
University of Huddersfield Repository

Ding, Hao, Scott, Paul J. and Jiang, X.

A Criterion for Comparing Measurement Results and Determining Conformity with Specifications

Original Citation

Ding, Hao, Scott, Paul J. and Jiang, X. (2015) A Criterion for Comparing Measurement Results and 
Determining Conformity with Specifications. Procedia CIRP, 27. pp. 143-148. ISSN 2212-8271 

This version is available at https://eprints.hud.ac.uk/id/eprint/24778/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



 Procedia CIRP   27  ( 2015 )  143 – 148 

Available online at www.sciencedirect.com

2212-8271 © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of 13th CIRP conference on Computer Aided Tolerancing
doi: 10.1016/j.procir.2015.04.057 

ScienceDirect

13th CIRP conference on Computer Aided Tolerancing 

A criterion for comparing measurement results and determining  
conformity with specifications 

 Hao Ding, Paul J. Scott* and X. Jiang  
EPSRC Innovative Manufacure Research Centre in Advanced Metrology, Centre for Precision Technologies, School of Computing and Engineering,  

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK  

* Corresponding author. Tel.: +44-01484-473953; E-mail address: p.j.scott@hud.ac.uk. 

Abstract 

In this paper a new criterion for comparing measurement results and determining conformity with specifications is proposed, which essentially 
is a strategy of estimating the empirical relationships of objects. Comparing with traditional methods given in GUM: 2008 and ISO 14253-1, 
this criterion improves the resolution of comparison by reducing the sizes of the coverage intervals to be compared. Interval order (a binary 
relation) is used for comparing the coverage intervals of the measurand and represents the empirical relations. The systematic effects of 
measurement are classified into two types: monotonic and non-monotonic effects, so that, without correcting the monotonic effects, a biased 
measurand can be specified to represent the empirical relations. Thereby the uncertainty components arising from the monotonic effects can be 
removed from the combined uncertainty. A strategy is given for determining the relationships among measurement results and specification 
limits. An example is given to demonstrate the application of the criterion. 

© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of 13th CIRP conference on Computer Aided Tolerancing. 
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1. Introduction 

It is well known that the objective of measurement is to 
obtain the values of the measurand (the quantity to be 
measured) [1]. According to the representational theory of 
measurement [2], the values of the measurand and their 
numerical relations are used to represent the (measured) 
objects and their empirical relations. Hence the implicit 
objective of obtaining the values of the measurand is to 
compare the objects and estimate the empirical relation.  

Most researchers in metrology are focused on the former 
objective (i.e. to obtain the values of the measurand), since the 
latter objective (i.e. to estimate the empirical relation) can be 
achieved by using the measurement results. However, to get 
the best estimations of the measurand, the calculation can be 
quite complicated, and the measurement uncertainties can be 
very large (e.g. larger than 30% of the size of the tolerance). 
In this paper, we focus on the latter objective, and investigate 
whether it can be achieved with small uncertainties and 
simpler calculation. 

An important reason of achieving the former objective is 
we need to compare the measurement results with the 
specifications and determine the conformity. ISO 14253-1 [3] 
together with GUM [1] provides a method for determining 
conformity with specifications when uncertainty is involved. 
In that method, a complete measurement result is expressed as 
Y = y U , where y is the estimate of the value of measurand, 
U is the expanded uncertainty with a stated level of 
confidence (e.g. 95%). Here Y is taken as a coverage interval 
(CI), which is an interval containing the value of a measurand 
with a stated probability [4]. The conformity with 
specification is determined by the relation of the CI and 
specification limits. 

However, if we take the specification limits as the values of 
the measurand of some objects, called limit samples, 
determining the conformity with specification is the same as 
estimating the empirical relations between the measured 
objects and the limit samples, which is consistent with the 
latter objective. Hence the criterion given in this paper is 

© 2015 Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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essentially a strategy of estimating the empirical relations of 
the set objects including the limit samples. 

 
Nomenclature 

 xi An influence quantity 
 y The measurand 
 y' The biased measurand 
 f  The functional relational between the influence  
 quantities and the measurand  
 u(y) The standard uncertainty of the measurand 
 CI(y) The coverage interval of the value of the measurand 
 E(x) The expected value of a random variable x 

 Interval order, strictly smaller 
 Indifference relation  

2. Relation between coverage intervals 

To estimate the empirical relation of several objects, we 
need to define the relation of their measurement results, which 
is the relation of the corresponding CIs (i.e. intervals on the 
real axis) when the measurement uncertainty is significant. 
The relation between single real numbers, named simple order 

, is not suitable to define the relation between intervals.  
When the CIs A, B of two values a, b intersect with each 

other (i.e. ), both a b and b a are possible. In this 
situation A, B can be considered as ‘being same up to a small 
error’, which is a kind of relation called indifference [5], 
written as A B. This relation is intransitive (A B and B C, 
do not imply A C) and symmetric (A B implies B A). The 
intransitive property makes different from the equivalent 
relation, =. 

