University of Huddersfield Repository

Shackleton, Philip, Bezin, Yann, Crosbee, David, Molyneux-Berry, Paul and Kaushal, Aniruddha

The Spectrum Bogie

Original Citation

This version is available at http://eprints.hud.ac.uk/25380/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Institute of Railway Research

Initial parameters can be determined in a number of ways:
- Calculation from fundamental principles
- Application of accepted vehicle design principles
- Engineering judgement/application of experience
- Derivation: for example the trailing arm bush parameters were determined by calculating their influence on primary yaw stiffness K_Y

$$K_Y = \frac{\Omega_T^2}{2} \cdot K_{TM}$$

Ω_T – Wheelset yaw angle
K_{TM} – Trailing arm bush semi-spacing in given direction
K_Y – Stiffness in given direction

A review of existing bogie designs led to a chosen base concept:
- Trailing arm primary suspension
- Coil sprung
- Viscous damped
- UIC secondary suspension
- Standard centre bowl and side-bearer arrangement
- Axle mounted disc brakes
 - Required to operate alongside passenger stock
 - Dictated external axle boxes

Review of existing bogie designs and identify an appropriate base concept

Determine initial values for suspension component parameters (lengths, stiffnesses, damping rates etc.)

Construct a mathematical vehicle model (in Vampire) to optimise those parameters for the required performance

An optimised running gear design was required

Axle mounted disc brakes
 - Required to operate alongside passenger stock
 - Dictated external axle boxes

A novel bogie concept was developed - featuring conventional/proven suspension components and technologies, but in a novel arrangement and application. Swing links were introduced to the UIC secondary suspension to improve lateral ride and stability.

Improved dynamic performance with reductions of between 8% and 16% in Variable Usage Charge compared to a conventional Y-series container vehicle (calculated with Network Rail’s Variable Track Access Charge Calculator)