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Abstract

Background: Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that
usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe
design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on
systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in
probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can
be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy
number variation and gene expression measurements, we investigate here a revised design for microarray experiments that
addresses both of these sources of variance.

Results: Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix
design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all
probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target
molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could
be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the
calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining
absolute rather than relative measurements.

Conclusion: The assessment of technical variance within the experiments, combined with the calibration of probes allows
to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly
calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference
hybridizations.
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Introduction

Microarrays have been extensively used for examining gene

expression and for detecting single nucleotide polymorphisms

(SNPs) or copy number variations (CNVs) in genomic DNA [1,2].

Yet, despite the general use of this technology, uncertainty remains

in the interpretation of the array output. For example, several

studies have shown that about 20 to 30% of expressed genes are

identified as either up- or down-regulated solely depending on the

algorithm used [3–5]. In an experiment assessing expression

differences between mouse populations, we found correlation

coefficients of less than 0.7 between an Affymetrix (25 mer) and an

Agilent (60 mer) platform, although identical RNA samples were

used [6]. Hence, it is currently routinely required to apply

additional experimental tests, such as quantitative PCR, to verify

results obtained from microarrays.

We argue that one reason for the uncertainty in the

interpretation of the array output is insufficient measurement of

experimental noise in current protocols. In the first generation

array platforms (spotted arrays), the noise problem was mostly due

to uneven surfaces of arrays and variability between arrays (e.g.,

ref [7]). This problem is now largely solved, partly because

manufacturing of arrays has significantly improved and because

internal quality checks are routinely implemented to account for

this problem. Still, any quantitative measurement is associated

with measurement errors and even for a perfectly manufactured

array, a determination of this error is expected to raise the

statistical confidence in the measurement. However, an assessment

of this measurement error has so far not been implemented in the

experimental procedures of microarray hybridization.

Another problem for the optimal design of arrays is the

uncertainty of probe binding behavior. Although many parameters
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have been identified that affect probe binding behavior [8–13], it

remains a challenge to design arrays in a way that makes probe

binding behavior predictable. In high density arrays, such as

Affymetrix, this problem is partly solved by averaging results across

multiple different probes for the same target (e.g., Affymetrix probe

sets, www.affymetrix.com). Although this yields a major improve-

ment in signal reliability, it is nonetheless still an inherently noisy

procedure, since poorly responding probes may influence the signal

in unpredictable ways. The alternative is validation and calibration

of probes and we explore this here.

Our revised design for microarray experiments includes an

estimate and control of experimental noise, as well as calibration of

probes with a biological sample. Specifically, the calibration of

probes allows one to identify poorly responding probes and

subsequently remove them from the analysis. In addition,

calibration allows one to directly determine target concentrations

in biological samples from signal intensity, without the need to use

reference hybridizations. To show that these procedures can

improve the accuracy of quantitative measurements using

microarrays, we use two types of test arrays: one with short

(25 mer) probes and another with long (60 mer) probes. Using test

hybridization and adjusted statistical procedures, we show that a

major improvement of signal reliability can indeed be obtained.

Materials and Methods

All animal work followed the legal requirements, was registered

under number V312-72241.123-34 (97-8/07) and approved by the

ethics comission of the Ministerium für Landwirtschaft, Umwelt

und ländliche Räume, Kiel (Germany) on 27. 12. 2007.

Array experiments
The general workflow of the revised design is depicted in

Figure 1. To test this in model experiments, two custom arrays

were designed and manufactured by Agilent (Santa Clara, Calif.).

The first array (henceforth designated ‘‘25 mer array’’) consisted

of 5,912 25 mer probes, each replicated ten times on the array.

The probes represented genes from the mouse X-chromosome

and the probe sequences were taken from the Affymetrix

‘‘GeneChip Mouse Genome 430 2.0 Array’’. The second array

(henceforth designated as ‘‘60 mer array’’) consisted of 4,614

60 mer probes, each replicated ten times on the array. They were

designed by Agilent to trace regions of structural variation, such as

copy-number variation (CNV) in the mouse genome. All probes in

both arrays were placed in random locations to allow the

determination of binding variance in an unbiased way. The

25 mer array was used to test the general utility of the approach

for DNA and RNA hybridizations. The 60 mer array was used to

compare the performance of the Agilent standard procedure for

CNV discovery to our protocol.

