
University of Huddersfield Repository

Rizzini, Mattia, Fawcett, Chris, Vallati, Mauro, Gerevini, Alfonso Emilio and Hoos, Holger

Portfolio Methods for Optimal Planning: an Empirical Analysis

Original Citation

Rizzini, Mattia, Fawcett, Chris, Vallati, Mauro, Gerevini, Alfonso Emilio and Hoos, Holger (2015) 
Portfolio Methods for Optimal Planning: an Empirical Analysis. In: Proceedings of the 27th IEEE 
International Conference on Tools with Artificial Intelligence. IEEE Computer Society, pp. 494-
501. 

This version is available at http://eprints.hud.ac.uk/id/eprint/25692/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Portfolio Methods for Optimal Planning: an Empirical Analysis

Mattia Rizzini∗, Chris Fawcett†, Mauro Vallati‡, Alfonso E. Gerevini∗ and Holger Hoos†
∗University of Brescia, Italy

†University of British Columbia, Canada
‡University of Huddersfield, United Kingdom

Abstract—Combining the complementary strengths of sev-
eral algorithms through portfolio approaches has been demon-
strated to be effective in solving a wide range of AI problems.
Notably, portfolio techniques have been prominently applied to
suboptimal (satisficing) AI planning.

Here, we consider the construction of sequential planner
portfolios for (domain-independent) optimal planning. Specif-
ically, we introduce four techniques (three of which are
dynamic) for per-instance planner schedule generation using
problem instance features, and investigate the usefulness of a
range of static and dynamic techniques for combining planners.
Our extensive experimental analysis demonstrates the benefits
of using static and dynamic sequential portfolios for optimal
planning, and provides insights on the most suitable conditions
for their fruitful exploitation.

Keywords-automated planning; optimal planning; sequential
portfolio; per-instance portfolio generation.

I. INTRODUCTION

Automated planning is a prominent AI challenge. Within
the area of automated planning, cost-optimal (hereinafter,
optimal) planning deals with finding optimal plans, i.e.,
plans that reach a given goal state through an ordered set of
actions with minimum total cost. Optimal plans are desirable
in many applications.

In recent years, there has been considerable progress in
developing powerful domain-independent planners, in no
small part spurred on by the International Planning Compe-
titions (IPCs). However, none of these systems clearly dom-
inates all others in terms of performance over a broad range
of planning domains. Furthermore, it has been observed
that if a planner does not solve a given problem quickly,
it will likely not solve it at all [1, 2]. These observations
motivate the exploitation of portfolio approaches in plan-
ning. In particular, much work has been done in the area of
sequential portfolios, where selected algorithms are executed
sequentially on a single CPU. Portfolio approaches have
been successfully exploited in several other areas, notably
SAT solving and answer set programming (ASP) [3, 4].

There are planner portfolio configuration systems mainly
designed to generate domain-specific planners, such as PbP
and ASAP [5, 6], as well as a range of domain-independent
portfolio planners. Among the latter, we can identify two
main classes: static portfolios, which run the same schedule
of planners on every given problem instance, and portfolios
based on per-instance planner schedules. Cedalion [7] and

StoneSoup [8] are well-known examples of static portfolio-
based planners, while IBaCoP selects the best planner sched-
ule on a per-instance basis [9]. Here, we introduce a third
class, that of dynamic portfolios, comprised of planners in
which the schedule is created dynamically, during execution,
based on performance data from earlier runs of the given
planners as well as on features of the planning instance to
be solved.

Interestingly, we observe that most of the existing work on
portfolio-based planners is focused on satisficing planning.
However, we note that in IPC-14, some static portfolios
(MIPlan and DPMPlan), as a well as two algorithm selection
approaches (Nucelar and AllPaca) have been submitted to
the optimal track [9]. Furthermore, [10] mined the results
of IPC 2011 by using mixed-integer programming to con-
struct sequential portfolios of optimal planners; this turned
out to be helpful for assessing the usefulness of different
sets of training instances, and for better understanding the
performance of planners that took part in IPC 2011.

In the following, we consider the automatic construction
of sequential planner portfolios for domain-independent
optimal planning. In particular, we introduce four new
techniques: two similarity-based approaches and two model-
based approaches. Similarity-based approaches select the
algorithms to run by considering performance on training
instances similar to the given testing instance. Model-based
systems generate a model of the performance of each
considered component planner, which is then exploited for
the selection process. Three of the proposed methods are
dynamic portfolio approaches.

The sequential portfolios thus obtained are then compared
with static planner portfolios and with PlanZilla, an out-
of-the-box application of the SATZilla algorithm selection
approach to planning. In an extensive empirical analysis we
demonstrate the usefulness of portfolio approaches for opti-
mal planning. In particular, we find that (i) our new model-
based and instance-based approaches are more robust in that
they generalise better to new domains of planning problems
than the static portfolios and PlanZilla; (ii) when the training
set is representative of testing problems, our model-based
approaches consistently outperform static portfolios.



