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Abstract

Incident management aims to save human lives, miti-
gate the effect of accidents, prevent damages, to men-
tion a few of their benefits. Efficient coordination of
rescue team members, allocation of available resources,
and appropriate responses to the realtime unfolding of
events is critical for managing incidents successfully.
Coordination involves a series of decisions and event
monitoring, usually made by human coordinators, for
instance task definition, task assignment, risk assess-
ment, etc. Each elementary decision can be described by
a named action (e.g. boarding an ambulance, assigning
a task). Taken as a whole, the team coordinating an inci-
dent response can be seen as a decision-making system.
In this paper, we discuss how invaluable assistance can
be brought to such a system using automated planning.
In consultation with experts we have derived a set of re-
quirements from which we provide a formal specifica-
tion of the domain. Following the specification, we have
developed a prototype domain model and evaluated it
empirically. Here we present the results of this evalua-
tion, along with several challenges (e.g uncertainty) that
we have identified.

Introduction
Automated planning is a research discipline that addresses
the problem of generating a totally- or partially-ordered se-
quence of actions that transform the environment from some
initial state to a desired goal state. Automated planning has
been successfully applied for decades in several areas, in-
cluding space exploration (Ai-Chang et al. 2004) or machine
tool calibration (Parkinson, Longstaff, and Fletcher 2014), to
mention a couple.

Incident management consists of time- and resource-
critical operations that aim to save human lives, mitigate
the effect of traffic or industrial accidents, prevent excessive
damages, to mention a few of their benefits. In other words,
incident management involves groups of people who need
to achieve close coordination to carry out one or more time-
critical tasks. Carrying out such tasks may be very stress-
ful even for well trained professionals. Efficient coordina-
tion of rescue team members, as well as efficient allocation
of available resources, are key determinants of success. In-
cident management is typically planned, coordinated, and

monitored from rescue centres by human coordinators. Res-
cue operation planning involves a series of decisions such
as which team member will do what task, whether a team
should reach an incident location by car or by helicopter,
and so on. Making these decision “manually” can be inef-
ficient and error prone, even for well experienced profes-
sionals. Automated rescue operation planning can both be
used to assist people during an actual live incident and to
provide simulation for training exercises. The technological
requirements for either case are more or less the same; the
system must be able to represent objects with various static
and temporal properties, i.e., anything from an unchanging
building or a vehicle whose only change is from position x to
y (and associated energy consumption) to an accident victim
whose vitals are continuously changing via highly complex
processes and a tornado causing vast changes to the envi-
ronment and conditions in a short amount of time. Planning
thus involves making decisions about events over which res-
cue teams have control, while being constrained by those out
of their control.

Existing approaches for rescue operation planning (and
execution) consist of coordination of (heterogeneous) au-
tonomous vehicles to perform given tasks (e.g. surveillance
of some area) (Doherty and Heintz 2011; George, Sujit,
and Sousa 2011). Plans are often sequences of waypoints
that are passed to the autonomous vehicles, and emphasis
is given on “low-level” planning, i.e., planning of elemen-
tary vehicles’ manoeuvres. For incident management plan-
ning, “high-level” planning (e.g. releasing a trapped victim)
is sufficient. The most related “high-level” planning work is
about road traffic incident management (Shah et al. 2013),
which also inspired our work. Incident management is more
general, although abstract concepts are similar to those in
traffic incident management.

In this paper, we present our ongoing work involving
automated planning in incident management. Typically, in-
cidents are managed by coordinators whose decisions are
based on experience and are made in a semi-reactive way.
Automated planning can provide a complete overview on
the incident management task, i.e., from the initial situ-
ation when incident(s) are reported to the goal situation
when incidents are successfully dealt with. This is espe-
cially useful when the coordinator has to deal with situa-
tions that are unusual or when training of some specific skills



of rescue teams is designed. Automated planning can be
straightforwardly used in incident management since each
elementary decision the incident coordinator must take (e.g.
a paramedic1 boards the ambulance2) can be formalised
as an action. Plans generated by planning engines provide
the coordinator (partially ordered) sequences of elementary
decisions that must be taken during the rescue operations.
However, these plans must be provided quickly (a few sec-
onds latency at most) and in a good quality (nearly opti-
mal), otherwise it might have a negative impact on success
of these operations. We have derived a set of requirements,
in consultation with experts, from which we provide a for-
mal specification of the domain. Following the specification
we have developed a prototype domain model using which
we are able to generate plans quickly and in reasonable qual-
ity as we empirically verified. Of course, incident manage-
ment control requires a complex system involving planning
and execution episodes overseen by human coordinators. We
have designed an architecture of such a system and have
identified several challenges, mostly due to uncertainty, that
we also discuss in this paper.