Genomic DNA (gDNA) and RNA was labeled according to the

manufacturer’s recommended protocol (Agilent). For the gDNA

and RNA dilution series experiments (Figure 2), several samples of

the recommended concentration were independently labeled. For

gDNA, the labeled products were pooled together, precipitated

with sodium acetate, and the resulting pellet was dissolved in Tris-

EDTA buffer (10 mM Tris, 1 mM EDTA, pH 8.0). Then, the

concentration of the DNA was measured with NanoDrop

(Thermo Scientific Inc.), and a dilution series was prepared. For

RNA, the yield was sufficient to make a dilution series by mixing

Figure 1. Comparison of the classical and the revised experimental design. Workflows are from top to bottom and equivalent stages are set
next to each other. New steps are in blue type face. Both workflows represent only general schemes and further variations are possible. For example,
we discuss also an additional step for the target labeling procedure in the text (denoted by an asterisk in step 3).
doi:10.1371/journal.pone.0091295.g001
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several 5 ml aliquots of the independently labeled products and

diluting the mix accordingly. Hybridization was conducted in the

Agilent hybridization buffer at 48uC for approx. 17 h followed by

recommended washing.

Probe calibration: Depending on the probe, it was possible

to model the isotherms using the adsorption equations proposed

by Freundlich [14] or Langmuir [15–23]. We have devised an

automated algorithm to use the better fitting model for each probe

(see software in File S2) and applied it accordingly. The Langmuir

equations is:

y~
ymaxKx

1zKx
ð1Þ

where y is signal intensity; x – concentration; K – binding constant;

ymax – saturation level.

The Freundlich equation is:

y~axb ð2Þ

where y is signal intensity; x – concentration; a, b – empirical

parameters.

Error calculation
The purpose of determining the relative error of the mean signal

intensity Err(y) is to determine the relative error associated with the

calculated concentration, Err(x). If the Err(x) is less than the

acceptable level (e.g., 20%) than the calculated target concentra-

tion can be trusted. Otherwise the respective probe was removed

from the further analysis. The Err(y) is calculated according to the

sampling distribution [24] as standard deviation of y divided by the

square root of the number of replicates and divided by the average

of y. Err(x) is dependent on the model (see Equation 5 and

Equation 6).

Error calculation for the Freundlich equation:An

assessment of the error for the calculated concentration from the

calibration curves can be achieved as follows. Given the form of

the calibration curve (Equation 1),

y~axb[x~
y

a

� �1
b ð3Þ

one determines the relative error of x upon the error of y, by

finding the differentials according to the error propagation theory

[25]. Assuming small uncertainties of the parameters a and b,

which can be ensured by selecting calibration curves with a high

goodness of fit (see below), the differentials are given by Equation

4.

dx~
1

b

y

a

� �1
b
{11

a
dy ð4Þ

The differentials are equivalent to standard deviations [25].

Dividing both sides of the Equation 4 by the Equation 2 yields

relative errors of x and y:

dx

x
~

1

b

dy

y
[Err(x)~

1

b
Err(y) ð5Þ

Error calculation for the Langmuir equation:From the

Langmuir equation, x (i.e., concentration) is obtained as follows:

x~
y

ymax{yð ÞK

The error for calculated concentration is found according to the

error propagation theorem [25].

dx~
dy ymax{yð ÞKzyKdy

ymax{yð Þ2K2
~

ymaxKdy

ymax{yð Þ2K2
,

Where dx and dy are standard deviations of x and y respective-

ly.The relative error is as follows:

dx

x
:Err(x)~

ymaxKdy

ymax{yð Þ2K2

K ymax{yð Þ
y

~
dy

y

ymax

ymax{y
;

Hence,

Err(x)~
ymax

ymax{y
Err(y)

ð6Þ

Data analysis
The data were stored and analyzed in an MS SQL database.