II. PORTFOLIO-BASED OPTIMAL PLANNING

In this section, we provide a description of the sequential
planner portfolio approaches considered in our investigation
– approaches from the literature as well as four new per-
instance approaches. Every portfolio approach considered
here requires as input a set of planning algorithms A, a
set of training instances I , and performance measurements
for the planners in A on I . Here, we measure performance
as CPU time required to produce an optimal plan and
assign a penalty value if no optimal plan was produced. The
Penalised Average Runtime (PAR score) is a real number
which counts (i) runs that crash or do not find an optimal
plan as ten times the cutoff time (PAR10) and (ii) runs
that find an optimal plan as the actual runtime. PAR scores
are commonly used in automated algorithm configuration,
algorithm selection and portfolio construction, because using
them allows runtime to be considered while still placing a
strong emphasis on high instance set coverage.

In this work we are considering optimal planners, i.e.,
planners that only produce optimal solutions to a given
planning problem.

A. Static Portfolios

Static portfolios are determined based on the performance
of the given set of potential component algorithms on the
instances in the training set. They are defined by: (i) the
subset of component planners that will be run; (ii) the order
in which those planners are to be executed; and (iii) the
runtime allocated to each planner. Once configured for a
given training set, a static portfolio is not adjusted in any
way to the problem instances to be solved by it after training
is complete.

In this work, we consider two classes of static portfolios.
First, in an approach we will simply refer to as “static
portfolio” from here on, we used the Fast Downward Stone
Soup hill-climbing technique [8]. With a target of k planner
components (“Static k”) that can be included in the portfolio,
out of a larger set of candidates, and a given limit on the total
runtime allocated to the portfolio components, we greedily
construct a portfolio: starting with an empty portfolio, in
each iteration, we either add a new planner component or
we extend the allocated CPU time of an existing planner
component; from all such modifications, we choose the one
that maximally increases the number of solved problems
within the given training set. This process continues until
no more than k planner components have been added and
the time limit has been reached.

For our second static portfolio approach, we use the
greedy schedule construction heuristic of Streeter and
Smith [11]. This approach starts with an empty portfolio and
iteratively adds the 〈planner, runtime〉 pair that maximises
the ratio between additional instances solved and runtime
spent. This can be computed efficiently using only the
runtimes at which a component planner solved a training

instance as a potential runtime choice. We will refer to this
approach as “Streeter-style”.

B. Problem Instance Features

We now turn our attention towards per-instance portfolio
approaches, which depend on a vector f of features to be
computed for any given problem instance i. Each feature
in f is a numeric value that reflects a specific property of i,
such as the average number of out-edges in i’s causal graph,
or whether i has action costs. These features are designed to
succinctly describe important aspects of the instance, such
that similar instances have similar feature vectors.

In this work, we use the feature set and extraction al-
gorithm introduced by [12]. This set contains 311 problem
instance features, including simple properties of the PDDL
representation, features obtained by translating the problem
instance to SAT and using the SAT feature extractors of [3]
and [13], and more. To the best of our knowledge, this is
the most comprehensive set of features available for planning
instances.

C. PlanZilla

PlanZilla is an adaptation of the well-known model-based
algorithm selection procedure SATzilla [3] to optimal plan-
ning. This and all the following per-instance and dynamic
portfolios implement the same general structure, composed
of four separate stages: pre-solving, feature extraction, main
and backup solving. The pre-solving stage is essentially a
greedily-selected static portfolio with a very short runtime
cutoff (in this case 1.11% of the total), aimed at solving the
easiest problem instances very quickly without expending
runtime to compute problem instance features. If the prob-
lem instance is not solved by the pre-solving stage, a model
is evaluated that uses a very simple reduced set of instance
features to predict whether the full set of features will be
computable within the given time. If so, the complete feature
set is extracted from the problem instance and PlanZilla
proceeds to the main stage. Otherwise, PlanZilla switches to
the backup solving stage. The PlanZilla main stage makes
use of predictive models (in this case Empirical Hardness
Models, or EHPs [13]) in order to predict the single best
component planner to run on a given problem instance (using
the extracted features for that instance), and also predicts
the runtime required for that planner to solve the instance.
In our case, PlanZilla will execute this selected planner for
the entirety of the remaining runtime. If for any reason
execution terminates early without producing an optimal
plan, PlanZilla switches to the backup solving stage. Finally,
the PlanZilla backup solving stage consists of running the
single best component planner, as determined by training set
PAR10 score, for the remaining available runtime.

Our implementation of PlanZilla uses the default config-
uration of an early version of a new, general-purpose Java
implementation of SATZilla called the *Zilla framework,



which was generously provided by the SATzilla team. We do
not consider PlanZilla itself to be a contribution of our work
presented here. It should also be noted that PlanZilla is not,
according to our definition, a dynamic portfolio approach.

D. Pre- and Backup Solvers

In addition to their use in PlanZilla, each of our four per-
instance portfolio approaches also makes use of pre-solving
and backup solving stages to complement the main portfolio
construction stage(s). Pre-solving is performed identically to
that of PlanZilla, with 1.11% of the total runtime allocated
to a greedily-constructed static portfolio executed before
feature extraction is performed. As with PlanZilla, training
set instances that are solved by the pre-solving stage are
removed from the training set used for the main portfolio
construction and backup solving stages.