Related Work

Search and Rescue (SAR), which can be understood as a
subset of incident management, is the search for and provi-
sion of aid to people in need (often after a disaster). SAR
is a well established research topic. The research in this
area is promoted by the Robocup-Rescue project1 that was
motivated by earthquake in Kobe in 1995. This led to the
RoboCup Rescue Robot and Simulation competitions that
have been held since 2000 (Akin et al. 2013). Most of the
SAR approaches consist of (semi)-autonomous robotic sys-
tems that are especially useful in “high-risk” areas such
as Fukushima after the 2011 incident (Sato, Muraoka, and
Hozumi 2014). Besides systems coordinating multiple het-
erogeneous vehicles (Doherty and Heintz 2011), a system
supporting human-robot teams in disaster management sce-
narios has been recently developed and deployed (Kruijff
et al. 2014). SAR often takes place in military operations.
Comirem (Smith, Hildum, and Crimm 2005), a system in-
corporating mixed-initiative planning and scheduling in or-
der to allocate resources more efficiently and with strong
emphasis to the user interface, has been applied to Special
Operational Forces planning.

Traffic accident management, which deals with situa-
tions after traffic accidents in order to provide aid to in-
volved victims as well as to restore the situation into nor-
mal, can be also understood as a subset of incident man-
agement. Here, the need is to coordinate a team of human
agents (paramedics, policemen etc.) rather than robots, so
there might not be a need for “low level” control. Apply-
ing AI planning in Traffic accident management has been
studied from the perspective of stochastic integer program-
ming (Ozbay et al. 2013) as well as of “classical” domain-
independent planning (Shah et al. 2013).

1http://www.robocuprescue.org/

Figure 1: An architecture of an incident management system

Incident Management and Control

A system for incident management and control requires a
planning/execution platform that is overseen by a human co-
ordinator. Similar existing platforms such as T-REX (Rajan
and Py 2012), which is run on-board of autonomous vehi-
cles, or NEPTUS (Dias et al. 2006), which is a command and
control system for autonomous vehicles, provide a frame-
work for planning and executing operations for these vehi-
cles. In our case, we do not need a “low-level” planning and
control for coordinating autonomous vehicles, since human
agents (rescue team members) are able to autonomously ex-
ecute “high-level” actions (e.g. drive from one place to an-
other). Our system architecture, depicted in Figure 1 is in-
spired by the architecture of T-REX.

The Planner component consists of one or more plan-
ning engines and one or more domain models. It receives
the planning problem descriptions from the Controller com-
ponent and provides solution plans back to it.

The Executor component consists of rescue team mem-
bers who execute actions provided by the Controller compo-
nent or the human coordinator (the Operator component).
During the operation (executing the actions) rescue team
members inform the Controller about their progress (e.g.
whether the action has been successfully completed) as well
as about the state of the environment (e.g. whether an inci-
dent victim is seriously injured).

The Operator component refers to a human expert who
monitors the operations, setting up goals and, eventually,
gives orders to the rescue team members (the Executor com-
ponent). The latest gives the human coordinator to overrule
the system in case of some unexpected event, emergency or
error in the system.

The Controller component is the ‘brain’ of the system. It
receives information about the operation progress from the
Executor component and stores information about the cur-
rent state of the environment. It accepts mission descriptions
(goals) from the Operator component from which it gener-
ates planning problems that are sent to the Planner compo-
nent. Plans retrieved from the Planner component are dis-
patched to the Operator and Executor components. The Con-
troller component also monitors whether execution of plans
matches what has been planned. In case of discrepancies,
or intervention from the Operator component, re-planning is
triggered.



Domain Specification
Given the requirements from experts, we provide a formal
conceptualisation of the incident management domain. The
way how the conceptualisation is made was inspired by work
of Shah et al. (2013). The ontology has three main cate-
gories: object types, relation and function types, and action
types. The incident management domain is specified on an
abstraction and expressiveness level that is relatively inde-
pendent of specific scenarios and planning engines. We will
consider time in our specification, so hereinafter let T be a
set of time-stamps that refer to a given scenario (a planning
episode). Hereinafter, the constant ⊥ will refer to an ‘unde-
fined value’.

