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Abstract 

 

Since the first application of fuzzy logic in the field of control engineering, fuzzy logic control 
has been successfully employed in controlling a wide variety of applications, such as 

commercial appliances, industrial automation, robots, traffic control, cement kilns and 
automotive engineering. The human knowledge on controlling complex and non-linear 
processes can be incorporated into a controller in the form of linguistic expressions. Despite 
these achievements, however, there is still a lack of an empirical or analytical design study 
which adequately addresses a systematic auto-tuning method. Indeed, tuning is one of the 
most crucial parts in the overall design of fuzzy logic controllers and it has become an active 
research field. Various techniques have been utilised to develop algorithms to fine-tune the 
controller parameters from a trial and error method to very advanced optimisation techniques. 
 
The structure of fuzzy logic controllers is not straightforward as is the case in PID controllers. 
In addition, there is also a set of parameters that can be adjusted, and it is not always easy to 
find the relationship between the parameters and the controller performance measures. 
Moreover, in general, controllers have a wide range of setpoints; changing from one value to 
another requiring the controller parameters to be re-tuned in order to maintain a satisfactory 
performance over the entire range of setpoints.  
 
This thesis deals with the design and implementation of a new intelligent algorithm for fuzzy 
logic controllers in a wireless network structure. The algorithm enables the controllers to learn 
about their plants and systematically tune their gains. The algorithm also provides the 
capability of retaining the knowledge acquired during the tuning process. Furthermore, this 
knowledge is shared on the network through a wireless communication link with other 
controllers.  
 
Based on the relationships between controller gains and the closed-loop characteristics, an 
auto-tuning algorithm is developed. Simulation experiments using standard second order 
systems demonstrate the effectiveness of the algorithm with respect to auto-tuning, tracking 
setpoints and rejecting external disturbances. Furthermore, a zero overshoot response is 

produced with improvements in the transient and the steady state responses.  
 

The wireless network structure is implemented using LabVIEW by composing a network of 
several fuzzy controllers. The results demonstrate that the controllers are able to retain and 
share the knowledge.  
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CHAPTER 1 

 

1 Introduction 

 

In this chapter, the context and the background of the work developed in this thesis are 

described. The necessity and the significance of the topic are briefly discussed. The aims and 

the objectives are outlined.  The expected contributions and the structure of the thesis are also 

provided. 

 

1.1 Overview 

Many practical control systems and processes have dynamics and complex characteristics, 

such as non-linearity, uncertainty or changes in the process dynamics. These characteristics 

are not fully understood as is the case in most industrial process control systems (Babuska & 

Mamdani, 2008).  Uncertainty arises for various reasons, for instance, lack of knowledge or the 

inability to obtain the required parameters of a system. This results in an imprecise 

understanding of the system dynamics and consequently the process of capturing and 

modelling of the characteristics and the attributes in mathematical models becomes too 

complicated (Babuska & Mamdani, 2008; Rutkowski, 2008; Shin & Xu, 2009).  In addition, 

with ever-increasing demands on the control systems to accommodate further capabilities and 

features, such as autonomy and intelligent decision making abilities, these systems have 

tended to become increasingly more complicated than ever and consequently the modelling 

process become more complex. 

 

On the one hand, the design of conventional linear controllers such as Proportional-Integral-

Derivative (PID), the functionality and the performance of these controllers depend primarily 
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on the accuracy of the mathematical models. Hence conventional controllers have shown some 

limitations in controlling these systems particularly when they are applied to non-linear 

systems or when the circumstances surrounding a process under control are changing 

(Babuska & Mamdani, 2008). 

 

On the other hand, in the real world, understanding of some complex systems does not require 

a high level of precision and accuracy. Such complex systems and processes can be intuitively 

controlled by humans. A skilled human operator can understand and model the behaviour of 

these systems and control them without having precise knowledge of their mathematical 

models (Mamdani, 1974).   

 

The Fuzzy Logic Control (FLC) approach (Mamdani & Assilian, 1975; Zadeh, 1996), as an 

alternative method to the conventional control techniques, is based on an empirical approach 

rather than requiring an explicit and precise knowledge of the mathematical model of a 

system. This new control paradigm has emerged as one of the most used intelligent techniques 

in tackling the complexities associated with some systems. Since then, an ever-increasing 

employment of fuzzy logic controllers have been reported (Kumar, Nakra, & Mittal, 2011; 

Shen, 2008); they have been successfully applied in industrial processes and in some cases 

outperformed PID controllers (Saeed & Mehrdadi, 2011; Vaishnav & Khan, 2007). The prime 

reason for this is that FLC is deemed to be a systematic method to integrate the human 

knowledge in understanding, modelling and controlling a process in the form of linguistic terms 

to a controller. Hence, in essence, the controller emulates humans and becomes intelligent.  

 

Despite the evident success of fuzzy controllers (FCs), there are a number of issues that might 

confine their applications (Altas & Sharaf, 2007; Gao, Trautzsch, & Dawson, 2002; Passino & 

Yurkovich, 1998).  
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First, there is still a lack of a systematic method to design and tune these controllers. The 

knowledge-base of the controller is designed using heuristic information from a skilled 

operator. Indeed, FCs have some essential components such as membership functions (MFs), 

rule-base and scaling factors (SFs) (Lee, 1990; Passino & Yurkovich, 1998; Woo, Chung, & Lin, 

2000). Furthermore, each component has several parameters. The design process should 

consider all the components and the parameters and normally the design process may involve 

three stages. Firstly, appropriate membership functions are selected to map the input and 

output variables of the controller. In the second stage, the rule-base is constructed by 

translating the experience of a skilled human operator on controlling a plant into ‘If-then’ 

rules. And finally, an adjustment of the parameters is carried out.   

 

The adjustment is a process, normally known as tuning. It is performed manually or 

automatically to determine appropriate controller parameters in order to achieve a better 

possible performance of a controller. As a nominal fuzzy controller cannot always provide a 

satisfactory performance, tuning is carried out to achieve a better possible response or at least 

to maintain the performance at a desired level whenever the characteristics of the plant under 

control vary, or when some disturbance is introduced.   

 

Indeed, tuning is one of the most crucial parts in the overall design of FCs and it has become 

an active research field. Various techniques have been utilised to develop algorithms to fine 

tune the parameters from trial and error methods to very advanced optimisation techniques 

such as Genetic Algorithms (GAs) (Tang & Wu, 2009), Ant Colony Optimization Algorithms 

(ACOAs) (Juang & Chang, 2010), Shuffled Frog Leaping Algorithm (SFLAs) (Nguyen & Huynh, 

2008) and Bees Algorithms (BAs) (Pham, Darwish, Eldukhr, & Otri, 2007) to name but a few.   

 

Moreover, in general, controllers have a wide range of setpoints and changing from one value 

to another requires the controller parameters to be re-tuned in order to that a satisfactory 

performance over the entire range of the setpoints is maintained.  
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Also, there are other factors that make the tuning process more complex.  Fuzzy controllers 

are, generally, non-linear (Jantzen, 2007); therefore, it is difficult to find the relationship 

between controller parameters and controller performance, such as rise time or overshoot. In 

addition, unlike conventional controllers, fuzzy logic controllers have more parameters that can 

be adjusted, such as: shape, position, number and type of the input and output membership 

functions; the input and output scaling gains; and the rule-base.  

 

So far, a valuable amount of literature has been published on the design of tuning algorithms 

(Gang, 2006), but there is still, however, a lack of an empirical or analytical design study 

which adequately covers a systematic auto-tuning method. As most of the algorithms are 

application dependants, the development of a systematic auto-tuning algorithm remains of 

prime importance.   

 

The second issue is that, even with the existence of an algorithm with the above mentioned 

attributes, the controller still ought to re-adjust its parameters whenever changes happen in 

the controller settings, for instance, if a particular setpoint is assigned to a controller then 

tuning is performed for that setpoint. At a later stage, when a new setpoint is assigned then 

accordingly the controller is re-tuned for this new setpoint. If the previous setpoint has to be 

re-assigned, the controller must start the re-tuning process, because the controller has no 

memory to retain the knowledge gained when the first setpoint was assigned (Antsaklis, 

1999).  Although re-assigning the setpoint is a repeated task, the controller does not learn 

anything from its past experience. If the knowledge was retained when the first setpoint was 

assigned then there could be opportunities to utilise it and the knowledge could be used at 

later stages when the same situations occur. It is equally important, that the knowledge could 

be shared with other controllers, thus, the controllers which receive the knowledge add it to 

their existing knowledge-base and hence learn from the past experience of the others. 
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Although considerable research has been devoted to tuning, no attention has been paid to the 

design of networked fuzzy controllers with the ability to retain and share the knowledge gained 

during tuning process. In essence, there is not a structure that incorporates memories and 

communications capabilities for networked fuzzy controllers in order to retain and share 

knowledge. Such a structure provides potential learning framework for the controllers and 

saves a significant amount of time required to re-tune the controllers. 

 

An example can be found in process control for situations where a number of identical devices 

form a wired or a wireless network to work together towards achieving a universal goal. In 

order to maximise the network performance, the nodes are designed to control their local 

systems in an intelligent manner so that they can adapt to their setpoint changes and tune 

their local parameters. The knowledge gained by individual controllers is then made available 

to other controllers on the network.  The structure could be potentially applied to systems with 

controlling of multiple motors with identical characteristics or several pneumatic valves on an 

oil pipeline.  

 

This thesis proposes a new structure whereby a wireless intelligent controller network is 

designed and implemented. The controllers utilise FLC strategy to control their identical local 

processes. To improve their performances, the controllers have the ability to iteratively auto-

tune their gains, and for this purpose a systematic algorithm is devised to perform the task. In 

addition, individual controllers also have the ability to retain the acquired knowledge in their 

memories so that it can be used when the controller requires it.  Furthermore, the knowledge 

can be shared on the network through the communication link with other controllers.  

 

As many real-time applications exhibit oscillation and overshoot in their step responses, and 

these characteristics can be modelled using a second order system (Haugen, 2009; Rowell, 

2004), several standard second order transfer functions are considered as the process of the 
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controllers. To assess and validate the performance of the proposed algorithm, experiments 

are carried out on hardware circuits which represent these systems. 

1.2  Problem Statement 

Based on the aforementioned overview the key research question can be formulated as 

follows:  

 

How can an auto-tuning algorithm with online self-learning, adaptation and extensive 

communication capabilities be developed for FCs in a wireless network structure?  

1.3  Aims and Objective of the Research 

This thesis aims to develop and devise a new auto-tuning algorithm for a group of FCs in a 

wireless network structure. The algorithm has the capabilities of self-learning, retaining the 

knowledge gained in tuning process and communications. The thesis also proposes a design 

framework where the algorithm can be implemented.  

 

The major objectives of this research are set out as: 

 

 Investigate various fuzzy controller structures and tuning techniques to select an 

appropriate type.  

 Analyse the performance of the fuzzy controller with regard to its parameters to establish 

relationships between the parameters and the controller performance.  

 Devise a novel systematic auto-tuning algorithm capable of online self-learning and 

tuning. 

 Develop and implement a suitable multi-layer algorithm structure to enable the fuzzy 

controller to retain the knowledge gained in the tuning process. 

 Develop a communication algorithm for the controller that affords an efficient exchanging 

and sharing of knowledge with other identical controllers.  
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 Assess, demonstrate and validate the effectiveness and the performance of the 

algorithms based on software simulation and hardware circuit experiments.   

 Design and implement a wireless network structure to provide a learning platform for the 

controllers.  

1.4  Contributions 

This section briefly highlights the main expected contributions of this research work while a 

further detailed discussion and an assessment of the significance of the contributions are 

presented in the Conclusion chapter.  

1.4.1  A Systematic Auto-tuning Algorithm 

A systematic auto-tuning algorithm has been designed for a fuzzy logic controller with the 

ability to identify various plants. The controller is capable of monitoring the plant to ensure the 

stability and to improve its performance by determining appropriate controller parameters.  

1.4.2  A New Structure for an Intelligent Fuzzy Logic Controller 

A multi-layered structure algorithm has been designed to incorporate self-learning and 

knowledge retaining stages. The acquired experience and knowledge in the tuning process is 

retained and then utilised whenever a similar situation arises. 

1.4.3  A New Knowledge Sharing Framework  

A framework for networked fuzzy logic controllers has been designed and implemented. This 

new framework provides a learning facility through effective sharing of knowledge between 

identical FCs. The structure can be used as a new paradigm for implementing a practical 

multiple fuzzy controller system.  
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1.5 Publications  

During the undertaking of the research, the fundamental parts of the work have been 

presented as papers at peer-reviewed international conferences and as electronic newspaper 

articles: 

  

 Saeed, B.I. & Mehrdadi, B., (2011). Zero overshoot and fast transient response using a 

fuzzy logic controller. In 17th International Conference on Automation and Computing 

(ICAC), University of Huddersfield, UK.  Conference Proceedings. 116 – 120 Retrieved 

from 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6084912&isnumber=608488
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 Saeed, B.I. & Mehrdadi, B., (2012). Design of an iterative auto-tuning algorithm for a 

fuzzy PID controller. In 25th International Congress on Condition Monitoring and 

Diagnostic Engineering (COMADEM), University of Huddersfield, UK. Journal of Physics: 

Conference Series, Volume (364) 012052 Retrieved from  

        http://iopscience.iop.org/1742-6596/364/1/012052 

 Saeed, B.I. & Mehrdadi, B., (2012). A Network Based Learning Architecture for Fuzzy 

Logic Controllers. In International Conference on Advances in Electrical Measurements 

and Instrumentation Engineering (EMIE), Amsterdam, The Netherlands. Book Series: 

Computer Science Series, Volume (3) 127-133 Retrieved from 

http://searchdl.org/index.php/book_series/view/248   

 Saeed, B.I. & Mehrdadi, B., (2012, September 11). Designing a Wireless Network of 

Intelligent Fuzzy Logic Controllers with NI LabVIEW. National Instruments.  

       Retrieved from http://sine.ni.com/cs/app/doc/p/id/cs-14930 
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1.6 Thesis Layout 

The rest of this thesis is organised into five chapters as follows: 

 

Chapter 2 starts by providing some information on the complexities of modern control 

systems that have led to the emergence of the intelligent control field. It also reviews and 

evaluates the research literature of intelligent control design and its attributes. The significant 

role of fuzzy logic control in the design of intelligent controllers is highlighted. A focus review is 

given on the issues pertaining to FCs, such as structures and types. In addition, a further 

broad review of various tuning methods and algorithms is provided. Finally, a summary based 

on the reviewed literature is provided.   

 

Chapter 3 introduces details of the proposed architecture of a wireless intelligent fuzzy 

controller network system. The main intelligent attributes of the system are defined and the 

methods to develop these characteristics are described. Additionally, the detailed design and 

development of the basic FPD+I controller is provided. The relationships between the basic 

FPD+I controller parameters and the controller performance is analysed and the design of the 

auto-tuning algorithm is provided. In order to evaluate and analyse the performance of the 

algorithms for a wide range of systems, standard transfer functions of several second order 

systems with different characteristics are chosen. These systems act as the plant for all 

simulation and experimentation tests in the thesis.  

 

Chapter 4 gives a brief introduction to the software development platform used to implement 

the wireless intelligent fuzzy controller network. Also, the structure of the implemented system 

is provided. To apply the control algorithm to a real hardware, some standard second order 

transfer functions are realised and constructed using various electronic components. 
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Chapter 5 demonstrates the conduction of various tests and presents the results obtained. 

Firstly, MATLAB simulation-based models are used to test the basic FPD+I controller and the 

auto-tuning algorithm. Secondly, by using LabVIEW in addition to testing the basic FPD+I 

controller and the auto-tuning algorithm, the wireless intelligent fuzzy controller network 

system is tested. Furthermore, the results of the basic FPD+I controller and the auto-tuning 

algorithm tests on hardware representing various real-time control systems are presented. The 

chapter is summarised by providing discussions on the results where the relationships between 

the controller gains and the controller performance are established. 

 

Chapter 6 presents the main concluding remarks and discussions on the research. It also 

outlines and discusses the major contributions of the thesis. In addition, the chapter provides 

possible future directions in the relevant areas. 
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CHAPTER 2 

 

2 Literature Review 

 

This chapter starts by providing some information on the complexities of modern control 

systems that have led to the emergence of the intelligent control field. It also reviews and 

evaluates the research literature of intelligent control design and its attributes. The important 

role of fuzzy logic in the design of intelligent controllers is highlighted. A focus review is given 

on the issues related to fuzzy controllers, such as structures and types. In addition, as tuning 

has been and remains one of the most important parts of the design of the fuzzy controllers, a 

further detailed review on the tuning methods and algorithms is provided. Finally, based on the 

reviewed literature, a summary of the literature is given.   

 

2.1  From a Single Controller to Multi-Controller and 

Intelligent Control Systems 

The principle of a basic feedback control system is to maintain the output of a process known 

as ‘controlled variable’ at a desired level which is referred to as the reference signal or the 

setpoint reference. In practical control applications, typically, the process has a single-input 

single-output (SISO) or multiple-inputs multiple-outputs (MIMO) (Skogestad & Postlethwaite, 

2005). Depending on the control system types and requirements, various controllers are 

needed to control such processes ranging from plain on-off controllers (Edgar, Seborg, & 

Mellichamp, 2004; Visioli, 2006), through variations of proportional-integral-derivative 

controllers (PID) (Åström & Murray, 2009; Visioli, 2006), to adaptive and optimal controllers 

(Åström & Wittenmark, 1995).    



28 

 

With the ever-increasing demands on control systems to accommodate further capabilities and 

features, these systems have become increasingly complex than ever. In addition, most of 

these systems are inherently non-linear, time-varying or the system dynamics are very 

complex and not fully understood - as is the case in most industrial process control systems 

(Babuska & Mamdani, 2008).  

 

However, recent advances in the fields of computer science, communication systems and 

embedded control technologies have led the experts in the control engineering field to develop 

several new control strategies, architectures and algorithms to meet the new requirements of 

these systems and to deal with the complexities. 

 

For this reason, control system structures with a multi-controller function (Breemen & Vries, 

2000) have significantly evolved as the most dominant control architectures, where multiple 

controllers are utilised to control a whole system.  

 

Systems with multiple controllers have become standard in the control community. In the 

literature, the subject of multi-controller systems has been scattered over a variety of different 

research areas and mainly studied under various names and terms, such as distributed control 

(Tan, Yoo, & Yi, 2008a), multiple-control (Breemen & Vries, 2000), multi-agent control 

(Jennings & Bussmann, 2003), cooperative control, collaborative control and distributed 

learning control systems (Choi, Oh, & Horowitz, 2009).  

 

These architectures have been successfully used in various application areas, such as industrial 

processes, power systems (McArthur et al., 2007), telecommunications, robots (Kelly & 

Keating, 1998) and automobiles, to mention but a few application areas. 

 

With a quick survey on these architectures, it becomes clear that they have more advantages 

over a single control structure and they have been proposed for two main purposes. Firstly, to 
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manage the complexity of these systems more efficiently (Narendra, 2005), and secondly to 

achieve learning through collaboration between the different parts of a system (Choi et al., 

2009). 

 

In the monitoring of complex process control systems, an architecture of a multi-agent system 

has been introduced in (Tan, Yoo, & Yi, 2008b). In the context of learning, various works have 

been reported (Ahny, Chenz, & Moorex, 2011; Jorge Ierache, 2010; Kelly & Keating, 1998; Lu, 

Zhang, & Xie, 2011; Schöllig, Alonso-Mora, & D’Andrea, 2010). Researchers in (Kelly & 

Keating, 1998), have described a learning algorithm for small autonomous mobile robots, 

where two robots learn how to avoid obstacles and the learned knowledge is then passed on to 

each other. An analytical investigation of a multi-agent environment was carried out in 

(Schöllig et al., 2010), where the agents perform similar tasks and exchange information 

between them. The results showed a performance improvement and a faster learning rate of 

the individual agents. 

 

In parallel to the aforementioned control architectures, intelligent control has emerged as one 

of the fastest growing areas in the field of control engineering over the last decades to deal 

with the complexities of these control systems. 

 

Intelligent control utilises and develops algorithms and designs based on the emulation of 

intelligent behaviours of biological beings, such as in the way they perform a task or how they 

can find an optimal solution to a problem, to design, model and control complex systems 

(Antsaklis, 1999; Narendra, 1991; Shin & Xu, 2009). These behaviours may include adaptation 

to new situations, learning from experience, automation and cooperation in performing tasks 

(Antsaklis, 1999).  

 

Preliminary work on intelligent control systems was undertaken in 1971 by Fu (1971), where 

the term of ‘intelligent control’ was coined (Antsaklis, 1994, 1999; Lima & Saridis, 1996; 
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Zilouchian & Jamshidi, 2001). Since then, the foundation of intelligent control systems was 

proposed by Lima and Saridis (1996), in which an architecture consisting of a three-level 

hierarchal structure was discussed and suggested. Since then, only a handful of papers and 

articles have been produced (Antsaklis, 1994, 1999; Åström, 1989; Lima & Saridis, 1996; 

Narendra, 1991; Passino & Yurkovich, 1998). These resources are still the main sources, but 

the works have tended to focus on general principles of intelligent controllers rather than 

fundamental procedures on the design and implementation of such controllers.  

 

In Åström (1989), some features of automatic tuning and adaptation were outlined. The 

concept of combining these properties with supervision and monitoring were also given in 

order to develop a new generation of control systems, known at then as ‘expert control 

systems’.     

 

The necessity of possessing long term memory for adaptive controllers was discussed by Lima 

and Sardis (1996). Additionally, the concepts of knowledge-based systems in coordinating the 

various control algorithms used in process control were suggested. 

 

A further detailed illustration of a functional architecture is given by Antsaklis (1999). The 

architecture consists of three levels, namely from bottom to top they are execution, 

coordination and management or organisational levels. This architecture is regarded as a 

standard structure in the design of intelligent control systems.    

 

In general, intelligent control has various techniques and tools to design intelligent controllers. 

The tools are commonly known as soft computing or computational intelligence tools (Eberhart 

& Shi, 2007; Engelbbrecht, 2007; Rutkowski, 2008; Shin & Xu, 2009; Zilouchian & Jamshidi, 

2001), and the major and widely used examples are listed below: 
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1- Fuzzy Logic (FL). 

2- Artificial Neural Networks (ANNs). 

3- Evolution Algorithms (EAs). 

 

The tools have been extensively used in the design of many intelligent control systems, a 

diverse range of applications are reported in (Eberhart & Shi, 2007; Engelbbrecht, 2007; Liu & 

Wang, 2006; Ruano, 2005; Rutkowski, 2008; Shin & Xu, 2009). As this thesis deals with the 

design of intelligent fuzzy controllers, only the role of fuzzy logic in the field of control 

engineering in general and specifically in the design of intelligent controllers will be discussed 

and reviewed in the following sections. 

2.2  Fuzzy Logic Control 

Many practical control systems and processes have dynamic and complex characteristics, such 

as uncertainty and non-linearity. In addition, the complexity of such systems increases with 

the ever increasing demands for autonomy and intelligent decision making abilities. Accurate 

mathematical models to capture and model all these characteristics and attitudes are either 

not easily attainable or too complicated (Babuska & Mamdani, 2008; Rutkowski, 2008; Shin & 

Xu, 2009). 

 

The design of conventional controllers such as PID and the functionality and performance of 

these controllers depend on the accuracy of the models. Therefore, applying conventional 

controllers has revealed some limitations in controlling these systems particularly when they 

are applied to non-linear systems or when the circumstances surrounding a process under 

control are changing (Babuska & Mamdani, 2008). 

 

On the other hand, such systems and processes can be intuitively controlled by humans. A 

skilled human operator can understand the behaviour of these systems and control them 

without having precise knowledge of their mathematical models (Mamdani, 1974).  
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Fuzzy logic control (Mamdani & Assilian, 1975; Zadeh, 1996) is one of the most successful 

application fields of fuzzy sets (FSs) invented by Zadeh (Zadeh, 1965). It is an approach to 

integrate the emulation of the human brain in understanding, modelling and controlling 

uncertainties and non-linearities in complex systems into a controller. The first application of 

fuzzy logic in the field of control engineering was carried out in 1974 (Mamdani, 1974; 

Mamdani & Assilian, 1975) . The motivation was to find a way to introduce the human 

knowledge in controlling a process, into a controller. The researchers successfully carried out 

an experiment to control a dynamic plant which consisted of a laboratory model steam engine 

and a boiler combination. Since then, fuzzy logic has been successfully applied to a broad 

spectrum of real-world application areas ranging from industrial processes, consumer 

electronics, power systems, telecommunications, robots and automobiles, to mention but a few 

(Grigorie, 2011; Iqbal, Boumella, & Garcia, 2012; Ross, 2004). Perhaps the most popular area 

has been in the field of modelling, controlling and monitoring complex control systems (Shen, 

2008). 