The backup solving stage, however, is not the same as that
used by PlanZilla. The *Zilla backup solving mechanism
was designed with the assumption that any failure necessi-
tating the use of the backup solver would come early in any
given run (e.g., due to failure to extract features). In the case
of planner portfolios this is no longer the case, as a failure
can happen during execution of any individual portfolio
component. We have therefore extended the backup solving
mechanism to also take into account the runtime remaining
at the time a backup solver is required. This is done by using
incremental runtime cutoffs (with one minute increment) and
determining, for each of them, the component planner with
the best PAR10 score on the training set when given that
runtime cutoff. If the backup solving stage is required during
a subsequent run, the selected component planner is that
associated to the cutoff closest to the remaining runtime.

In the following subsections, we describe only the differ-
ent main stages for each of our new portfolio approaches.

E. Similarity-based approaches

Given a planning instance to solve, it is reasonable to
select a schedule of planners that performed well on training
set instances similar to the given instance. In all four of
our approaches, this similarity is determined based on the
features extracted from this instance, with two model-free
(this subsection) and two model-based (next subsection)
approaches. Our two model-free (or “similarity-based”) ap-
proaches are dynamic portfolios and make use of a notion
of distance between problem instances in feature space, in
this case Euclidean distance after feature normalisation to
[0, 1]. Our two model-free approaches proceed iteratively,
and operate as follows:
Instance-set-core-based. This approach first prunes in-
stances out of the training set that are further than a given
boundary cutoff value from the problem instance under
consideration. In our experiments, we use an empirically-
determined distance cutoff of 4.5, chosen to maximise
performance on the considered training set. In each iteration,

this approach selects the component planner with the best
performance on the remaining training set instances (the
core), and executes that planner for a runtime t maximising
the ratio n

t where n is the number of core instances solved
using runtime t (analogous to the procedure for the Streeter-
style schedules). After each run of a selected planner P
that fails to solve the test instance under consideration, we
remove all n training instances from the core that were
solved by P in the selected runtime t. If at any point, the core
set is empty, the approach proceeds to the backup solving
stage.
Weight-based. This approach does not perform any initial
pruning of the training set. Instead, it assigns a weight to
each training set instance, equal to the distance between
that instance and the test instance under consideration. In
each iteration, the performance of every component planner
is computed as the weighted sum of the PAR10 scores
for that planner on each training instance (using instance
weights). The planner with the best performance is selected,
and as in the instance-set-core-based approach this planner
is executed for a runtime maximising the ratio of instances
solved to runtime spent. After each failed run, we once again
remove all problem instances from the training set that were
solved by the selected planner in the selected runtime. If the
remaining training instance set becomes empty, the approach
proceeds to the backup solving stage.

Both model-free approaches run until the test instance
under consideration has been solved or the runtime budget
has been exhausted.

F. Model-based approaches

For our model-based approaches, the choices of the next
component planner to execute and its runtime are made using
empirical hardness models learned from training data, using
the *Zilla framework. We implemented a simplified model-
based per-instance approach and a full model-based dynamic
portfolio.
Simplified model-based. Given a planning instance to be
solved, this approach iteratively selects the next planner
to run, and its runtime, based on performance predictions
obtained from trained *Zilla models. We train a random
decision forest classification model to perform algorithm
selection (the next planner to run), and a separate regression
forest model for each planner that predicts the runtime
required to find an optimal plan for the given instance.
After each run of a component planner, that planner is
removed as an option from our classification model, to
prevent a duplicate selection in the next iteration. We run
the selected component planner for the predicted runtime (or
the remaining runtime, if that is smaller), until the runtime
budget has been exhausted.
Full model-based. This approach uses the same regression
models for component planner runtime prediction as for
the simplified approach, but the planner selection process is



extended by adding a second classification model (using the
same learning techniques as the simplified approach) trained
on a feature set that has been extended to take previous
failed component planner runs into account. The extended
feature set adds a Boolean feature and a real-valued feature
for each component planner, indicating whether that planner
has already been unsuccessfully run on the given problem
instance, and for what runtime. This second model is used
after each failed selected planner run for a given test instance
to decide the next planner to run, considering the planners
already tried and their runtime (the first selected planner is
decided using the same “base” classification model of the
simplified approach described above).
In order to train this modified classification model, we have
to simulate training data for component planner runs, in
order to give the model a wide variety of values for the new
features. For each component planner a and instance i in
the training set, we produce a set of failure runtimes. These
failure runtimes consist of (i) a short runtime if a crashes
and (ii) the runtime t required for a to find an optimal plan
for i, plus runtimes slightly below and above t, if a is able to
solve i. (Values greater than t are used to take into account
randomisation of the planner affecting t.) We then generate
the full cross product of component planner combinations
(up to a small dimension, given as a parameter of the training
process) with their failure runtimes on i and add the resulting
features to the training data.

The full model-based approach allows us to utilise in-
formation from incorrect predictions to inform subsequent
planner selections, but due to the greatly-increased size of
the training data requires a significantly greater amount of
time for training the classification model. In our experiments
reported in the following, we considered combinations of up
to 2 planners chosen from the overall best 5, resulting in an
overall training time of 1 CPU week.

III. EXPERIMENTAL ANALYSIS

We report the results from a large-scale experimental
study, in which we examined the effectiveness of the de-
scribed portfolio approaches, as well as the performance of
the individual planners used as portfolio components.