We wrote three C++ programs to analyze the data for users. The

Figure 2. Outline of the experimental design for recording a
dose-response curve for each probe on an 8-plex Agilent
microarray. The dilution series was created by pooling the labeled
samples, serially diluting the pool, and hybridizing each diluted sample
to an independent array. The arrays within the white box were used to
calibrate the probes. One array marked with an asterisk (*) was used as
a ‘reference’. The independent ‘test’ array ($) is also shown. Numerical
values indicate the target concentration in folds of the recommended
concentration.
doi:10.1371/journal.pone.0091295.g002
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program executables, documentation, the programs’ code as well

as an example dataset are provided in File S2) or can be

downloaded at: http://web.evolbio.mpg.de/,alexander.pozhitkov/

microarray123/.

The probe lists and microarray data were submitted to

datadryad.org and are available under doi:10.5061/dryad.57ms3.

Results

Our study was initially motivated by an attempt to use the

Affymetrix mouse genome diversity arrays [26] to assess CNV

between mouse strains and populations. While these arrays were

primarily designed to screen for SNPs, they contain also a set of

,1.8 million probes that were specifically designed to represent

non-polymorphic regions of the genome for CNV detection [26].

Each of these probes was designed by state of the art principles and

is present as a sense and an antisense version on the array. One

would expect that corresponding sense and antisense probes

should provide the same signal when hybridized to genomic DNA,

since in their hybridized state (i.e., double helix), they should be

equivalent with respect to base composition and secondary

structure.

We analyzed the range of signal intensities of these invariant

probes and found that it spans over almost four orders of

magnitude, i.e. deviate significantly from an expectation of similar

hybridization efficiency. We assessed whether differences in GC

composition or Gibbs free energy parameters could explain this,

but neither parameter was significantly correlated with the signal

intensities of the probes (Figure S1A and B in File S1). Moreover,

plotting the relationship of signal intensities between the corre-

sponding sense and antisense probes revealed very high variation

(Figure S1C in File S1), although there was an overall correlation

(R2 = 0.37). Still, this variation suggests that it is not directly

possible to predict signal intensity of an antisense probe given the

intensity of a sense version of the same probe.

To investigate this further, we compared the experimentally

measured melting temperatures of five sense-antisense probe pairs

on the array and in solution (Table S1 in File S1). As predicted by

theory (Figure S2A in File S1), we found a good correlation of

melting behavior between sense and antisense probes in solution

(R2 = 0.96), but the melting temperatures in solution did not

correlate with the signal intensities of the probes on the array

(Figure S2B in File S1). Although these analyses and experiments

have only a preliminary character, they suggest that the

physicochemical hybridization parameters determined in solution

differ from those on surfaces. Getting deeper insights into this is an

active field of research [27] and it is hoped that it will be better

understood at some point. However, until these problems are

solved, we decided here to devise an empirical ad hoc procedure to

address the problems of limited predictability of hybridization

behavior. At the same time, we introduce a step to control for the

unavoidable noise inherent in any measurement, including

hybridization reactions.

Sources of variance
We conjectured that there are two major sources that produce

uncontrolled variance. The first source is the experimental

variance of signal generation, i.e., hybridization and washing,

and the second is the poorly known probe responsiveness (as

shown above). A further source of error may be the variance in

sample preparation (e.g., [30], which we address as well. All these

sources can be investigated - and thus controlled - by appropriately

designed experiments.

Experimental variance of signal generation can be measured by

replicating identical probes on the same array. Assuming

homogeneous hybridization conditions across the array (which is

mostly the case for today’s commercial hybridization systems), one

should expect that the variances of the signals coming from these

identical probes are a direct measure of technical noise associated

with the hybridization itself.

Probe responsiveness can be empirically assessed by hybridizing

an array with a dilution series of a given mix of targets, e.g.,

genomic DNA (gDNA). The individual probe hybridization

isotherms can then be obtained by plotting the relationship

between the diluents (target concentrations) and signal intensities.

Their shape will reveal if the isotherms follow a predictable dose-

response relationship and thus can be used for quality filtering,

e.g., to remove non-responsive probes.