2.3  Intelligent Fuzzy Controllers 

Fuzzy logic has a more significant role to play in the design of control systems, and in 

particular in the design of intelligent control systems than any other method and this seems to 

be for a number of reasons. In the first place, the first application of fuzzy logic in the field of 

control engineering was as a direct controller, to control a time-varying and non-linear plant; 

therefore, it is widely used as a normal controller in direct action with a process. Secondly, 

because fuzzy logic is also seen as a universal approximation tool, it can be used to model 

various complex control systems. Finally, fuzzy logic has the capability to incorporate decision 

support at higher levels of the control hierarchy, such as supervision and monitoring; 

therefore, it is widely used as a tool in switching and decision-making processes (Sala, Guerra, 

& Babuška, 2005). In summary, fuzzy logic is regarded as a systematic method to integrate 

the human knowledge in understanding and modelling of complex control problems into a 
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controller. The integrated knowledge is in the form of linguistic terms, which is very well 

understood and in addition, it can be easily changed. 

 

However, there are still limits as to how far a controller, utilising fuzzy logic as a tool, is 

considered to be intelligent. With a closer look at the literature, all fuzzy logic controllers 

designed so far have been, literally, regarded and entitled as intelligent controllers (de Silva, 

1995; Kia, Far, Omid, Alimardani, & Naderloo, 2009; Kumar & Garg, 2004; Mary, Marimuthu, 

& Singh, 2007; Saifizul, Zainon, Osman, Azlan, & Ibrahim, 2006; Wang, Liao, Liao, Suen, & 

Lee, 2009; Yu, Huang, & Zeng, 2005). Critics have argued that not all fuzzy controllers could 

be considered intelligent (Antsaklis, 1999), and this appears to be quite reasonable. It is true 

that human knowledge is well represented and integrated into fuzzy controllers, but this 

knowledge is static (fixed) and cannot update itself. A mechanism is essential to expand and 

update this knowledge in order to make the controller acquire further information to improve 

its performance, adapt to new situations and learn from its own experience.  

 

Even with a controller with such a mechanism, an issue arises in achieving learning feature for 

fuzzy controllers.  For example, an intelligent controller with an adaptation mechanism can 

adapt to new situations by adjusting some of its parameters. In a sense, the controller 

acquires new information and learns how to adapt itself and to improve its performance. 

However, at a later stage, if the same situation arises, the intelligent controller still needs to 

re-adjust its parameters, this is because the controller has no memory and therefore no 

information is retained. Consequently, for a fuzzy controller to be intelligent, memory is 

essential so that the information acquired in the adaptation or tuning processes in previous 

circumstances is retained and can be used at later stages when the same situation occurs 

(Antsaklis, 1999). Consequently, beside the standard knowledge-base of a fuzzy controller, an 

additional knowledge-base is gradually built based on the past experience of the controller. 
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It is also possible that a fuzzy controller can learn from other identical fuzzy controllers 

performing the same task. This can be achieved by forming a network of identical fuzzy 

controllers to establish a framework for exchanging information between them. In order to 

maximise the network performance, the controllers are designed to control their local systems 

in an intelligent manner so that they can adapt to their setpoint changes and tune their local 

parameters. The knowledge gained by a controller in performing a particular task, tuning for 

example, can be shared with other controllers, thus, the controller which receives the 

knowledge extends its existing knowledge-base. 

  

In addition to the abovementioned issues regarding intelligent fuzzy controllers, there are still 

several other issues to be addressed, such as selection of the controller type and structure and 

the tuning. These issues add further complexities to the design of intelligent fuzzy controllers. 

In the coming sections, critical reviews on these issues are provided. 

 

As various terms related to fuzzy control systems will be used throughout this thesis, the 

reader is referred to Appendix A, where a basic design example of a fuzzy controller is given to 

illustrate various parts and components of the controller.  

2.4 Choice of the Controller Type and Structure 

Mainly, there are two types of fuzzy logic controllers (Engelbbrecht, 2007; Jantzen, 2007), 

Mamdani, (Mamdani, 1974) also referred to as a ’standard fuzzy system’ (Passino & Yurkovich, 

1998) and Takagi-Sugeno controllers (Takagi & Sugeno, 1985). In both types, the rule-base is 

constructed by a collection of empirical linguistic rules in the form of the ‘If-then’ format. The 

antecedent part on the ‘if’ side accommodates the input variables with their fuzzy set values, 

while the consequent part on the ‘then’ side accommodates output variables with their fuzzy 

set values. Thus, the rule-base expresses a mapping between the input and the output 

linguistic variables. The main difference between the two types of fuzzy controllers is that, in 

the Mamdani type, the antecedent part is statically constructed, whilst in the Takagi-Sugeno 
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type it is dynamic, whereby the output is a linear combination of the input variables or it is a 

complex function of the inputs. In some literatures, the Takagi-Sugeno type is referred to as 

‘functional fuzzy systems’ (Passino & Yurkovich, 1998). 

 

Table-based fuzzy controllers mentioned in some literatures (Engelbbrecht, 2007; Jantzen, 

2007), can represent one of the two types, where the controller’s universes of discourse are 

discrete known as ‘singletons’; in this case it is possible to calculate all the controller outputs in 

advance and store them in a table. Then, based on the inputs of the controller, the output is 

found in the table as a look-up search process. The execution speed is improved as the output 

values are identified faster.  

 

As is the case in the conventional PID control, for a particular application it is not necessary to 

adopt all three terms of proportional (P), integral (I) and derivative (D) (Visioli, 2006). 

Therefore, the selection of the controller structure is essential in the overall design of a control 

system. Fuzzy controllers are constructed in various structures. Several structures have been 

proposed and extensively studied, such as: fuzzy-proportional (FP), fuzzy-proportional-

derivative (FPD), fuzzy-proportional-integral (FPI) or fuzzy-incremental (FInc) and fuzzy-

proportional-integral-derivative (FPID) (Duan, Deng, & Li, 2013; Jantzen, 2007; Mann, Hu, & 

Gosine, 2001; Yung-Yaw & Chen-Cheng, 1992). 

 

An FPD controller results in a stable system, but with a steady state error, while an FPI 

controller achieves a zero steady state error, but with a less stable response (Yung-Yaw & 

Chen-Cheng, 1992). To combine the advantages of FPD and FPI controllers, various structures 

for an FPID controller have been proposed. Indeed, in (Shin & Xu, 2009) a normal FPID with 

three inputs ( the error, the change of error and the integral of error) has been proposed and 

implemented. Although the controller has a plain structure, the construction of a three-

dimensional rule-base becomes more difficult as the number of rules exponentially increases 
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with the increasing number of controller inputs. Furthermore, constructing rules based on an 

integral of error is rather difficult (Engelbbrecht, 2007; Jantzen, 2007). 

 

To overcome these limitations, a parallel structure which is a combination of FPI and FPD, and 

FPD+I, has been proposed (Li, 1997; Pivonka, 2002). The Parallel structure has two inputs, 

resulting in a two-dimensional rule-base. Additionally, it has the basic properties of a general 

PID controller as the three control actions are included, but at the same time further 

computational time is required to determine the controller output as there are two fuzzy 

controllers in the structure.  The FPD+I is normally constructed by combining a crisp integral 

action with the output of an FPD controller, hence the rule-base is still two-dimensional and 

the controller also has the merits of a general PID controller (Engelbbrecht, 2007; Jantzen, 

2007). 

 

Further configurations have been found in the literature, such as: FPID with incremental 

output, rule coupled FPI+FPD, rule de-coupled FPID, FP+I+D and FPI+D controllers (Pivonka, 

2002). In de-coupled rule-base structures, a separate rule-base for every controller input is 

constructed. The key problem, however, with the existence of various structures is that more 

complexities are introduced to the design and tuning of fuzzy logic controllers.  

2.5 Tuning Fuzzy Controllers 

Fuzzy logic controllers have some essential components, such as membership functions, rule-

base and gains. Each component has several parameters. In general, the design process of 

these controllers should consider all the components and parameters and therefore it may 

involve three main stages (Jantzen, 2007; Passino & Yurkovich, 1998; Woo et al., 2000). 

Firstly, appropriate membership functions are selected to map the input and output variables. 

In the second stage, the rule-base is constructed by translating the experience of a skilled 

human operator on controlling a plant into ‘If-then’ rules. And finally, an adjustment of the 

parameters is carried out to achieve a better possible performance. 
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Additionally, as the knowledge-base of a fuzzy logic controller is designed based on heuristic 

information from skilled operators, the performance of such controllers begins to deteriorate 

when the dynamics of the system change, or unexpected disturbances occur or the setpoints 

change. Therefore, a mechanism is required to adjust the controller parameters to maintain 

the system performance at a satisfactory level.  

 

The adjustment process that has been mentioned in the literature generally refers to tuning 

the parameters of the membership functions and the gains, while self-organising refers to 

adjustments of the rule-base components. Furthermore, self-tuning, auto-tuning, self-learning, 

learning and adaptive are also used as alternative terminologies (Jie, Liyun, Derong, Yanbo, & 

Shiyu, 2008; Mamdani & Assilian, 1975; Wang, 1994; Zacharie, 2010).  

 

Indeed, tuning is one of the most important parts of the design of fuzzy controllers and it has a 

great impact on improving the performance of these controllers. Regardless of the adjustment 

mechanism, the tuning process is performed to improve and maintain the performance of the 

controllers, if the characteristics of the plant under control vary, or some disturbance is 

introduced.  Moreover, in general, controllers have a wide range of setpoints; changing from 

one setpoint to another requires the controller parameters to be re-tuned so that a satisfactory 

performance over the entire setpoint range is achieved and maintained. 

 

However, there are some serious issues that make the tuning process of fuzzy logic controllers 

more complex.  These controllers are generally non-linear and therefore it is difficult to find the 

relationship between controller parameters and controller performance, such as rise time or 

overshoot (Jantzen, 2007). In addition, unlike conventional controllers, fuzzy logic controllers 

have several parameters that can be adjusted, such as: shape, position, number and type of 

the input and output membership functions; the input and output gains and the rules. 

Furthermore, there are no general rules for tuning these parameters. Most of the 

methodologies have been based on heuristic information. However, as the fuzzy logic control 
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has its foundation in conventional control, some techniques and ideas applied in tuning 

conventional controllers can still be utilised to some extent (Passino & Yurkovich, 1998). 

 

As an extension to the original fuzzy logic controller, the first self-organizing fuzzy logic 

controller has been developed (Procyk & Mamdani, 1979) which has the ability to change the 

control policy and to improve its performance automatically based on a pre-determined 

performance index. Since then, tuning has become one of the most active research fields in 

the design of fuzzy controllers. Various techniques and algorithms have been utilised and 

developed to fine-tune the controller parameters, ranging from trial and error methods to very 

advanced optimisation techniques.  

 

Tuning algorithms involve adjusting various controller parameters including input and output 

gains, input and output membership functions’ parameters and fuzzy rules. In the next 

sections the main methods will be reviewed in further detail. 

2.5.1  Tuning via Trial and Error Methods 

In most cases, a nominal fuzzy controller is designed for a plant and then, based on some prior 

knowledge, the controller parameters are adjusted by a process of trial and error until a 

satisfactory performance is achieved (Nguyen & Huynh, 2008; Passino & Yurkovich, 1998). The 

adjustment might include the input and output membership functions’ parameters, the input 

and output gains or the rule-base system. This approach is very easy and straightforward, but 

it is a tedious and time-consuming task (Murad, Cheok, & Das, 2009), particularly when it is 

carried out on-line. Furthermore, there are many cases where prior knowledge about the plant 

is unknown. Therefore, the technique is impractical and yields no significant contribution to the 

design of intelligent fuzzy controllers.  
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2.5.2  Tuning via Intelligent Optimisation Techniques 

In order to deal with the difficulties in tuning fuzzy logic controllers and find optimal values of 

the parameters, the use of several intelligent optimization tools has been proposed by many 

researchers. These tools, also known as Evolutionary Algorithms (EAs), are inspired by the 

functionality of intelligent biological systems, either in the way they perform a task or how 

they find an optimal solution to a problem (Antsaklis, 1999; Narendra, 1991; Shin & Xu, 

2009). 

 

The primary application of these tools is to find a global optimal point in the search domain; 

therefore, they are suitable for optimisation or search problems such as optimal design of 

controller parameters. Tuning fuzzy controller parameters can be formulated as search or 

optimisation problems; hence, in this case, the tools can be effectively used to find better 

values of the parameters.  

 

The tools have been successfully utilised to reduce the time and effort involved in the design 

and fine-tuning of fuzzy controllers (Hoffmann, 2001). Some examples are Genetic Algorithms 

(GAs) (Tang & Wu, 2009), Ant Colony Optimization Algorithms (ACOAs) (Juang & Chang, 

2010), Shuffled Frog Leaping Algorithms (SFLAs) (Nguyen & Huynh, 2008) and Bees 

Algorithms (BAs) (Pham et al., 2007). Furthermore, in some cases hybrids of these techniques 

have been used (Dalci, Uzunoglu, & Kucukdemiral, 2004; Khan et al., 2008; Pham et al., 

2006; Soliman, Guan-zheng, & Abdullah, 2008).  

 

As these tools share similar principles in operation, only a brief illustration of the most widely 

used is given below. Genetic algorithms have been used as search and optimization techniques 

to find the appropriate value of fuzzy controller parameters. They can be used in two ways: 

off-line or on-line. The off-line approach requires the plant transfer function and then a 

simulation is carried out, while the on-line method is used whilst running the controller in real-

time. The controller parameters are encoded into the algorithm, and a fitness function 
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comprising of the desired performance is defined. Then a population of solutions is generated. 

After that, the specification of individuals in the solutions is measured against the fitness 

function in order to determine how close each solution is to the desired performance. Finally, 

the fitted individual solution is selected as an optimal solution for the controller (Johnson & 

Picton, 2001; Karr, 1999; Rutkowski, 2008). 

 

Using GAs with fuzzy control is normally known as GA-FLC; it has been successfully used to 

design fuzzy controllers and fine tune their parameters. For instance, it has been used to 

optimize the membership functions’ parameters (Kumar & Garg, 2004). In (Khan et al., 2008), 

this approach has been used to optimise the rules, the membership functions’ parameters and 

the gains. Also, it has been used in multi-objective optimization problems (Stewart, Stewart, 

Gladwin, & Parr, 2009). 

 

Most recently, Bees Algorithms as another populated-based optimization algorithm, have been 

utilised in the design and optimisation of fuzzy controller parameters (Pham et al., 2006). The 

algorithm has been used to tune fuzzy controller parameters (Pham et al., 2007; Pham & 

Kalyoncu, 2009).  

 

Although these algorithms are powerful and their successes have been proved, they are 

computationally expensive (Lu & Mahfouf, 2010). Because they are population-based 

algorithms, a considerable number of solutions are generated; individuals of these generations 

are needed to be tested for their fitness function. Additionally, some individuals cannot be 

tested in real-time in safety-critical applications. Therefore, these techniques are best suited 

for simulation-based designs where the plant transfer function is available.  

2.5.3  Tuning via Supervisory Algorithms 

These algorithms are mainly based on the observation of some of the control system signals, 

such as the error, the change of error, the control signal, the plant output or (a combination of 

them) to adjust the controller parameters. In this scheme, an upper level algorithm or a fuzzy 
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controller acting as a system supervisor, normally called a ‘supervisor controller’, is added to a 

system to monitor the performance of another direct fuzzy controller. Based on the 

observation of the system performance, the upper level controller performs adjustments to the 

direct fuzzy controller parameters (de Silva, 1995; Jantzen, 2007; Passino & Yurkovich, 1998; 

Wang, 1994); hence, the performance is improved or maintained. 

 

Using the error and the change of error signals, an online tuning of the input gains has been 

designed by Chopra, Mitra and Kumar (2008), where some of the performance parameters, 

such as overshoot, rise time, settling time and Integral of Squared Error have been used to 

measure the controller performance. Based on the error and the control signal, another system 

has been designed to tune the input gains (Kanagaraj, Sivashanmugam, & Paramasivam, 

2008, 2009). The proposed system has been tested in a real-time non-linear pressure process. 

In (Jie et al., 2008), by using only the error signal as input, an adaptive fuzzy controller to 

tune the input and output gains has been proposed. 

2.5.4  Tuning Methods from Conventional Control Algorithms 

As fuzzy logic control has its foundation in the conventional control, there are some similarities 

between them (Li, 1997; Lilly, 2011; Pivonka, 2002). For example, under certain conditions, 

an FPID controller is equivalent to a PID controller. In both, the control output is obtained from 

a combination of the error, the change of error and the integral of error. The combination is 

linear in the case of the PID controller, while it is ‘fuzzified’ in the case of the FPID controller 

and the control strategy in the FPID controller is formulated in the form of linguistic terms 

(Jantzen, 2007; Li, 1997; Mizumoto, 1992; Pivonka, 2002).    

 

There are several well-known and understood methods for tuning PID controllers, such as 

Ziegler-Nichols, Kappa-Tau and pole placement (Åström & Murray, 2009; Åström & 

Wittenmark, 1995). Even when these methods are not utilised, an expert can often manually 

tune PID controller gains in order to achieve a stable response (Lilly, 2011). This approach has 
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enabled researchers to establish the use of various ideas and analysis methods from 

conventional PID control in the design and tuning of fuzzy controllers.  

 

Indeed, in (Mizumoto, 1992), a PID controller was realised by using fuzzy control methods and 

it was argued that PID controls are a special case of fuzzy controls. A comparative gain design 

has been presented in (Li, 1997), where the values of the gains of a well-tuned conventional 

controller were used as the initial values of fuzzy controller gains. Based on the physical 

relationship between a PID controller and some fuzzy PID controller structures, such as 

FPI+FD and FP+FI+PD controllers, the well-tuned gains of the PID controller were transferred 

to the fuzzy controllers  and used as the initial values of the fuzzy controller gains (Pivonka, 

2002). 

 

A detailed design procedure to design and tune a fuzzy PID controller, has been proposed in 

(Jantzen, 2007). The process started with the design of a tuned PID controller and then the 

PID controller was subsequently replaced by an equivalent linear fuzzy controller. The fuzzy 

controller was made non-linear, and finally its gains tuned manually.      

 

Although the above-mentioned procedures have produced well-tuned fuzzy controllers with a 

satisfactory performance, the major drawback of these techniques is that the procedure is too 

long, and sometimes the tuning procedure is overlooked. Indeed, some of them were involved 

in the design of an equivalent PID controller, which increases the burden required to design 

and tune a fuzzy controller. Additionally, the transferred gains were used as the initial values 

for the fuzzy controller and then the controller was required to be further tuned manually. 
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2.6 Summary 

As mentioned in the previous sections, fuzzy controllers have various structures and types. In 

addition, the components of a fuzzy controller have several parts, such as: number, type, 

position of the input and output membership functions; the input and output gains; and the 

rules. These variations in the controller structure have significant effects on the performance of 

the fuzzy controller.   

 

The issues of fuzzy controllers have been partially addressed by many researchers in the 

context of their intended applications. Due to non-linearity and inconsistent structure of fuzzy 

controllers, difficulties have also arisen when attempts have been made to design a general 

purpose fuzzy logic controller.  

 

Although valuable research has been carried out on the design of auto-tuning algorithms for 

fuzzy controllers, there is still a lack of an empirical or analytical design study which 

adequately covers a systematic auto-tuning method.  In addition, most of the tuning 

algorithms involves in tuning of several controller parameters which make the tuning process 

more complex. Furthermore, providing a clear and physical meaning to the tuned parameters, 

as is the case in PID controller (Visioli, 2006), has been overlooked. 

 

Indeed, the tuning efforts have remained limited and local to a controller and there is still a 

lack of a framework to retain the knowledge for future use and to share this knowledge with 

identical controllers performing similar tasks.  
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CHAPTER 3 

 

3 Design of a Wireless Intelligent Fuzzy Controller 

Network 

 

This chapter provides details of the proposed architecture of a wireless intelligent fuzzy 

controller network system. The main intelligent attributes of the system are also defined and 

the methods to develop these characteristics are illustrated. Additionally, the design of a basic 

FPD+I controller is provided in details. The relationships between the basic FPD+I controller 

gains and the controller performance is analysed and established. Then the design of the auto-

tuning algorithm is also presented. 

 

3.1 Attributes 

The purpose of any intelligent control system is to incorporate, to a certain extent, some 

intelligent attributes normally associated with humans or biological beings into a system. 

Therefore, it is appropriate at this point to briefly define some essential attributes required for 

any intelligent controller and any network of intelligent controllers. They should have: 

 

1- A systematic method to easily represent and manipulate knowledge. This is because 

an intelligent controller needs to manage different aspects of a system under 

control. The knowledge representation mainly deals with different control strategies 

and the relation between input and output of a system.   
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2- The ability to identify various plants, such as stable plants, unstable plants; and to 

learn about them, this is to determine appropriate control algorithms required to 

control each plant type.   

3- The capability to improve the performance of the controller through auto-tuning its 

parameters. For this, a systematic auto-tuning algorithm is essential. 

4- The ability to adapt to new situations, this is to maintain the performance of the 

controller at a satisfactory level for the whole operating setpoints of the system. 

5- The ability to learn from past experience and knowledge. Past knowledge may 

include; assigned setpoints, controller settings and type of plant; and past 

experience for example may include auto-tuning controller parameters, and 

adaptation to new situations. Learning can be achieved in single controller 

structures and in networked controller structures. In a single controller, memory is 

essential, where the acquired experience and knowledge are retained and restored 

when a similar situation arises. While in networked controllers this could be 

achieved by sharing the acquired experience and knowledge between different 

identical controllers. In essence, possessing memory and sharing knowledge.   

6- The ability to monitor the plant and supervise various tasks in order to ensure the 

stability of the plant. 

3.2 Architecture of the Intelligent Fuzzy Controller Network 

Based on the reviews in the previous chapter, the architecture of a network of intelligent fuzzy 

controllers shown in Figure 3.1 is proposed.  The architecture consists of a network of several 

identical wireless intelligent fuzzy controllers.  A network coordinator is used to establish and 

to facilitate communications between the controllers for exchanging information. Based on the 

application requirements, the communication link could be achieved through using any 

variants of standard wireless local area network (WLAN) Wi-Fi/ IEEE standard 802.11, wireless 

personal area networks (WPAN), such as ZigBee/ IEEE standard 802.15.4, WirelessHART (Elahi 

& Gschwender, 2009) or any other type of wireless networks (Millan, Vargas, Molano, & Mojica, 
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2011; Tipsuwan & Chow, 2003; Yunfeng, Yan, & Rui, 2011; Yuqing & Huajing, 2005). The 

controllers have two interfaces, one to the users and the other to their respective processes: 

the user interface is graphical and allows setpoints assigning and monitoring, while the process 

interface is physical and interacts directly with the process. Intelligent control algorithms are 

used to control the processes and the controllers have the capability of identification, auto-

tuning, adaptation and learning. Each controller can operate independently or dependently 

inside the network to achieve its goal. 

 

 

 

3.3 Intelligent Fuzzy Controller Structure 

As the controllers act independently to achieve the required attributes; these attributes need 

to be implemented inside the controllers. Additionally, the attributes are quite diverse and 

complex to be structured in a single-level or in a single-loop control algorithm. Therefore, it is 

often convenient and easy to implement in a hierarchal multi-layer algorithm structure, for 

this, a general intelligent controller structure mentioned in (Passino, 2005) was adopted.  

 

Intelligent Fuzzy 
Controller 1 

Process 1 

Intelligent Fuzzy 
Controller 2 

Process 2 

Intelligent Fuzzy 
Controller 3 

Process 3 

Intelligent Fuzzy 
Controller N 

Process N 

Network 
Coordinator 

0 

Figure 3-1. The proposed architecture of a wireless intelligent fuzzy controller network. 
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Figure 3.2, shows the inside structure, and it consists of a three-level ‘functional architecture’ 

(Antsaklis, 1999; Passino, 2005), where at each level a different function is performed. The 

levels are management, coordination and execution.  

 

Figure 3-2. A general hierarchical structure of intelligent controllers. 

 

The structure has a user interface at the top level and an interface to the process to be 

controlled at the bottom level. The functionalities are organised into three levels. The highest 

level, management level, involves in all management and supervision of the overall operation 

of the lower levels. The middle level coordinates and performs various tasks: an auto-tuning 

algorithm to perform tuning process of a basic fuzzy controller in the lower layer; a supervision 

unit to monitor the performance of the process and to guarantee the stability of the system; a 

memory unit to retain knowledge acquired in the tuning process; and a communication unit 

that maintains the communication between the controllers on the network in order to 

exchange information. The lowest level has a direct interface to the process and executes all 

the required control signals. This level includes a basic fuzzy controller in a direct action to the 

process in a feedback control form. Figure 3.3 shows the components and units incorporated at 

each level of the hierarchal structure. 
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Figure 3-3: The components and units of an intelligent fuzzy controller. 