The main abstract object types in the incident manage-
ment domain are as follows:

• Assets X = Xs ∪ Xm are divided into two cate-
gories, static assets Xs (e.g. buildings) and mobile assets
Xm (e.g. vehicles). Assets can accommodate artefacts or
agents (see below).

• Agents A are intelligent entities that can interact with as-
sets or artefacts (e.g rescue team members).

• Artefacts Y are various objects that cannot act on their
own (e.g. incident victims, first aid kits). Artefact can be
loaded to assets or carried by agents.

• Locations L are ‘points of interest’ (e.g towns, incident
locations).

Notice that agents were not considered in work of Shah et
al., since it was assumed that agents are “connected” to as-
sets (e.g. a paramedic is always in an ambulance). Here, we
distinguish between agents and assets, since an asset can ac-
commodate agents of various capabilities (e.g. a helicopter
can take paramedics, policemen or rescuers).

The main abstract relation and function types in the inci-
dent management domain are as follows:

We define a relation conn ⊆ (Xm∪A)×L×L for deter-
mining whether a mobile asset or agent can move between
locations. We define a function at : (X ∪ A ∪ Y ) × T →
L ∪ {⊥} referring to a position of an object in a given time-
stamp. Clearly for a static asset the function at is constant
(does not change its value with time). We define a func-
tion in : Y × T → (X ∪ A ∪ {⊥}) referring to sit-
uations when an artefact is loaded to an asset or carried
by an agent (or ⊥ if not). Similarly, we define a function
inside : A×T → X ∪{⊥} referring to whether an agent is
inside some asset or not (⊥). Each asset or agent may have
a limited capacity which, informally said, stands for a max-
imum number (or weight) of loaded or carried artefacts (or
agents) in the same time. Formally, a capacity is defined as
a function cap : X ∪ A → N, volume of agents or artefacts
is represented by a function vol : A ∪ Y → N, and, finally,
fullness of agents or assets in a given time-stamp is defined
as a function full : (X ∪A)× T → N.

We also define properties as functions characterising a
state of an object in a given time-stamp. Properties can reach
values that are specific for a given class of objects. For ex-
ample, a ‘status’ of an incident victim might have one of the

following values: GREEN (no injury), YELLOW (minor in-
juries), RED (severe injuries), BLACK (dead). Agents have
knowledge about the environment that can be obtained by
observation or communication with other agents. Let a finite
set K be an universal knowledge base. We define a function
k : A× T → 2K referring to a knowledge of agents.

The environment specified by object, relation and func-
tion types can be modified by actions, specified via precon-
ditions (what must be met in order to apply the action) and
effects (what is changed in the environment after applying
the action). We define the following action types which mod-
ify the environment of the incident management domain. We
assume that the action is applied in a time-stamp t and lasts
for ∆t time.
move(e, l1, l2) moves a mobile asset or agent e ∈ Xm ∪ A

from a location l1 to a location l2 (l1, l2 ∈ L). As a
precondition it must hold that (e, l1, l2) ∈ conn and
at(e, t) = l1. The effect of applying the action is that
at(e, t + ∆t) = l2 and ∀t′ ∈ (t, t + ∆t) : at(e, t′) = ⊥.

load(z, x, l) loads an artefact or agent z ∈ Y ∪A to an asset
x ∈ X in a location l ∈ L. As a precondition it must hold
that at(z, t) = l, ∀t′ ∈ [t, t+∆t] : at(x, t′) = l and ∀t′ ∈
[t, t + ∆t) : full(x, t′) ≤ cap(x) − vol(z). The effect
of applying the action is that in(z, t + ∆t) = x (resp.
inside(z, t + ∆t) = x), ∀t′ ∈ (t, t + ∆t) : in(z, t′) = ⊥
(resp. inside(z, t′) = ⊥), ∀t′ ∈ (t, t+∆t] : at(z, t′) = ⊥
and full(x, t + ∆t) = full(x, t) + vol(z).

