edition, 2001).  

Total deflection between two raceways is the sum of 
the approaches between the rolling elements and each 
raceway [9], hence,  
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Fig. 2 shows the rigidly supported bearing subjected to 
radial load, the radial deflection at any rolling element 
angular position is given by [9]: 

dr P
2
1cos −φd=dφ    (4) 

where rδ  is the ring radial shift, occurring at 0=φ and dP  
is the diametric clearance.  
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Figure 2.  Radial deflection at a rolling element position [9] 

If 0φ  is the initial position of the ith ball, the angular 
position iφ  at any time t is defined by the following 
relation: 

0)1(2
φ+ω+−

π
=φ ti

N c
b

i , bNi ,...,1=   (5) 

where the angular velocity cω of the cage can be 
expressed in terms of angular velocity sω  of the shaft as: 
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The radial deflection at any rolling element angular 
position may be rearranged in terms of maximum 
deformation as follows: 
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Therefore, the contact force at any angular position is 
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In Fig. 3 it is clear that the overall applied radial load 
(F) is equal to the sum of the vertical components of the 
contact reactions of the rolling element loads. 
Mathematically, it is expressed as follows: 

∑
ψ±=φ

=φ
φ φ=

I

QF
0

cos    (9) 

5

4

1

3
8

7

9 2

6

o

iφ

mdidsd

D

Y

X

maxQ

φ
Q

φ

Iψ2

F
od

 
Figure 3.  Load distributions in a ball bearing 

The overall contact deformation δ  for the ith ball  is a 
function of the shaft displacement relative to the housing 
in the radial direction,  ball position iφ  and the clearance 
c  is provided by following expression.  

( ) cYYXX ihsihs −φ−+φ−=δ sin)(cos  (10) 
where ( )idPc φ−= cos12  is the internal radial clearance. 

Since the Hertzian forces arise only when there is a 
contact deformation, the springs are required to act only in 
compression. In other words, the respective spring force 
comes into play when the instantaneous spring length is 
shorter than its unstressed length (the terms of δ  should 
be positive), otherwise the separation between ball and 
race takes place and the restoring force is set to zero.  

At the time of impact at the defect, a pulse of short 
duration is produced and it is accounted for by the term ∆  
additional deflection. Hence the expressions for δ  is 
modified as: 

( ) ( ) ∆−−φ−+φ−=δ cYYXX ihsihs sincos  (11) 
The total restoring force is the sum of the restoring 

force from each of the rolling elements. Thus the total 
restoring force components in the X and Y directions are 
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B. Internal Clearance 
Internal radial clearance is the geometrical clearance 

between the inner race, outer race and ball. Radial 
clearance is the play between the ball and raceway 
perpendicular with the bearing axis. The internal clearance 

will significantly influence heat, vibration, noise, and 
fatigue life. For best rolling element bearing life and 
machine reliability, internal clearance at running 
conditions must be close to zero [9, 12]. Moreover, it is 
also necessary for the purpose of diagnosis to gain the 
knowledge of changes on the characteristic features when 
the clearance becomes large due to investable wear during 
the bearing service life.  

The angular contact ball bearings are specifically 
designed to operate under radial and thrust load, and the 
clearance built into the unloaded bearing angle. In 
addition, there are five clearance groups, namely C2, C0 
(Normal), C3, C4 and C5. Therefore, the radial internal 
clearances for radial contact deep groove ball bearing 
(6206) are presented in Table II [9]. 

TABLE II.  RADIAL INTERNAL CLEARANCE FOR DEEP GROOVE 
BALL BEARING 6206 UNDER NO LOAD [ISO 5753] 

Clearance values (μm) 
C2 C0 C3 C4 C5 

Min Max Min Max Min Max Min Max Min Max 
1 11 6 20 15 33 28 46 40 64 

C. Equation of Motion 
Based on the assumption made, the governing 

equations for each mass in shaft and housing in X and Y 
directions can be developed. According to the motion 
direction in Fig. 1, the equations are: 
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D. Local Defect 
1) Defect on the Inner Race 

The location of defects on the inner race does not 
remain stationary since the inner race rotates at the speed 
of the shaft sω . Thus, the defect angle for the inner race 

inα  is defined as: 
( )idefectsin dWt ±ω=α   (18) 

Defect width  (W) 

Additional deflection 
(∆) 

 Defect depth (D) 

 
Figure 4.  Additional deflection of ball due to defect on inner race  



The rolling ball approaches the defect either in the 
loaded zone or the unloaded zone, therefore, the deflection 
δ  of the ith ball varies. Additional deflection at the defect 
∆  of the ball when it passes through the defect is defined 
by the width of the defect as following: 

( ))5.0cos(*2/2/ ballDD φ−=D   (19) 
where ballφ = width of the defect / radius of the ball. 