A. Settings

We considered all of the planners that took part in the
optimal track of the 2014 International Planning Competition
(IPC-14), namely: AllPaca, cGamer, DPMPlan, Dynamic-
Gamer, Gamer, Fast Downward Cedalion, hflow, hpp, hpp-
ce, Metis, MIPlan, NuCeLaR, RIDA, Rational Lazy A*,
SPM&S, SyMBA*-1, SymBA*-2. (Detailed descriptions of
these planning systems can be found in [9].) Hereinafter, we
will refer to the participants of the competition as “individual
planners”, regardless of the approach they exploit for solving
planning problems. In our analysis, they are used as basic
solver components.

For the sake of readability, we will use the following ter-
minology: Model-B refers to our full model-based approach;
S-Model indicates the simplified version of our model-based
approach; Sim-I and Sim-W refer to the instance-set-core-
based and weight-based similarity approaches, respectively.
Static X denotes the static portfolio using up to X planners.

We focused our study on domains that have been used
in the optimal track of IPC-14: Barman, Cave-Diving,
ChildSnack, Citycar, Floortile, GED, Hiking, Maintenance,
Openstacks, Parking, Tetris, Tidybot, Transport and Visitall.
For each domain with a randomised problem instance gen-
erator, we generated 200 instances using the same generator
parameter setting distribution as in the IPC.

Instances were divided into training, validation and testing
sets. For each domain, this was done by randomly par-
titioning a given instance set as follows: the training set
was sized to include a sufficient number of instances such
that performance varied by at most 10% of the performance
on the entire instance set; the validation set was chosen to
contain 10% of the generated instances; and the testing set
contains all of the remaining problem instances. Hereinafter,
when we refer to the training, validation and testing sets, we
mean the sets including the corresponding instances from all
of the considered domains. The GED domain unfortunately
lacks a random instance generator, so the IPC-14 GED
instances have been included in our testing set only.

All of our experiments were run using single cores of a
cluster utilising 2.66 Ghz Intel Xeon X5650 CPUs. Memory
was limited to 8 GB per planner. For both training and
testing purposes, a cutoff time of 1800 CPU seconds was
used, as in the optimal track of IPC-14. In some experiments,
we also considered a shorter cutoff time of 300 CPU
seconds, for the purposes of examining the efficacy of our
approaches when runtime is more tightly limited.

In the optimal track of the IPC, planners are usually
evaluated by considering only instance set coverage (i.e.,
number of solved test instances). In our analysis, we evaluate
also runtime performance by considering the PAR10 score.

B. Individual Planners and Static Portfolios

It is well known that portfolio approaches exploit the
combination of complementary strengths of the available
component algorithms. Evidently, there is little point in
combining solvers with very similar performance. In order to
understand the complementarity of planners that participated
in the optimal track of IPC-14, and hence their suitability
as components within portfolio approaches, we analysed
the performance of individual planners on our complete
set of 2620 IPC-14 instances (the union of our previously-
mentioned training, validation and testing sets, including
the 20 instances from the GED domain). Table I shows
the results of this complementarity analysis in terms of
coverage and PAR10 scores. Many planners are able to
provide high performance on different sets of instances,



Table I
INDIVIDUAL PLANNER PERFORMANCE ON THE 2620 TESTING

INSTANCES. THE TOTAL NUMBER OF SOLVED PROBLEMS (SOLVED),
THE NUMBER OF PLANNING DOMAINS FOR WHICH THAT PLANNER HAD

THE BEST COVERAGE (COLUMN 3), PAR10 SCORE (COLUMN 4), AND
THE NUMBER OF PROBLEM INSTANCES FOR WHICH THAT PLANNER
EITHER ACHIEVED THE BEST PAR10 SCORE (COLUMN 5) OR WAS

WITHIN 1 CPU SECOND OF THE BEST PAR10 SCORE (COLUMN 6).

Coverage PAR10 PAR10 1s in PAR10
Planner Solved (dom) (dom) (inst) (inst)

Metis 911 3 1 201 370
D-Gamer 880 1 1 76 80
SyMBA1 862 1 1 119 344
SyMBA2 861 1 0 141 372
MIPlan 812 2 1 45 194
DPMPlan 805 2 0 67 215
Cgamer 791 4 4 289 341
Nucelar 746 2 1 41 49
Gamer 728 0 0 4 7
RlazyA 720 2 0 134 237
All-paca 679 2 0 0 28
SPM&S 651 1 1 45 172
Cedalion 637 2 0 11 122
RIDA 553 2 2 28 35
hflow 484 2 2 191 251
hpp-ce 58 0 0 18 22
hpp 54 0 0 3 18

with all but hpp-ce and hpp solving more than 400 problem
instances. Moreover, we observe that there is also a very
good distribution of performance at the domain level: nearly
all planners have one domain on which they are “best”.
We note further that this property extends even to instances
within the same domain, as several domains have different
best planners depending on the problem instance. Therefore,
the individual planners considered here are very suitable for
combination by means of portfolio approaches. For instance,
the Metis planning system, which provides the best overall
instance set coverage, provides the best PAR10 results in
one domain only. In contrast, hflow does not provide good
overall instance set coverage, but it is the best choice for
two of the IPC-14 domains. Similar observation can be
obtained on a per-instance basis. Gamer shows a peculiar
behaviour: it is able to solve a large number of instances,
but does not perform particularly well on any domain; it
also tends to have high runtimes on instances it manages
to solve. This is due to the approach it exploits: Gamer
spends half of the CPU time in creating a heuristic through
symbolic search. If a solution is then found, it is immediately
reported. Otherwise, an abstraction is generated and used for
the remainder of the time budget.