 

3.4 Performance Assessment of the Controller 

The main advantages of implementing a feedback control system are tracking the input step 

and reducing disturbances. The tracking is the ability of a controller to maintain the process 

output as close as possible to the setpoint. The disturbance rejection is the capability of a 

controller to reduce the effects of the changes in the process parameters or in the conditions 

surrounding the process.  

 

Often, control systems are also designed to achieve several other objectives known as closed-

loop specifications (Passino, 2005), which are used to measure the performance of a control 

system. According to a predefined and required performance, the controller should be able to 

achieve the desired response by adjusting its parameters. The performance is normally defined 

in terms of transient and steady-state responses. The transient response exists for a short 

time whilst the steady-state response may persist for a longer time following any change in the 

controller input (Dorf & Bishop, 2001).   
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In this thesis, to measure the performance of the fuzzy controllers; maximum percentage 

overshoot (Mp), rise time (tr) and settling time (ts) are chosen. Also, the integral of squared 

error (ISE) is chosen as a performance index, as it is easy to use and convenient for analytical 

and computational purposes (Dorf & Bishop, 2001).  

3.5 Design and Development of a Basic Fuzzy Controller and 

an Auto-tune Algorithm 

In this section, the detailed design and development of a basic fuzzy logic controller and an 

auto-tuning algorithm are provided. The relationships between the basic FPD+I controller gains 

and its performance is analysed.    

3.5.1  The Basic Fuzzy Controller 

The Fuzzy PD+I controller reported in (Jantzen, 2007) is shown in Figure 3.4 and it was 

adopted in this project. The structure of the controller is described below in some details. 

 

 

 

Figure 3-4: Fuzzy PD+I controller. 

 

The controller consists of a normal FPD controller with added an integral action; therefore it is 

known as an FPD+I controller, henceforth it will be referred to as the basic FPD+I controller. 

The FPD controller action depends on the error (E) and the change of error (CE). The integral 
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of error (IE) is then added to the output of this controller (cu) to form the FPD+I controller. 

The controller has the following gains: gain of the error (GE), gain of the change of error (GCE), 

gain of the integral of error (GIE) and the output gain (GU). To show the effects of the gains, 

signals are represented by lower case symbols before the gains and upper case symbols after 

the gains. These gains could be fixed, or could be adjusted to achieve the best possible 

performance. The gains GE, GCE, GIE and GU are analogous to the proportional, derivative and 

integral gains in the conventional PID controller.  

 

This controller type and the structure were selected on the basis of several factors. Firstly, the 

controller incorporates the three control actions, proportional, derivative and integral, those 

are normally required for most of the control systems. The effects of each action can be easily 

decreased or increased through setting the vales of the gains. Secondly, as the FPD controller 

acts on two inputs, E and CE; therefore, the rule-base has fewer rules in comparison to an 

FPID controller rule-base where it is constructed based on three inputs. The number of rules is 

exponentially increased with the increase in the number of controller inputs. Hence, it is 

computationally more efficient. Finally, the gains can be conveniently adjusted to tune the 

controller (Jantzen, 2007).       

 

MATLAB (MathWorks, 2013) (v7.9 R2009b) and Simulink were used to build and simulate the 

controller model; this is on account of the plotting capabilities of the software and the 

simplicity of control characteristic computations, such as overshoot and rise time.   

 

The basic FPD+I controller in a closed-loop feedback control system is shown in Figure 3.5. 

The model is primarily comprised of the controller and a process block. The error signal (e) 

was obtained from the difference between the setpoint (r) and the measured process output 

(y). The change of error signal and the integral of error signal were produced by passing the 

error signal through derivative and integral blocks respectively. A scope was used to show the 
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closed-loop and the open-loop responses. Figure 3.5 also shows the open-loop control system 

for comparison purpose. 

 

 

Figure 3-5: Simulation model of the closed-loop and open-loop of the basic FPD+I controller. 

 

To represent the values of the inputs (E and CE) and the output (cu), three symmetric 

triangular shape and two trapezoidal shape membership functions at the extreme ends for E 

and CE with 50% of overlap were chosen (Jantzen, 2007; Passino & Yurkovich, 1998). 

Although the choice of membership function shapes is subjective, triangular shapes were 

chosen, because they are most popular and convenient (Altas & Sharaf, 2007). The interval of 

[-1, 1] was used for the universes of discourse of the input variables, while [-2, 2] was used 

for the output variable. The output universe of discourse is a summation of the input 

universes; this is to achieve an approximate conventional PD controller which makes the 

controller tuning process easier (Jantzen, 2007). 

 

The linguistic descriptions of the inputs membership functions, error and change of error, are 

negative large (NL), negative small (NS), zero (ZE), positive small (PS) and positive large 

(PL); and of the output membership functions are very small (VS), small (SM), medium (MD), 

large (LA) and very large (VL). These are shown in Figure 3.6 and Figure 3.7 respectively.  
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Figure 3-6: Error and change of error (dError) membership functions. 

 

Figure 3-7: Output membership functions. 
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The fuzzy PD rule-base represents a mapping between the inputs and the output and it 

contains normal heuristic control rules of controlling a process. The rules have the following 

form:  

If error is PL and change of error is PL, then output is VL 
 

The above rule implies that if the error is positive large (measured output is far away from the 

setpoint) and the change of error is positive large, then the control signal should be very large 

to return back the output near the setpoint.  As there are 5 linguistic variables for each input, 

25 rules were created. The rules are presented in Table 3.1.  

 

Table 3-1: Fuzzy PD controller rules 

Controller 

Output (cu) 

Change of Error (CE) 

NL NS ZE PS PL 

Error (E) 

NL VS VS SM SM MD 

NS VS SM SM MD LA 

ZE SM SM MD LA LA 

PS SM MD LA LA VL 

PL MD LA LA VL VL 

 

The ‘min’ (minimum) operation was selected to implement the ‘and’ operator in the antecedent 

part of the rules, and the most popular and standard method of defuzzification process known 

as centre of gravity (CoG) was chosen.  

 

To measure the performance of the controller; maximum percentage overshoot (Mp), rise time 

(tr) and settling time (ts) were used to assess the characteristics of the closed-loop system.  

 

Finally, the Basic FPD+I Controller Script Code, listed in Appendix B, was developed to 

simulate the model shown in Figure B.2 in Appendix B, and to generate the required 

responses. A fixed-size (0.01 second) sampling interval was chosen for the simulation.  
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3.5.2  The Auto-tuning Algorithm 

As discussed in Section 2.5, there are various methods to tune the parameters of a fuzzy 

controller in order to improve its performance. In the design of the auto-tune algorithm, 

adjusting the controller gains was chosen. This method is frequently used and it has been 

regarded as an effective way to tune fuzzy controllers (Chopra et al., 2008; Chung, Chen, & 

Lin, 1998; Jie et al., 2008; Mary et al., 2007; Murad et al., 2009; Victor & Dourado, 1997). 

First of all, the adjustments have a significant effect on the performance of fuzzy controllers 

(Chopra et al., 2008). Secondly, as well as there are fewer parameters to tune, in contrast to 

other methods where there are several parameters to tune, the tuning process is 

computationally more efficient. Finally, the gains can be considered as conventional controller 

gain parameters; therefore, they are convenient to tune and some ideas from conventional 

controller tuning can be borrowed (Chopra et al., 2008; Jie et al., 2008; Kanagaraj et al., 

2009; Mary et al., 2007; Passino & Yurkovich, 1998; Tyan & Wang, 1995; Victor & Dourado, 

1997).  

 

After applying the basic FPD+I controller to several second order transfer functions, this will be 

discussed in further details in Section 3.6.1, and based on the observation of the relationship 

between the adjustments of the controller gains and the controller performance, an approach 

was concluded to devise an algorithm to automatically tune the controller gains. 

 

As mentioned in Section 3.4, the maximum percentage overshoot (Mp) and the rise time (tr) 

were chosen as performance metrics to measure the performance of the basic FPD+I 

controller. It is important to know the relationship between these metrics and the gains. This 

will indicate the effects of these gains on the performance of the controller. Therefore, the 

relationship between GIE and GU on one side and the maximum percentage overshoot and the 

rise time on the other side were obtained. The relationship is a 3D plot, where the gains were 

automatically and simultaneously adjusted in their defined intervals, [0, 1] for GIE and [1, 50] 

for GU, with a step size of (0.1). For each adjustment, the maximum percentage overshoot and 
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the rise time were calculated. The Mp and tr 3D Plot Script Code listed in Appendix B, was 

written to simulate the basic FPD+I controller for several second order transfer functions. For 

example plots of one of the second order transfer functions, Case 1 as described in Section 

3.6.1, are shown in Figure 3.8 and Figure 3.9. The plots of other cases are shown in Figure C-1 

- Figure C-8 in Appendix C.  

 

Figure 3-8: The 3D plot between Mp and the basic FPD+I gains (GIE, GU) for Case 1. 

 

Figure 3-9: The 3D plot between tr and the basic FPD+I gains (GIE, GU) for Case 1. 
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The graphs indicate that not all the values of Mp and tr are valid as the values of the gains 

point to unstable systems. As can be seen form the graphs, decreasing GIE and increasing GU 

affect both Mp and tr, so that both are decreasing, which improve the performance of the 

controller. This trend is also noticed for all other cases.  

 

To show more clearly the effects of these changes, the transient response of the same case, 

Case 1, was taken for different values of GIE and GU. The value of GIE was decreased from 1 to 

0 in a fixed step size of 0.1, and the value of GU was increased from 1 to 31 in a fixed step size 

of 3. Then for each combination of these values, GIE and GU, a transient response of a step 

input was plotted and denoted as iteration. Finally, the transient responses of all iterations 

were combined together to form a 3D plot as shown in Figure 3.10. The plots of other cases 

are shown in Figure C-9 - Figure C-12 in Appendix C. The Transient Response 3D Plot 

Script Code listed in Appendix B was used to obtain the plots.  

 

Figure 3-10: The transient response of Case 1 for different values of GIE and GU. 
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Figure 3.10 shows the effects of decreasing GIE and increasing GU. The graphs indicate that not 

all the iterations are valid, Figure C-10 - Figure C-12 in Appendix C, as the values of the gains 

point to unstable systems.  

 

It is apparent from the graphs that a stable system with a zero overshoot response is achieved 

when the value of GU is high and at the same time the value of GIE is too low. These results 

were led to formulate the relationship between GU and GIE and Mp as follows: 

 

                                                                         GU = Mp (1) 

                                                           GIE = 1 / (2 * Mp) (2) 

 

Empirical Equations (1) and (2) were derived from the analysis of the results of the basic 

FPD+I controller, where extensive simulation-based tests were conducted to determine the 

relationship between the controller gains and the overshoot. 

 

The structure of the auto-tuning algorithm (Saeed & Mehrdadi, 2012a) was comprised of two 

layers, a basic-layer that incorporates the basic FPD+I controller and an upper-layer which 

performs the auto-tuning process. Additionally, the algorithm is able to monitor the 

performance of the system and to maintain its stability. 

 

The details of the algorithm can be summarised in the following steps:  

 

Step 1: To identify a process, a closed-loop test on the system is performed by applying the 

basic FPD+I controller. The controller gains are set to their default values of 1, and the output 

is bounded so that the overshoot is not allowed to exceed 100%, where the system could 

become unstable.  

 

Step 2: The overshoot is measured.  
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Step 3: If the overshoot is higher than 1%, then the values of GU and GIE are calculated from 

Equations (1) and (2). Then the controller is re-applied with the new values of GU and GIE. 

 

Step 4: When the overshoot is less than 1%, which is normally accepted, then the gains, GU 

and GIE, are kept unchanged. 

 

Step 5: To reduce the rise time, the value of GCE is decreased in a step size of 0.1. 

 

Step 6: If the system performance is not satisfactory, for instance if there is any sustained 

steady state error, the value of GIE is increased in a step size equal to twice the value of the 

initial value of GIE.  For each subsequent step this step size is doubled again. 

 

The last two steps are performed iteratively. The value of GE is kept unchanged during the 

whole tuning process. 

 

The maximum percentage overshoot (Mp) and the integral of squared of (ISE) shown in 

Equation (3) were chosen to measure the performance of the controller. The algorithm was 

able to determine the values of the gains by minimising the value of ISE.  

 

                          (   )   ∫ ( )
 

 

2 
dt (3) 

 

The flowchart shown in Figure 3.11 illustrates the operation of the auto-tuning algorithm. The 

Auto-tuning Algorithm Script Code of the algorithm is listed in Appendix B. 
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A closed-loop test is performed by applying the basic FPD+I controller  

with default gains’ values. 
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Figure 3-11: The auto-tuning algorithm flowchart. 
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3.6 Performance Analysis and Evaluation 

In order to evaluate and analyse the performance of the basic FPD+I controller and the auto-

tuning algorithm for a wide range of systems, standard transfer functions of several second 

order systems with different characteristics were chosen. At this stage, only some 

mathematical analysis is shown and at later stages simulation-based analysis and experimental 

investigations will be presented.    

3.6.1  Second Order Systems 

Many real-time applications exhibit oscillation and overshoot in their step responses. These 

characteristics can be modelled using a second order system (Haugen, 2009; Rowell, 2004). 

Furthermore, this will help to understand the response of higher order systems. Consider the 

standard second order transfer function (Dorf & Bishop, 2001; Shen & Chiang, 2004) in 

Equation (4). 

 

 

(4) 

 

Where s is the Laplace transform,  is the gain,  is the damping ratio and n is the natural 

frequency. The system has different responses depending on the location of its poles. The 

poles of Equation (4) are the roots of the denominator and can be determined as: 

 

p1, p2-n ± √ ²n (5) 

 

The value of determines whether the poles are real or complex conjugate. From Equation (4), 

suppose = 1 and n = 1. Depending on the value of there are five distinct cases as the 

following: 
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 If ≥ 1, the poles are real: 

 = 1, a critically damped system, denoted as Case 1. 

 = 1.5, an overdamped system, denoted as Case 2. 

 If 0 ≤ 1, the poles are complex conjugates:  

 = 0.5, an underdamped system, denoted as Case 3.  

 = 0, an undamped (marginally stable) system, denoted as Case 4.   

 If 0, the poles are a combination of a real and a complex conjugate: 

 = - 0.1, an unstable system, denoted as Case 5.  

 

According to the values of , different system transfer functions are shown in Table 3.2 and the 

step responses of these systems are shown in Figure 3.12. 

 

Table 3-2: Standard second order transfer functions 

Case  Transfer Function 

1 1 
 

2 1.5 
 

3 0.5 
 

4 0 
 

5 -0.1 
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Figure 3-12: Step response of various standard second order systems. 

 

Throughout this thesis, the above five cases will be used as the plant of all simulation-based 

analysis and experimental investigations.  

3.6.2  Mathematical Evaluation 

In order to mathematically evaluate the effects of the gains found by Equations (1) and (2), 

the closed-loop transfer function of the feedback control system shown in Figure 3.5 is 

obtained and then the values of GU and GIE are replaced. The closed-loop transfer function is: 
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Where  ( )  ( ) and  ( ) are the Laplace transform of the closed-loop transfer function, the 

output signal and the input signal respectively.  ( ) is the Laplace transform of the transfer 

function of the process under control, and    ( ) the Laplace transform of the transfer function 

of the basic FPD+I controller. By refereeing to Figure 3.5,   ( )  can be constructed as follows: 

 

   ( )   [ (    ( )      
  ( )

  
)       ∫ ( )  ]                ( ) 

 

The fuzzy PD control output, function  , represents a fuzzy relationship of the error and the 

change of error. The relationship is called control surface and it is obtained and shown in 

Figure 3.13.  

 

 

Figure 3-13: The control surface of the basic FPD+I controller. 
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value, 1.34, could be achieved by adding each input value multiplied by the value of 0.67; 

thus: 

 

 (    ( )      
  ( )

  
)               ( )               

  ( )

  
          ( ) 

 

By substituting Equation (8) in Equation (7): 

 

 ( )   [           ( )             
  ( )

  
      ∫  ( )  ]                ( ) 

 

Taking the Laplace transform of Equation (9) 

 

 ( )  [           ( )                ( )       
 

 
   ( )]           (  )      

 

Then, from solving Equation (10), the transfer function of the basic FPD+I controller can be 

calculated as: 

 

   ( )   
 ( )

 ( )
   [                         

 

 
]            

  ( )  
(                             )      

 
           (  ) 

 

Suppose  ( ) is one of the systems presented in Table 3.2, namely Case 1: 

 

 ( )  
 

         
           (  ) 

 

By substituting Equations (11) and (12) in Equation (6) 
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 ( )   
 ( )

 ( )
  

 
(                             )      

  
 

         

    
(                             )     

  
 

         

   

 

 ( )   
 ( )

 ( )
  

(            )    (           )         

   (              )    (             )         
          (  ) 

 

If all the gains are set to their default values of 1, this is when the basic FPD+I controller is 

normally applied, then the closed loop transfer function becomes: 

 

 ( )   
 ( )

 ( )
  

                  

                      
          (  ) 

 

A step response of the transfer function in Equation (14) is shown in Figure 3.14. The response 

is identical to that produced by applying the basic FPD+I controller in the simulation study 

mentioned in Section 5.1.1. The closed-loop step response of Case 1 using the basic FPD+I 

controller is presented in Figure C-13 in Appendix C. 

 

 

Figure 3-14: Step response of the transfer function in Equation (14). 
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As mentioned in the steps of the auto-tuning algorithm, the gains GE and GCE are kept to their 

default values of 1, while GIE is decreased and GU is increased. Assuming that both gains are 

set to 0.1 and 50 respectively, from the findings of Section 3.5.2, then Equation (13) becomes 

as: 

 

 ( )   
 ( )

 ( )
  

                   

                      
          (  ) 

 

The step response of this transfer function, Equation (15), is shown in Figure 3.15.   

 

 

Figure 3-15: Step response of the transfer function in Equation (15). 

 

As it can be seen, the new values of GIE and GU have drastically eliminated the overshoot. 

These results show the effectiveness of the algorithm and the feasibility of the determined 

values of the controller gains by Equations (1) and (2), as both methods, the mathematical 

analysis and the simulation-based studies produced identical results. 
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3.7 Summary 

This chapter has illustrated the main attributes of an intelligent controller. It has also 

presented an architecture for the wireless intelligent fuzzy controller network system and the 

main components as well as the functionality of each part are described. 

 

Furthermore, using MATLAB, the design of a basic FPD+I controller has been provided in more 

details. The relationships between the controller gains, GIE and GU, and the controller 

performance metric in terms of Mp and tr analysed and established. Empirical equations have 

been derived to calculate the initial values of the gains. Some mathematical analysis has been 

presented in order to assess the effectiveness of the new found gains’ values. 

 

Based on the analysis of the basic FPD+I controller performance, a systematic auto-tuning 

algorithm has been devised. 

 

In the next chapter, the implementation of the wireless intelligent fuzzy controller network and 

its components will be presented. 
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CHAPTER 4 

 

4 Implementation of the Wireless Intelligent Fuzzy 

Controller Network 

 

In this chapter, a brief introduction to the development platform used for the implementation 

of the wireless intelligent fuzzy controller network is given. Also, the structure of the 

implemented systems is provided. To apply the control algorithm to a real hardware, some 

standard second order transfer functions are realised and constructed using various electronic 

components.  

 

4.1 The Development Platform 

Designing a wireless intelligent controller network encompasses many stages including 

developing an intelligent control algorithm, establishing and maintaining the communication 

link between the controllers and monitoring the stability of the system. Therefore choosing the 

right development platform is essential. National Instruments (NI) LabVIEW 2011 (NI, 2013b), 

a graphical software development environment for creating applications that interact with real-

world data or signals,  was chosen to implement the proposed design in Section 3.2. This was 

on account of some essential and useful features provided in the LabVIEW package. First of all, 

it provides an integrated software and hardware platform that simplifies development of any 

system that needs measurement and control which hardware interfacing is made very quickly 

and easy. Secondly, the easy-to-use graphical development environment makes it the ideal 

choice for developing complex algorithms by providing various tools for debugging and direct 
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viewing of the results (Bitter, Mohiuddin, & Nawrocki, 2007; Ponce-Cruz & Ramírez-Figueroa, 

2010; Saeed & Mehrdadi, 2012b).  

 

A LabVIEW program is comprised of two parts, ‘Front Panel’ and ‘Block Diagram’, and as the 

‘Front Panel’, also known as the user interface, appearance and operation intimate physical 

instruments it is called virtual instrument (VI). 

 

The ‘Front Panel’ is used as a user interaction and display unit and accommodates controls, 

such as knobs, push buttons and other input mechanisms; and indicators such as graphs, LEDs 

and other output display units. The ‘Block Diagram’ contains the program source code 

constructed using LabVIEW's graphical programming, G language, in which programming 

functionalities are used in the form of icons instead of lines of text. The elementary parts of 

the ‘Block Diagram’ consist of functions and known as VIs or just functions. For example the 

square function shown in Figure 4.1 is used to compute the square of the input x.  

 

 

Figure 4-1: The LabVIEW square function. 

 

4.2 Overall Structure 

To implement the proposed architecture, PC-based controllers were chosen to simplify the 

coding and debugging stages as they tend to be more straightforward than microcontroller-

based controllers. At a later stage the design can be easily coded and deployed on 

microcontrollers. 
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A network of four wireless-enabled PCs was established through a dedicated wireless router to 

ensure there is no other network traffic to disturb the communication of the PCs; the overall 

structure is shown in Figure 4.2. The wireless is the standard wireless local area network 

(WLAN) Wi-Fi/ IEEE standard 802.11 (Makaya & Pierre, 2012), and based on the requirements 

of the application the wireless network could be replaced by any other wireless technologies, 

such as ZigBee/ IEEE standard 802.15.4 (Gislason, 2008).  

 

 

    

PC1 PC2 PC3 PC4 

Figure 4-2: The architecture of wireless fuzzy logic controllers
*
. 

 

In order to connect the PCs to real-time control systems, each PC was equipped with a NI PCI-

6025E data acquisition (DAQ) card (NI, 2013c) that facilities interfacing to real-time control 

systems. This will be covered in more detail in Section 4.8. 

4.3 The Basic Fuzzy Controller 

The basic FPD+I controller was redesigned by using LabVIEW. The LabVIEW Control Design 

and Simulation module was used to design and simulate controller components, and the 

LabVIEW Fuzzy System Designer was used to design the fuzzy parts of the controller, such 

as input/output membership functions and the rules.  

 

*
Permission has been obtained from (Berezyuk, 2013) to use the icons appeared in the figure.
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The main VI was comprised of two parts, ‘Front Panel’ and ‘Block Diagram’. The ‘Front Panel’ is 

the user interface to the controller, while the ‘Block Diagram’ contains all the codes in the form 

of VI and functions composing the controller. As various LabVIEW VIs will be utilised 

throughout this chapter, the reader is referred to Appendix E, where brief descriptions of the 

used VIs are provided.  

 

Figure 4.3, shows the user interface where the main sections are denoted by numbers for the 

purpose of illustration. The process under control is any standard second order system, 

denoted by 1, where its parameters are set through section 2. The open-loop step response is 

displayed by the graph denoted by 3. The open-loop time response characteristics, such as rise 

time, percentage overshoot and settling time are shown in section 4. The basic FPD+I 

controller, denoted by 5, is in a direct control-loop feedback. The controller has four gains: GE, 

GCE, GIE and GU where their respective values are set via the gain values section, denoted by 6. 

A step input, section 7, changing from 0 to 10 with an increment of 1 is applied to the system. 

The closed-loop step response is displayed on the graph denoted by 8 and the closed-loop time 

response characteristics, such as rise time, percentage overshoot and integral of squared error 

are shown in section 9. External disturbances could be introduced at the input and at the 

output of the process to determine the stability and robustness of the control system. The 

magnitude, type and time when the disturbances are applied can also be set through section 

10. 
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Figure 4-3: The front panel of the basic FPD+I controller VI. 

 

The block diagram part, shown in Figure 4.4, accommodates essential VIs of the basic FPD+I 

controller. The major components are located in a nest of two loops, a While Loop to repeat 

the execution of the controller until a stop command is received and a Control and 

Simulation Loop which contains the controller structure, FL Fuzzy Controller VI and 

Transfer Function VI. 

 

The fuzzy controller settings were loaded to the fuzzy controller through FL Load Fuzzy 

System VI and the Transfer Function VI was configured via CD Construct Transfer 

Function Model VI. The reader is referred to Appendix E where the functionalities of these 

VIs are illustrated. 

 

The CD Draw Transfer Function Equation VI was used to draw the transfer function 

equation on the user interface, while CD Step Response and CD Parametric Time 
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Response VIs were used to obtain the open-loop step response and the open-loop time 

response parametric data respectively. 

  

 

Figure 4-4: The block diagram of the basic FPD+I controller VI. 