If A, B do not intersect, then one interval is strictly smaller 
than the other. This relation can be defined by a binary 
relation on the set of CIs, named interval order [6]. Interval 
order is irreflexive (for any interval A, not A A) and 
satisfies the defining property: if A B and C D then A D or 
C B. For an interval order, the indifference relation is 
necessary to be defined together: if neither A B nor A B, 
then A B. 

Base on the interval order of the CIs, the relation of the 
values of the measurand, which is a representation of the 
empirical relation of the measured objects, can be clearly 
estimated under a stated probability. So the interval order of 
the complete measurement results is also an estimation of the 
empirical relation. 

For example, let A, B, C be the CIs of three objects α, β, γ 
respectively. If, under 95% confidence level, A, B, C are 
distributed as shown in fig.1, their relation can be written as 
A B C, A C. 

 
Fig. 1. The distribution of CIs A, B, C 

A B means, under 95% confidence level, no inference can 
be given on the empirical relation between α, β. And A C 
means, with 95% confidence, α is strictly smaller than γ. 

3. Principle of estimating of the empirical relations 

3.1. Resolution of comparison 

It is obvious that the size of CIs (the length of intervals) 
may affect the interval order, and thus affect the estimation of 
the empirical relation. Consider some CIs of an identical size, 
if this size is large (e.g. 30% of the maximum difference of 
their estimated values of the measurand), the adjacent CIs are 
quite likely to intersect with each other. When two CIs 
intersect, the empirical relation will be considered as 
indifference, i.e. not able to be identified. So, for estimating 
empirical relations, the sizes of CIs are preferred to be smaller. 

For this reason, we call the average size of the CIs of a set 
of measurement results as the resolution of comparison. A 
main objective of this paper is to improve the resolution of 
comparison. 

3.2. Monotonic systematic effects 

Measurement uncertainties can be either classified 
according to their evaluation methods (statistical or non-
statistic) into Type A and Type B, or by the sources of the 
uncertainties. The latter way classifies uncertainties as the 
following two types. 
 Random uncertainty components: the uncertainties arise 

from the random effects; 
 Systematic uncertainty components: the uncertainties 

arise from incomplete knowledge of the systematic 
effects. 

According to GUM [1], a random effect is the effect of 
stochastic or unpredictable variations of influence quantities; 
and a systematic effect is a recognized effect of an influence 
quantity on a measurement result. Hence both effects cause 
some deviation of the measured value from the value of 
measurand. Each effect can be taken as a function in terms of 

 η(y, xi) = y′,    (1) 

where y is the measurand, xi is a related influence quantity, y′
is a quantity deviated from the measurand due to the random/ 
systematic effect. 

In practice, it can be difficult to distinguish the two types 
of effects very clearly. But, since in replicate measurements 
the systematic error arise from systematic effect remains 
constant or varies in a predictable manner [4], a systematic 
effect itself is a deterministic function. In contrast, a random 
effect is a random function, and the related xi is always a 
random variable. 

Moreover, under the repeatability conditions given in 
GUM ([1] B.2.15), some influence quantities of systemic 
effects are always fixed during the measurements of all the 
measured objects. These quantities are constants, although the 
exact values are unknown due to incomplete knowledge. 
Hence, for a fixed influence quantity xi, equation (1) can be 
taken as a function of measurand, denoted as ηxi(y) = y′ or η(y) 
= y′, if it is clear what xi is. 

In most cases, η(y) is an increasing function of the 
measurand. For instance, the effect of imperfect calibration of 
a gauge can be written as  , where c is a 
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constant (but unknown) offset error. The effect of incomplete 
knowledge of the sensitivity of the instrument, which gives 
rise to the sensitivity error, is in the form of  , 
where a is unknown constant close to 1. The effect of 
resolution or digital rounding is in the form of  

, where b is a integer,  is the floor 
function. The above functions of systematic effects are all 
(monotonically) increasing. We define this type of systematic 
effects as monotonic effects. 

Definition: A systematic effect η(y, xi) is called a monotonic 
effect, if it is an increasing function of the measurand y, and xi 
is fixed as a constant in the measurements of all the objects. 

