University of Huddersfield Repository

Bevan, Adam and Molyneux-Berry, Paul

Optimisation of Wheelset Maintenance: Current Research Activities

Original Citation

This version is available at http://eprints.hud.ac.uk/24375/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Optimisation of Wheelset Maintenance – Current Research Activities

Modern Railways
28th November 2014

Paul Molyneux-Berry, Adam Bevan
Institute of Railway Research, University of Huddersfield
Background

• Wheelsets are expensive:
 – Manufacturing
 – Reprofiling
 – Inspections
 – Renewal
 – Environmental impact
 – Costs of trains out of service

• Strong demand to reduce the rate of wheel damage
 – Extend wheel reprofiling intervals
 – Better wheelset life
 – Lower costs
Wheelset Research

• Research projects relating to wheelset damage and maintenance practices include:
 – Influence of changes in material properties on observed damage
 – Optimisation of wheelset maintenance to reduce whole-system costs
 – Investigating the influence of route and vehicle design and maintenance policy on wheel tread damage
 – Assessment of alternative wheel profiles, considering both whole-system costs and running safety
 – Categorisation of wheel damage mechanisms to improve identification and selection of appropriate mitigation

• This presentation provides an overview of some of these research areas
Survey of Wheel Tread Damage

- Wide-ranging survey of wheel tread damage types and maintenance practices undertaken in-collaboration with RSSB, WMG, V/T SIC and ATOC
- Questionnaire review on passenger fleets
 - Wheel tread damage
 - Wheelset maintenance
 - Excellent response, >90\% of all UK passenger vehicles
- Follow-up visits/calls to depots and wheel lathes
 - Detailed discussions and observations of damaged wheels
- Collate and analyse responses
 - Fed back to check data and identify any inconsistencies
- ‘Workshops’ held at maintenance depots
 - Presented results
 - Further discussions and feedback
Reprofiling Intervals

![Diagram showing percentage of fleets in mileage range vs. average mileage between wheel reprofiling for different categories such as Tread-braked, Regional DMU, Intercity DMU, Commuter DMU, and different types of EMUs.]

- Tread-braked
- Regional DMU
- Intercity DMU
- Commuter DMU
- Intercity EMU
- Locos
- Coaches

The x-axis represents the average mileage between wheel reprofiling, while the y-axis shows the percentage of fleets in a mileage range.
Reprofiling Intervals

• Typical wheelset reprofiled 3 or 4 times
 – Depends on damage type and depth
 – Scheduled at a distance interval, or based on condition monitoring
 – Wheelset renewed at minimum diameter
 – Average reprofiling interval is a good indicator of wheel life

• Longest fleet-average interval ≈ 10× shortest

• Intercity trains generally better than commuter trains
 – Operating conditions (speed, curve distribution)
 – Wheel materials

• Older tread-braked trains are worst

• Potential for costs savings and improved fleet availability
Example EMU Wheel Life

- Similar train architecture – various route characteristics and maintenance practices/constraints
Interaction of Wear and Damage

- Following initial flange wear - depth of cut on the lathe to restore the profile shape remains constant
- RCF cracks propagate more rapidly as the mileage increases
- Deeper cut required to remove RCF damage at higher mileages
- Optimum turning interval exists where material removal to restore profile shape is the same as required to remove RCF damage
Cut Depth to Recover Flange Wear

- Example radial material loss during turning to recover profile shape

Running Distance – 61,000 mile
0.6mm diameter loss due to wear
2.5mm cut depth to restore profile

Running Distance – 178,000 mile
2.0mm diameter loss due to wear
2.7mm cut depth to restore profile
Wheelset Maintenance Costs

• Important to understand potential costs and savings from implementing measures to extend wheelset life
• Knowledge of the dominant damage mechanisms, constraints and costs are essential for identifying benefits and cost impact
• Tools such as RSSB/NR’s *Wheelset Management Model (VTISM)* can help to support a business case
Categorisation of Damage

- RSSB research project T963 developed a *Wheel Tread Damage Guide*

- This guide provides:
 - Common basis for categorising wheel tread damage
 - Information on causes and mechanisms of wheel tread damage
 - Methods for managing wheel damage, maximising life and minimising costs
 - Industry case studies
Observations

• Route characteristics and maintenance practices have a large influence on wheelset life
 – In some cases more significant than the design parameters of the train

• Maintenance constraints resulting from design aspects are also important
 – e.g. bearing life, bogie overhaul periodicity and parity limits

• Maintainers who keep detailed wheel condition and maintenance records, managed and optimised their practices, achieved much better wheel life than those who did not
Reprofiling may be scheduled on a regular-interval preventive basis, or using condition monitoring techniques:
- Both methods can be effective
- Mileage-based reprofiling tends to be carried out more frequently, but may remove less material on the lathe

Obvious ‘quick wins’ could give good financial return:
- Solving WSP problems to prevent flats
- Provision of effective flange lubrication
- Best practice at the wheel lathe to optimise cut depths

With flats and flange wear solved, RCF is often the limiting damage mechanism:
- Can be managed by preventive reprofiling at an optimised interval
- Can be reduced by the use of an alternative wheel profile, suspension characteristic or premium wheel steel
RCF Cracks in Wheels

- Many factors influence RCF crack growth rates in wheels
 - Material properties, train type, operating/environmental conditions, position of wheelset on train
- Research being conducted to investigate changes in material properties and residual stresses during the life of a wheel
- Neutron diffraction used to measure distribution of strains and stresses in 3 entire railway wheels
- Initial results suggest that stresses are redistributed within the wheel rim during its life as material is removed and plastic flow occurs
Conclusions

- Benefits of managing and analysing wheel condition and maintenance records have been demonstrated
 - Bringing together maintainers of similar fleets helped to share best practice
 - It is expected that wheelset life can be improved on many fleets, with resultant cost savings

- A guidance document for optimising wheelset life has been developed
 - To assist maintainers in categorising and reducing wheel damage
 - Available to RSSB members through SPARK
 - Some maintainers have incorporated this into their maintenance documentation

- Feedback is requested to support future development