 

Figure 4.5 shows the implementation of the FPD+I controller where the fuzzy controller 

settings are loaded to the fuzzy controller, FL Fuzzy Controller VI, through FL Load Fuzzy 

System VI. 
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Figure 4-5: Implementing the basic FPD+I Controller. 

 

4.3.1 Creating Input and Output Linguistic Variables and 

the Rule-Base  

The basic FPD+I controller has two input variables, E and CE and one output variable (cu). In 

this section variables are renamed to Error, dError and FLC-Output respectively. The LabVIEW 

Fuzzy System Designer was used to design the fuzzy controller input/output membership 

functions and the rules. 

 

To represent the values of the inputs (Error and dError) and the output (FLC-Output), the 

membership functions shown in Figure 4.6 are used. The interval of [-1, 1] was used for the 

universe of discourses of the input variables, while [-2, 2] was used for the output variable.  

 

The linguistic descriptions of the input membership functions were used are negative large 

(NL), negative small (NS), zero (ZE), positive small (PS) and positive large (PL), while very 

small (VS), small (SM), medium (MD), large (LA) and very large (VL) were used for the output 

membership function.  
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As there are 5 linguistic variables for each input, 25 rules were created, Figure 4.7 shows the 

rules. The ‘min’ (minimum) operation was selected to implement the ‘and’ in the antecedent 

part of the rules, and the centre of gravity (CoG) was chosen as the defuzzification method. 

 

 

Figure 4-6: Input and output membership functions of the basic FPD+I Controller. 

 

Figure 4-7: Samples of the basic FPD+I controller rules. 
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4.3.2 Performance Measurement 

To measure the performance of the controller, the maximum percentage overshoot (Mp), the 

rise time (tr) and the integral of squared error (ISE), discussed in Section 3.4, were chosen. As 

these are not included in the LabVIEW library the necessary Sub VIs were developed to 

calculate these parameters.  

 

Figure 4.8 shows the calculation of the percentage overshoot, where the output of the system 

was continuously collected in an array variable, Array Max & Min VI, then from the array the 

maximum value was obtained which is the overshoot value, and then Percentage Overshoot 

was calculated as follows: 

 

                      
                                                 

                      
             (  ) 

 

 

Figure 4-8: Overshoot calculation sub VI. 

  

To calculate the rise time, normally, the time taken by the system output to rise from 10% to 

90% of the final value of the output is measured (Dorf & Bishop, 2001). This is illustrated in 

Figure 4.9. The output value was measured at two points, 10% and 90%, through the 

Threshold 1D Array VI and then the rise time was calculated as follows:   
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          (                                                      )                       (  ) 

 

 

Figure 4-9: Rise time calculation sub VI. 

 

Finally, the integral of squared error was calculated by integrating the squared error signal as 

it is shown in Figure 4.10. 

 

 

Figure 4-10: Integral of squared error calculation sub VI. 

 

4.4 The Auto-tuning Algorithm 

LabVIEW provides several code architectures, known as ‘design patterns’ (NI, 2013a), such as 

Producer/Consumer, Master/Slave Model and State Machine which can be used as a base 

structure for implementing any application. These design patterns provide ease of use, 

readability and maintainability of the code. Depending on the intended application an optimal 

design pattern can be chosen. 
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The most fundamental architecture in LabVIEW is the state machine. This design is used to 

implement complex decision making algorithms which are normally represented with different 

states or cases. Each state performs one or multiple tasks. They are also used when an 

application requires a user interface, when different user actions trigger the execution of 

different code segments.  

 

Figure 4.11 shows a standard LabVIEW state machine design pattern. It is comprised of a case 

structure, which executes different code segments for various states, inside a continually 

running while loop.  Each of the segment codes determines the next state. 

 

To keep track the states of the state machine, the structure has two shift registers, as shown 

in Figure 4.11, ‘Beginning State’ and ‘Next State’, which store the current state and the next 

state values, ‘Initialize’ and ‘Stop’ respectively. Depending on the code structure, the case 

structure can accommodate various cases and the shift registers can be set to different values 

programmatically or through the application user interface. In this manner, the execution of 

the code is running continuously and it changes from a state to another according to the value 

of the shift registers.  

 

Figure 4-11: The standard LabVIEW state machine design pattern. 
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The auto-tuning algorithm, illustrated by the flowchart in Figure 3.11 in Section 3.5.2, 

performs different tasks, such as starting, running and stopping the controller; resetting the 

controller gains; and setting to auto-tuning mode. These tasks are performed in response to 

commands received from the user interface of the controller and the control algorithm transits 

from one state to another.  

 

It was decided to choose the sate machine design pattern as a base structure to implement the 

auto-tuning algorithm as this design pattern is well-chosen and convenient for implementing 

such type of complex decision-making algorithms. 

 

The auto-tuning algorithm includes the following states: Start, Run, Auto-tune GU, Auto-tune 

GCE, Auto-tune GIE, Stop and Reset. Some of these states are triggered through the user 

interface and the rest are set programmatically during runtime. Table 4.1 provides the 

description of each state. 

 

Table 4-1: The auto-tuning algorithm states descriptions. 

State Description 

Start Initialises the application and the controller settings.   

Run Runs the controller and resumes the execution when the code is 
halted temporarily.   

Auto-tune GU Auto-tunes GU gain when it receives auto-tune command from the 
user interface. 

Auto-tune GCE Auto-tunes GCE gain after accomplishing the Auto-tune GU task. 

Auto-tune GIE Auto-tunes GIE gain after accomplishing the Auto-tune GCE task. 

Stop Stops the execution of the controller.   

Reset Resets the controller settings to their default values.   

 

The new user interface of the basic FPD+I controller is shown in Figure 4.12. As it can be 

noticed, comparing to the previous user interface shown in Figure 4.3, some extra buttons, 

such as Auto-tune, Reset Gains and Reset Shared Gains; and indicators such as Tuned Gains, 

are added to accomplish the controller tasks. The new items are denoted by 1 and 2. 
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The controller can be set to auto-tuning mode through the ‘Auto-tune’ button, where the 

algorithm progressively tunes the controller gains GU, GCE and GIE. To achieve better 

performance, the auto-tuning process is repeated for every new settings of the ‘Step input’. 

The step input range was set from 1 to 10 with an increasing step of 1. 

 

 

Figure 4-12: The user interface of the basic FPD+I controller with the auto-tuning algorithm. 

 

4.5 The Memory Unit 

One of the main features of the auto-tuning algorithm is the ability to learn from the past 

experience and knowledge. To implement this, memory is essential to retain the acquired 

experience and knowledge and to restore them at a later stage when a similar situation arises.  

 

In this case the acquired knowledge is the tuned gains of the controller for each setpoint 

setting. As the setpoint changes from 1 to 10, there will be a similar set of values for each 

1 

2 



81 

 

gain. A two dimension array was used to store the values of the setpoint, GU, GIE and GCE. Also 

the values of the percentage overshoot and ISE corresponding to each set of the gains were 

stored in arrays. To preserve the best settings of the gains, previous values of the gains, the 

percentage overshoot and the ISE values were also kept in arrays. 

 

To indicate whether a gain value is tuned a flag was set for the corresponding gain. An 

algorithm was set to store and retrieve the best settings of the gains when the setpoint 

changes to a new setting.      

4.6 The Communication Unit 

In order to implement the sharing capability of the auto-tuning algorithm, it is essential to add 

communication facilities to the controllers to enable them share the tuned gains stored in their 

local memories. 

 

LabVIEW provides shared variable feature, introduced with LabVIEW 8.0 in 2005, that enables 

designing distributed applications easier and simplifies the complexities of the programming 

required to establish communication facilities for such type of applications (NI, 2013d). 

  

The shared variable enables sharing of data between various parts of a VI on a single machine 

or between various VIs across a network. Its principle is similar to global variables with the 

advantage of accessing the variable from any node on a network, and therefore it is 

sometimes referred to as ‘network variables’.   

 

Shared variables use a NI proprietary protocol called NI Publish-Subscribe Protocol (NI-PSP) to 

transport across a network. The NI-PSP utilises standard transport layer protocols of the 

Transmission Control Protocol/ Internet Protocol (TCP/IP) suite, such as TCP and User 

Datagram Protocol (UDP) protocols. Since the release of LabVIEW 8.5, in 2007, TCP is used as 

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
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the main transport protocol which is more efficient and reliable in transmitting data over a 

network than UDP, but also has its own overhead and complexities in programming.   

 

To establish the communication link between the controllers, different shared variables were 

created and they were accessible by the controllers to store and to retrieve their data. Indeed, 

the local variables created in Section 4.5 to store local data were converted to shared 

variables. Figure 4.13 shows all shared variables collected in one library file called ‘Shared 

Gains.lvlib’. The properties of one of the gains, GU shared variable is shown in Figure 4.14, 

which is created as a numeric single array variable and configured as a network-published 

variable type.  

 

Another state, reset shared variables, was added to the auto-tuning algorithm that resets the 

shared variables when it is requested by the user through the user interface button ‘Reset 

Shared Gains’. 

 

Figure 4-13: The shared variables of the basic FPD+I controller with the auto-tuning 

algorithm. 
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Figure 4-14: The properties of the GU shared variable. 

 

4.7 The Management and Supervision Unit 

As mentioned in details in Section 3.3 and illustrated in Figure 3.3, the overall operation of the 

individual intelligent fuzzy controllers is managed by the management level. The operations 

include the auto-tuning algorithm unit, the memory unit and the communication unit.  

 

To accomplish this task an algorithm was coded to manage and supervise the overall operation 

of the controllers. The following steps illustrate the major tasks of the algorithm. First, a 

closed-loop test on the system is performed by applying the basic FPD+I controller. Secondly, 

the auto-tuning algorithm is started and a check is performed to indicate whether the 

controller gains, GU, GIE and GCE, are tuned and shared by other controllers. If the gains are 

ready in the memory unit, then the gains are retained and set as new values to the controller 

gains, otherwise the controller starts to auto-tune its gains and then makes the new tuned 

values available to the memory unit through the communication unit. The reading and writing 

processes from and to the memory unit are performed based on the comparison of the values 

of ISE and percentage overshoot so that the values resulted in a better performance are 

retained. 
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4.8 Hardware-in-the-loop 

To validate the feasibility of the proposed architecture and test the auto-tuning algorithm on 

actual hardware, different electronic circuits were constructed and implemented by using 

operational amplifiers (op-amps) and resistor-capacitor (RC) circuits that emulate the 

characteristics of various real-time second order systems. The realised circuit then connected 

to the PCs through the NI PCI-6025E data acquisition (DAQ) card. 

4.8.1  Second Order Systems Realisation 

In control systems, it is common to use operational amplifiers to implement different type of 

controllers or compensators (Dorf & Bishop, 2001; Golnaraghi & Kuo, 2010). The operational 

amplifiers, with RC circuits, can also be utilised to realise various transfer functions as they 

provide an easy and convenient way to construct such systems. In addition, the approach 

reduces the time, the cost, and the risk associated with the implementation of control 

algorithms on real control systems. 

 

The realisation process is also known as electronic filter design (Deliyannis, Sun, & Fidler, 

1998) in which active electronic components, such as op-amps and passive components, such 

as resistors and capacitors are normally used to design various types of filters. By constructing 

first order transfer functions and second order transfer functions any higher order system can 

be constructed by cascading the required number of first and second order systems. 

Furthermore, any second order system can be implemented by connecting two first order 

systems in series (Deliyannis et al., 1998; Golnaraghi & Kuo, 2010). 

  

From Table 3.2, four different second order transfer functions were chosen, Case 1, Case 2, 

Case 3 and Case 5 which they represent critical, overdamped, underdamped and unstable 

systems respectively. 
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Using the ‘Filter Design Tool’ provided in (OKAWA-Electric-Design, 2008), the electronic circuit 

diagrams shown in Figure 4.15 and Figure 4.16 were constructed to implement the 

abovementioned cases. Depending on the values of the resistors and the capacitors, the circuit 

diagram 1 as shown in in Figure 4.15 was used to approximately implement Case 1, Case 2 

and Case 3; while the circuit diagram 2 as shown in Figure 4.16 was used to implement Case 

5.  

 

 

Figure 4-15: Circuit diagram 1 of constructing critical, overdamped and underdamped second 

order systems. 

 

 

Figure 4-16: Circuit diagram 2 of constructing unstable second order systems. 

 

The transfer functions of circuit diagram 1 and circuit diagram 2 are shown in Equation (18) 

and Equation (19) respectively (OKAWA-Electric-Design, 2008): 
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Where G in Equation (19) is: 

 

   
      

  
           

 

By choosing appropriate and different values of resistors and capacitors for circuit diagram 1 

and substituting the values in Equation (18), the transfer functions of Case 1, Case 2 and Case 

3 were calculated. The resistors and capacitors values and the calculated transfer functions are 

shown in Table 4.2. 

 

Table 4-2: Implementation of critical, overdamped and underdamped transfer functions using 

various RC values. 

Case 

Resistor  

(Kilo Ohm)  

Capacitor 

(Micro Farad)   Transfer Function 

R1 R2 C1 C2 

1 100 100 10 10 
 

            
 

2 8 5.5 100 220 
    

                  
 

3 33 15 100 22 
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To construct Case 5, the values of resistors and capacitors were chosen for circuit diagram 2 

and these values were substituted in Equation (19) to calculate the transfer function. The 

resistors and capacitors values and the calculated transfer functions of this case are shown in 

Table 4.3. 

  

Table 4-3: Implementation of an unstable transfer function using various RC values. 

Case 

Resistor  

(Kilo Ohm)   

Capacitor 

 (Micro Farad)   Transfer Function 

R1 R2 R3 R4 C1 C2 

5 1000 1000 10 0.39 10 0.1 
    

               
 

 

It is apparent that the transfer functions obtained from the realisation, listed in Table 4.2 and 

Table 4.3, are not identical to the transfer functions listed in Table 3.2, this was on account of 

using available standard values of resistors and capacitors.   

4.8.2  PC Interfacing 

In order to connect the PCs to the electronic circuits, each PC was equipped with a NI PCI-

6025E data acquisition (DAQ) card (NI, 2013c). The NI PCI-6025E is a multifunction DAQ card 

that provides analogue-to-digital conversion (ADC) and digital-to-analogue conversion (DAC) 

functionalities through 16 analogue input (AI) channels, single-ended, with 12-bits resolution; 

and two 12-bits analogue output (AO) channels. The signal range of the channels is from 0 to 

+20 volts, but can be configured to produce a maximum bipolar voltage of -10 and +10. 

 

During the simulating of the control algorithm in Section 3.5.2 and Section 4.4 the control 

signal was changing between -20v and +20v. As the maximum output voltage of the NI PCI-

6025E is limited to -10v to +10v, and then it was required to amplify the output signal from 

the NI PCI-6025E to achieve the required voltages of -20 and +20. Therefore, an amplification 
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circuit, using op-amp, was added between the NI PCI-6025E and the realised electronic 

circuits.  

 

A schematic diagram is shown in Figure 4.17 where an electronic circuit of a critical damped 

system, Case 1 in Table 4.2, is connected to a PC via the NI PCI-6025E interface card. The 

control signal was applied to the circuit thought AO0, pin 20, with an amplification stage circuit 

of a gain of two in-between, and then the output of the system was measured and connected 

through AI0, pin 3. The interface card shows only the pin out diagram of the used ports.  

Henceforth the whole electronic circuit, amplification and the realised circuits are referred to as 

the hardware circuit. 

 

   

 

Figure 4-17: Schematic diagram of the hardware circuit interface with a PC. 
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To connect the controller software, Fuzzy PD+I controller VI designed in Section 4.4, to the 

hardware circuit the Transfer Function VI of Figure 4.3 was replaced with the DAQ 

Assistant Express VI which is a software module used to interactively input and output 

signals to and from LabVIEW programs. Figure 4.18 shows the new block diagram of the 

controller VI where two instances of NI-DAQmx VI were used: Output control VI, denoted by 1, 

to manage the connection to the hardware circuit and output the control signal; and Measure 

Output VI, denoted by 2, to measure the output of the system. The ports AO0 and AI0 of the 

interface card were used to output the control signal and measure the output of the system 

respectively.   

 

 

Figure 4-18: Block diagram of the basic FPD+I controller VI interfaced with the hardware 

circuit. 

1 

2 
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4.9 Summary 

This chapter provided details of the development of the wireless intelligent fuzzy controller 

network. The LabVIEW package has been used as the main development platform. The design 

of the basic FPD+I controller, the auto-tuning algorithm, the memory unit and the 

communication unit are presented in detail.  

 

In order to test the system and the auto-tuning algorithm, hardware circuit representing 

various standard second order transfer functions constructed from various electronic 

components.  

 

In the next chapter, the wireless intelligent fuzzy controller network, the basic FPD+I controller 

and the auto-tuning algorithm will be tested using MATLAB, LabVIEW and the hardware circuit. 
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CHAPTER 5 

 

5 Tests and Results 

 

One of the main steps in the design process of any control algorithm is to perform various 

tests to investigate the performance of the control algorithm under different circumstances. An 

essential test such as step response is normally conducted to assess the achievement of 

certain design specifications, such as percentage overshoot, rise time in transient response 

and steady stated error. Further tests may include step input tracking, disturbance rejection, 

robustness or stability tests.  

 

This chapter demonstrates the conduction of various tests and presents the results obtained. 

Firstly, MATLAB simulation-based models were used to test the basic FPD+I controller and the 

auto-tuning algorithm. Secondly, by using LabVIEW in addition to testing the basic FPD+I 

controller and the auto-tuning algorithm, the wireless intelligent fuzzy controller network 

system is tested. And finally, the basic FPD+I controller and the auto-tuning algorithm are 

tested on hardware systems representing various real-time control systems. 

 

5.1  MATLAB-Based Tests 

MATLAB offers integrated capabilities in plotting and computing of control characteristics, such 

as overshoot and rise time. These capabilities provide an efficient platform for developing, 

testing and debugging different control algorithms.  
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In this section, various simulation-based models are used to test the basic FPD+I controller 

and the auto-tuning algorithm. In addition, the auto-tuning algorithm is tested for various 

disturbances. 

5.1.1  The Basic FPD+I Controller 

Using the designed simulation model of the basic FPD+I controller presented in Section 3.5.1, 

a unit step input was applied to all the systems with the transfer functions listed in Table 3.2. 

The Basic FPD+I Controller Script Code, listed in Appendix B, was developed to simulate 

the model shown in Figure B.2 in Appendix B, and to generate the required responses. The 

controller gains: GE, GCE, GIE and GU were set to 1, and the simulation time was set to 20 

seconds with a fixed 0.01 second sampling interval.  

 

Figure 5.1 shows the step response of the closed-loop system alongside the open-loop system 

of Case 3, where the maximum percentage overshoot (Mp), the rise time (tr), the settling time 

(ts) and the steady state error (SSE) for both systems are shown. The step responses of Case 

1, Case 2, Case 4 and Case 5 are shown in Figure C-13 – Figure C-16 in Appendix C.  

 

 

Figure 5-1: Closed-loop step response of Case 3 using the basic FPD+I controller. 
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As it can be noted from above figure, the basic FPD+I controller provided an improved step 

response. The maximum percentage overshoot was reduced from 16.3% to 12.73%. The 

settling time was reduced from 8.07 seconds to 6.53 seconds. The results are encouraging, 

despite the fact that the controller gains are not yet tuned. 

5.1.2  The Auto-tuning Algorithm 

To test the auto-tuning algorithm the model presented in Section 3.5.1 was used. A unit pulse 

input, with a period of 30 seconds and a duty cycle of 50%, was applied to all the systems with 

the transfer functions listed in Table 3.2. The Auto-tuning Algorithm Script Code, listed in 

Appendix B, was used to simulate the model and to generate the required responses. The 

controller gain values were initially set to 1, and the simulation time was set to 30 seconds 

with a fixed 0.01 second sampling interval. The step sizes of the changes in GCE and GIE gains 

were set as follows: GCE was set to decrease in a step size of 0.1 and GIE was set to increase in 

a step size equal to twice the value of the initial value of GIE and then in each subsequent step 

this step size was doubled again. 

 

Figure 5.2 shows closed-loop responses of Case 3, where the responses are iteratively shown 

from left-to-right top-to-bottom. The first iteration response includes the open-loop step 

response alongside the closed-loop step response. The step responses of Case 1, Case 2, Case 

4 and Case 5 are shown in Figure C-17 – Figure C-20 in Appendix C.  
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Figure 5-2: Closed-loop step responses for Case 3 using the auto-tuning algorithm for step sizes of GCE = 0.1 and GIE = twice of the initial 

value of GIE.
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The closed-loop step responses from Figure 5.2 depict substantial improvements in the 

transient and the steady-state responses. The performance was considerably improved from 

the second iteration by eliminating the overshoot and then in an iterative manner the rise time 

and the settling time improved. The auto-tuning process was accomplished in 14 iterations.  

    

Table 5.1 lists the controller gains’ values, the ISE values and the closed-loop characteristics of 

Case 3 for each iteration. Similar data of Case 1, Case 2, Case 4 and Case 5 are listed in Table 

C-1 – Table C-4 in Appendix C.  

 

Table 5-1: Controller gains’ values and closed-loop characteristics of Case 3 using the auto-

tuning algorithm for step sizes of GCE = 0.1 and GIE = twice of the initial value of GIE.  

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp ts SSE 

1 1 1 1 1 1.017 1.613 12.730 6.538 0 

2 1 1 0.039 12.730 0.644 2.419 0 5.070 0.009 

3 1 0.9 0.039 12.730 0.592 2.187 0 4.750 0.011 

4 1 0.8 0.039 12.730 0.540 1.949 0 4.420 0.012 

5 1 0.7 0.039 12.730 0.489 1.702 0 4.083 0.013 

6 1 0.6 0.039 12.730 0.440 1.444 0 3.738 0.014 

7 1 0.5 0.039 12.730 0.394 1.171 0 3.406 0.016 

8 1 0.4 0.039 12.730 0.351 0.878 0 3.328 0.017 

9 1 0.3 0.039 12.730 0.316 0.611 0 6.771 0.018 

10 1 0.2 0.039 12.730 0.296 0.446 6.332 10.186 0.019 

11 1 0.3 0.039 12.730 0.316 0.611 0 6.771 0.018 

12 1 0.3 0.079 12.730 0.312 0.598 0 1.013 0.010 

13 1 0.3 0.157 12.730 0.306 0.574 0.178 0.910 0.002 

14 1 0.3 0.079 12.730 0.312 0.598 0 1.013 0.010 
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The table above represents relationships between the controller gains’ values and the closed-

loop characteristics of the system where changes in the gains resulted in improvement of the 

characteristics. It can be seen from the data that the maximum percentage overshoot, Mp, was 

completely eliminated and became zero from the second iteration. This was as a result of a 

rapid change in the value of GIE from 1 to 0.039. 

 

The data also show improvements in the rise time and the settling time, tr and ts respectively, 

beginning from iteration 3 where the value of GCE started to decrease while retaining the 

values of GIE and GU. 

 

The algorithm utilises ISE and Mp to monitor the overall performance of the controller and to 

indicate further changes in the values of GCE and GIE. For instance, in iteration 10, due to a 

continuous decreasing of the value of GCE, the overshoot increased from 0 to 6.332. Therefore, 

to preserve a better performance, in iteration 11 the algorithm reversed to the previous value 

of GCE, iteration 9, and then started to increase the value of GIE. A similar situation happened 

again when the overshoot changed from 0 to 0.178 in iteration 13, and then accordingly in 

iteration 14 the algorithm reversed to the previous value of GIE, iteration 12. 

 

In order to establish whether the step sizes of GCE and GIE have any effects on the time 

required to tune the controller and on the performance of the controller, two other tests were 

carried out with different step sizes. In the first test with smaller steps, the gains were set as: 

GCE = 0.05 and GIE = 1.5 fold of the initial value of GIE, and in the second test with larger step 

sizes. The gains were set as: GCE = 0.2 and GIE = 3 fold of the initial value of GIE.  