That means for any monotonic effect η(y, xi), we have 

1 2 1 2( ) ( ),xi xiy y y y   (2) 

where y1, y2 are two arbitrary values of the measurand. 
The relation between y1 and y2 is a presentation of the 

empirical relation of the corresponding objects. Monotonic 
effects preserve the relation of y1 and y2, thus they also 
preserve empirical relations.  

With this definition, systematic effects are classifies into 
two types: monotonic effects and non-monotonic effects. A 
monotonic effect may become non-monotonic when the 
measurement method changes. For example, if the 
temperature of the objects is an influence quantity, it may be 
fixed or changing depends on the measurement environment. 
So to classify the effects, the actual situation of measurement 
should be fully understood. 

Correspondingly, the uncertainty components arise from 
these effects can be further classified according to their 
sources as shown in fig. 2. For example, monotonic 
uncertainty components are the uncertainties arise from 
monotonic effects. 

Uncertainty
componenets

Systematic Random

Monotonic Non-monotonic
 

Fig. 2  Classification of uncertainty components by the sources 

3.3. Monotonic uncertainty components 

To estimate the value of measurand, all the systematic 
effects should be corrected from the observed data. But for 
estimating the empirical relation, it’s not necessary to correct 
the monotonic effects, because, monotonic effects preserve 
empirical relations. As shown in equation (2), although 1( )y

and 2( )y consists the systematic error rise from the 
monotonic effect, they still reflect the relation of y1 and y2. 
Thus, without correcting the monotonic (systematic) effects, 
we can find a quantity, ( )y y , named the biased 
measurand, to estimate the empirical relation.  

This is also true when the empirical relation is represented 
by the interval order of CIs. For example, let  be a 
monotonic effect, ( )y ay b , where a, b are positive real 
numbers, and let the relation of the CIs Y1, Y2 and Y3 of three 
measurement results be 3 2 2 1 3 1~ , ,Y Y Y Y Y Y . As shown in 

figure 3, 3 2 2 1 3 1( ) ~ ( ), ( ) ( ), ( ) ( )Y Y Y Y Y Y ,  does 
not change the relation of the CIs. 

1Y3Y
2Y

y

ay b
 

Fig. 3  The relations of the CIs with and without monotonic effects 

Proposition: Let Y1, Y2 be the CIs of y1 and y2, if : y y  
is a monotonic effect, then  

1 2 1 2( ) ( )Y Y Y Y . 

See appendix A for the proof. 

That means the interval order of the CIs of the biased 
measurand can be used to estimate the interval order of the 
CIs of the measurand, and thus estimate the empirical relation. 
The CIs of the biased measurand is smaller in size than the 
CIs of the measurand, because the monotonic uncertainty 
components are not included in the former CIs. So the 
resolution of comparison is improved by using the CIs of the 
biased measurand. 

It can be proved that 1 2( ) ( )Y Y does not imply 1 2Y Y , 
both 1 2Y Y  and 2 1Y Y  are possible. But similar to 1 2Y Y , 
it means no inference on the empirical relation can be given 
under the confidence level. 

3.4. Strategy of estimating empirical relations 

To determine the conformity with a specification, we need 
to compare the measurement results with the specification 
limits. Traditionally, the measurement results should be 
corrected for all the recognized systematic effects before the 
comparison (see fig. 4). Conversely, without correcting the 
monotonic effects, we can specify a biased measurand y′, and 
estimate the CIs of y′ of the limit samples according to the 
monotonic effects and their uncertainties; and then compare 
the CIs of the limit samples with the CIs of measurement 
results (see fig. 5).  

Figure 5 demonstrates the principle of improving the 
resolution of comparison: due to the order-preserving property 
of monotonic effects, we can use the biased measurand 
instead of the measurand to estimate the empirical relation, so 
that the sizes of the CIs to be compared can be reduced. 
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USLLSL

Uncorrected
measured

value

Measurand

4x 1x3x 2x

4Y

1: evaluation of the CI of the measurand

1

3Y 2Y 1Y

 
Fig. 4  The traditional way of determining the conformity with a spec. 

USLLSL
Measurand

Biased
measurand

4x 1x3x 2x

3 2

1: evaluation of the CIs of the measurand
2: correction for the monotonic effects
3: estimation of the CIs of the biased measurand

1

4Y 3Y 2Y 1Y

Uncorrected
measured

value

 
Fig. 5  The amended way of determining the conformity with a spec. 

Following this principle, the strategy of estimating 
empirical relations is summarized as following. 

1. Express the measurand in terms of a function of the 
influence quantities, such as  

1 2( , ,..., )ny f x x x .  (3) 
All the significant errors and corrections should be 
included in the function. 