Given this promising complementarity between the indi-
vidual planners under consideration, we evaluated the per-
formance of static portfolios combining these planners. We
tested portfolios executing 2, 3, 4 and 5 planners, selected
via the mechanism outlined in the previous section. We
also generated a Streeter-style portfolio using these planners.
The planners included in the largest static portfolio, ordered

according to their allocated CPU time, are: Cgamer, Metis,
DPMPlan, SyMBA1 and hflow.

Smaller static portfolios include subsets of those 5 plan-
ners. From Table II, which shows the performance of all
portfolios, the virtual best planner (VBP, representing an
oracle which always selects the best solver for the given
instance) and individual planners on our testing set, it is clear
that all of the static portfolios and the Streeter-style portfolio
achieve better results than the individual planners they use
as components. The Streeter-style portfolio outperforms the
static portfolios with 2, 3 and 4 component planners, but
does not reach the performance of the static portfolio of size
5. Unsurprisingly, the larger the number of planners included
in a static portfolio, the higher the performance of the
portfolio. This is due to the fact that the cutoff time of 1800
seconds allows all of the included planners to run at least
for 5 minutes, which is usually enough to optimally solve
most of the test instances. We empirically observed that
performance does not further increase for even larger static
planner portfolios. The static portfolio generation techniques
recognise that additional component planners will have
insufficient time to increase overall portfolio performance
and therefore do not include them.

Table II also shows the performance of the static and
Streeter-style portfolios with a shorter cutoff time of 300
CPU seconds. In this setting, static portfolios are still able
to provide better performance than the individual planners.
However, using this lower cutoff time, the static portfolio
generation always selects 2 planners for all of the static
portfolio sizes, namely Metis and SyMBA1. This is due to
the fact that adding more planners further reduces the already
limited runtime available for each component. Unlike when
using a 1800 CPU second cutoff, with a 300 CPU second
cutoff, the Streeter-style portfolio greatly outperforms the
static portfolios, solving 76 instances more.

C. Per-instance Portfolio Performance

In order to evaluate the performance of our four per-
instance approaches, as well as that of PlanZilla, we trained
each approach using our IPC-14 training set and evaluated
the result on the corresponding held-out test set. The runtime
cutoff for solving each problem instance was 1800 CPU
seconds. Instance set coverage and PAR10 scores for each
portfolio approach are reported in Table II, showing that the
model-based approaches substantially outperform the static
portfolios and similarity-based approaches. In this scenario,
the 5-planner static portfolio outperforms the instance-set-
core similarity method, and the weight-based similarity
method is further outperformed by the 4-planner static
portfolio and the Streeter-style schedule. However, even the
similarity-based approaches perform better than all of the
individual planners. The fact that the training and test sets
were sampled from the same underlying distribution is to
PlanZilla’s advantage, as its single planner selection is likely



Table II
NUMBER OF INSTANCES SOLVED AND PAR10 SCORES FOR THE

PLANNING SYSTEMS CONSIDERED IN OUR STUDY, EVALUATED WITH
1800 AND 300 CPU SECOND RUNTIME CUTOFFS ON OUR IPC-14 TEST

SET. VBP INDICATES THE PERFORMANCE OF THE VIRTUAL BEST
PLANNER, AND GREY ROWS INDICATE PORTFOLIO-BASED PLANNERS.

PLANNERS ARE LISTED IN THE ORDER OF INCREASING PAR10.

1800 Second Timeout 300 Second Timeout
System Sol. PAR10 System Sol. PAR10

VBP 706 9355.3 VBP 609 1757.6
PlanZilla 677 9725.3 PlanZilla 542 1901.6
S-Model 650 10051.2 S-Model 515 1952.8
Model-B 632 10269.8 Streeter 484 2006.1
Static 5 610 10527.5 Model-B 482 2018.4
SIM-I 603 10639.1 SIM-I 455 2068.8
Streeter 586 10786.6 SIM-W 422 2134.4
Static 4 582 10847.6 Static 5 408 2155.4
SIM-W 575 10997.7 Static 4 408 2155.4
Static 3 558 11132.7 Static 3 408 2155.4
Static 2 499 11831.1 Static 2 408 2155.4
Metis 441 12534.3 SyMBA2 364 2239.6
D-Gamer 410 12914.7 SyMBA1 363 2241.7
MIPlan 384 13223.2 Metis 343 2285.0
SyMBA1 378 13236.2 Cgamer 318 2335.0
SyMBA2 378 13236.4 DPMPlan 315 2339.2
DPMPlan 378 13264.1 D-Gamer 289 2396.5
Cgamer 378 13266.2 MIPlan 273 2424.6
Nucelar 350 13620.4 RlazyA 254 2458.8
RlazyA 331 13840.3 Nucelar 255 2461.8
Gamer 322 13961.3 SPM&S 242 2482.0
All-paca 306 14133.1 Cedalion 243 2482.7
SPM&S 297 14234.8 All-paca 237 2492.7
Cedalion 292 14293.8 Gamer 220 2527.5
RIDA 256 14741.2 hflow 191 2582.2
hflow 239 14922.4 RIDA 180 2615.7
hpp-ce 23 17487.4 hpp-ce 19 2922.7
hpp 20 17523.7 hpp 14 2932.3

to be correct and the selected planner exploits the large
runtime.