The position of the ith ball in the defect zone is 
mathematically defined as: 

( ) ( )idefectsiidefects dWtdWt // +ω≤f≤−ω  (20) 
2) Defect on the Outer Race 

The defect on the outer race is located at an angle outα
from the X axis. The local defects on the outer race are 
normally found in the loaded region. Moreover, the 
stationary outer race means that the position of the defect 
usually does not change. Whenever a ball passes over the 
defect location, it has additional deflection ∆ .  

The angular position of ith ball passing the defect zone 
is mathematically defined by the following relation: 

( ) ( )odefectoutiodefectout dWdW // +α≤f≤−α  (21) 

Defect width (W) 

Additional deflection 
(∆) 

Defect depth (D)

 
Figure 5.  Additional deflection of ball due to defect on outer race  

III. DIAGNOSTIC FEATURES WITH CLEARANCE   
The above equations (14-17) are second order 

nonlinear differential equations. To solve these equations 
each of the second order equations is converted into two 
first order differential equations. The Runge-Kutta method 
is used to solve the first differential equation set in Matlab 
environment.  

A. Initial Conditions  
The governing equations of motion are solved based 

on the ball positions (5) and the deflection relation (11) at 
each step of time. Displacement in X and Y directions and 
velocity X  and Y  at time ( dtt + ) are calculated. The 
time step ( dt ) of 6 𝜇𝜇 for nine cycles has been considered. 
The initial displacements and velocities in X and Y 
directions are set to zeroes.  

The shaft speed of 1500 rpm (25 Hz) with 1000 N 
radial load is considered as the normal operating condition 
of the bearing. Two defect sizes with width 0.6 mm and 
2.0 mm on both the inner race and outer race will be 
studied subsequently, which are denoted as small and 
large faults respectively.  The details of the calculation 
process are summarized in the flow chart of Fig. 6. 

Start

Input values ( geometric and physical properties) 

Calculation for initial conditions and time increment 

Calculation for ball angular position  

Calculation for nonlinear bearing stiffness 

Calculation for defect angular position  

Is ball in load
region? Nonlinear deflection = δ YesNonlinear deflection = 0 No

Is ball in defect 
region?Additional deflection = 0 No Additional deflection = ∆ Yes

Solving the equation of motions (14-17)

Is t ≥ t_period ?

Results 

Yes

Stop  
Figure 6.  The flow chart of calculation process 

B. Diagnosis of Outer Race Defect 
The defect on outer race often occurs in loading zone 

and will have a constant angular position, usually 
corresponding to the applied direction of the external 
loading. Therefore, when a moving ball approaches to the 
defect same magnitude of impulse is expected for every 
time of contact between ball and defect. On the other 
hand, the defect my also appear at the start of loading zone 
due to poor lubricant conditions. Therefore, two outer race 
defect locations (0 degree and 320 degrees) have been 
examined for two defect widths 0.6 mm and 2.0 mm under 
four incremental different clearance values 1, 10, 30 and 
60 𝜇𝜇.  

1) Outer Race Defect at 0 Degree 

Fig. 7 presents vibration displacements of the housing 
in X direction for baseline, small defect and large defect 
when the clearance values are at 1, 10, 30 and 60 𝜇𝜇. It 
can be seen that the baseline case, where is no defect on 
the races, exhibit a clear increase in vibration 
displacement with clearance increments, showing that the 
amplitude of local becomes higher with larger clearances. 
Moreover, for the two defect cases, the periodic vibration 
amplitudes also show significant increases with clearances 
and large defect have higher amplitudes.  

 
Figure 7.  Housing displacements in X direction 
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To show the impact behavior, Fig. 8 shows the 
vibration velocities of housing in X direction of baseline, 
small defect and large defect at four different clearance 
values. For the baseline case, clear increase in vibration 
velocity amplitude can be seen as result of clearance 
increases. For the defect case, the impulse caused by the 
contact between ball and defect is repeated each 40 
degrees. Moreover, both the impulse magnitude and 
duration increase with the defect size. 