 

Figure 5.3 and Figure 5.4 show the closed-loop responses for the first test, and Figure 5.5 

shows the closed-loop responses for the second test. Table 5.2 and Table 5.3 list the controller 

gains’ values, ISE and the closed-loop characteristics of both tests. 
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Figure 5-3: Closed-loop step response for Case 3, iteration 1 – iteration 15, using the auto-tuning algorithm for step sizes of GCE = 0.05 and 

GIE = 1.5 fold of initial value of GIE. 
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Figure 5-4: Closed-loop step response, iteration 16 – iteration 23, for Case 3 using the auto-tuning algorithm for step sizes of GCE = 0.05 

and GIE = 1.5 fold of initial value of GIE. 
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Table 5-2: Controller gains’ values and closed-loop characteristics of Case 3 using the auto-

tuning algorithm for step sizes of GCE = 0.05 and GIE = 1.5 fold of initial value of GIE. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp ts SSE 

1 1 1 1 1 1.017 1.613 12.730 6.538 0 

2 1 1 0.039 12.730 0.644 2.419 0.000 5.070 0.009 

3 1 0.95 0.039 12.730 0.618 2.304 0.000 4.911 0.010 

4 1 0.90 0.039 12.730 0.592 2.187 0.000 4.750 0.011 

5 1 0.85 0.039 12.730 0.565 2.069 0.000 4.587 0.011 

6 1 0.80 0.039 12.730 0.540 1.949 0.000 4.420 0.012 

7 1 0.75 0.039 12.730 0.514 1.827 0.000 4.252 0.013 

8 1 0.70 0.039 12.730 0.489 1.702 0.000 4.083 0.013 

9 1 0.65 0.039 12.730 0.464 1.575 0.000 3.910 0.014 

10 1 0.60 0.039 12.730 0.440 1.444 0.000 3.738 0.014 

11 1 0.55 0.039 12.730 0.416 1.310 0.000 3.566 0.015 

12 1 0.50 0.039 12.730 0.394 1.171 0.000 3.406 0.016 

13 1 0.45 0.039 12.730 0.372 1.026 0.000 3.281 0.016 

14 1 0.40 0.039 12.730 0.351 0.878 0.000 3.328 0.017 

15 1 0.35 0.039 12.730 0.332 0.734 0.000 4.701 0.017 

16 1 0.30 0.039 12.730 0.316 0.611 0.000 6.771 0.018 

17 1 0.25 0.039 12.730 0.304 0.516 0.710 8.355 0.018 

18 1 0.30 0.039 12.730 0.316 0.611 0.000 6.771 0.018 

19 1 0.30 0.059 12.730 0.314 0.604 0.000 1.848 0.014 

20 1 0.30 0.088 12.730 0.311 0.595 0.000 0.994 0.009 

21 1 0.30 0.133 12.730 0.308 0.581 0.000 0.934 0.004 

22 1 0.30 0.199 12.730 0.305 0.563 1.086 0.878 -0.001 

23 1 0.30 0.133 12.730 0.308 0.581 0.000 0.934 0.004 
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Figure 5-5: Closed-loop step response for Case 3 using the auto-tuning algorithm for step sizes of GCE = 0.2 and GIE = 3 fold of initial value 

of GIE. 
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Table 5-3: Controller gains’ values and closed-loop characteristics of Case 3 using the auto-

tuning algorithm for step sizes of GCE = 0.2 and GIE = 3 fold of initial value of GIE. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp ts SSE 

1 1 1 1 1 1.017 1.613 12.730 6.538 0 

2 1 1 0.039 12.730 0.644 2.419 0.000 5.070 0.009 

3 1 0.8 0.039 12.730 0.540 1.949 0.000 4.420 0.012 

4 1 0.6 0.039 12.730 0.440 1.444 0.000 3.738 0.014 

5 1 0.4 0.039 12.730 0.351 0.878 0.000 3.328 0.017 

6 1 0.2 0.039 12.730 0.296 0.446 6.332 10.186 0.019 

7 1 0.4 0.039 12.730 0.351 0.878 0.000 3.328 0.017 

8 1 0.4 0.118 12.730 0.341 0.813 0.000 1.582 0.003 

9 1 0.4 0.353 12.730 0.333 0.699 4.239 4.802 -0.005 

10 1 0.4 0.118 12.730 0.341 0.813 0.000 1.582 0.003 

 
 
 

It can be seen from the data in above tables that decreasing the step sizes led to an increase 

in the number of iterations and vice versa. The number of iterations became 23 and 10 for 

both tests respectively. However, performance was improved in the first test while it was 

reduced in the second test. This is also shown in Figure 5.3, Figure 5.4 and Figure 5.5.  
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5.1.3  Disturbance Reduction Tests 

One of the most important advantages of any feedback controller is to reduce the effects of 

disturbances that may cause the output of the controlled system to drift from the setpoint. The 

significance of tuned controllers becomes apparent when disturbances are applied, as tuned 

controllers are expected to perform better than their non-tuned or poorly-tuned counterpart 

controllers.   

 

Two disturbance reduction tests were conducted. In the first test the basic FPD+I controller 

with its default gain values, set to 1, was used and applied to Case 3. While in the second test 

the same controller was used and applied to Case 3 with the tuned gains’ values obtained from 

the application of the auto-tuning algorithm. The values of the tuned gains were obtained from 

Table 5.1, iteration 14, and they were as follows: GE =1, GCE = 0.3, GIE = 0.079 and GU = 

12.730. 

 

In both tests, the simulation were setup to run for 100 seconds, then a step input was applied 

and a sequence of step disturbances were forced on to the system: one at the time = 40 

seconds and the second disturbance at the time = 70 seconds. Both persisted for 10 seconds 

with the magnitude of +1 and -1 respectively. The design model shown in Figure 5.6 and the 

Disturbance Test Script Code listed in Appendix B were used to generate the test 

responses.  
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Figure 5-6: Disturbance test simulation model design. 

 

Figure 5.7 and Figure 5.8 illustrate the responses for the basic FPD+I controller using different 

gains’ values. 

 

Figure 5-7: Step disturbance response of Case 3 using the basic FPD+I controller with default 

gains’ values. 
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Figure 5-8: Step disturbance response of Case 3 using the basic FPD+I controller with tuned 

gains’ values. 

 

As it can be seen from Figure 5.7, the closed-loop response, that the disturbances caused an 

overshoot of 39% in the rising edge and the falling edge of each disturbance signals and the 

overshoot persisted for about 6 seconds.  

 

Whilst, the overshoot was reduced to only 5.7%, but lasted for 10 seconds when the tuned 

gains’ values were used. This is shown in the closed-loop response of Figure 5.8. 
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5.2  LabVIEW-Based Tests 

In this section the basic fuzzy controller and the auto-tuning algorithm are tested using 

LabVIEW. The wireless intelligent fuzzy controller network system functionalities and 

capabilities are also tested. 

5.2.1  The Basic Fuzzy Controller 

Using the basic fuzzy controller designed and presented in Section 4.3, all the systems with 

the transfer functions listed in Table 3.2 were simulated. The user interface was used to set 

the transfer function parameters and the controller gains, in which the gains were set to 1. A 

unit step input was applied and the simulation time was set to 20 seconds with a fixed 0.01 

second sampling interval.  

 

Figure 5.9 shows the user interface where the settings to simulate Case 3 are shown. The step 

response of the closed-loop system and the open-loop system are also shown alongside with 

their characteristic parameters, such as the maximum percentage overshoot (Mp), the rise 

time (tr), the settling time (ts) and the steady state error (SSE). The closed-loop step 

responses of Case 1, Case 2, Case 4 and Case 5 are shown in Figure D-1 – Figure D-4 in 

Appendix D.  
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Figure 5-9: The basic FPD+I controller settings and step response of Case 3. 

 

 

The closed-loop step response above shows that a stable response was achieved with 

improvements in both the maximum percentage overshoot and the settling time. The 

overshoot was reduced from 16.26% to 12.983%. The settling time was reduced from 8.77 

seconds to 6.60 seconds.  
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5.2.2  The Auto-tuning Algorithm 

Using the same settings shown in Figure 5.9, the auto-tuning algorithm was simulated. The 

controller input was changed to a unit pulse input, with a period of 30 seconds and a duty 

cycle of 50%. The controller gains’ values were initially set to 1, and the simulation time was 

set to 30 seconds with a fixed-size (0.01 second) of sampling interval. Finally, the controller 

was set to auto-tune mode through the auto-tune button on the user interface.  

Figure 5.10 shows the closed-loop responses of Case 3, where responses are iteratively shown. 

The step responses of Case 1, Case 2, Case 4 and Case 5 are shown in Figure D-5 – Figure D-

8 in Appendix D. 
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 Figure 5-10: Closed-loop step response for Case 3 using the auto-tune algorithm.  
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As can be seen from the figures above, substantial improvement achieved in the transient and 

the steady-state responses. The overshoot was eliminated from the second iteration, and then 

in an iterative manner the rise time and the settling time were improved. In this test, the 

tuning process was accomplished in 14 iterations.  

 

Table 5.4 lists the controller gains, ISE and the closed-loop characteristics of Case 3 for each 

iteration. Similar data of Case 1, Case 2 , Case 4 and Case 5 are listed in Table D-1 – Table D-

4 in Appendix D.  

 

Table 5-4: Controller gains’ values and closed-loop characteristics of Case 3 using the auto-

tuning algorithm. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp 

1 1 1 1 1 1.014 1.614 12.983 

2 1 1 0.039 12.983 0.643 2.414 0 

3 1 0.9 0.039 12.983 0.591 2.184 0 

4 1 0.8 0.039 12.983 0.539 1.946 0 

5 1 0.7 0.039 12.983 0.488 1.699 0 

6 1 0.6 0.039 12.983 0.438 1.442 0 

7 1 0.5 0.039 12.983 0.391 1.168 0 

8 1 0.4 0.039 12.983 0.348 0.871 0 

9 1 0.3 0.039 12.983 0.312 0.604 0 

10 1 0.2 0.039 12.983 0.293 0.439 6.69 

11 1 0.3 0.039 12.983 0.312 0.604 0 

12 1 0.3 0.077 12.983 0.306 0.591 0 

13 1 0.3 0.154 12.983 0.209 0.570 0.432 

14 1 0.3 0.077 12.983 0.306 0.591 0 
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It can be noted from the data above that the overshoot eliminated and became 0 from the 

second iteration. This was on account of a rapid change in the value of GIE where it was 

changed from 1 to 0.039 from the second iteration. The data also show improvements in the 

rise time starting in iteration 3 where the value of GCE started to decrease while retaining the 

values of GIE and GU. 

 

The algorithm uses ISE and Mp to monitor the overall performance of the controller and to 

indicate further changes in the values of GCE and GIE. For instance, in iteration 10, due to a 

continuous decreasing of the value of GCE the overshoot increased from zero to 6.69. 

Therefore, to preserve a better performance, in iteration 11 the algorithm reversed to the 

previous value of GCE, iteration 9, and then started to increase the value of GIE. A similar 

situation happened again when the overshoot changed from 0 to 0.432 in iteration 13, and 

then accordingly in iteration 14 the algorithm reversed to the previous value of GIE, iteration 

12. 
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5.2.3  The Wireless Intelligent Fuzzy Controller Network System 

To test the wireless intelligent fuzzy controller network system, a network of five wireless-

enabled PCs was established through a dedicated wireless router to ensure there is no other 

network traffic to disturb the communication of the PCs. The structure is shown in Figure 5.11 

where instances of the auto-tuning algorithm applied to the basic FPD+I controller were 

running on PC1-PC4 denoted as ABFPD+I 1 - ABFPD+I 4 (auto-tuned basic FPD+I controller). 

The PC5 were used to monitor and show the response of each PC and this is denoted as 

Monitor. As mentioned in Section 4.2, the standard wireless local area network (WLAN) Wi-Fi 

was used for the communication. 

 

Wireless Router 

 

     

ABFPD+I 1 ABFPD+I 2 ABFPD+I 3 ABFPD+I 4 Monitor 

Figure 5-11: The wireless fuzzy logic controller network structure. 

 

Also in this test, all the second order systems with the transfer functions listed in Table 3.2 

were simulated, but only the settings of Case 3 are shown in Figure 5.12. The controllers were 

setup to simulate Case 3. For each controller, the input was a unit pulse input with a period of 

30 seconds and a duty cycle of 50%. The gains were initially set to 1, and the simulation time 

was set to 30 seconds with a fixed 0.01 second of sampling interval.  
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A VI was designed to aggregate and show the responses on PC5. A normal response is shown 

in Figure 5.13.  

 

 

Figure 5-12: The basic FPD+I controller with auto-tuning algorithm settings and step response of Case 

3. 
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Figure 5-13: Aggregated normal controller responses of Case 3. 

 
After setting up the system, two tests were conducted as follows: 
 

5.2.3.1  Sharing Capability Test 

This test illustrates the sharing capability of the system. One of the controllers automatically 

accomplishes the tuning process and then shares the knowledge, the tuned gains values, with 

the other controllers. The other controllers, which are set to auto-tuning mode, use the tuned 

gains made available to them by the first controller. 

 

In this test, all the controllers were initiated to operate continuously and then ABFPD+I 1 was 

set to auto-tune mode. After the completion of the auto-tuning process, ABFPD+I 1 was halted 

and then ABFPD+I 2, ABFPD+I 3 and ABFPD+I 4 were set to auto-tune mode sequentially. The 

iterative closed-loop responses are shown in Figure 5.14, where row 1, row 2, row 3 and row 4 

show the responses of ABFPD+I 1, ABFPD+I 2, ABFPD+I 3 and ABFPD+I 4 respectively.    
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Figure 5-14: Controller responses for sharing capability test.

ABFPD+I 1 set to auto-tune 

mode 

ABFPD+I 2 auto-tuning process completed 

ABFPD+I 3 set to auto-tune 

mode 
ABFPD+I 4 set to auto-tune 

mode 

ABFPD+I 2 set to auto-tune 

mode 

ABFPD+I 1 auto-tuning process completed 

ABFPD+I 3 auto-tuning process completed 

ABFPD+I 4 auto-tuning process completed 
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Table 5.5 shows the number of iterations were required by the controllers to tune their 

gains. Also the values of the gains and the closed-loop characteristics for each iteration are 

listed.  

 

Table 5-5: Controller gains’ values and closed-loop characteristics for sharing capability 

test. 

 

Controller 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop 

Characteristics 

GE GCE GIE GU tr Mp 

ABFPD+I 1 

1 1 1 1 1 1.013 1.614 12.896 

2 1 1 0.039 12.895 0.642 2.429 0 

3 1 0.9 0.039 12.895 0.59 2.199 0 

4 1 0.8 0.039 12.895 0.538 1.961 0 

5 1 0.7 0.039 12.895 0.487 1.715 0 

6 1 0.6 0.039 12.895 0.438 1.457 0 

7 1 0.5 0.039 12.895 0.391 1.184 0 

8 1 0.4 0.039 12.895 0.348 0.887 0 

9 1 0.3 0.039 12.895 0.313 0.608 0 

10 1 0.2 0.039 12.895 0.293 0.439 6.174 

11 1 0.3 0.039 12.895 0.313 0.608 0 

12 1 0.3 0.078 12.895 0.306 0.595 0 

13 1 0.3 0.116 12.895 0.302 0.583 0 

14 1 0.3 0.155 12.895 0.299 0.572 0.122 

15 1 0.3 0.116 12.895 0.302 0.583 0 

ABFPD+I 2 
1 1 1 1 1 1.013 1.614 12.896 

2 1 0.3 0.116 12.895 0.302 0.583 0 

ABFPD+I 3 
1 1 1 1 1 1.013 1.614 12.896 

2 1 0.3 0.116 12.895 0.302 0.583 0 

ABFPD+I 4 
1 1 1 1 1 1.013 1.614 12.896 

2 1 0.3 0.116 12.895 0.302 0.583 0 
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As it can be seen from Figure 5.14 and the table above, that ABFPD+I 1 completed the 

auto-tuning process in 15 iterations, while ABFPD+I 2, ABFPD+I 3, ABFPD+I 4 completed 

the tuning in 2 iterations and this was as the result of sharing capability of the system. 

From the tuning of ABFPD+I 1, the gains’ values of 0.3, 0.116 and 12.895 for GCE, GIE and 

GU respectively were obtained, and then these values were shared with ABFPD+I 2, 

ABFPD+I 3 and ABFPD+I 4.  

 

When these controllers were set to auto-tune mode, they used the shared gains’ values and 

completed their respective tuning processes in 2 iterations. Therefore, similar performance 

was achieved for all the controllers. This can be noted from data of columns tr and Mp, 

iterations 15 of ABFPD+I 1, and from iteration 2 of ABFPD+I 2, ABFPD+I 3 and ABFPD+I 4 

respectively where tr = 0.583 and Mp = 0. 

5.2.3.2  Cooperative Sharing Capability Test 

This test demonstrates the completion of the auto-tuning process by all the collaborating 

controllers where they, in turn, involve in the process. Part of the tuning is performed by 

one of the controllers, and then the tuned gains are made available on the network. A next 

controller resumes the process using the gains received from its predecessor as starting 

gains. The new tuned gains are then made available again by the controller to its successor. 

The process continues until the gains are optimally tuned. 

 

To carry out the test, initially the controllers were started to operate continuously. Then 

each controller was set to auto-tune mode for a period of time and then halted one after 

another as follows: ABFPD+I 1 was set to auto-tuning mode for 5 cycles and then was 

halted; ABFPD+I 2 was set to auto-tune mode for 5 cycles and then was halted; ABFPD+I 3 

was set to auto-tuning mode for 5 cycles and then was halted; and finally ABFPD+I 4 was 

set to auto-tune mode for 6 cycles and then was halted. The closed-loop responses of the 

controllers are shown in Figure 5.15.  
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Figure 5-15: Controller responses for cooperative sharing capability test.

ABFPD+I 4 set to auto-tune 

mode 

ABFPD+I 2 auto-tuning process halted 

ABFPD+I 2 set to auto-tune 

mode ABFPD+I 3 set to auto-tune 

mode 

ABFPD+I 1 set to auto-tune 

mode 

ABFPD+I 1 auto-tuning process halted 

ABFPD+I 3 auto-tuning process halted 

ABFPD+I 4 auto-tuning process 

halted 
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Table 5.6 shows the number of iterations required by the controllers to tune their gains. 

Also the values of the gains and the closed-loop characteristics for each iteration are shown.  

 

Table 5-6: Controller gains’ values and closed-loop characteristics for cooperative sharing 

capability test. 

 

Controller 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop 

Characteristics 

GE GCE GIE GU tr Mp 

ABFPD+I 1 

1 1 1 1 1 1.013 1.614 12.896 

2 1 1 0.039 12.895 0.642 2.429 0 

3 1 0.9 0.039 12.895 0.59 2.199 0 

4 1 0.8 0.039 12.895 0.538 1.961 0 

5 1 0.7 0.039 12.895 0.487 1.715 0 

ABFPD+I 2 

1 1 1 1 1 1.013 1.614 12.896 

2 1 0.7 0.039 12.895 0.487 1.715 0 

3 1 0.6 0.039 12.895 0.438 1.457 0 

4 1 0.5 0.039 12.895 0.391 1.184 0 

5 1 0.4 0.039 12.895 0.348 0.887 0 

ABFPD+I 3 

1 1 1 1 1 1.013 1.614 12.896 

2 1 0.4 0.039 12.895 0.348 0.887 0 

3 1 0.3 0.039 12.895 0.313 0.608 0 

4 1 0.2 0.039 12.895 0.293 0.439 6.174 

5 1 0.3 0.039 12.895 0.313 0.608 0 

ABFPD+I 4 

1 1 1 1 1 1.013 1.614 12.896 

2 1 0.3 0.039 12.895 0.313 0.608 0 

3 1 0.3 0.078 12.895 0.306 0.595 0 

4 1 0.3 0.116 12.895 0.302 0.583 0 

5 1 0.3 0.155 12.895 0.299 0.572 0.122 

6 1 0.3 0.116 12.895 0.302 0.583 0 
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As it can be seen from Figure 5.15 and the table above, that each controller participated in 

the auto-tuning process, and therefore the process was completed in 21 iterations. The gain 

values of ABFPD+I 2, ABFPD+I 3 and ABFPD+I 4 in their second iterations were set to the 

values obtained from iteration 5 of their respective predecessors ABFPD+I 1, ABFPD+I 2 

and ABFPD+I 3 respectively.  

 

Although the process required more time, 21 iterations compared to 15 in the previous test, 

the test still illustrates the significance of the sharing capabilities of the controllers. 

5.3  Hardware-in-the-loop Tests 

In this section the results of the application of the basic FPD+I and the auto-tuning 

controllers to real-time systems are presented. The real-time systems were second order 

systems constructed using op-amps and RC components presented in detail in Section 4.8.  

  

For comparison purposes the hardware implementation of Case 3 was chosen and 

henceforth it is referred to as the hardware circuit. The implemented and constructed 

system shown in schematic diagram in Figure 4.17 and the values of the RCs presented in 

Table 4.2 for Case 3 were used. 

5.3.1  Open-loop Step Response 

A VI was designed to conduct an open-loop step response test on the hardware circuit and 

to measure the maximum percentage overshoot (Mp) and the rise time (tr). The result is 

shown in Figure 5.16. 
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Figure 5-16: Open-loop step response of the hardware circuit using the basic FPD+I 

controller. 

 

As can be seen from the above figure that the open-loop step response of the hardware 

circuit is stable with 15.72% overshoot and 1.841 seconds rise time. 

5.3.2  The Basic FPD+I Controller 

The basic FPD+I controller VI presented in Figure 4.18 was used to evaluate the output 

response of the hardware circuit. The controller input was a unit pulse input. The controller 

gains were set to 1 and the sampling interval was set to 0.05 second. The closed-loop 

response is shown in Figure 5.17. 
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Figure 5-17: Closed-loop step response of the hardware circuit using the basic FPD+I 

controller. 

 

Figure above shows a stable closed-loop step response with improvement in the rise time 

where it was reduced from 1.84 seconds to 1.59 seconds. However, the overshoot increased 

from 15.72% to 16.69%.  

5.3.3  The Auto-tuning Algorithm 

 
To evaluate the output response of the hardware circuit, the same controller VI in the 

previous section with the auto-tuning algorithm settings was used. The controller gains were 

initially set to 1 and then the controller was set to auto-tuning mode.  

 

Figure 5.18 shows the closed-loop responses, where responses of 15 iterations are 

presented from left-to-right top-to-bottom.  Table 5.7 lists the controller gains, ISE and the 

closed-loop characteristics of each iteration.  
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 

    

Iteration 5 Iteration 6 Iteration 7 Iteration 8 

    

Iteration 9 Iteration 10 Iteration 11 Iteration 12 

    

Iteration 13 Iteration 14 Iteration 15  

   

 

Figure 5-18: Closed-loop step response of the hardware circuit using the auto-tuning algorithm. 
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From the figures above it can be seen that the application of the auto-tuning algorithm to 

the hardware circuit also resulted in substantial improvements of the transient and the 

steady-state responses. The performance significantly improved from the second iteration 

by eliminating the overshoot and then in an iterative manner, within 15 iterations, the rise 

time and the settling time were also improved. 

 

Table 5-7: Controller gains’ values and closed-loop characteristics from the application of 

the auto-tuning algorithm to the hardware circuit. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop 

Characteristics 

GE GCE GIE GU tr Mp 

1 1 1 1 1 1.121 1.598 16.67 

2 1 1 0.03 16.67 0.578 2.363 0 

3 1 0.9 0.03 16.67 0.563 2.168 0 

4 1 0.8 0.03 16.67 0.504 1.889 0 

5 1 0.7 0.03 16.67 0.466 1.674 0 

6 1 0.6 0.03 16.67 0.457 1.44 0 

7 1 0.5 0.03 16.67 0.409 1.189 0 

8 1 0.4 0.03 16.67 0.366 0.903 0 

9 1 0.3 0.03 16.67 0.333 0.594 0 

10 1 0.2 0.03 16.67 0.317 0.408 5.469 

11 1 0.3 0.03 16.67 0.336 0.596 0 

12 1 0.3 0.06 16.67 0.327 0.588 0 

13 1 0.3 0.09 16.67 0.325 0.573 0 

14 1 0.3 0.12 16.67 0.324 0.556 0.586 

15 1 0.3 0.09 16.67 0.321 0.574 0.098 

 
 

It can be seen from the data that the overshoot, Mp, was eliminated and became zero from 

the second iteration. This was due to a rapid change in the value of GIE where it changed 

from 1 to 0.03 from the second iteration. The data also show improvements in the rise time, 
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tr, beginning in iteration 3 where the value of GCE started to decrease while retaining the 

values of GIE and GU. 

5.4 Discussion of Results 

The system transfer functions listed in Table 3.2 represent various real-time control systems 

which include critically damped, overdamped, underdamped and unstable systems. 

 

From the MATLAB simulation results of the application of the basic FPD+I controller to 

abovementioned systems, Figure 5.1 and Figures C13-C16 in Appendix C, it is apparent that 

the controller was successful in stabilising all the systems. This is more clearly evident in 

Case 4 and Case 5 unstable systems. In addition, the maximum percentage overshoot 

reductions were proportional to the damping radio of these systems.  

 

However, a significant overshoot is noted for the critically damped and overdamped 

systems, Case 1 and Case 2, where these systems are stable in their open-loop responses 

and exhibit no overshoots. The addition of the integral action in the structure of the 

controller as shown in Figure 3.4 in Section 3.5.1, has such an effect and might cause the 

system susceptible to more oscillation and possibly instability as is the case in conventional 

PID controllers (Åström & Murray, 2009).    