To investigate the performance of our per-instance ap-
proaches when given a much smaller runtime cutoff, we
performed another set of experiments with the same training
and test sets, but using a 300 CPU second runtime cutoff.
We observed similar results as for the 1800 CPU second
cutoff, but in this case, the similarity-based approaches now
outperformed the static portfolios. Interestingly, the Streeter-
style schedule performs very well in this case, and its
performance was only exceeded by that of PlanZilla and our
simplified model-based approach. We believe that the high
performance of the Streeter-style schedule is due to training
and test set being drawn from the same distribution, and
that by design, this approach performs short runs of many
planners. Given a reasonably good selection of planners, and
considering the fact that most of the benchmarks can be
solved quickly, the observed performance of the Streeter-
style approach is not surprising.

D. Generalisation Performance

In order to test the generalisation of all considered ap-
proaches to instances dissimilar from those found in the

training set, we performed two additional experiments. Be-
cause of its high training time (which would have added
up to several months of computation), we excluded the full
model-based approach from this part of our study.

Our first generalisation experiment involved removing all
instances from one domain at a time from our IPC-14
training set, training each approach using this new training
set, and then evaluating the result on all problem instances
from the held-out domain. As before, we used 1800 CPU
seconds as the runtime cutoff for solving each instance. We
call this experiment “leave-one-domain-out”. In Table III,
we present the resulting per-domain instance set coverage.

The Streeter-style schedule performed best in this sce-
nario, followed by the two similarity-based approaches and
the static portfolios. Our simplified model-based approach
and PlanZilla both fail to generalise as well, and are outper-
formed by the two SyMBA planners and Metis, respectively;
we believe that this is due to the models becoming overly
specialised for the given training set.

Our next generalisation experiment took the “leave-one-
domain-out” approach further and used a training set con-
taining no problem instance from any of the IPC-14 do-
mains. Instead, we used domains from the optimal tracks of
IPC 2008 and 2011 that were not used in IPC-14. We trained
all portfolio-based planners using this new training set and
evaluated the result on our IPC-14 test set. This was done
with an 1800 CPU second runtime cutoff as well as with a
300 CPU second cutoff. The resulting test set coverage and
PAR10 scores are summarised in Table IV.

First, we note that the Metis planner now outperforms all
other approaches on the test set. After further investigation,
we determined that the Metis planner was frequently not
the best (or even a good) planner on the domains of our
training set, leading to Metis not being selected often for
problem instances in our test set. This is, of course, a known
downside to having a test set that is greatly dissimilar from
the instance set used for training.

We note that on this scenario, the static portfolios drop
in performance, while the performance of the similarity-
based approaches increases. Moreover, our proposed ap-
proaches seem to have better generalisation performance
than PlanZilla, likely due to having multiple attempts at
selecting the “right” planner for each problem instance.
From these generalisation experiments, it appears that dif-
ferent portfolio approaches work best under different cir-
cumstances: the model-based approaches are often best in
situations where the test instances are likely to be largely
similar to those used for training. The similarity-based
approaches often perform better when the test set contains
many instances from domains not used during training.

E. Importance of Pre- and Backup Solvers

Dynamic portfolio approaches use the pre- and backup
solvers for two distinct purposes. Pre-solving aims at quickly



Table III
NUMBER OF INSTANCES SOLVED PER DOMAIN BY EACH OF THE APPROACHES CONSIDERED IN OUR STUDY, IN THE “LEAVE-ONE-DOMAIN-OUT”

SCENARIO. THIS ALLOWS FOR A RUDIMENTARY ANALYSIS OF GENERALISATION PERFORMANCE. DOMAINS, FROM LEFT: BARMAN, CAVE-DIVING,
CHILDSNACK, CITYCAR, FLOORTILE, HIKING, MAINTENANCE, OPENSTACKS, PARKING, TETRIS, TIDYBOT, TRANSPORT AND VISITALL.