Below, we assess a revised experimental design, outlined in

Figure 1, that takes care of the two major sources of variance

identified above and we present model experiments that verify this

conjecture.

Figure 3. Signal variances between replicated probes. (A) Typical Agilent array isotherms obtained using a dilution series of genomic mouse
DNA, BL6 strain for a single probe and its replicates. Raw data (gray) and predicted isotherm based on the average signal intensity (black). (B) Mean
and standard deviation of the coefficient of variation (CV) across all probes at each concentration for the 25 mer array, (C) same for the 60 mer array.
doi:10.1371/journal.pone.0091295.g003
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Measurement error
We assessed the extent of measurement error associated with

hybridization and probe binding that is inherent in the standard

microarray procedure by comparing the signals from ten

replicated probes within each array. The arrays were hybridized

with genomic DNA (gDNA) using the dilution series depicted in

Figure 2. We observed indeed a general variance in the signal

intensity among the 10 identical replicates of each probe. As an

example, Figure 3A shows a typical case of signal intensities for a

single 25 mer probe at different dilutions. In this case, we observed

up to four-fold differences for identical replicates. Averaging of the

signal intensities of the 10 replicates, however, yields a good fit to a

power-law function (Figure 3A). Hence, the variability in signal

intensity of individual probes appears to reflect the measurement

error.

The majority of probes have a variation coefficient of ,12 to

35% for the 25 mer array (Figure 3B) and ,7 to 10% for the

60 mer array (Figure 3C), as assessed from the standard deviations

of signal intensities over 10 replicates. For a few probes on each

array we observed unusually strong outliers (data not shown).

Inspection of these probes showed that this was always caused by

technical problems (e.g., dust particles) in a single replicate. Such

technical outliers can be easily identified based on the comparison

with the other replicated probes and were removed.

Calibration of probe behavior
Calibration can be used to determine the probe response

function (i.e., calibration curve) and thus to remove poorly

responding probes. In order to obtain calibration parameters of

each probe, one has to determine the respective equation

parameters, e.g., R2, k and Ymax for the Languir equation; a and

b for the Freundlich equation (see Methods). The parameter

estimation is done by a linear regression of the linearized data, i.e,

x/y vs x for Langmuir model and log(y) vs log(x) for Freundlich

model. Probes with low R2 values for either equation are unlikely

to be reliable for actual measurements. We suggest that probes

below a cutoff of R2#0.98 should be removed from further

analysis, but this cutoff could be individually adjusted for each

experiment. For our experiments, we found that 1092 probes

(18%) fell below this cutoff for the 25 mer array and 1124 probes

(24%) for the 60 mer array. For the remaining probes, we found

that the majority (98%) showed a better fit with the Freundlich

Figure 4. Distribution of curve fitting parameters for the isotherm models. Panels A to F, Freundlich model, Panels G to I, Langmuir model.
Panels A to C, 25 mer arrays, Panels D to I, 60 mer arrays. Panels A, D, and G: Distribution of R2 across all probes. Panels B and E: Distribution of a for
selected probes. Panel C and F: Distribution of the exponent b for selected probes (Equation 2). Panel H: Distribution of ymax for selected probes.
Panel I: Distribution of K for selected probes (Equation 1).
doi:10.1371/journal.pone.0091295.g004
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equation for the 25 mer array, while for the 60 mer array, 30%

showed a better fit for the Freudlich equation and 70% for the

Langmuir equation. We determined the parameter distributions

and R2 values for each probe for both equations on both arrays

(Figure 4). The Langmuir parameters for the 25 mer arrays are

not shown in Figure 4 due to the small number of probes (,2%)

that followed the Langmuir model.

In contrast to gDNA arrays (such as CNV arrays), expression

arrays are usually hybridized with mRNA targets. The optimal

labelling procedure for RNA involves a RNA synthesis step [28].