 

The responses obtained from the LabVIEW based tests of the basic FPD+I controller are 

similar to the results obtained from MATLAB based tests. These are shown in Figure 5.9 and 

Figures D1-D4 in Appendix D.  

 

Furthermore, the practical application of the FPD+I controller to the hardware circuit 

representing Case 3 system as is shown in in Figure 5.17, validates the results obtained 

from MATLAB and LabVIEW platforms. This can be compared in Figure 5.17, Figure 5.1 and 

Figure 5.9.   

  



125 

 

These results above indicate that the basic FPD+I controller is capable of controlling and 

stabilising most of the second order systems. 

 

In the case of the auto-tuning algorithm, the MATLAB results presented in Figure 5.2 and 

Figures C17-C20 in Appendix C, indicate considerable improvements in the transient and the 

steady-state responses of all the systems. The improvements were achieved progressively 

in approximately 15 iterations. The final iteration resulted in a zero-overshoot response and 

reduced the rise time and the settling time.  The number of the iterations is subject to 

change depending on the step sizes of GCE and GIE. For instance, the smaller the step size, 

the longer time is required by the algorithm to accomplish the tuning process. 

 

Similar results from LabVIEW, Figure 5.10 and Figures D5-D8 in Appendix D, and from the 

practical application of the auto-tuned fuzzy controller to a hardware circuit, Figure 5.18, 

validates the abovementioned findings.  

 

For the comparison purposes, the results obtained from the application of the auto-tuning 

algorithm to Case 3 using MATLAB, LabVIEW and the hardware circuit are presented in 

Table 5.8.   

 

 Table 5-8: Number of iterations, controller gains’ values and closed-loop characteristics of 

Case 3 using three different platforms.  

 

Test 

N
o
. o

f ite
ra

tio
n
s
 

Controller Gain 

ISE 

Closed-loop 
Characteristics 

GCE GIE GU tr Mp 

MATLAB 14 0.3 0.079 12.730 0.312 0.598 0 

LabVIEW 14 0.3 0.077 12.983 0.306 0.591 0 

Hardware Circuit 15 0.3 0.09 16.67 0.321 0.574 0.098 
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When evaluating the sharing capability of the wireless intelligent fuzzy controller network, it 

is shown how the gained knowledge in tuning a controller can be shared using the network. 

The recipient controllers can benefit from the knowledge and apply it to auto-tune their 

gains and achieve a desirable response in much less time than it is normally required. This 

can be noted in Figure 5.14, where ABFPD+I 1 completed the tuning process in 15 iterations 

whilst each of ABFPD+I 2, ABFPD+I 3 and ABFPD+I 4 completed the same process in 2 

iterations. 

5.5 Summary 

The chapter has presented details of various tests and showed the results of the application 

of the basic FPD+I controller and the auto-tuning algorithms to several second order 

systems using MATLAB and LabVIEW platforms. The results have been encouraging and 

indicate the validity of the technique where the performance of the system response 

progressively improves. The results have also shown that the auto-tuning algorithm is 

highly effective in achieving a zero overshoot response and produced a faster transient 

response.  

 

In addition, the algorithm has been tested on real systems using hardware circuits 

modelling various processes.  

 

Furthermore, the sharing capability and the functionalities of the wireless intelligent fuzzy 

controller network system have been successful in exchanging data whenever required. 
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CHAPTER 6 

 

6 Conclusions and Further Work 

 

In the coming sections, some conclusions are drawn on the work undertaken in this thesis 

and the main contributions are presented. Also some potential suggestions are outlined. 

 

6.1 Conclusions 

As discussed in Section 2.3 in the Literature Review chapter, fuzzy logic systems have a 

main role in the design of intelligent controllers and this is due to the fact that the human 

knowledge in understanding, modelling and controlling the dynamics and complex 

characteristics of a process is systematically integrated into a controller.   

 

Furthermore, the discussion has also given an account of the limitations of the static 

representation of knowledge in such controllers.  In Sections 2.4 and 2.5, a detailed 

attention has been paid to various difficulties associated with the design of a general 

purpose fuzzy controller and also with an auto-tuning algorithm. Consequently, the 

relationship between the controller parameters and the controller performance is not a 

straightforward task. Even with the existence of suitable algorithms, the advantage of the 

efforts made in tuning process in a controller is limited, as the knowledge is not retained 

locally for later use, and neither shared with other identical controllers in a networked 

environment.  

 

In this context, the present thesis was set out to develop and implement an intelligent 

algorithm for FCs. Through memory and extensive communication attributes, the algorithm 
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enables a controller to auto-tune its gains, as well as to retain and share knowledge.  The 

work also focused on the design and establishment of a framework for learning in a wireless 

network of FCs.  

 

The application domain of the algorithms was a standard second order system, as many 

real-time applications exhibit oscillation and overshoot in their step responses, and these 

characteristics can be easily modelled using a second order transfer function. Parts of the 

systems were constructed using electronic components and then the algorithms were tested 

on the produced systems.  

 

The auto-tuning algorithm was tested in a simulated wireless and wired network 

environment. The results demonstrate the effectiveness of the auto-tuning algorithm where 

the performance of the controller is progressively improved, and the algorithm produced a 

step response system with a zero overshoot. The results of the simulation-based 

experiments and the hardware-circuits also show the robustness of the algorithm in terms 

of step input tracking response and reduction of disturbances.  

 

The proposed structure designed and presented in Chapter 3 and implemented in Chapter 4, 

showed the feasibility of the system and illustrated the capabilities of the controllers with 

regard to retaining and sharing the knowledge.  

 

Based on the results and discussions presented in Chapter 5, the following conclusions and 

findings are drawn: 

 

 Fuzzy logic controllers have a set of parameters, such as those associated with the 

membership functions, the rule-base and the gains. Each set might have complex or 

conflicting effects in terms of achieving various time-domain characteristics, such as 

overshoot, rise time and settling time. The effect of these additional variables on the 

system is twofold. On the one hand, the number of variables is higher in comparison 
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with PID controllers, where normally there are only three main parameters to adjust. 

However, there are alternative possibilities that utilise different techniques to devise 

various tuning algorithms. On the other hand, the tuning process becomes more 

complicated as relationships between these parameters and controller performance 

characteristics become more complex.  

 

It is worth noting that concentrating on a few parameters in the tuning process 

minimises the complexity of the process and, consequently, less resources such as 

controller time and memory are required. It is also easier to determine relationships 

between a small number of parameters and the closed-loop characteristics. In 

addition, an algorithm with lesser degrees of complexity becomes more practical.  

 

The auto-tuning algorithm devised in this research, presented in Chapter 3, 

possesses three significant features. Firstly, the tuning process involves only three 

parameters, namely GCE, GIE and GU, and it is performed systematically. Secondly, 

relationships between the controller gains; GIE and GU, and Mp and tr are determined. 

The values of GIE and GU are related to overshoot and they have significant effects on 

reducing the overshoot and the steady state error. The value of GCE defines the 

speed of the response and also affects the stability of the system. Finally, as the PID 

controller gains have a clear and physical meaning, the auto-tuning algorithm has 

also given such meanings to the FPD+I controller gains. 

 

 Determining appropriate values of controller gains, to achieve possible optimal 

responses, can be addressed as a search problem, whereby the gains are adjusted to 

minimise the value of a performance index, such as integral of squared error or 

integral of absolute error. However, minimising a single performance index does not 

always achieve an optimal response that satisfies all the required closed-loop 

characteristics, such as overshoot, rise time and settling time. Therefore a new 
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performance index is composed from all the closed-loop characteristics, each with a 

weight factor proportionate to their importance in a specific control system.  

 

In the development of the auto-tuning algorithm, the values of GCE and GIE gains 

were determined by minimising the integral of squared error while monitoring the 

system output for possible overshoot and this is presented in Section 3.5.2. Although 

a single performance index was not formulated, the search was indirectly based on 

the combination of the integral of squared error and the overshoot. This finding 

would empirically help to compose a new performance index. A comparison process 

based on only one factor is more straightforward and is performed much faster than 

those based on two or more variables.     

 

 The step sizes of the changes in GCE and GIE gains have a significant impact on the 

number of iterations required to tune the controller. In the design of the auto-tuning 

algorithm, after initial determination of the values of GU and GIE gains, the step sizes 

are set as follows: GCE is set to decrease in a step size of 0.1, one tenth of the GCE 

value, and GIE is set to increase in a step size equal to twice the value of GIE and 

then in each subsequent steps this step size is doubled again. This can be seen in the 

result of the auto-tuning algorithm test in Table 5.1. Decreasing the step sizes of GCE 

and GIE leads to an increase in the number of iterations required to tune the 

parameters, but it also achieves a better performance. However, increasing the step 

sizes has the opposite effect. This can be seen from that data in Table 5.2 and Table 

5.3 where the number of iterations became 23 and 10 respectively. 

 

The current step sizes of the gains were extensively investigated so that a trade-off 

is achieved between the number of iterations needed to tune the controller and the 

demanded closed-loop characteristics in order to achieve the required response in a 

reasonable time.  
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6.2 Contributions of the Thesis 

This section discusses the main contributions of this research work outlined in the 

Introduction chapter and presents the significance of the research to the relevant fields.  

6.2.1  A Systematic Auto-tuning Algorithm 

The main contribution of this research work is the development of a new auto-tuning 

algorithm. The algorithm is performed systematically and it is based on the tuning of a few 

parameters. Using this approach ensures its straightforwardness and consequently increases 

the scope of its application.  

 

More importantly, achieving a closed-loop step response with a zero overshoot provides 

potential virtues to control systems where such a feature is demanded. In some industrial 

process control systems, it is desirable not to allow an overshoot beyond the setpoint or a 

threshold and this could be a safety constraint or the requirement of the system.  

6.2.2  A New Structure for an Intelligent Fuzzy Logic Controller 

Whilst incorporating human knowledge into a controller might not be sufficient in designing 

an intelligent controller, the main feature of an intelligent controller still remains in the 

capability of learning from past experience. Through the design of a multi-layer structure 

algorithm, discussed and presented in Section 3.3 and implemented in Section 4.4, the new 

fuzzy controller encapsulates the abilities of self-learning and knowledge retaining. The 

acquired experience and knowledge in the tuning process is retained and then utilised 

whenever a similar situation arises.  

 

This new structure allows fuzzy controllers to integrate extra knowledge to their existing 

rule-base knowledge system.   
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6.2.3  A New Knowledge Sharing Framework  

Using LabVIEW, the thesis introduced and implemented a framework for networked FCs. 

This new framework provides a learning facility through enabling effective sharing of 

knowledge between identical FCs. The structure could be used as a new paradigm for 

implementing practical multiple fuzzy controller systems.  

6.3  Recommendations for Further Work  

The following are some recommendations that could provide directions for further work. 

 

 As the main feature of fuzzy logic control systems is to incorporate control strategies 

in the form of linguistic terms, it is also suggested to use fuzzy logic to integrate the 

tuning procedure in the form of the ‘If-then’ expressions. Although this might add 

further computation time for the overall control system, it is worth researching the 

point. In the new case, fuzzy logic can be utilised in the control strategy and in the 

tuning procedure of the controller which results in a multiple layer of fuzzy logic 

control systems.  

 

 A wide range of physical control systems can be modelled using the standard classes 

of second order systems, such as critically damped, overdamped and underdamped 

classes. For instance, the first two forms are often found when two first order 

systems are connected in a series. The underdamped forms exist in some mechanical 

and fluid systems (Edgar et al., 2004). The algorithm was successfully tested and 

produced satisfactory responses for the abovementioned systems. In addition, 

unstable and undamped cases were included. 

 

It is recommended that further research needs to be undertaken in the application of 

the algorithm to higher order systems and systems with dead time. This widens the 

scope of the application of the algorithm.   
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 Since the amount of data exchanged between the controllers is small, mainly the 

controllers share the gains’ values, hence embedded-microcontrollers interfaced to 

ZigBee modules can be utilised to incorporate the algorithm. Recently, some 

microcontrollers have been marketed with built-in ZigBee modules (Amtel, 2013; 

NXP, 2013; Texas Instruments, 2013) and sufficient internal program memory. In 

addition, these microcontrollers have built-in Analogue to Digital Converters (ADC), 

Digital to Analogue Converters (DAC) and Pulse Width Modulation (PWM) interfaces 

to realise a control loop. These microcontrollers are also physically small enough to 

be embedded in the sensor enclosures. This will provide a new generation of 

applications that include versatile and cost-effective solutions in wireless sensor 

networks and control applications.  

 

 The principle of distributed agents is well-established in the field of computer science 

and it has also been recognised in control engineering. There are several software 

platforms (Fabio, Giovanni, & Dominic, 2007) to develop and simulate multiple 

controllers or multi-agent systems, such as Java Agent DEvelopment Framework 

(JADE) (JADE, 2013), Intelligent Agents known as JACK (AOS, 2013), and Agent 

Development Kit (ADK) (Tryllian, 2013). Whilst in practical implementation their 

usages are usually limited to manufacturing systems, a standard platform for 

implementing such scenarios does not exist. As the proposed and implemented 

structure presented in this thesis has also shown the feasibility of LabVIEW for 

simulating and implementing multi-controller structures, it is suggested that further 

investigation be carried out to explore the capabilities of LabVIEW becoming the 

standard as a development and implementation platform for multi-controller 

systems. The burden of developing communication protocols in LabVIEW is 

enormously reduced as the main communication protocol suit TCP/IP is efficiently 

provided.   
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 The proposed framework cannot be limited to fuzzy logic controllers and therefore it 

could also be adapted to incorporate other control strategies such as conventional 

PID controllers. 

 

Finally, in spite of what has often been reported about the difficulties of developing an 

intelligent auto-tuning algorithm for fuzzy logic controllers, the findings in this research 

have demonstrated the ability of a controller to learn from its own and others’ past 

experiences.   

 

As learning from past experience has always been a significant quality for human beings, 

likewise it would be for controllers. 
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Appendices 

A. A Design Example of a Fuzzy Logic Controller 

To illustrate different terms related to fuzzy control system, a basic design example is given. 

It is assumed that a standard second order process with the open loop step response shown 

in Figure A.1 is intended to be controlled by a fuzzy controller.  

 

 

Figure A-1: Open-loop step response of a second order system. 

 

Figure A.2 shows the block diagram of a closed-loop system, where a fuzzy controller is in 

direct control of a process. The system has one reference input r(t) and one output y(t). The 

aim is to maintain the output of the process as close as possible to the reference input. This 

is achieved by producing a suitable control signal u(t) from the controller based on the error 

e(t) and the change of error de(t) (derivative of error). As the control signal is proportional 

and related to two input signals, the controller is referred to as a fuzzy proportional-

derivative (FPD) controller (Mamdani, 1999). The controller has three gains: gain of the 
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error (GE), gain of the change of error (GCE) and output gain (GU). By adding these gains, 

the two inputs of the controller become E(t) and dE(t) and its output becomes u(t). The 

gains are also known as scaling factors (SFs) (Jantzen, 2007; Passino & Yurkovich, 1998), 

because they are used to scale or transform the real controller inputs and outputs to 

predefined and normalised universes of discourse of the controller. The scaling gains are 

supposed to be, theoretically, constant parameters, but normally are used to tune the 

performance of the controller analogous to the tuning of PID controller gains  (Yung-Yaw & 

Chiy-Ferng, 1994). Throughout the remainder of this thesis, the scaling gains are referred 

to as gains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fuzzy PD controller comprises of the following four components (Driankov, Hellendoorn, 

& Reinfrank, 1996; Passino, 2005; Passino & Yurkovich, 1998): 

 

1- Fuzzification. 

 

This unit converts, fuzzifies, the inputs: E(t) and dE(t) and the output u(t) to information in 

the form of linguistic terms, known as fuzzy variables (Zadeh, 1996), where later on they 

+ 

y(t) r(t) e(t) 
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u(t) 
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- 

 

 

 

 

Fuzzification 
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U(t) 

Rule-Base 

Inference 
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Figure A-2: A fuzzy controller in a closed-loop control system. 
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can be used by the rule-base unit to produce the required rules to control the process. The 

fuzzy variables take a set of values also in the form of linguistic terms, called fuzzy values 

or fuzzy sets. For example, the error signal E(t) can be represented by a set of three fuzzy 

sets such as Negative, Zero and Positive. Each fuzzy set can take a range of values of the 

represented variable. In this example, the same fuzzy sets are used for  E(t), dE(t) and 

u(t). 

 

To quantify the range, the fuzzy sets are mathematically represented through membership 

functions (MFs). There are various types of MFs that can be used such as triangular, 

trapezoidal, Gaussian and singleton (Engelbbrecht, 2007). As symmetric shapes are 

computationally efficient for calculating their areas they are the most commonly used in the 

design of fuzzy controllers (Altas & Sharaf, 2007; Passino & Yurkovich, 1998). Figure A.3 

shows one triangular and two trapezoidal MFs assigned to each of the inputs, and three 

symmetric triangular MFs assigned to the output.  

 

As can be seen from Figure A.3, (a) and (b), the Negative terms can take values from -1 to 

0, the Zero terms can take values between -0.5 and 0.5, and the Positive terms can take 

values from 0 to 1. For the output, Figure A.3 (c), the Negative term can take values from -

1 to 0, the Zero term can take values between -0.5 and 0.5, and the Positive term can take 

values from 0 to 1. 

 

Also from the same figure, (a) and (b), the x-axes represent the values of the inputs in a 

range known as the universe of discourse (UoD) (Passino & Yurkovich, 1998). Assume that 

the reference input is 1, therefore the range of the universes of discourse of the inputs and 

the output is, in this case, [-1 1]. This is because the maximum possible values of the error 

or the change of error is -1 or 1. The universes of discourse of the inputs and the output are 

normalised and therefore, the gains are set to 1. The y-axes represent the degree of the 

membership functions () (Passino & Yurkovich, 1998) and, as can be seen, can take any 

value from 0 to 1. 
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Figure A-3: Membership functions of: (a) Error E(t). (b) 

Change of error dE(t).       (c) Control signal u(t). 
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2- Rule-Base. 

 

This unit contains the control strategy in the form of rules that instructs the controller on 

how to control the process. The rules are normally constructed from the knowledge of a 

skilled operator and are linguistically represented (Mamdani, 1999; Mamdani & Assilian, 

1975). A general form of the rules takes the following format: 

 

If input is ..... Then output is ..... 

 

The If part, also known as premises or antecedents, accommodates the input fuzzy 

variables and their fuzzy values, while the Then part, also called conclusions or 

consequents, accommodates the output fuzzy variables and their fuzzy values (Passino, 

2005). The inputs and the output, fuzzified in the previous section, are used to construct 

the rules. As the controller has two inputs, the logical operator ‘and’ is normally used to 

combine them (Passino & Yurkovich, 1998). The inputs and the output have three fuzzy 

variables; therefore in total, nine rules are possible and they are listed in Table A.1. 

 

Table A-1: Fuzzy Rules. 

Rules Fuzzy Rules 

1 If E(t) is Negative and dE(t) is Negative Then u(t) is Negative 

2 If E(t) is Negative and dE(t) is Zero Then u(t) is Negative 

3 If E(t) is Negative and dE(t) is Positive Then u(t) is Zero 

4 If E(t) is Zero and dE(t) is Negative Then u(t) is Negative 

5 If E(t) is Zero and dE(t) is Zero Then u(t) is Zero 

6 If E(t) is Zero and dE(t) is Positive Then u(t) is Positive 

7 If E(t) is Positive and dE(t) is Negative Then u(t) is Zero 

8 If E(t) is Positive and dE(t) is Zero Then u(t) is Positive 

9 If E(t) is Positive and dE(t) is Positive Then u(t) is Positive 
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For the purpose of clarity, the rules are listed in a tabular format in Table A.2. The vertical 

and horizontal headings represent all possible values of the inputs E(t) and dE(t) 

respectively, and the cells contain the required control output actions.   

 

Table A-2: A normal Fuzzy PD rule-base. 

  dE(t) 

  Negative Zero Positive 

E(t) 

Negative Negative Negative Zero 

Zero Negative Zero Positive 

Positive Zero Positive Positive 

 

3- Inference Engine. 

 

Through using the rule-base, this unit maps the fuzzified inputs to fuzzified outputs for each 

rule. For example, during the operation of the controller, at a particular time assume that 

E(t) = 0.5 and dE(t) = - 0.25. As shown in Figure A.4, the degrees of the membership 

functions of E(t) are as follows:    Negative(0.5) = 0,  Zero(0.5) = 0 and  Positive(0.5) = 1.  For 

dE(t), the degrees of the membership functions are  Negative(- 0.25) = 0.5,  Zero(- 0.25) = 

0.5 and  Positive(-0.25) = 0. 
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From the above calculation, only  Positive of E(t),  Negative and  Zero of dE(t) are active. 

Therefore, only the rules contain Positive term for E(t), and Negative term or Zero term for 

dE(t) are selected. Consequently, only Rules 7 and 8 are applied and they are: 

 

Rule 7: If E(t) is Positive and dE(t) is Negative Then u(t) is Zero 

Rule 8: If E(t) is Positive and dE(t) is Zero Then u(t) is Positive 

 

In fuzzy sets, the ‘min’ (minimum) operation is normally used to implement the logical ‘and’ 

operator in the antecedent part of the rules (Lilly, 2011). By substituting the membership 

function values and ‘min’ operator, the strength of active rules are determined as follows: 

(a) 



1 

1 -1 

 

0 0.5 -0.5 

Positive Negative Zero 

E(t) 

Negative Zero 

1 -1 

 

0 0.5 -0.5 - 0.25 

Positive 

dE(t) 



(b) 

Figure A-4: The degree of the membership functions of: (a) Error E(t). 

(b) Change of error dE(t). 
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Rule 7: min{ Positive(0.5),  Negative(- 0.25)} = min{1, 0.5} = 0.5 

Rule 8: min{ Positive(0.5),  Zero(- 0.25)} = min{1, 0.5} = 0.5 

 

For Rule 7, as the consequent part has Zero term, then Zero MF on the output premise will 

be truncated at the height of 0.5. Whilst Rule 8 has Positive MF in its consequent part, then 

Positive MF will be truncated at the height of 0.5. These are shown in Figure A.5. 

 

 

 

 

 

 

 

 

 

4- Defuzzification. 

 

This unit combines the results of the active rules, Rules 7 and 8 in the previous section, to 

produce the final control signal u(t). As shown in Figure 5, the shaded areas of Zero and 

Positive MFs are obtained. The final output value can be achieved by finding the average 

weight of the shaded areas. There are various methods to compute the average weight, and 

the most popular is the centre of gravity (CoG) (Passino, 2005).This can be calculated as 

follows: 

 

        
∑        

∑     
   (A.1) 

Where C is the centre of the MFs, A denotes the area of the MF, and i is the number of the 

MFs. From Figure A.6, C1= 0 and C2 = 0.5 for Zero and Positive MFs respectively. As the 

shaded areas have trapezoidal shapes, their areas are calculated as follows: 
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Figure A-5: Truncated output membership functions. 
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       (
   

 
) (A.2) 

 

Where, h is the height, a is the length of top, and b is the length of bottom of the 

trapezoidal shape. As the two shapes are identical, hence; 

 

                              (
       

 
)        (A.3) 

 

By substituting the values of C1, C2, A1 and A2  in Equation (A.1) 

 

                       
(                 )

(           )
       

 

Therefore, for E(t) = 0.5 and dE(t) = - 0.25, the calculated control signal u(t) = 0.25. 

 

 

 

 

 

 

 

 

 

The controller applies this new value to the process and consequently new output is 

produced, thus another control signal is calculated and these cycles are continued until the 

controller remains in operation. 

