Search:
Computing and Library Services - delivering an inspiring information environment

Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis

Rawlings, Andrea E., Bramble, Jonathan P., Tang, Anna A. S., Somner, Lori A., Monnington, Amy E., Cooke, David J., McPherson, Michael J., Tomlinson, Darren C. and Staniland, Sarah S. (2015) Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis. Chemical Science, 6. pp. 5586-5594. ISSN 2041-6520

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (952kB) | Preview

Abstract

Adhirons are robust, well expressing, peptide display scaffold proteins, developed as an effective alternative
to traditional antibody binding proteins for highly specific molecular recognition applications. This paper
reports for the first time the use of these versatile proteins for material binding, and as tools for
controlling material synthesis on the nanoscale. A phage library of Adhirons, each displaying two variable
binding loops, was screened to identify specific proteins able to interact with [100] faces of cubic
magnetite nanoparticles. The selected variable regions display a strong preference for basic residues
such as lysine. Molecular dynamics simulations of amino acid adsorption onto a [100] magnetite surface
provides a rationale for these interactions, with the lowest adsorption energy observed with lysine. These
proteins direct the shape of the forming nanoparticles towards a cubic morphology in room temperature
magnetite precipitation reactions, in stark contrast to the high temperature, harsh reaction conditions
currently used to produce cubic nanoparticles. These effects demonstrate the utility of the selected
Adhirons as novel magnetite mineralization control agents using ambient aqueous conditions. The
approach we outline with artificial protein scaffolds has the potential to develop into a toolkit of novel
additives for wider nanomaterial fabrication.

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
Related URLs:
Depositing User: Sara Taylor
Date Deposited: 13 Aug 2015 08:29
Last Modified: 30 Nov 2016 17:56
URI: http://eprints.hud.ac.uk/id/eprint/25418

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©