Because the physicochemistry of DNA:DNA hybridization differs

from that of DNA:RNA [29], we expected that a calibration with a

RNA target to yield different results from the calibration with the

gDNA. We tested this using the 25 mer array since these probes

were derived from an expression array. Averaging and calibration

was done as described above for the gDNA target. Comparison of

the a and b parameters of the Freundlich equation for each probe

revealed little correlation between DNA and RNA (data not

shown). Hence, separate calibrations are needed for RNA and

DNA targets.

There is an additional problem with RNA calibration because

different mRNAs occur at different concentrations in a given

sample. Specifically, probe signal intensities of mRNAs expressed

at low levels (i.e., at low concentrations) will fall below the

background level (Figure S3 in File S1). Because of this problem,

mRNA calibration should always be done in parallel to a given

experiment in order to ensure appropriate representation of the

mRNAs. Moreover, in contrast to the absolute calibration that is

achieved for gDNA experiments, one can only determine a

relative change in concentration for mRNA experiments since the

concentration of the mRNAs in the calibration mix are not known.

Assessing the improvement of signal quality
In our first test we used identical DNA samples against each

other (a reference and a test array, marked * and $ in Figure 2) in a

genomic DNA (gDNA) hybridization experiment. The samples

hybridized to these arrays were derived from the same DNA;

therefore, no signal variation was expected and their signal

intensity ratio should be equal to 0 in the log2 scale. Any deviation

from 0 represents the noise in the experiment. Figure 5A and

Figure 5B show the ratios of signal intensities of the reference and

test samples for individual probes versus ten averaged replicates,

respectively. For the individual probes, only 62.3% of the ratios

spanned a reasonably acceptable range of log2 values between

20.5 to +0.5 (orange columns). For signal ratios of averaged

probes, 94.2% were within this range, thus supporting the notion

that probe replication on the same array can significantly improve

the accuracy of the measurement. A similar improvement (88.9%)

was obtained when we used calibration from averaged probes

instead of ratios (Figure 5C). Although this is a bit lower than the

one obtained using the ratio of the averages, the calibration

method is superior because it removed probes that have non-linear

behavior. The calibration approach thus results in a highly

symmetric distribution and indicates that a better signal quality is

obtained.

The second test was aimed at assessing signal improvement in

an actual experiment. Specifically, we compared the conventional

analysis procedure using Agilent software to our calibration

approach using a given CNV region in the mouse genome. The

CNV analysed consisted of an approximate 5 kb fragment present

in variable copy numbers between wild type individuals, but only

one copy in the reference strain (C57B1/6). Figure 6 shows that

the Agilent ratio analysis (upper panel) is indeed much noisier

since many of the probes show values that are two to three

standard deviations away from the average mean ratio (red and

blue dots). In contrast, the calibrated probes (lower panel) showed

mostly a smooth distribution. Both methods detected the CNV in

question (indicated by the blue bar at the bottom), but the copy

number estimate is expected to be more reliable for the calibrated

probes. This comparison suggests that our protocol can be

expected to result in fewer false positive calls and a better

measuring capacity in CNV studies.

Number of replicated probes
Although the above experiments used 10 replicated probes for

averaging, it would be of interest to know whether this is an

Figure 5. Overall assessment of noise reduction using the same DNA sample. Since the sample is compared against itself, the log2 ratio
should be 0, i.e. all values above or below 0 are experimental noise. (A) Classical reference procedure - ratio of signal intensities between all individual
probes (n = 5,912). (B) Averaging across probes - ratio of signal intensities from 10 averaged probes (n = 5,912). (C) Full revised procedure -
concentration values from calibrated isotherms of all responsive probes (R2.0.98), a value is included only if its relative error is under 20% (n = 4,406).
doi:10.1371/journal.pone.0091295.g005
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optimal number. To address this question, we randomly selected 2

to 10 replicated probes from both 25 mer and 60 mer arrays and

back-calculated the expected concentration of targets for the

standard experiments (target concentration of 16). The calcula-

tion was based on the calibration equations and parameters

derived from 10 replicated probes because they are closest to the

truth. As to be expeccted, we find a higher variance for estimating

the true concentration when fewer probes were used (Figure 7).