 
Figure 8.  Housing velocities in x direction 

The frequency spectra of housing acceleration in X 
direction of baseline, small defect and large defect cases 
are illustrated in Fig. 9. For the baseline the loading 
frequency which is the cage frequency multiply by the 
number of balls can be clearly appeared. For the defect 
case, the calculated ball pass frequency outer race (BPFO) 
is 89.8Hz. The fault feature frequency and its harmonics 
are obviously obtained. Moreover, the increase of the 
defect acceleration magnitude is caused by the defect size 
and nonlinear deflection.   
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Figure 9.  Housing acceleration spectrum in X direction  

The acceleration amplitudes of housing in X direction 
of baseline, small defect and large defect cases are shown 
in Fig. 10. For the baseline case, the loading frequency 
amplitude is increased owing to large clearances. For the 
defect case, the BPFO magnitude and its harmonics are 
increasing with the increase of the clearance values. 
Additionally, the magnitude of the BPFO of the small 
defect is greatly affected by the loading frequency. 

 
Figure 10.   Acceleration amplitude on house of first three harmonics of 

fault characteristic frequency 

2) Outer Race Defect at 320 Degrees 

The vibration acceleration amplitudes of defective 
outer race at 320 degrees in X direction of small defect 
and large defect cases are shown in Fig. 11. The 
magnitude of the BPFO is greatly affected by the loading 
frequency. Furthermore, the BPFO magnitude and its 
harmonics are decreased with the increase of the clearance 
values. 

 
Figure 11.  Acceleration amplitude on house of first three harmonics of 

fault characteristic frequency  

The vibration acceleration amplitudes of different 
position of outer race defect show significant changes. 
When the defect is at 0 degree, the amplitude of vibration 
is maximum. As the position of the defect is changed 
away from this position, it is observed that the amplitude 
of vibration reduces. This variation can be seen in Fig. 10 
and Fig. 11. 

C. Diagnosis of Inner Race Defect 
Rotating inner race defect generates a complicated 

vibration signal due to rotation of both defect and balls. 
The amplitude of the inner race defect is not constant due 
to the varying load on ball and defect contacts. 

Vibration displacements of the housing in X direction 
at four different clearance values of small defect and large 
defect cases are presented in Fig. 12. As the rolling ball 
approaches the defect either in the loaded zone or the 
unloaded zone the periodic vibration amplitudes show 
significant variation. 
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Figure 12.  Housing displacements in X direction 

The housing vibration velocities in X direction of 
small defect and large defect cases are presented in Fig. 
13. It is clearly indicated that the velocity magnitude 
increases when the defect and ball contact accrue in the 
load zone and decrease in the unloaded zone. 

 
Figure 13.  Housing velocities in X direction 

The frequency spectra of housing vibration in X 
direction of small defect and large defect cases are shown 
in Fig. 14. The calculated ball pass frequency inner race 
(BPFI) is 135.198 Hz. The fault feature frequency and 
shaft rotational frequency and their harmonics are clearly 
visible.  Furthermore, the inner race defect rotates at shaft 
speed, so the BPFI is amplitude modulated by the shaft 
rotational frequency. Therefore, peaks at frequencies 

sfBPFI ±  and their harmonics are also found.   
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Figure 14.  Housing acceleration spectrum in X direction  

The acceleration amplitudes of small and large inner 
race defect cases are presented in Fig. 15. The defect 

amplitude is decreasing with the increase of the clearance 
value. For the large defect, the third harmonic amplitude is 
greatly affected by the system frequency response.  

 
Figure 15.  Acceleration amplitude on house of first three harmonics of 

fault characteristic frequency 

IV. CONCLUSION 
A dynamic model for deep groove ball bearings 

considering internal radial clearance as well as localized 
defects on inner and outer races is developed to obtain the 
vibration responses for bearing diagnosis. The bearing is 
modelled as a 2-DOF system, vibrations of shaft and 
housing in X and Y directions are studied. The vibration 
acceleration amplitudes and frequencies are simulated by 
solving the coupled nonlinear equation of motions using 
Matlab.  

The model predicts that the vibration responses 
increase with internal radial clearances which will become 
large during bearing service period due to inevitable wear. 
As expected, the large the clearance the higher amplitude 
of the diagnostic feature for the outer race defects. In 
addition, the defect at loading zone produces higher 
amplitude. 

However, the large clearance reduces the amplitudes 
of the feature for inner race defects. Therefore, the 
severity of inner race fault needs to be determined by 
taking into account bearing service duration and bearing 
grades. 
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