 

 

Figure A-6: CoG of the active output membership functions. 
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B.  MATLAB script codes and simulation models 

 

 

Figure B-1: Simulation model of the closed-loop and open-loop FPD+I controller. 
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Basic FPD+I Controller Script Code 

% ---------- BasicFuzzyController.m File ----------- 

% ------------- Basic Fuzzy Controller ------------- 

%      Load FPIDSim Model and plot step response 

% -------------------------------------------------- 

 

% Load simulation block 

 

open_system('FPIDSim'); 

 

% Read FLC inference system 

 

flcManual = readfis('flcManual'); 

 

% Run simulation 

 

sim('FPIDSim'); 

 

% Initializations 

 

format short; 

 

% Calculate open-loop step response characterstics 

% rist time, overshoot, settling time and steady state error 

 

open_loop_step_sinfo = stepinfo(openloopoutput, time, 1); 

open_loop_rise_time = open_loop_step_sinfo.RiseTime; 

open_loop_overshoot = open_loop_step_sinfo.Overshoot; 

open_loop_settling_time = open_loop_step_sinfo.SettlingTime; 

open_loop_ss_error = 1 - openloopoutput(2001); 

 

if open_loop_ss_error < 0 

    open_loop_ss_error = 0; 

end 

 

% Convert Numbers to Strings 

 

open_loop_rise_time_str = num2str(open_loop_rise_time,4); 

open_loop_overshoot_str = num2str(open_loop_overshoot,4); 

open_loop_settling_time_str = num2str(open_loop_settling_time,4); 

open_loop_ss_error_str = num2str(open_loop_ss_error,4); 

 

% Calculate closed-loop step response characterstics 

% rist time, overshoot, settling time and steady state error 

 

closed_loop_step_input_info = stepinfo(output,time, 1); 

closed_loop_rise_time = closed_loop_step_input_info.RiseTime; 

closed_loop_overshoot = closed_loop_step_input_info.Overshoot; 

closed_loop_settling_time = closed_loop_step_input_info.SettlingTime; 

closed_loop_ss_error = 1 - output(2001); 

 

if closed_loop_ss_error < 0 

    closed_loop_ss_error = 0; 

end 

 

% Convert Numbers to Strings 

closed_loop_rise_time_str = num2str(closed_loop_rise_time,4) ; 
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closed_loop_overshoot_str = num2str(closed_loop_overshoot,4); 

closed_loop_settling_time_str = num2str(closed_loop_settling_time,4); 

closed_loop_ss_error_str = num2str(closed_loop_ss_error,4); 

 

% Create figure window 

 

figure; 

 

% Plot Step input 

 

plot(time,stepoutput,'r'); 

 

% Plot other responses on the same graph 

 

hold on; 

 

% Plot open-loop step response 

 

plot(time,openloopoutput,'g'); 

 

% Plot closed-loop step response 

 

plot(time,output,'b'); 

 

% Add graph tags 

 

tagCollect = []; 

tag = ['Step Input'] ; 

tagCollect = [tagCollect,{tag}] ; 

 

tag = ['Open Loop',' - {\it t}{_r} = ' , open_loop_rise_time_str ,' - {\it M}{_p} = % ', 

open_loop_overshoot_str ,' - {\it SS Error} = ', open_loop_ss_error_str  ,' - {\it t}{_s} = 

', open_loop_settling_time_str] ; 

tagCollect = [tagCollect,{tag}] ; 

 

tag = ['Basic Fuzzy Controller', ' - {\it t}{_r} = ' , closed_loop_rise_time_str, ' - {\it 

M}{_p} = % ', closed_loop_overshoot_str, ' - {\it SS Error} = ', closed_loop_ss_error_str, ' 

- {\it t}{_s} = ', closed_loop_settling_time_str] ; 

tagCollect = [tagCollect,{tag}] ; 

 

legend(tagCollect,'Location', 'SouthOutside'); 

 

% Put axies labels 

 

xlabel('Time (sec)') ; 

ylabel('Measured Output'); 

axis([0,20,0,1.5]); 

 

set (gca,'XTick', 0:5:20); 

set (gca,'YTick', 0:0.25:1.5); 

 

grid on; 

hold off; 

 

%---------------- END ----------------------- 
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Mp and tr 3D Plot Script Code 

% ------------------- MpandTr3DPlot.m File -------------------- 

% --- 3D Plot of Maximum percentage overshoot and Rise time --- 

% -------------------- against GIE and GU --------------------- 

% ------------------------------------------------------------- 

 

% Load simulation block 

open_system('FPIDSim'); 

 

% Read FLC inference system 

flcManual = readfis('flcManual'); 

 

% Initializations 

 

z1=[];              % Overshoot 3D plot array 

z2=[];              % Rise time 3D plot array 

format long; 

 

% Set minimum, maximum and step size of GIE 

 

gieStepSize = 0.1; 

gieMin = 0; 

gieMax = 1; 

 

% Set minimum, maximum and step size of GU 

 

guStepSize = 0.1; 

guMin = 1; 

guMax = 50; 

 

gieLoop = 0; 

rtime = 0; 

ovshoot = 0; 

 

for gie = gieMin:gieStepSize:gieMax 

    gieLoop = gieLoop+1; 

 

    % Clear overshoot and rtime variables 

 

    rtime = 0; 

    ovshoot = 0; 

 

    % Set GIE value 

    set_param('FPIDSim/GIE','Gain',num2str(gie)); 

 

    guLoop = 0; 

 

    for gu = guMin:guStepSize:guMax 

        guLoop = guLoop+1; 

 

        % Set GU value 

        set_param('FPIDSim/GU','Gain',num2str(gu)); 

 

        % Run simulation for the new values of GIE and GU 

        sim('FPIDSim'); 

        % Calculate closed-loop overshhot and ris-time 

        stpinfo = stepinfo(output, time, 1); 
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        rtime = stpinfo.RiseTime; 

        ovshoot = stpinfo.Overshoot; 

 

        % if overshoot and rise time are not calculated then set them to Not a Number 

         

        if (length(output) < 2001) 

        ovshoot = NaN; 

        rtime = NaN; 

        end 

 

 

        z1(guLoop, gieLoop) = ovshoot; 

        z2(guLoop, gieLoop) = rtime; 

 

    end 

 

end 

 

% Set back the values of GIE and GU 

 

set_param('FPIDSim/GIE','Gain',num2str(1)) ; 

set_param('FPIDSim/GU','Gain',num2str(1)) ; 

 

% Creat a grid for x and y 

[x,y] = meshgrid(gieMin:gieStepSize:gieMax,guMin:guStepSize:guMax); 

 

% 3D plot of Overshoot 

 

figure 

surf(x,y,z1,'EdgeColor','none'); 

xlabel('GIE'); 

ylabel('GU'); 

zlabel('{\it M}{_p}(%)'); 

shading interp 

alpha(.6); 

view(-45,45); 

colorbar 

axis([0 gieMax 0 guMax]); 

 

% 3D plot of Rise time 

 

figure 

surf(x,y,z2, 'EdgeColor','none'); 

xlabel('GIE'); 

ylabel('GU'); 

zlabel('{\it t}{_r}(s)'); 

shading interp 

alpha(.6); 

view(45,45); 

colorbar 

axis([0 gieMax 0 guMax]); 

 

%---------------- END ----------------------- 
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Transient Response 3D Plot Script Code 

% ------------- TransientResponse3DPlot.m File ----------- 

% --- 3D Plot of Transient Response against GIE and GU --- 

% -------------------------------------------------------- 

 

 

% Load simulation block 

open_system('FPIDSim'); 

 

% Read FLC inference system 

flcManual = readfis('flcManual'); 

 

% Initializations 

 

z = []; % Transient Response 3D array 

 

% Set initial and step size of GIE 

 

gieStepSize = 0.1; 

gie = 1.1; 

 

% Set initial and step size of GU 

 

guStepSize = 3; 

gu = -2; 

 

format long; 

 

% Change value of GE 

 

for i = 1:1:11 

    gie = gie - gieStepSize; 

    gu = gu + guStepSize; 

 

    % Set GIE value 

    set_param('FPIDSim/GIE','Gain',num2str(gie)); 

    % Set GU value 

    set_param('FPIDSim/GU','Gain',num2str(gu)); 

 

    % Run simulation 

    sim('FPIDSim'); 

 

    % if transient response is not obtained set it to 

    % Not a Number 

 

    if (length(output) < 2001) 

        output = NaN; 

    end 

 

    z(1:1:2001, i) = output; 

 

end 

 

% Set back the values of GIE and GU 

 

set_param('FPIDSim/GIE','Gain',num2str(1)) ; 

set_param('FPIDSim/GU','Gain',num2str(1)) ; 
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% Creat a grid for x and y 

[x,y] = meshgrid(1:1:11,1:1:2001); 

 

% 3D plot of Transient Response 

 

surf(x,y,z,'FaceColor','red','EdgeColor','none') 

shading interp 

 

camlight left; lighting phong 

 

xlabel('Iteration'); 

ylabel('Time(s)'); 

zlabel('Output'); 

 

axis([1 11 0 2001]); 

set (gca,'XTick', 0:1:11); 

set (gca,'YTickLabel', {'0','5','10','15','20'}); 

alpha(.6); 

view(45,45); 

colorbar; 

 

%---------------- END ----------------------- 
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Auto-tuning Algorithm Script Code 

% -------------- AutoTuningAlgorithm.m File -------------- 

% ---------------- Auto Tuning Algorithm ----------------- 

% -------------------------------------------------------- 

 

global iteration_data; % Closed-loop characterstics for each iteration 

 

open_system('FPIDSim'); % Load simulation block 

 

% Set the gains to 1 

 

set_param('FPIDSim/GE','Gain','1'); 

set_param('FPIDSim/GCE','Gain','1'); 

set_param('FPIDSim/GIE','Gain','1'); 

set_param('FPIDSim/GU','Gain','1'); 

 

flcManual = readfis('flcManual'); %  Read FLC inference system 

 

sim('FPIDSim'); % Run simulation 

 

iteration = 1; 

 

% Plot initial step response and calculate the closed-loop characterstics 

 

[ISE, GCE, GIE, ovshoot] = PlotResponse(output, openloopoutput, stepoutput, time, iteration); 

 

measuredovershoot = ovshoot; 

 

if ovshoot < 1 

    measuredovershoot = 1; 

end 

 

% Define step sizes og GCE and GIE 

 

GCEstep = 0.1; 

GIEstep = 2; % times the initial value of GIE 

 

% If there is overshoot, then set the initial values of GU and GIE 

 

if (ovshoot > 0) 

    iteration = iteration + 1; 

    newGU = measuredovershoot; 

    newGIE = 1/(2*newGU); 

    lastISE = ISE; 

    lastovshoot = ovshoot; 

 

    % Set new values of GU and GIE 

 

    set_param('FPIDSim/GIE','Gain',num2str(newGIE)); 

    set_param('FPIDSim/GU','Gain',num2str(newGU)); 

 

    sim('FPIDSim'); % Run simulation 

 

    % Plot step response and calculate the closed-loop characterstics 

 

    [ISE, GCE, GIE, ovshoot] = PlotResponse(output, openloopoutput, stepoutput, time, 

iteration); 
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end 

 

% Tune GCE gain 

 

measuredGCE = str2num(GCE); 

 

GCEtuned = false; % Not tuned 

 

j = 0; 

 

while not (GCEtuned) 

 

    j = j+1; 

    iteration = iteration + 1; 

    lastISE = ISE; 

    lastovshoot = ovshoot; 

    lastGCE = str2num(GCE); 

    measuredGCE = str2num(GCE); 

 

    % Set new value of GCE 

 

    set_param('FPIDSim/GCE','Gain',num2str(measuredGCE-GCEstep)); 

 

    sim('FPIDSim');    % Run simulation 

 

    % Plot step response and calculate the closed-loop characterstics 

 

    [ISE, GCE, GIE, ovshoot] = PlotResponse(output, openloopoutput, stepoutput, time, 

iteration); 

 

    if (ISE > lastISE || ovshoot >lastovshoot) 

 

        GCEtuned = true; 

        set_param('FPIDSim/GCE','Gain',num2str(lastGCE)); 

        GCE = get_param('FPIDSim/GCE','Gain'); 

 

    end 

end 

 

iteration = iteration + 1; 

 

sim('FPIDSim'); % Run simulation 

 

% Plot step response and calculate the closed-loop characterstics 

 

[ISE, GCE, GIE, ovshoot] = PlotResponse(output, openloopoutput, stepoutput, time, iteration); 

 

% Tune GIE gain 

 

measuredGIE = str2num(GIE); 

newGIE = measuredGIE; 

GIEtuned = false; % Not tuned 

 

k=0; 

 

while not (GIEtuned) 

    k = k+1; 
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    iteration = iteration + 1; 

    lastISE = ISE; 

    lastovshoot = ovshoot; 

    lastGIE = str2num(GIE); 

    measuredGIE = str2num(GIE); 

    newGIE = GIEstep * measuredGIE; 

 

    % Set new value of GIE 

 

    set_param('FPIDSim/GIE','Gain',num2str(newGIE)); 

 

    sim('FPIDSim'); % Run simulation 

 

    % Plot step response and calculate the closed-loop characterstics 

 

    [ISE, GCE, GIE, ovshoot] = PlotResponse(output, openloopoutput, stepoutput, time, 

iteration); 

 

    if (ISE > lastISE || ovshoot >lastovshoot) 

        GIEtuned = true; 

        set_param('FPIDSim/GIE','Gain',num2str(lastGIE)); 

        GIE = get_param('FPIDSim/GIE','Gain'); 

    end 

end 

 

iteration = iteration + 1; 

 

% Run simulation 

 

sim('FPIDSim'); 

 

% Plot step response and calculate the closed-loop characterstics 

 

PlotResponse(output, openloopoutput, stepoutput, time, iteration); 

 

iteration_data = iteration_data (1:iteration, 1:10); 

 

%---------------- END ----------------------- 

  



154 

 

Disturbance Test Script Code 

% ---------- DisturbanceTest.m File ------------ 

% ----------- Step Disturbance Test ------------ 

% ---------------------------------------------- 

 

% Load simulation block 

 

open_system('FPIDSimDisturbanceTest'); 

 

flcManual=readfis('flcManual'); % Read FLC inference system 

 

sim('FPIDSimDisturbanceTest'); % Run simulation 

 

% Plot Step input 

 

subplot(3,1,1); 

plot(time,stepinput,'r','LineWidth',1.5); 

xlabel('Time') ; 

ylabel('Amplitute'); 

axis([0,100, 0,1.5]); 

set (gca,'XTick', 0:5:100); 

set (gca,'YTick', 0:0.5:1.5); 

 

tag = 'Step Input'; 

legend (tag); 

grid on; 

 

% Plot open-loop step response 

 

subplot(3,1,2); 

plot(time,disturbance,'m', 'LineWidth',1.5); 

xlabel('Time') ; 

ylabel('Amplitute'); 

axis([0,100,-1.5,1.5]); 

set (gca,'XTick', 0:5:100); 

set (gca,'YTick', -1.5:0.5:1.5); 

 

tag = 'Step Disturbance'; 

legend (tag); 

grid on; 

 

% Plot FLC step response 

 

subplot(3,1,3); 

plot(time,output,'b', 'LineWidth',1.5); 

xlabel('Time') ; 

ylabel('Amplitute'); 

axis([0,100,0,1.5]); 

set (gca,'XTick', 0:5:100); 

set (gca,'YTick', 0:0.5:1.5); 

 

tag = 'Closed-loop'; 

legend (tag); 

grid on; 

%---------------- END ----------------------- 
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Figure B-2: Simulation model of disturbance test. 
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C.  MATLAB Results 

 

Figure C-10: The 3D plot between Mp and the basic FPD+I gains (GIE, GU) for Case 2. 

 

 

Figure C-2: The 3D plot between tr and the basic FPD+I gains (GIE, GU) for Case 2. 
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Figure C-3: The 3D plot between Mp and the basic FPD+I gains (GIE, GU) for Case 3. 

 

 

 

 

Figure C-4: The 3D plot between tr and the basic FPD+I gains (GIE, GU) for Case 3. 
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Figure C-5: The 3D plot between Mp and the basic FPD+I gains (GIE, GU) for Case 4. 

 

 

 

 

Figure C-6: The 3D plot between tr and the basic FPD+I gains (GIE, GU) for Case 4. 
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Figure C-7 The 3D plot between Mp and the basic FPD+I gains (GIE, GU) for Case 5. 

 

 

 

 

Figure C-8: The 3D plot between tr and the basic FPD+I gains (GIE, GU) for Case 5. 
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Figure C-9: The transient response of Case 2 for different values of GIE and GU. 

 

 

Figure C-10: The transient response of Case 3 for different values of GIE and GU. 



161 

 

 

Figure C-11: The transient response of Case 4 for different values of GIE and GU. 

 

 

 

Figure C-12: The transient response of Case 5 for different values of GIE and GU. 
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Figure C-13: Closed-loop step response of Case 1 using the basic FPD+I controller. 

 

 

 

Figure C-14: Closed-loop step response of Case 2 using the basic FPD+I controller. 
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Figure C-15: Closed-loop step response of Case 4 using the basic FPD+I controller. 

 

 

 

 

Figure C-16: Closed-loop step response of Case 5 using the basic FPD+I controller. 
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Figure C-17: Closed-loop step responses for Case 1 using the auto-tuning algorithm for step sizes of GCE = 0.1 and GIE = twice of initial value 

of GIE. 
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Figure C-18: Closed-loop step responses for Case 2 using the auto-tuning algorithm  

for step sizes of GCE = 0.1 and GIE = twice of initial value of GIE. 
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Figure C-19: Closed-loop step responses for Case 4 using the auto-tuning algorithm for step sizes of GCE = 0.1 and GIE = twice of initial value 

of GIE. 
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Figure C-20: Closed-loop step responses for Case 5 using the auto-tuning algorithm for step sizes of GCE = 0.1 and GIE = twice of initial value 

of GIE. 
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Table C-1: Controller gains’ values and closed-loop characteristics of Case 1 using the 

auto-tuning algorithm for step sizes of GCE = 0.1 and GIE = twice of the initial value of 

GIE. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp ts SSE 

1 1 1 1 1 1.193 2.042 16.291 8.913 0.003 

2 1 1 0.031 16.291 0.646 2.466 0 4.901 0.007 

3 1 0.9 0.031 16.291 0.593 2.238 0 4.541 0.008 

4 1 0.8 0.031 16.291 0.540 2.004 0 4.165 0.009 

5 1 0.7 0.031 16.291 0.489 1.764 0 3.770 0.010 

6 1 0.6 0.031 16.291 0.437 1.517 0 3.351 0.011 

7 1 0.5 0.031 16.291 0.389 1.260 0 2.899 0.012 

8 1 0.4 0.031 16.291 0.344 0.989 0 2.394 0.013 

9 1 0.3 0.031 16.291 0.304 0.705 0 1.758 0.014 

10 1 0.2 0.031 16.291 0.275 0.475 0.329 1.828 0.015 

11 1 0.3 0.031 16.291 0.304 0.705 0 1.758 0.014 

12 1 0.3 0.061 16.291 0.301 0.689 0 1.451 0.009 

13 1 0.3 0.123 16.291 0.296 0.661 0 1.193 0.001 

14 1 0.3 0.246 16.291 0.293 0.617 1.894 0.985 -0.004 

15 1 0.3 0.123 16.291 0.296 0.661 0 1.193 0.001 
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Table C-2: Controller gains’ values and closed-loop characteristics of Case 2 using the 

auto-tuning algorithm for step sizes of GCE = 0.1 and GIE = twice of the initial value of 

GIE. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp ts SSE 

1 1 1 1 1 1.382 2.359 19.696 10.309 0.011 

2 1 1 0.025 19.696 0.649 2.498 0 4.829 0.006 

3 1 0.9 0.025 19.696 0.594 2.271 0 4.455 0.007 

4 1 0.8 0.025 19.696 0.541 2.040 0 4.068 0.008 

5 1 0.7 0.025 19.696 0.488 1.804 0 3.664 0.009 

6 1 0.6 0.025 19.696 0.437 1.562 0 3.240 0.010 

7 1 0.5 0.025 19.696 0.387 1.313 0 2.791 0.010 

8 1 0.4 0.025 19.696 0.340 1.054 0 2.307 0.011 

9 1 0.3 0.025 19.696 0.297 0.779 0 1.758 0.012 

10 1 0.2 0.025 19.696 0.263 0.512 0 0.927 0.013 

11 1 0.1 0.025 19.696 0.252 0.382 7.567 1.588 0.013 

12 1 0.2 0.025 19.696 0.263 0.512 0 0.927 0.013 

13 1 0.2 0.051 19.696 0.261 0.506 0 0.877 0.009 

14 1 0.2 0.102 19.696 0.259 0.497 0 0.817 0.003 

15 1 0.2 0.203 19.696 0.256 0.479 1.354 0.751 -0.003 

16 1 0.2 0.102 19.696 0.259 0.497 0 0.817 0.003 
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Table C-3: Controller gains’ values and closed-loop characteristics of Case 4 using the auto-

tuning algorithm for step sizes of GCE = 0.1 and GIE = twice of the initial value of GIE. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp ts SSE 

1 1 1 1 1 0.929 1.203 22.351 6.376 0 

2 1 1 0.022 22.351 0.603 2.288 0 4.463 0.006 

3 1 0.9 0.022 22.351 0.549 2.058 0 4.075 0.007 

4 1 0.8 0.022 22.351 0.496 1.824 0 3.673 0.008 

5 1 0.7 0.022 22.351 0.441 1.585 0 3.254 0.008 

6 1 0.6 0.022 22.351 0.390 1.340 0 2.815 0.009 

7 1 0.5 0.022 22.351 0.338 1.085 0 2.346 0.010 

8 1 0.4 0.022 22.351 0.289 0.817 0 1.830 0.011 

9 1 0.3 0.022 22.351 0.247 0.539 0 1.147 0.011 

10 1 0.2 0.022 22.351 0.219 0.339 6.165 1.487 0.012 

11 1 0.3 0.022 22.351 0.247 0.539 0 1.147 0.011 

12 1 0.3 0.045 22.351 0.246 0.532 0 1.045 0.008 

13 1 0.3 0.089 22.351 0.244 0.520 0 0.921 0.003 

14 1 0.3 0.179 22.351 0.241 0.499 0.772 0.806 -0.002 

15 1 0.3 0.089 22.351 0.244 0.520 0 0.921 0.003 
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Table C-4: Controller gains’ values and closed-loop characteristics of Case 5 using the 

auto-tuning algorithm for step size of GCE = 0.1 and GIE = twice of the initial value of 

GIE. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp ts SSE 

1 1 1 1 1 0.975 1.108 29.767 7.858 0 

2 1 1 0.017 29.767 0.591 2.256 0 4.317 0.005 

3 1 0.9 0.017 29.767 0.536 2.032 0 3.922 0.005 

4 1 0.8 0.017 29.767 0.482 1.803 0 3.517 0.006 

5 1 0.7 0.017 29.767 0.427 1.571 0 3.100 0.006 

6 1 0.6 0.017 29.767 0.377 1.333 0 2.670 0.007 

7 1 0.5 0.017 29.767 0.324 1.087 0 2.219 0.008 

8 1 0.4 0.017 29.767 0.274 0.832 0 1.740 0.008 

9 1 0.3 0.017 29.767 0.228 0.562 0 1.188 0.009 

10 1 0.2 0.017 29.767 0.193 0.324 2.495 0.714 0.009 

11 1 0.3 0.017 29.767 0.228 0.562 0 1.188 0.009 

12 1 0.3 0.034 29.767 0.227 0.556 0 1.128 0.006 

13 1 0.3 0.067 29.767 0.226 0.545 0 1.036 0.002 

14 1 0.3 0.134 29.767 0.224 0.527 0.504 0.914 -0.002 

15 1 0.3 0.067 29.767 0.226 0.545 0 1.036 0.002 
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D. LabVIEW Results  

 

 

 

Figure D-1: The basic FPD+I controller settings and step response of Case 1. 
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Figure D-2: The basic FPD+I controller settings and step response of Case 2.
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Figure D-3: The basic FPD+I controller settings and step response of Case 4.
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Figure D-4: The basic FPD+I controller settings and step response of Case 5. 
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Figure D-5: Closed-loop step response for Case 1 using the auto-tune algorithm.
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Figure D-6: Closed-loop step response for Case 2 using the auto-tune algorithm.          
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Figure D-7: Closed-loop step response for Case 4 using the auto-tune algorithm.
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Figure D-8: Closed-loop step response for Case 5 using the auto-tune algorithm
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Table D-1: Controller gains’ values and closed-loop characteristics of Case 1 using the 

auto-tuning algorithm. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp 

1 1 1 1 1 1.186 2.028 16.384 

2 1 1 0.031 16.384 0.647 2.467 0 

3 1 0.9 0.031 16.384 0.594 2.238 0 

4 1 0.8 0.031 16.384 0.541 2.005 0 

5 1 0.7 0.031 16.384 0.488 1.765 0 

6 1 0.6 0.031 16.384 0.437 1.518 0 

7 1 0.5 0.031 16.384 0.388 1.216 0 

8 1 0.4 0.031 16.384 0.344 0.988 0 

9 1 0.3 0.031 16.384 0.3 0.699 0 

10 1 0.2 0.031 16.384 0.272 0.47 0.697 

11 1 0.3 0.031 16.384 0.3 0.699 0 

12 1 0.3 0.061 16.384 0.296 0.683 0 

13 1 0.3 0.122 16.384 0.29 0.655 0 

14 1 0.3 0.244 16.384 0.287 0.612 2.606 

15 1 0.3 0.122 16.384 0.29 0.655 0 
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Table D-2: Controller gains’ values and closed-loop characteristics of Case 2 using the 

auto-tuning algorithm. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp 

1 1 1 1 1 1.374 2.352 19.595 

2 1 1 0.026 19.595 0.651 2.502 0 

3 1 0.9 0.026 19.595 0.597 2.275 0 

4 1 0.8 0.026 19.595 0.543 2.044 0 

5 1 0.7 0.026 19.595 0.489 1.808 0 

6 1 0.6 0.026 19.595 0.437 1.566 0 

7 1 0.5 0.026 19.595 0.386 1.316 0 

8 1 0.4 0.026 19.595 0.338 1.056 0 

9 1 0.3 0.026 19.595 0.295 0.788 0 

10 1 0.2 0.026 19.595 0.261 0.51 0 

11 1 0.1 0.026 19.595 0.251 0.385 8.031 

12 1 0.2 0.026 19.595 0.261 0.51 0 

13 1 0.2 0.051 19.595 0.258 0.504 0 

14 1 0.2 0.102 19.595 0.254 0.493 0 

15 1 0.2 0.204 19.595 0.252 0.475 2.064 

16 1 0.2 0.102 19.595 0.254 0.493 0 
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Table D-3: Controller gains’ values and closed-loop characteristics of Case 4 using the 

auto-tuning algorithm. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp 

1 1 1 1 1 0.924 1.203 22.258 

2 1 1 0.022 22.258 0.6 2.284 0 

3 1 0.9 0.022 22.258 0.545 2.054 0 

4 1 0.8 0.022 22.258 0.491 1.82 0 

5 1 0.7 0.022 22.258 0.438 1.581 0 

6 1 0.6 0.022 22.258 0.386 1.336 0 

7 1 0.5 0.022 22.258 0.335 1.081 0 

8 1 0.4 0.022 22.258 0.287 0.813 0 

9 1 0.3 0.022 22.258 0.245 0.537 0 

10 1 0.2 0.022 22.258 0.217 0.339 6.282 

11 1 0.3 0.022 22.258 0.245 0.537 0 

12 1 0.3 0.044 22.258 0.243 0.53 0 

13 1 0.3 0.088 22.258 0.24 0.519 0 

14 1 0.3 0.176 22.258 0.238 0.498 1.224 

15 1 0.3 0.088 22.258 0.24 0.519 0 
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Table D-4: Controller gains’ values and closed-loop characteristics of Case 5 using the 

auto-tuning algorithm. 