For the 25 mer array, 10 probes produced the lowest variance, but

the shape of the curve suggests that even more probes might be

Figure 6. Comparison of analysis procedures for copy number variation of a gene region in mice. Four different wild type mice were
analyzed, each represented as a track. Top: output from the ratio analysis implemented in the Agilent software (ratio with respect to DNA from an
C57Bl/6 inbred mouse strain). The input was the concentrations derived from the ten averaged probes, but without calibration and without removal
of non-responding probes. Colored dots represent values larger (blue) or smaller (red) then log2 = 0.5. Bottom: concentration calculations based on
the full revised method, non-responding probes removed (.20% error in any of the experiments on the array). The values were normalized with
respect to average intensities on the array and are displayed as custom track in the UCSC genome browser.
doi:10.1371/journal.pone.0091295.g006
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beneficial. For the 60 mer array, we see no improvement beyond 6

replicates, i.e., this might be the optimal number of probes for this

array type (Figure 7).

Variance in the sample preparation
Although the averaging and calibration removed much of the

noise, a known additional source of noise comes from target

preparation. Specifically, the target fragmentation and labelling

procedures involve several enzymatic steps (i.e., PCR enzymatic

digestion), which have previously been reported to introduce

variability [30]. Figure 8 shows that the noise is indeed higher in

the test sample (16.1% of comparisons outside the acceptable

range) than in the pooled sample (5% outside). This result supports

the notion that preparing multiple independent samples and then

pooling the preparations can further reduce the variance inherent

in the target sample preparation.

Discussion

Given the broad application of microarrays in biological

research and their success in determining gene expression patterns

and structural genomic variation, one might ask: why implement a

new experimental procedure? However, it has long been known that

array results must be verified by an independent method, such as

quantitative PCR, because they cannot be fully depended on. This

inadequacy has lead some scientists to allude to the ‘‘end of

arrays’’ (e.g., [31] and the substitution of array experiments with

‘next-generation’ sequencing since the latter is believed to be more

reliable. Although sequencing based approaches have certain

advantages compared to microarrays, the physicochemistry of

neither technology has been well established [27]. We suggest that

the utility of arrays has not been fully explored yet and the

implementation of a new procedure that improves the interpre-

tation of array output could be beneficial.

The results presented above may be considered as a proof of

principle that assessing experimental noise and calibration can

indeed improve microarray output. It will evidently be necessary

to do large scale comparative experiments to fully assess the

possible impact. The calibration procedure was already applied in

one experimental study and did indeed yield a much better

resolution of signals to allow clearer biological conclusions [32].

Our procedure is generally based on a common approach used

in physics and analytical chemistry to experimentally determine

the performance of a sensor (i.e., probe) and the magnitude of a

measurement error. Once the measurement error is known, simple

statistics can be used to obtain estimates of the true values.

Knowing the error distribution, one can also reject outliers. We

have conjectured and experimentally verified that there is indeed

such an error distribution at the level of probe binding and target

preparation (the labeling procedure). Our results show that the

fidelity of estimating the true target concentration increased

significantly with multiple replications of the probes and that this

fidelity was dependent on probe length. Hence, we recommend

Figure 7. Coefficient of variation (CV) decrease for estimating
the true concentration in dependence of probe replication. CV
averages are displayed, circles, 25 mer array, squares, 60 mer array.
doi:10.1371/journal.pone.0091295.g007

Figure 8. Comparison of probe labeling protocols on noise reduction. (A) Sample $ (n = 4,775) and (B) sample * (n = 4,767) from Figure 2.
Note that the calibration was conducted without sample *. Ratios were calculated from calibration curves (R2.0.98) and a value is included into the
histogram only if its relative error was under 20%.
doi:10.1371/journal.pone.0091295.g008
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that probe replication and averaging (steps 2 and 7 in Figure 1)

should become a general standard, even if one uses otherwise the

classical protocol. For 25 mer arrays, at least 10 probes seem to be

necessary, while 6 probes seem to be sufficient for the 60 mer

array. An evident drawback of replicating probes is that it limits

the number of different probes that can be surveyed on an array.