Planner BM CD CS CC FT H M OS P T TB TP VA Total

VBP 34 35 77 126 200 118 20 152 51 166 44 98 97 1218
Streeter 10 35 41 98 186 106 16 121 1 154 21 82 69 940
SIM-I 8 35 40 84 185 104 7 143 7 140 24 77 62 916
SIM-W 10 35 41 90 186 105 16 119 1 144 18 70 59 894
Static 2 10 35 52 73 186 107 0 138 3 140 30 72 16 862
Static 3 10 35 52 73 186 107 0 138 3 140 30 72 16 862
Static 4 10 35 52 73 186 107 0 138 3 140 30 72 16 862
Static 5 10 35 52 73 186 107 0 138 3 140 30 72 16 862
SyMBA1 12 16 19 90 186 110 0 143 1 126 23 86 15 827
SyMBA2 12 16 20 89 186 110 0 143 0 126 21 87 15 825
S-Model 12 33 33 81 155 102 0 122 12 119 25 81 29 804
Metis 0 35 67 126 90 101 0 30 9 135 34 74 15 716
PlanZilla 4 16 19 110 95 105 0 123 8 117 24 73 14 708
Cgamer 34 16 40 0 200 112 0 152 0 0 0 29 97 680
DPMPlan 3 35 10 53 70 100 16 54 44 141 22 83 15 646
D-Gamer 0 16 77 81 134 109 6 101 0 0 3 82 24 633
MIPlan 1 35 1 53 55 98 16 14 45 143 24 67 14 566
RlazyA 0 35 0 107 62 69 0 18 9 126 31 67 32 556
All-paca 0 35 0 105 66 69 0 23 4 122 29 63 13 529
Gamer 0 16 11 92 122 102 4 95 0 0 4 71 8 525
SPM&S 9 16 10 13 168 112 0 54 0 100 4 17 21 524
Nucelar 0 16 4 0 60 105 0 17 51 138 35 87 10 523
Cedalion 0 35 0 89 58 74 0 12 8 132 30 66 18 522
hflow 0 1 0 0 49 33 0 0 1 154 1 43 97 379
RIDA 0 0 0 100 0 65 20 0 0 52 32 85 9 363
hpp-ce 0 0 0 26 0 14 0 0 0 0 0 0 0 40
hpp 0 0 0 22 0 17 0 0 0 0 0 0 0 39

solving easy instances, for which extracting features would
be wasteful. Backup solvers are used if the feature extraction
process is believed to be infeasible within the given amount
of time (or extraction fails), or in case of failure of the main
selected solver(s). From this perspective, the purpose of
backup solvers can be understood as minimising the impact
of poor algorithm selection, while pre-solvers are used as an
optimisation for improving the overall runtime.

Table V shows the percentage of problems solved by
each stage of our dynamic portfolio approaches; namely
pre-, main and backup solving, when using a 1800 CPU
second cutoff on our testing set. We observe that the backup
solver is rarely exploited, and only the model-based systems
use it successfully. This is possibly due to the fact that
the backup solver is run only in exceptional cases, such
as when feature computation or model evaluation fails. On
the other hand, Table V clearly shows that pre-solvers are
extremely important and responsible for solving a significant
percentage of the instances. Given the very limited CPU
time available for the pre-solver (1.11% of the cutoff time,
around 20 CPU seconds in our experiments), this result is a
clear indication that a large number of the benchmarks can
be solved in a short amount of time by a single solver. We
note that this is especially the case for the Floortile domain.

In order to investigate the contribution of the pre-solving
stage to the performance of the approaches considered here,
we re-ran all of our approaches with the pre-solving mech-

anism disabled. Interestingly, we observed that the impact
on instance set coverage was much smaller than expected.
The most affected system is our full model-based approach
(Model-B), for which disabling pre-solving results in 1.2%
fewer instances solved. Apparently, the main solver stage is
generally able to solve most of the instances usually solved
by the pre-solving stage; we also noticed an increase in the
exploitation of backup solvers, which are now used in up to
10% of the solved instances. This suggests that pre-solving
is not fundamental in terms of coverage, but is useful for
improving the runtime of a portfolio approach. Evaluating
the usefulness of the backup solver is straightforward: since
it is used only when other steps fail or are believed to
be infeasible, its impact can be measured directly as the
percentage of instances solved by the backup stage, which
was very low in our experiments.

IV. CONCLUSIONS

In this paper we introduced four new per-instance port-
folio techniques exploiting the largest set of planning fea-
tures currently available [12]. Two of our approaches are
model-free and based on similarity metrics in instance
feature space. The other two techniques are model-based
and iteratively select the next solver to run by considering
instance features as well as information about previous
failed selections. We compared the performance of these
new approaches with that of several static portfolio methods



Table IV
NUMBER OF INSTANCES SOLVED AND PAR10 SCORES FOR THE

PLANNING SYSTEMS CONSIDERED IN OUR STUDY, TRAINED ON THE
IPC 2011 BENCHMARKS, ON THE 2014 INSTANCES. GREY INDICATES

THE INVESTIGATED PLANNER PORTFOLIOS, WHILE VBP INDICATES
THE PERFORMANCE OF THE VIRTUAL BEST PLANNER. SYSTEMS ARE

LISTED FOLLOWING INCREASING PAR10 ORDER.