unload(z, x, l) unloads an artefact or agent z ∈ Y ∪A from
an asset x ∈ X in a location l ∈ L. As a precondi-
tion it must hold that ∀t′ ∈ [t, t + ∆t] : at(x, t′) = l
and in(z, t) = x (resp. inside(z, t) = x). The ef-
fect of applying the action is that at(z, t + ∆t) = l,
∀t′ ∈ (t, t+∆t] : in(z, t′) = ⊥ (resp. inside(z, t′) = ⊥)
and full(x, t + ∆t) = full(x, t)− vol(z).

fetch(y, a, l) allows an agent a ∈ A to fetch an artefact y ∈
Y in a location l ∈ L. As a precondition it must hold
that at(y, t) = l, ∀t′ ∈ [t, t + ∆t] : at(a, t′) = l and
∀t′ ∈ [t, t + ∆t) : full(a, t′) ≤ cap(a) − vol(y). The
effect of applying the action is that in(y, t + ∆t) = a,
∀t′ ∈ (t, t + ∆t) : in(y, t′) = ⊥ and ∀t′ ∈ (t, t + ∆t] :
at(y, t′) = ⊥.

drop(y, a, l) drops an artefact y ∈ Y carried by an agent
a ∈ A in a location l ∈ L. As a precondition it must hold
that ∀t′ ∈ [t, t + ∆t] : at(a, t′) = l and in(y, t) = a.
The effect of applying the action is that at(y, t+∆t) = l,
∀t′ ∈ (t, t + ∆t] : in(y, t′) = ⊥ and full(a, t + ∆t) =
full(a, t)− vol(y).

communicate(a1, a2,m) sends a message m ∈ K from an
agent a1 to an agent a2 (a1, a2 ∈ A). As a precondition it
must hold that m ∈ k(a1, t) and communication must be
possible between a1 and a2 in a time interval [t, t + ∆t].
The effect of applying this action is that k(a2, t + ∆t) =
k(a2, t) ∪ {m}.

observe(a,m) allows an agent a ∈ A to get an elemen-
tary knowledge m ∈ K by observing the environment.
The effect of applying this action is that k(a, t + ∆t) =
k(a, t) ∪ {m}.



(:durative-action firstaid
:parameters (?p - paramedic

?f - firstaidkit
?v - victim
?l - location)

:duration (= ?duration 20)
:condition (and

(over all (at ?p ?l))
(over all (at ?v ?l))
(over all (in ?f ?p))
(at start (available ?p))
(at start (injured ?v)))

:effect (and
(at start (not (available ?p)))
(at end (available ?p))
(at end (not (injured ?v)))
(at end (aided ?v)))

)

Figure 2: The First-aid action in PDDL.

interact(a, l, . . . ) changes a property (or properties) of an
object (or objects). At least one agent (a ∈ A) must
be involved and be present in a location l (l ∈ L), i.e.,
∀t′ ∈ [t, t + ∆t] : at(a, t′) = l. Also, a cannot be simul-
taneously involved in another interact action.

From the description of the action types we can derive the
following invariants: ∀y ∈ Y, ∀t ∈ T : at(y, t) = ⊥ ⇔
in(y, t) 6= ⊥, ∀a ∈ A,∀t ∈ T : inside(a, t) 6= ⊥ ⇒
at(a, t) = ⊥ (the opposite implication does not hold be-
cause the agent might be ‘on the way’), ∀z ∈ A ∪ X,∀t ∈
T : full(z, t) ≤ cap(z), and ∀z ∈ A ∪ X,∀t ∈ T :
full(z, t) =

∑
{x|in(z,t)=x∨inside(z,t)=x} vol(x).

Clearly, the above specification does not include all possi-
ble constraints – further constraints relate to specific assets,
agents or artefacts. For example, incident victims (as a sub-
class of artifacts) can be loaded to ambulances and cannot be
loaded to fire trucks (both are subclasses of mobile assets).
The interact action type is specified in a very general way
here, generalising a heterogeneous set of actions (e.g. giving
first aid, extinguishing fire etc.)

A fundamental challenge in incident management is deal-
ing with the situation immediately after an incident (or inci-
dents) has been reported. The goal of a incident management
team or coordinator is to restore the situation to the normal
order (e.g. providing first aid to incident victims and trans-
porting them to hospitals).

Prototype Domain Model
Following the domain specification given above we have
developed a prototype domain model. The domain is de-
veloped in PDDL 2.1 (Fox and Long 2003), following the
same requirements as in the Temporal Track on the Inter-
national Planning Competitions, as these requirements are
widely supported by temporal planning engines.