2. According to the actual situation of the measurement, sort 
out the influence quantities which are fixed as a constant 
in the replicate measurements of all the objects. 

3. Move the fixed influence quantities to the LHS of the 
equation (3), and get a new equation. Specify a biased 
measurand y′ with the LHS of the new equation, which 
should consist only of the fixed influence quantities.  

4. For each measured object, evaluate the expected value 
and the expanded uncertainty of the biased measurand 
with the RHS of the new equation.  

5. For the specification limits, take them as the values of the 
measurand, and use the LHS of the new equation to 
estimate the expected values and the expanded 
uncertainties of the biased measurand.  

6. Use interval order to describe the relation of all the CIs of 
the biased measurand, and according the interval order to 
estimate the empirical relation and decide the conformity 
with the specification.  

This strategy together with the concept of using interval order 
to describe the relation of complete measurement results is the 
criterion to be proposed in this paper. 

4. An example of measuring end gauges 

End gauge calibration is an example of uncertainty 
evaluation given in GUM ([1] H.1). Here three end gauges, 
named a, b, c, are of the same specification: 50mm +0.001/ 0 
mm at 20˚C. They are measured to determine the conformity 
with the specification and to find out their ordered relation in 
length. This example demonstrates how to implement the 
proposed criterion to a dimensional measurement. 

The end gauges are measured by comparing them with a 
calibrated standard gauge of the same nominal length. The 
difference of length d is measured by a comparator. As shown 
in the example in GUM, with the effect of thermal expansion, 
the measurand, i.e. length of the end gauges at 20˚C, can be 
expressed as the following function:  

( , , , , , ) ( )S S S S Sl f l d l d l  

where l is the measurand; lS is the length of the standard gauge 
given in its calibration certificate; d is the difference of length; 
α and αS are the thermal expansion coefficients of the end 
gauge and the standard gauge respectively, and S ; θ 

and S  are the deviations in temperature from 20˚C, 
respectively, of the end gauge and the standard gauge, and

S . 
The arithmetic mean of the readings of the comparator d

and the actual difference d can be related by the following 
equation. 

1 2d d d d  
where d1 and d2 are quantities describing, respectively, the 
random and the systematic effects of the comparator. From 
the above two equations, we obtain 

1 2 ( )S S Sl l d d d l  (4) 

All the expected values, uncertainties and probability 
distributions of the influence quantities of l are known and 
given in table 1. For comparing with the classical method, we 
use the data given in the example of GUM. And for simplicity, 
the degrees of freedom of the Type B uncertainty components 
are assumed to be infinite.  

The values of lS and αS are always fixed, since there is only 
one standard gauge in the measurements. We can also assume 
that the systematic error of the comparator, d2 is fixed during 
the measurements. ,  and are related to systematic 
effects, but they are not fixed.  and  vary with time; 
can be different for different end gauges.  So lS, d2 and αS are 
related to monotonic effects, where αS is in a nonlinear term, it 
cannot be moved to the LHS of (4) alone. By moving lS and d2, 
we obtain a biased measurand l′. 

2 1 ( )S S Sl l l d d d l       (5) 

Since the expected values of 1d , and are 0, from 
(5), we get  

( )E l d ,   (6) 

where ( )E l  is the expected value of l′. 
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Based on a first-order Taylor series approximation of 
equation (5), the combined standard uncertainty of l′ can be 
evaluation by the following equation (refer to GUM for the 
detail of the evaluation method). 

2 2 2 2 2
1

2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 299.2nm
C S S Su l u d u d l u l u

u d  

Due to the nonlinear of (5), the following second-order 
terms in the Taylor series of (5) are significant, which should 
be added to 2 ( )Cu l . 

2 2 2 2 2 2 2( ) ( ) ( ) ( ) 139.8nmS S Sl u u l u u  
So we have 

2 2 2 2( ) ( ) 299.2nm 139.8nmCu l u d .       (7) 

Ten replicate measurements are taken for each end gauge. 
The values of d  and ( )u d  of the measured gauges are listed 
as following. 

Gauge  d  ( )u d  
a 215 nm 5.8 nm 
b 91 nm 13.4 nm 
c 254 nm 9.3 nm 

Substitute the data of d  and ( )u d  into (6) and (7), we 
obtain the following results. 