 

Ite
ra

tio
n
 

Controller Gain 

ISE 

Closed-loop Characteristics 

GE GCE GIE GU tr Mp 

1 1 1 1 1 0.97 1.108 30.096 

2 1 1 0.017 30.096 0.582 2.253 0 

3 1 0.9 0.017 30.096 0.53 2.029 0 

4 1 0.8 0.017 30.096 0.477 1.8 0 

5 1 0.7 0.017 30.096 0.424 1.567 0 

6 1 0.6 0.017 30.096 0.371 1.329 0 

7 1 0.5 0.017 30.096 0.32 1.085 0 

8 1 0.4 0.017 30.096 0.27 0.83 0 

9 1 0.3 0.017 30.096 0.225 0.56 0 

10 1 0.2 0.017 30.096 0.19 0.325 2.487 

11 1 0.3 0.017 30.096 0.225 0.56 0 

12 1 0.3 0.034 30.096 0.223 0.554 0 

13 1 0.3 0.068 30.096 0.221 0.544 0 

14 1 0.3 0.136 30.096 0.219 0.525 0.776 

15 1 0.3 0.068 30.096 0.221 0.544 0 
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E.  LabVIEW VIs 

The sections below illustrate the main LabVIEW structures and VIs used in the design of the 

intelligent wireless fuzzy controller network which are extracted from the Help file of 

LabVIEW 2011. 

 

LabVIEW Control Design and Simulation Module 

The Control Design and Simulation Module provides tools to create models from first principles using transfer 

function, state-space, or zero-pole-gain representation. You also can analyse and synthesize open-loop and closed-

loop model behaviour, design controllers, simulate online and offline systems, and conduct physical implementations.  

 

Fuzzy System Designer  

Requires: PID and Fuzzy Logic Toolkit 

Use this dialog box to design and test fuzzy systems. You also can use the Fuzzy Logic VIs to design, 

control, and modify fuzzy systems programmatically. 

 

While Loop 

Owning Palette: Structures 

Requires: Base Package 

Repeats the subdiagram inside it until the conditional terminal, an input terminal, receives a particular 
Boolean value. The Boolean value depends on the continuation behaviour of the While Loop. Right-click the 
conditional terminal and select Stop if True or Continue if True from the shortcut menu. You also can wire 

an error cluster to the conditional terminal, right-click the terminal, and select Stop on Error or Continue 
while Error from the shortcut menu. The While Loop always executes at least once. 

 

The iteration (i) terminal provides the current loop iteration count, which is zero for the first iteration. If 
iteration count exceeds 2,147,483,647, or 231-1, the iteration terminal remains at 2,147,483,647 for all 
further iterations. If you need to keep count of more than 2,147,483,647 iterations, you can use shift 

registers with a greater integer range. 

If you select a While Loop on the Execution Control Express VIs and Structures palette and place it on the 

block diagram, a stop button also appears on the block diagram and is wired to the conditional terminal. If 

you select a While Loop on the Structures palette and place it on the block diagram, a stop button does 

not appear. 

After you create a While Loop, you can use shift registers to pass values from one iteration to the next. If 
you wire an array to a While Loop, you can read and process every element in that array by enabling auto-
indexing. 

http://zone.ni.com/reference/en-XX/help/370401H-01/lvpidmain/fsd_tut_home/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpid/fuzzylogictitle/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpidmain/fuzzyvi_tut_home/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpidmain/fuzzyvi_tut_home/
http://zone.ni.com/reference/en-XX/help/371361H-01/glang/structures/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/shift_registers_feedback_node/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/shift_registers_feedback_node/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvexpress/execution_control_vis/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/creating_while_loops/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/using_shift_registers_to_r/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/auto_indexing_1/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/auto_indexing_1/
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To convert a While Loop to a For Loop, right-click the While Loop and select Replace with For Loop from 

the shortcut menu.(ETS, VxWorks, Windows) To convert a While Loop to a Timed Loop, right-click the 
While Loop and select Replace with Timed Loop from the shortcut menu. 

 

Control & Simulation Loop 

Owning Palette: Simulation VIs and Functions 

Requires: Control Design and Simulation Module 

Executes the simulation diagram until the Control & Simulation Loop reaches the simulation final time or 
until the Halt Simulation function stops the execution programmatically. You must place 

all Simulation functions within a Control & Simulation Loop or in a simulation subsystem. You also can place 
simulation subsystems within a Control & Simulation Loop or another simulation subsystem, or you can 
place simulation subsystems on a block diagram outside a Control & Simulation Loop or run the simulation 

subsystems as stand-alone VIs. 

 

 

The Control & Simulation Loop has an Input Node and an Output Node. Use the Input Node to configure 
simulation parameters programmatically. You also can configure these parameters interactively using 

the Configure Simulation Parameters dialog box. Access this dialog box by double-clicking the Input Node or 
by right-clicking the border and selecting Configure Simulation Parameters from the shortcut menu. 

 

FL Fuzzy Controller VI  

Owning Palette: Fuzzy Logic VIs 

Requires: PID and Fuzzy Logic Toolkit 

Implements a fuzzy logic controller for the fuzzy system you specify. 

By default, this VI implements a fuzzy logic controller for a single-input single-output (SISO) fuzzy system. 
You must manually select the polymorphic instance you want to use. 

Implements a fuzzy logic controller for a multiple-input single-output (MISO) fuzzy system. 

 

 

 

fuzzy system in specifies the complete information for a fuzzy system. Wire the fuzzy system 

out output from another VI to the fuzzy system in input of this VI. 

 

input values specifies the values of the input variables in the fuzzy system. The fuzzy logic 

controller evaluates the output value(s) according to the input values and the rules of the fuzzy 

http://zone.ni.com/reference/en-XX/help/371894F-01/lvsim/simulation/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvsim/sim_haltsimulation/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvsim/simulation/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvsimconcepts/sim_c_subsys/#Running_a_Subsystem_in_a_Simulation_Loop
http://zone.ni.com/reference/en-XX/help/371894F-01/lvsimconcepts/sim_c_subsys/#Running_a_Subsystem_Outside_a_Simulation_Loop
http://zone.ni.com/reference/en-XX/help/371894F-01/lvsimconcepts/sim_c_subsys/#Running_a_Subsystem_as_a_Stand-Alone_VI
http://zone.ni.com/reference/en-XX/help/371894F-01/lvsim/sim_configparams/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpid/fuzzylogictitle/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpidmain/fuzzy_systems/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/selectingdefaultinstpolyvi/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpid/fuzzy_system_parameters/
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system. 

 

error in describes error conditions that occur before this node runs. This input provides standard 

error in functionality. 

 

rule-invoked value? indicates whether the fuzzy logic controller invoked a rule to evaluate the 

corresponding output value. output value is zero either if the fuzzy controller evaluates the output 

variable to zero based on the input value(s) and the rules of the fuzzy system or if the fuzzy logic 

controller does not invoke any rule to evaluate the output variable. rule-invoked value? indicates, 

when FALSE, that the rule base is incomplete. 

 

fuzzy system out returns the complete information for a fuzzy system. Wire the fuzzy system 

out output of this VI to the fuzzy system in input of another VI. 

 

output value returns the value of the output variable in the fuzzy system. The fuzzy logic controller 

evaluates the output value according to the input value(s) and the rules of the fuzzy system. 

If output value is zero, use the rule-invoked value? indicator to determine whether the fuzzy 

controller evaluated the corresponding output variable to zero or if the fuzzy logic controller did not 

invoke any rule to evaluate the output variable. 

 

rule weights returns the rule weights that the fuzzy logic controller uses to scale the membership 

functions of the output linguistic variables. The implication method specifies how the fuzzy logic 

controller performs this scaling. For each rule, the rule weight is the truth value of the aggregated 

antecedent multiplied by the degree of support you specify for the rule. 

 

error out contains error information. This output provides standard error out functionality. 

FL Load Fuzzy System VI  

Owning Palette: Fuzzy Logic VIs 

Requires: PID and Fuzzy Logic Toolkit 

Loads a fuzzy system from a .fs file. Use the FL Save Fuzzy System VI to save the .fs file after you make 

any modifications. You also can load and save .fs files in the Fuzzy System Designer. 

 

 

 

file path specifies the path to the .fs file. You must specify an absolute path. If you specify an 

empty or relative path, this VI returns an error. 

 

error in describes error conditions that occur before this node runs. This input provides standard 

error infunctionality. 

 

fuzzy system out returns the complete information for a fuzzy system. Wire the fuzzy system 

out output of this VI to the fuzzy system in input of another VI. 

http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpid/fuzzy_system_parameters/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpidmain/conseq_implication/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpid/fuzzylogictitle/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpidmain/fuzzy_systems/
http://zone.ni.com/reference/en-XX/help/370401H-01/lvpid/fl_save_fuzzy_system/
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error out contains error information. This output provides standard error out functionality. 
 

CD Construct Transfer Function Model VI 

Owning Palette: Model Construction VIs 

Requires: Control Design and Simulation Module 

Creates a transfer function representation of a system using the Sampling Time (s),Numerator, Denominator, and Delay. 

This VI also produces a transfer function model which specifies the data in symbolic form. You must manually 

select the polymorphic instance to use. 

Details   

 

 

 

Sampling Time (s) defines whether the model represents a continuous-time system or a discrete-

time system. If the model represents a continuous-time system, Sampling Time (s) must equal 0. 

If the model represents a discrete-time system, Sampling Time (s) must be greater than 0 and 

equal to the sampling rate, in seconds, of the discrete system. A value of -1 specifies that Sampling 

Time (s) is irrelevant. The default is 0. 

 

Note  If you use the inputs to create a continuous-time system, setting the Sampling 

Time (s) to a value greater than 0 does not yield the discrete-time equivalent of the 

system. You must use the CD Convert Continuous to Discrete VI to convert the continuous-

time system to the discrete-time equivalent of the system. 

 

 

Numerator contains the constant coefficients, in ascending order, of a polynomial that represents 

the numerator of a SISO transfer function. The coefficients take the following 

form: b0 + b1s + ... +bmsm. 

 

Denominator contains the constant coefficients, in ascending order, of a polynomial that represents 

the denominator of a SISO transfer function. The coefficients take the following 

form: a0 + a1s + ... +ans
n. 

 

Delay is the transport time delay that might exist in the system. Refer to the LabVIEW Control 

Design User Manual for more information about delays. 

 

error in describes error conditions that occur before this node runs. This input provides standard 

error in functionality. 

 

Transfer Function Model is the system model this VI creates. When the sampling time is zero (for 

http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/model_construct_vis/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvcdsimshrd/model_definitions/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/selectingdefaultinstpolyvi/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/selectingdefaultinstpolyvi/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/const_trans_func_model/#details
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/convert_cont_to_discrete/
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continuous-time), the Numerator and Denominator collectively represent the mathematical 

model (in Laplace transformation) of a dynamic system H(s) that provides the relationship between 

the input U(s) and output Y(s) of the system. To access and modify the data in the model, use 

the Model Information VIs. 

 

error out contains error information. This output provides standard error out functionality. 

CD Draw Transfer Function Equation VI 

Owning Palette: Model Construction VIs 

Requires: Control Design and Simulation Module 

Displays the transfer function equation of the model. Wire data to the State-Space Model input to 

determine the polymorphic instance to use or manually select the instance. 

 

Note  Real-time targets do not support this VI. 

Details   

 

 

Format Coefficients specifies how to format the resulting equation. You can enter any of 

the LabVIEW format specifier syntax elements. The default value is %#_g, which removes trailing 

zeros and specifies that LabVIEW uses fractional or scientific notation depending on the exponent of 

the number. 

 

display format specifies the format in which this VI displays the equation.  

0 Descending 

1 Ascending 

2 Negative Power 

 

 

Transfer Function Model contains a mathematical representation of and information about the 

system for which this VI draws an equation. 

 

Output (row) specifies the index number of the output row from which to draw the transfer function 

matrix. The index is zero-based. The default is –1, which draws all outputs. 

 

Input (column) specifies the index number of the input column from which to draw the transfer 

http://zone.ni.com/reference/en-XX/help/371894F-01/lvcdsimshrd/model_definitions/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvcdsimshrd/model_definitions/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/model_info_vis/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/model_construct_vis/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/selectingdefaultinstpolyvi/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/draw_tf_equation/#details
http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/format_specifier_syntax/#Format_Specifiers_Syntax_Elements
http://zone.ni.com/reference/en-XX/help/371894F-01/lvcdsimshrd/model_definitions/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/model_info_vis/
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function matrix. The index is zero-based. The default is –1, which draws all inputs. 

 

error in describes error conditions that occur before this node runs. This input provides standard 

error in functionality. 

 

Origin specifies the upper-left position of the equation this VI draws. 

 

x specifies the x-coordinate of the origin. The default value is 10. 

 

y specifies the y-coordinate of the origin. The default value is 10. 

 

 

Function Name specifies the function this VI draws. For example, if you enter H, this VI 

displays H(s)= for continuous equations and H(z)= for discrete equations. 

 

Equation draws a picture of the model equation this VI defines. 

 

Draw Area Size indicates the size of the area in the picture control this VI uses to draw the model 

equation. 

 

Width indicates the width of the area in the picture control this VI uses to draw the model 

equation. 

 

Height indicates the height of the area in the picture control this VI uses to draw the model 

equation. 

 

 

error out contains error information. This output provides standard error out functionality. 

CD Step Response VI  

Owning Palette: Time Response VIs 

Requires: Control Design and Simulation Module 

Calculates the output of the system when a step input excites it. This VI assumes the initial states of the 
system to be zero. Wire data to the State-Space Model input to determine the polymorphic instance to use 

or manually select the instance. 

Details   

 

 

 

Response Graph Ref is a reference to the Step Response graph. Response Graph Ref configures 

the x-scale, y-scale, and legend properties. If you want to use the default settings or customize the 

settings for these properties, do not wire a value to this input. 

http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/using_standard_error_in/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvconcepts/using_standard_error_out/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/time_response_vis/
http://zone.ni.com/reference/en-XX/help/371361H-01/lvhowto/selectingdefaultinstpolyvi/
http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/step_response/#details


190 

 

 

Transfer Function Model contains a mathematical representation of and information about the 

system of which this VI calculates step response. 

 

Time Range contains information about the initial time, final time, and time step. 

 

t0 is the initial time in seconds in the Step Response graph. The default is –1. 

 

dt is the constant interval between successive values in the time vector. The default is –1. 

 

tf is the final time in seconds up to which this VI calculates the step response. The default is 

–1. 

 

 

Initial Conditions specifies the initial values of the states or outputs. The default is 0. 

 

error in describes error conditions that occur before this node runs. This input provides standard 

error in functionality. 

 

Response Plots Index specifies the index number of the inputs and outputs of the system. 

 

Input # is the index number of the specific input to the system. This VI displays the 

response to this input on the Step Response graph. The index is zero-based. 

 

Output # is the index number of the specific output of the system that this VI displays on 

the Step Response graph. The index is zero-based. 

 

 

Step Response Graph displays a graph that shows the forced response of the system when the 

forcing function is a step. For MIMO systems, this VI determines the step response by applying a 

step on one input at a time and letting other inputs to the system be zero. 

 

Step Response Data returns information about the step response. To access the Step Response 

Data, use the CD Get Time Response Data VI. 

 

Time is the uniformly-spaced time vector against which this VI plots the step response and 

the state trajectories. 

 

Outputs Data returns data about the time response of the outputs to the inputs. Refer to 

the Details section for more information about the Outputs Data. 

 

States Data returns data about the time response of the states to the inputs. For transfer 

function and zero-pole-gain models, this array is empty. Refer to the Details section for 

more information about the States Data. 

 

 

error out contains error information. This output provides standard error out functionality. 

http://zone.ni.com/reference/en-XX/help/371894F-01/lvcdsimshrd/model_definitions/
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CD Parametric Time Response VI  

Owning Palette: Time Response VIs 

Requires: Control Design and Simulation Module 

Calculates parametric information, such as rise time, peak time, settling time, steady-state gain, overshoot, 
and peak value of an input model based on time response data. If you use the Internal instances of this VI, 
this VI internally calculates the time response data for which it calculates the parametric information. If you 

use the External instances of this VI, you must specify the time response data for which this VI calculates 
the parametric information. Wire data to the State-Space Model or Time Range inputs to determine the 

polymorphic instance to use or manually select the instance. 

Details   

 

 

 

Type of Analysis specifies the type of time response analysis this VI performs on the model.  

0 Step Response (default)—Specifies this VI uses a step response to obtain the parametric 

information. 

1 Impulse Response—Specifies this VI uses an impulse response to obtain the parametric 

information. 

2 Initial Response—Specifies this VI uses an initial response to obtain the parametric information. 

 

 

Transfer Function Model contains a mathematical representation of and information about the 

system of which this VI calculates parametric information. 

 

Time Range contains information about the initial time, final time, and time step. 

 

t0 is the initial time in seconds in the Step Response graph. The default is –1. 

 

dt is the constant interval between successive values in the time vector. The default is –1. 

 

tf is the final time in seconds up to which this VI calculates the step response. The default is 

–1. 

 

 

Initial Conditions are the initial values the parametric response uses. 

 

error in describes error conditions that occur before this node runs. This input provides standard 

error in functionality. 

 

http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/time_response_vis/
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Rise Time Thresholds (%) specifies the lower and upper thresholds that define the rise time this 

VI returns. By default, the rise time is the time required for the system response to rise from 10% to 

90% of the settling point. 

This VI calculates rise time by performing a step response and measuring the time required for the 

system response to rise from the Lower percentage of the final steady-state value to 

the Upper percentage of the final steady-state value. If a system has a step response where the 

initial overshoot is in a direction opposite to that of the final steady-state value, that portion of the 

step response does not affect the calculation of the rise time. 

 

Lower specifies the lower limit of the rise time threshold. The default value is 10%. 

 

Upper specifies the upper limit of the rise time threshold. The default value is 90%. 

 

 

Settling Time Threshold (%) defines the percentage in which the signal must fall to be within 

range of the steady-state value. The default is 1%. Therefore, the settling time is the time required 

for the signal to fall within a 1% range of the steady-state value. 

 

Time Response displays an XY graph containing the time response of the model. 

 

Time Response Parametric Data returns the parametric time response data this VI measures from 

the Time Response Data. 

 

Rise Time (s) is the time required for the dynamic system response to rise from 10% of its 

final value to 90% of its final value. 

 

Peak Time (s) is the time required for the dynamic system response to reach the peak 

value of its first overshoot. 

 

Settling Time (s) is the time required for the response to reach 1% of its final value. 

 

Overshoot is the dynamic system response value that most exceeds unity, expressed as a 

percent. 

 

Steady-State Gain is the final value of the signal after transient responses decay. 

 

Peak value returns the value at which the maximum absolute value of the time response 

occurs. 

 

 

Time Response Data returns the data before this VI parameterizes it. To access the Time 

Response Data, use the CD Get Time Response Data VI. 

 

Time returns the uniformly-spaced time vector against which this VI plots the impulse, 

http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/get_time_response_data/
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initial, or step response and the state trajectories. 

 

Outputs Data returns data about the time response of the outputs to the inputs. Refer to 

the Details section for more information about the Outputs Data. 

 

States Data returns data about the time response of the states to the inputs. For transfer 

function and zero-pole-gain models, this array is empty. Refer to the Details section for 

more information about the States Data. 

 

 

error out contains error information. This output provides standard error out functionality. 

Array Max & Min Function  

Owning Palette: Array Functions 

Requires: Base Package 

Returns the maximum and minimum values found in array, along with the indexes for each value. 

The connector pane displays the default data types for this polymorphic function. 

Details    

 

 

 

 

array can be an n-dimensional array of any type. 

 

max value is of the same data type and structure as the elements in array. 

 

max index(es) is the index for the first max value. If array is multidimensional, max index(es) is 
an array whose elements are the indexes for the first maximum value in array. 

 

min value is of the same data type and structure as the elements in array. 

 

min index(es) is the index for the first min value. If array is multidimensional, min index(es) is 
an array whose elements are the indexes for the first minimum value in array. 

Threshold 1D Array Function  

Owning Palette: Array Functions 

Requires: Base Package 

Interpolates points in a 1D array that represents a 2D non-descending graph. This function 
compares threshold y to the values in array of numbers or points starting at start index until it finds a pair of 

consecutive elements such that threshold y is greater than the value of the first element and less than or 

equal to the value of the second element. 

The connector pane displays the default data types for this polymorphic function. 

Details   

 

http://zone.ni.com/reference/en-XX/help/371894F-01/lvctrldsgn/parametric_time_response/#details
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array of numbers or points can be an array of numbers or an array of points where each point is a 

cluster of x- and y-coordinates. If this input is an array of points, this function uses the second 

elements in the clusters, or the y-coordinates, to obtain a fractional index that it then uses to 

interpolate the corresponding x value. 

 

threshold y is the threshold value for the function. If threshold y is less than or equal to the array 

value at start index, the function returns start index for fractional index or x. If threshold y is 

greater than every value in the array, the function returns the index of the last value. If the array is 

empty, the function returns NaN. 

 

start index must be a number. The default is 0, which means the function returns the result 

calculated from the entire array, rather than a specified section of the array. 

 

fractional index or x is the interpolated result LabVIEW calculates for the array of numbers or 

points 1D input array. For example, suppose array of numbers or points is an array of four 

numbers [4, 5, 5, 6], start index is 0, and threshold y is 5. The fractional index or x is 1, 

corresponding to the index of the first value of 5 the function finds. Suppose the array elements are 

2.3, 5.2, 7.8, 7.9, 10.0, the start index is 0, and the threshold y is 6.5. The output is 1.5 because 

6.5 is halfway between 5.2 (index 1) and 7.8 (index 2). If threshold y is 7 for the same set of 

numbers, the output is 1.69. If threshold y is 14.2, start index is 5, and the values in the array 

starting at index 5 are 9.1, 10.3, 12.9, and 15.5, threshold y falls between elements 7 and 8 

because 14.2 is midway between 12.9 and 15.5. The value for fractional index or x is 7.5, that is, 

halfway between 7 and 8. If the array input consists of an array of points where each point is a 

cluster of x- and y-coordinates, the output is the interpolated x value corresponding to the 

interpolated position of threshold y among the y-coordinates, rather than the fractional index of the 

array. If the interpolated position of threshold y is midway between the y values at indexes 4 and 5 

of the array with x values of –2.5 and 0 respectively, the output is not an index value of 4.5 as it 

would be for a numeric array, but rather an x value of –1.25. In other words, this function returns 

the interpolated x value associated with the given y value if you graphed the points.  

This function works the same for arrays of numbers as it does for arrays of points. If you have an 

array of numbers, this function assumes the x-coordinates are the same as the indexes of the array 

itself. In other words, this function assumes the points are uniformly spaced. 
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DAQ Assistant Express VI 

Creates, edits, and runs tasks using NI-DAQmx.  

 

javascript:launchSharedHelp('mxcncpts.chm::/tasksNIDAQmx.html')
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