In our domain model, we consider the following types of
static assets: Hospital, Fire station, Rescue station, Police

...
0.09: (move ambulance0 reykjavik hella) [50]
1.10: (board policeman0 helicopter0 reykjavik) [1]
1.11: (fetch paramedic0 firstaidkit2 reykjavik) [1]
1.12: (fetch paramedic1 firstaidkit0 reykjavik) [1]
1.13: (fetch rescuer0 rope0 reykjavik) [1]
1.14: (fetch rescuer1 rope1 hella) [1]
2.15: (move helicopter0 reykjavik landmanalaguar) [15]
2.16: (firstaid paramedic0 firstaidkit2 victim4 reykjavik) [20]
2.17: (firstaid paramedic1 firstaidkit0 victim1 reykjavik) [20]
2.18: (rescue rescuer0 rope0 victim0 reykjavik) [20]
2.19: (rescue rescuer1 rope1 victim2 hella) [20]
17.20: (debark policeman0 helicopter0 landmanalaguar) [1]
18.21: (move helicopter0 landmanalaguar hekla) [5]
18.22: (secure policeman0 landmanalaguar) [10]
...

Figure 3: A fragment of a sample plan.

station and Building; mobile assets: Ambulance, Police car,
Fire truck, Rescue car and Helicopter; agents: Paramedic,
Fireman, Policeman, Rescuer; and, finally, artefacts: Victim,
First-aid-kit, Extinguisher, Rescue equipment.

We have also defined the following properties that come
on top of the relations and function defined in the previous
section. Assets can be onfire or extinguished. Locations can
be unsecured or secured. Finally, victims can be injured or
aided, and trapped or released.

Actions are derived from the action types introduced in
the previous section. In case of action types move, unload,
fetch and drop, actions in our domain model are encoded
straightforwardly according to descriptions of the action
types. For the action type load we have implemented two
variants of actions. One is specific for victims, i.e., victim
can be loaded to a mobile asset only if the victim is re-
leased and aided; the other is general and encoded straight-
forwardly from the load action type. We have implemented
four actions that extends the interact action type:

secure(p, l) allows a policeman p to secure a location l, i.e.,
the property of l changes from unsecured to secured.

extinguish(f, e, x, l) allows a fireman f to extinguish an as-
set x by an extinguisher e in a location l. It must hold that
∀t′ ∈ [t, t + ∆t] : at(x, t′) = l ∧ in(e, t′) = f . The
effect is that the property of x changes from onfire to ex-
tinguished.

firstaid(p, fa, v, l) allows a paramedic or rescuer p to give a
first aid to a victim v using a first-aid-kit fa in a location
l. It must hold that ∀t′ ∈ [t, t + ∆t] : at(v, t′) = l ∧
in(fa, t′) = p. The effect is that the property of v changes
from injured to aided. The PDDL encoding of this action
is depicted in Figure 2.

release(r, re, v, l) allows a rescuer r to release a victim v
using a rescue equipment re in a location l. It must hold
that ∀t′ ∈ [t, t + ∆t] : at(v, t′) = l ∧ in(re, t′) = r. The
effect is that the property of v changes from trapped to
released.

Notice that action types sense and communicate are not
implemented. This is due to the requirements for a deter-
ministic and fully observable environment. Clearly, sensing
and communication are needed for environments that are
partially observable. Moreover, it creates contingency (non-
deterministic action effects). Such issues are discussed later.



LPG-td Yahsp3-MT
T Q T Q

Small 0.62±0.42 116±24 0.16±0.18 143±27
Medium 3.22±1.82 178±63 0.11±0.10 249±63
Large 5.45±1.79 419±83 0.39±0.39 384±86

Table 1: Results showing runtime of the planners in seconds
(T) and quality (make-span) of the firstly generated plans
(Q) with respect to different size of problems.

Small Medium Large
Time 1.35±2.10 4.25±3.38 3.60±2.54
Quality 109±20 197±41 313±47

Table 2: Results showing runtime of Yahsp3-MT in seconds
and quality (make-span) of the highest quality generated
plans with respect to different size of problems.

Our prototype domain model deals with the following in-
cidents: an asset in fire, a location to be secured from public,
and injured and/or trapped victims. The goal is to manage
these incidents such that: the asset in fire is extinguished,
the location is secured, and the victim is rescued and even-
tually transported to the hospital (if his/her injury is serious).
A fragment of a sample plan is depicted in Figure 3.