This presents a trade-off between the quality of signal and the

number of different genes that can be studied, at least for array

designs that can not compensate this with very high probe

densities.

An additional element that we introduced into our revised

design is the calibration of each individual probe (steps 4 and 8). It

is often assumed that bioinformatic procedures for probe design

are sufficient to optimize probe behavior. However, while some

optimization is certainly possible in this way, it is evident that it

does not fully solve the problem of huge differences in binding

affinities between different probes (Figure S1 in File S1) and the

possibility of non-linearity in the hybridization characteristics of

probes. Thus, current array procedures use ratios of signals, based

on comparisons with control targets, either on the same array

using double labeling, or between arrays. But this has the

drawback that the noise associated with the individual probe

signal intensity (see above) is cumulative for sample and reference

hybridization. Hence, control of this noise should be particularly

important when a reference hybridization design is used.

However, if probe-binding behaviors were known a priori, one

can get an absolute quantification of signals. To achieve this, one

needs a dose-response curve, which we have experimentally

determined by recording the signals from a dilution series of the

targets, followed by a fit to adsorption isotherm equations. Once

an isotherm is known for a given probe, one can calculate the

concentration of the target from the signal that is recorded. The

derivation of the target concentration from the isotherm function

takes care of non-linearity. Thus, a two-fold change, for example,

means that the target concentrations in the samples that are

compared differ indeed by exactly two-fold. In the current

routinely used array algorithms, a two-fold change means only

that signal intensities differ by two-fold, but with an unknown

difference in the true target concentrations.

However, proper calibration is a challenge, since one needs to

know the exact concentration of the target that is used for

calibration. In case of calibration with a complex RNA sample,

one does of course not know this and any measurement can

therefore be only with the reference to the sample that was used

for calibration, i.e. calibration yields only a small advantage over

the normal reference hybridization procedure. The situation is a

little bit better when gDNA is used for calibration, although it has

also the uncertainty that the gDNA sample used may include

regions that are subject to unknown CNV.

Using the biological sample itself for calibration entails also the

risk that one is not only calibrating for the specific signal, but also

for any unwanted nonspecific hybridization. The problem of cross-

hybridization by similar target sequences can usually be addressed

by applying algorithms in the probe design phase, provided full

genome information is available. It remains a problem, though,

that the total signal intensity contains specific and nonspecific

hybridization signal and this will be probe-specific. Hence a

remedy would be to design more than one probe for a given region

(e.g., a gene) and compare the signals.

The best calibration would therefore be achieved with pure

synthetic target DNA or RNA, but for arrays that are designed to

record patterns from complex targets, this will evidently be very

costly. Still, such an investment should be warranted for standard

arrays, e.g., cancer research, hereditary diseases, etc., that are used

in many experiments, since the data quality that can be obtained

in this way would not require further verification experiments. We

anticipate therefore that properly calibrated arrays will eventually

become available. For the time being, one can use a well-defined

target preparation for calibration.

Supporting Information

File S1 File includes Figures S1-S3 and Table S1. Figure

S1. Signal intensities of invariant probes on Affymetrix mouse

genome diversity array. (A) Signal intensity dependence on GC

content of the probes. (B) Signal intensity dependence on Gibbs

free energy calculation of the probes. (C) Comparison of signal

intensities of corresponding sense and antisense strands

(R2 = 0.37). Figure S2. Comparisons of sense- and antisense

stability of the same probes in solution and on the array. Probes

(25 mers) were a subset from sense-antisense probes shown in

Figure 1C. Corresponding targets were 98 nt oligonucleotides

derived from the mouse genome sequence with the probe binding

site in the middle of the target. (A) Melting temperatures of five

sense-antisense pairs of probes. (B) Correspondence of melting

temperatures to signal intensities on the array. Figure S3.

Comparison of isotherms for a given probe (average values from

10 replicates). Left: hybridized to DNA (R2 = 0.99); right:

hybridized to RNA (R2 = 0.99), the offset value c for this sample

is ,26. Table S1. Oligonucleotides used for the melting analysis in

solution.

(DOC)

File S2.

(ZIP)
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