Gauge ( )E l  ( )Cu l  

a 215 nm 22 nm 
b 91 nm 25 nm 
c 254 nm 23 nm 

Comparing with the result of combined standard 
uncertainty of the measurand obtained in GUM ( ) 34nmCu l , 

( )Cu l of gauge a (with the same value of every influence 
quantity), 22nm is much smaller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The effective degree of freedom of ( )Cu l , veff(l′) can be 

obtained from the following Welch-Satterthwaite formula [7]. 
4 4 4

eff 4 4 4

1

( ) ( ) ( )
( ) 9

( ) ( ) ( )0 0 0
9

C C C
n

i

i
i

u y u l u l
v l

u y u d u d
v

 

The values of veff(l′) of the three end gauges are all above 
100, so we can take the coverage factor k = 2, providing a 
coverage probability of approximately 95%. The CIs of the 
three end gauges can be stated as below. 

CI( ) (215 44)nm
CI( ) (91 50)nm
CI( ) (254 46)nm

a

b

c

l
l
l

 

Moreover, the expected values and the standard 
uncertainties of the upper and lower specification limits (USL 
& LSL) can be evaluated as following. 

2( ) ( ) 377nmUSL SE l E l l d  

2( ) ( ) 623nmLSL SE l E l l d  
1
22 2

2( ) ( ) ( ( ) ( )) 26nmUSL LSL Su l u l u l u d  

Take k = 2 as the coverage factor, we have 
CI( ) (377 52)nm
CI( ) ( 623 52)nm

USL

LSL

l
l

 

Put the CIs of the three end gauges and the specification 
limits together. Their relation can be observed from the graph 
below. 

 

Fig. 6  The relation of the end gauges and spec. limits (not to scale) 

So the relation of the end gauges and the specification 
limits can be stated with interval order as LSL b a USL,  

aLSL USL
cb

-623 377

ix  
Expected/ 

mean value ( )iu x  Source of 
uncertainty 

Value of 
standard 

uncertainty 

Probability 
distribution 

ic
/ if x  

Degree 
of 

freedom 

Sl  50.000623 
mm 

( )Su l  Monotonic 
systematic effect 

25 nm Normal 1 ∞ 

d  215 nm ( )u d  Random effect 5.8 nm Normal 1 9 

1d  0 nm 
1( )u d  Random effect 3.9 nm Normal 1 ∞ 

2d  0 nm 
2( )u d  Monotonic 

systematic effect 
6.7 nm Normal 1 ∞ 

S  11.5 x10-6 

˚C-1
( )Su  Monotonic 

systematic effect 
1.2x10-6 ˚C-1 Rectangular 0 ∞ 

 -0.1˚C ( )u  Non-monotonic 
systematic effect 

0.41˚C Rectangular 0 ∞ 

 0˚C-1
 ( )u  Non-monotonic 

systematic effect 
0.58 x10-6 

˚C-1 
Triangular 

Sl  ∞ 

 0˚C ( )u  Non-monotonic 
systematic effect 

0.029˚C Triangular 
S Sl  ∞ 

Table 1 Summary of standard uncertainty components 
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a ~ c and LSL b c USL. The three end gauges are all 
within specification. 

4. Conclusion 

The criterion proposed in this paper is designed for 
estimating the empirical relation of measured objects and 
determining the relation of the specification and the measured 
objects when measurement uncertainty is significant. It 
provides a method of defining the relation between complete 
measurement results by taking measurement results as 
coverage intervals. Moreover, it provides a strategy to reduce 
the size of the intervals by ignoring uncertain type of 
uncertainty components, which makes the estimated relation 
more meaningful without introducing any bias. The principle 
of ignoring uncertain type of uncertainty components is 
explained by introducing a concept called monotonic effect, 
which further classified the concepts of systematic effects and 
systematic uncertainty components. 

This criterion can be quite useful for the following 
situations: the measurement uncertainty is very significant or 
too large such that the measurement results are not very 
meaningful; the specification is given by some standard 
samples instead of numbers. It is a universal method, and can 
be applied to many areas of metrology, such as to classify 
objects into different classes (e.g. A, B, C, D) according to the 
measurand. 
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Appendix A. Proof of the proposition 

Let 1 2[ , ], [ , ]Y a b Y c d , where , , ,a b c d are some real 
constants, then  

1 2Y Y b c .   (8) 

By definition,  is an increasing function, so 
1( ) [ ( ), ( )]Y a b and 2( ) [ ( ), ( )]Y c d , hence  

1 2( ) ( ) ( ) ( )Y Y b c .        (9) 

Since   is increasing, b c implies ( ) ( )b c , and b c
implies ( ) ( )b c , and either b c  or b c , thus  

( ) ( )b c b c .  (10) 

By (8), (9) and (10), we obtain 

1 2 1 2( ) ( ) ( ) ( )Y Y b c b c Y Y . 

So the proposition is proved. 
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