Experimental Evaluation
For the experimental evaluation of our approach we used a
scenario consisting of: 5 locations, 1 hospital, 1 ambulance,
1 helicopter, 2 of each of the remaining types of assets, 2 of
each agents, 3 first-aid-kits, 2 extinguishers and 2 units of
rescue equipment. Each agent is ‘loaded’ to “its” asset (e.g.
a police man is in the Police station) and mobile assets are in
the same locations as “their” static assets (e.g. an ambulance
is in the same location as the hospital). Then, we randomly
select some locations where we set their property to ‘un-
secured’, generate n victims and distribute them randomly
along the locations with randomly assigned properties to in-
jured and/or trapped. Finally, we generate k buildings ran-
domly distributed along the locations with properties set to
onfire. The goal is to change all unsecured locations to se-
cured, buildings being on-fire to extinguished, victims being
trapped to released, and finally, victim changed from being
injured to aided and some of them to be delivered to the hos-
pital.

We defined 3 classes of problems: “Small” (n = 5,
k = 2), “Medium” (n = 10, k = 3) and “Large” (n = 20,
k = 5). We generated 5 problems per each class and for
solving them we used four state-of-the-art planning engines:
Yahsp3-MT (Vidal 2014), LPG (Gerevini, Saetti, and Serina
2003), Popf2 (Coles et al. 2010) and Optic (Benton, Coles,
and Coles 2012). We have observed that Popf2 as well as
Optic do not scale well in our domain model, so the time
needed to find solutions considerably increases with prob-
lem size. On the other hand, LPG as well as Yahsp scales
well and time needed to extract the first solution is within a
few seconds even for the large instances as shown in Table 1.
LPG and Yahsp thus comply with one of the required criteria

– obtain solutions in at most a few seconds. However, quality
of first solutions is often not very good. On the other hand,
both LPG and Yahsp can incrementally improve solutions,
so it is possible to obtain solutions of better quality. We took
a closer look on Yahsp, where we have observed that solu-
tions can improve considerably, as depicted in Table 2, even
while keeping quite strict cutoff of 10 seconds.

Our domain model does not require concurrency, so it
is possible to solve problems as classical ones and then
schedule actions from the plans in order to minimise make-
span. This seems to be the main reason that extended clas-
sical planners (LPG and Yahsp) performed much better than
“purely” temporal planners (Popf2 and Optic).

Given the performance of Yahsp, we can obtain solutions
in reasonable quality (however, sub-optimal) in a very little
time even for relatively large problems. Generated plans to
large extent comply with expectations of the domain experts.
This gave us a promising outlook for applying AI planning
in incident management. Clearly, it applies for “standard”
situations where it is not necessary to involve a large number
of entities and/or consider complex cooperative actions (e.g.
releasing the victim while giving him/her first aid). For dis-
aster management, where thousands of entities are involved,
we might use a different domain model, which is more ab-
stract. For considering cooperative actions, a modified do-
main model is also required.

Challenges
We have identified several challenges related to application
of AI planning in incident management. These challenges
can be divided into three categories, namely Task Complex-
ity, Uncertainty and Goal prioritisation. Most of these chal-
lenges can possibly be overcome without necessarily chang-
ing the domain model we have presented, or introducing
more expressiveness (e.g. conformant planning). Testing this
belief is planned in our future work.

Task Complexity
In real world scenarios, it is common to have a huge amount
of objects being possibly in a plenty of different relations.
Hence, we might have an excessive number of possible ac-
tions do deal with. AI planning is generally intractable, so
it is impossible to handle very large models. However, we
do not have to represent everything in very detail, we can
either abstract or relax. For example, the firstaid action is
a good example of abstraction. Although there are various
ways how to give the first aid to incident victims, which
mostly depends on what sort of injuries they have, profes-
sional paramedics know how to give the first aid (i.e. execute
the firstaid action) without need to provide details. Also, we
do not have to, for example, consider road traffic, so we can
relax it. In normal conditions, it can marginally affect the
driving time of rescue vehicles. If traffic is very heavy, we
might consider, in the worst case, the road being blocked,
and if there is no alternative that we might assume that rele-
vant locations are not connected for the rescue vehicles (we
apply abstraction).