1800 Second Timeout 300 Second Timeout
System Sol. PAR10 System Sol. PAR10

VBP 652 8021.9 VBP 557 1338.0
Metis 535 9638.2 Metis 535 1418.2
S-Model 526 9779.2 S-Model 447 1563.5
Sim-I 507 10041.8 Streeter 438 1571.7
Sim-W 508 10051.2 Sim-W 435 1583.4
Streeter 504 10062.2 Sim-I 432 1589.6
PlanZilla 501 10121.1 PlanZilla 427 1600.9
Static 4 472 10517.7 DPMPlan 407 1652.8
Static 5 470 10543.0 Static 5 395 1660.7
Static 3 441 10934.9 Static 3 395 1660.7
Static 2 420 11221.8 Static 2 395 1660.7
DPMPlan 407 11408.8 Static 4 395 1660.7
MIPlan 407 11420.1 MIPlan 407 1664.1
RlazyA 389 11664.8 SyMBA*1 381 1687.9
D-Gamer 392 11679.4 SyMBA*2 380 1689.6
SyMBA*1 381 11755.9 RlazyA 389 1692.7
SyMBA*2 380 11769.6 AllPaca 374 1718.0
Cedalion 380 11799.5 Cedalion 380 1719.5
AllPaca 374 11870.0 D-Gamer 392 1743.4
RIDA 351 12246.5 RIDA 351 1818.5
Nucelar 318 12664.3 Nucelar 318 1840.3
SPM&S 307 12816.6 SPM&S 307 1860.6
Gamer 285 13137.5 Gamer 285 1917.5
hflow 230 13880.7 hflow 230 2000.7
Cgamer 185 14508.5 Cgamer 185 2088.5
hpp-ce 58 16281.1 hpp-ce 58 2337.1
hpp 54 16333.1 hpp 54 2341.1

and with the performance of PlanZilla, an out-of-the-box
application of the SATzilla algorithm selection system [3].

The results of our extensive empirical analysis showed
that: (i) the planners from the optimal track of IPC-14
have an high level of complementarity and can thus be
fruitfully combined using portfolio approaches; (ii) if the
training instances are representative of testing instances,
portfolio-based planners achieve better performance than
any individual planner; (iii) when training and testing sets
include problem instances taken from the same distribution,
the newly model-based approaches consistently outperform
the static portfolios, while the similarity-based approaches
match the performance of the static portfolios; (iv) when
the testing set includes multiple domains not found in the
training sets, both the new model-based and similarity-based
approaches outperform the static portfolios; and (v) our
model-based and similarity-based approaches appear to gen-
eralise better to previously unseen domains than PlanZilla.

We see several avenues for future work. Firstly, we are
interested in further investigating the generalisation perfor-
mance of the methods considered in our study. Secondly, we
see promise in studying less expensive training techniques
for the full model-based approach. Finally, we plan to apply
our new portfolio approaches to other areas of planning.

Table V
PERCENTAGES OF INSTANCES SOLVED BY THE PRE-SOLVING, MAIN,

AND BACKUP STAGES OF OUR FOUR PER-INSTANCE PORTFOLIO
APPROACHES, AS WELL AS BY PLANZILLA. WE ALSO INCLUDE THE
PERCENTAGE OF INSTANCES LEFT UNSOLVED BY EACH APPROACH.

Pre Main Backup Unsolved

PlanZilla 15.0 31.0 0.0 54.0
Model-B 14.0 28.0 1.0 57.0
SIM-I 20.0 21.0 0.0 59.0
SIM-W 20.0 19.0 0.0 61.0
S-Model 20.0 24.0 1.0 56.0

REFERENCES

[1] A. Howe and E. Dahlman, “A critical assessment of
benchmark comparison in planning,” JAIR, vol. 17, pp.
1 – 33, 2002.

[2] M. Helmert, G. Röger, and E. Karpas, “Fast downward
stone soup: A baseline for building planner portfolios,”
in Proceedings of the PAL workshop, 2011, pp. 28–35.

[3] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown,
“Satzilla: portfolio-based algorithm selection for sat,”
JAIR, pp. 565–606, 2008.

[4] H. Hoos, M. Lindauer, and T. Schaub, “claspfolio
2: Advances in algorithm selection for answer set
programming,” Theory and Practice of Logic Program-
ming, vol. 14, no. 4-5, pp. 569–585, 2014.

[5] A. Gerevini, A. Saetti, and M. Vallati, “Planning
through automatic portfolio configuration: The pbp
approach,” JAIR, vol. 50, pp. 639–696, 2014.

[6] M. Vallati, L. Chrpa, and D. E. Kitchin, “ASAP: an
automatic algorithm selection approach for planning,”
IJAIT, vol. 23, no. 6, 2014.

[7] J. Seipp, S. Sievers, M. Helmert, and F. Hutter, “Auto-
matic configuration of sequential planning portfolios,”
in Proceedings of AAAI, 2015.

[8] J. Seipp, M. Braun, J. Garimort, and M. Helmert,
“Learning portfolios of automatically tuned planners,”
in Proceedings of ICAPS, 2012, pp. 369 – 372.

[9] M. Vallati, L. Chrpa, and T. L. McCluskey, “The
2014 IPC: Description of Participating Planners of the
Deterministic Track,” 2014.

[10] S. Núñez, D. Borrajo, and C. L. López, “Performance
analysis of planning portfolios.” in Proceedings of
SOCS, 2012.

[11] M. Streeter and S. Smith, “New techniques for algo-
rithm portfolio design,” in Proceedings of UAI, 2008,
pp. 519–527.

[12] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. H.
Hoos, and K. Leyton-Brown, “Improved Features for
Runtime Prediction of Domain-Independent Planners,”
in Proceedings of ICAPS, 2014.

[13] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown,
“Algorithm runtime prediction: Methods & evaluation,”
Artificial Intelligence, vol. 206, pp. 79 – 111, 2014.