Our prototype domain model, therefore, does not have
to deal with an excessive number of objects. Problems are



thus relatively easy to solve. Possible issues are related to
accuracy of the model and understanding the correct rep-
resentation of the objects. In our case, most of actions are
restricted to a single agent. However, in some case having
more agents to perform an action might be more appropri-
ate. For instance, if a victim has a serious injury, then more
paramedics might give the victim the first aid. Also, an ac-
tual meaning of “rescue equipment” might vary regarding
the situation in which it is used. Rescuers might use a differ-
ent equipment for rescuing a victim in the mountains than in
the forest. While the latter issue can be tackled by some sort
of meta-reasoning, the former needs an enhanced domain
model.

Unsolvable Problems
Solvability of the problem cannot be guaranteed. The prob-
lem might become unsolvable if, for example, some location
is unreachable, or some kind of artefact is not present (e.g.
fire extinguisher). In these cases the system can easily find
the reason and notify the mission coordinator, so s/he can
remove problematic goals.

Similarly, we cannot guarantee that the solution will be
retrieved in a given time limit. The reason might be that the
problem is too large (too many goals), or there are some spe-
cific constraints that makes the problem too hard for a plan-
ner. Although we believe that this is an unlikely scenario, if
it occurs, the coordinator has to take over the control. In par-
ticular, the coordinator might decide to control the mission
manually, or remove some (less important) goals in order to
make the problem easier.

Uncertainty
In real world scenarios, unexpected situations may arise just
before, or during, the operation being carried out. While
there is always a human coordinator who can overrule the
system, the system must be able to appropriately react on
such situations.

Bad weather is often an issue for incident management.
Although weather might be rather unpredictable in long term
(days), it can be well predictable for short-term (hours).
Since incident management is usually of short-term, weather
be considered in the problem description by providing some
restrictions (e.g. a helicopter cannot fly to locations affected
by T-storms).

It might not be known how long some actions will take.
For example, giving first aid to a victim with minor injuries
will take much less time than first aid to a victim with se-
vere injuries. However, severity of victim’s injuries might
not be very well known, since incidents are often reported
with many inaccuracies. Therefore, several plans consider-
ing different action durations (e.g. optimistic, realistic and
pessimistic estimation) might be generated. If these plans
vary widely the human coordinator may decide which plan
will be executed.

Often, complete information about the environment may
not be available and thus we need sensing actions (e.g. “ob-
serve location X”). Sensing actions lead to non-deterministic
contingencies. To make it deterministic we might consider

the most likely outcome of the sensing action. If the ac-
tual outcome is different we might re-plan. Alternatively, we
might provide plans for every outcome of the sensing actions
(unless there are too many possible outcomes).

Goal Prioritisation
Another problem might be prioritising of some goals. It
might be the case, for example, that life of one of the victim
is in danger, so the victim has to be rescued as quickly as
possible. If there are more victims in different locations the
planner might not consider priorities while planning when
it optimises for ‘make-span’. Of course, there is a possi-
bility to put priorities into the problem definition and force
the planner to optimise for them. However, such a feature
is not widely supported by planners. A possible solution to
the prioritisation issue is to isolate goals with a very high
priority and generate plans achieving only these goals. The
remaining goals can be achieved in a separate plan, where,
of course, objects (e.g. agents) that are involved in the for-
mer plan will not be used.

Conclusion
In this paper, we have derived a set of requirements from
which we have conceptualised a formal specification of the
incident management domain. Following the specification
we have developed a prototype domain model and evaluated
it by using state-of-the-art planning engines. We have shown
that it is possible to solve “common-size” problems in a rea-
sonable time (up to a few seconds) and in decent quality
(short ‘make-span’), so the preliminary results indicated a
promising direction of our work. We have identified several
challenges, most of them related to uncertainty issues, and
showed how to deal with most of them without the neces-
sity to extend our model as it stands to support more ex-
pressive features. On the other hand, in situation with higher
level of uncertainty it might be useful to exploit probabilis-
tic planning (state-of-the-art probabilistic planning engines
accept domain and problem specification in RDDL (Sanner
2011)). Developing an RDDL domain model will be our fu-
ture work.

This work being intended as part of a larger system, we
plan to integrate our domain model (and some planning en-
gines) into a planning and execution simulation framework.
Then we plan to test it on some real cases in order to de-
termine how plans retrieved by planning engines using our
domain model differ from plans provided by mission coordi-
nators. We believe that it will provide us with further insights
that will help us to develop and deploy the system.
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