
University of Huddersfield Repository

Vallati, Mauro, Chrpa, Lukáš and Kitchin, Diane E.

Portfolio-based Planning: State of the Art, Common Practice and Open Challenges

Original Citation

Vallati, Mauro, Chrpa, Lukáš and Kitchin, Diane E. (2015) Portfolio-based Planning: State of the 
Art, Common Practice and Open Challenges. AI Communications, 28 (4). pp. 717-733. ISSN 0921-
7126 

This version is available at http://eprints.hud.ac.uk/id/eprint/24291/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Portfolio-based Planning: State of the Art,
Common Practice and Open Challenges

April 28, 2015

Mauro Vallati
Lukáš Chrpa
Diane Kitchin

Abstract
In recent years the field of automated planning has significantly advanced and

several powerful domain-independent planners have been developed. However,
none of these systems clearly outperforms all the others in every known bench-
mark domain. This observation motivated the idea of configuring and exploiting
a portfolio of planners to perform better than any individual planner: some recent
planning systems based on this idea achieved significantly good results in experi-
mental analysis and International Planning Competitions. Such results let us sup-
pose that future challenges of the Automated Planning community will converge
on designing different approaches for combining existing planning algorithms.

This paper reviews existing techniques and provides an exhaustive guide to
portfolio-based planning. In addition, the paper outlines open issues of existing
approaches and highlights possible future evolution of these techniques.

Introduction
Automated Planning is one of the most prominent AI challenges; it has been studied
extensively for several decades and led to many real-world applications (see, e.g., [20]).
During the last decade, Automated Planning has achieved significant advancements.
However, while several powerful domain-independent planners have been developed,
none of them clearly outperforms all others in every known benchmark domain. It
has also been observed that if a planner does not find a solution quickly, it is very
likely it will not find it at all, even with very large CPU time horizons [25]. These
observations motivate the idea of configuring and exploiting a portfolio of planners to
achieve better overall performance than any individual planner. Moreover, portfolio-
based approaches have been successfully applied to a number of combinatorial search
domains, such as SAT [62], maxSAT [36], Answer Set Programming (ASP) [14], and
QBF [43].

Recently, a number of planners based on the portfolio approach have been devel-
oped, and achieved impressive results in the last editions of the International Planning

1



Competition (IPC6-8) [11, 9, 34]: they won, or got very close to winning, in almost
every track in which they took part. Achieved results, and the aforementioned observa-
tions, let us presume that the future of AI planning will not only be focused on devel-
oping new planning algorithms, as in the last decades, but also on designing promising
techniques for combining and exploiting them.

This paper reviews existing techniques for configuring a portfolio of planning al-
gorithms, in order to:

• give an overview of the state-of-the-art of portfolio-based planners;

• describe the decisions that have to be taken during the configuration process;

• stimulate the development of new high-performance planning frameworks based
on this promising approach.

The overview of the state of the art is by no means to be considered complete, since
the number of portfolio-based planning techniques is growing rapidly, but it has been
designed to provide a comprehensive summary of approaches that have been exploited
in planning.

The remainder of the paper is organised as follows. Firstly, we briefly introduce
Automated Planning and algorithm portfolios; secondly, we present existing portfolio-
based planners. We then describe the steps of portfolio configuration. Finally, we give
conclusions and final remarks.

Background
This section introduces the definition of Automated Planning tasks and describes the
idea behind portfolio-based approaches.

Automated Planning
Automated planning and specifically classical planning, deals with finding a (partially
or totally ordered) sequence of actions transforming the static, deterministic and fully
observable environment from some initial state to a desired goal state [20].

In the classical representation atoms are predicates. States are defined as sets of
ground predicates. A planning operator o=(name(o),pre(o),eff−(o),eff+(o)) is spec-
ified such that name(o) = op name(x1, . . . ,xk) (op name is a unique operator name and
x1, . . .xk are variable symbols (arguments) appearing in the operator), pre(o) is a set
of predicates representing the operator’s preconditions, eff−(o) and eff+(o) are sets of
predicates representing the operator’s negative and positive effects. Actions are ground
instances of planning operators. An action a = (pre(a),eff−(a),eff+(a)) is applicable
in a state s if and only if pre(a)⊆ s. Application of a in s (if possible) results in a state
(s\ eff−(a))∪ eff+(a).

A planning domain is specified via sets of predicates and planning operators. A
planning problem is specified via a planning domain, initial state and set of goal atoms.
A solution plan is a sequence of actions such that a consecutive application of the
actions in the plan (starting in the initial state) results in a state that satisfies the goal.

2



The classical planning model can be extended, in order to handle a wider range
of constraints and increase expressiveness. For instance, this is the case in Temporal
planning, where actions have a duration that should be considered, or Uncertainty plan-
ning, that studies cases in which the environment is not fully observable and effects are
non-deterministic. On this matter, the interested reader is referred to [20] and [15].

Algorithm portfolios
The first work in this area is from the 70s, by Rice [45]. In that paper, the author inves-
tigated and described the problem of selecting the best algorithm for a given instance
of a problem, by considering the value of some characteristics of the instance. This
problem is known as the algorithm selection problem.

The term algorithm portfolio was first introduced by Huberman et al. [27] to de-
scribe the strategy of running several algorithms in parallel. The idea was taken from
economics, where portfolios are used to maximise a utility that has an associated risk
[55].

The algorithm portfolio approach was also studied by Gomes and Selman [21];
who conducted a theoretical and experimental study on the parallel run of stochastic
algorithms for solving computationally hard search problems. Several authors have
since used the term for describing any strategy that combines multiple algorithms, con-
sidered as black-boxes, to solve a single problem instance. Examples of portfolio ap-
proaches in Artificial Intelligence can be found, for instance, in SAT, ASP, CSP and
QBF [62, 14, 44].

Currently, a formal definition of Algorithm portfolio is missing. This is also due to
the fact that it is not unusual, in AI, to have solvers that exploit more than one search
technique. This is especially true in planning, where several state-of-the-art domain-
independent planners have the so-called backup strategies, that are used when the main
one fails [24, 16, 7]. Roberts and Siebers, the organisers of the IPC 2014 learning track,
handle this issue from a different perspective: they attempted to define a “basic solver“,
as follows.1

A basic solver is any single (meta) algorithm that does not leverage more
than one general purpose solver at its core. It can be a meta-algorithmic
approach but it can only use one solver at its core. Parametrised variants
of the same algorithm are still one solver. The core general purpose solver
cannot itself be an ensemble of other solvers.

We do not completely agree with this definition. In particular, we disagree on con-
sidering parametrised variants of the same algorithm as one solver. If the parameter
configuration can significantly change the behaviour of the algorithm, it is more appro-
priate to consider different configurations as different solvers. We believe that, in order
to distinguish portfolios, it is fundamental to know the internal details of the considered
system. Therefore, Definition 1 provides our practical definition of a portfolio-based
planner.

1http://www.cs.colostate.edu/ ipc2014/

3



Definition 1. We say that a planner is portfolio-based if it automatically selects and/or
combines one or more techniques for solving one or more problem instances.

With regards to Definition 1, it is worth noticing that:

• The term techniques is used in order to highlight that a portfolio-based planner
can exploit a set of planning engines, i.e. algorithms that receive as input the
problem description and provide plan(s) as output, or a set of heuristics that,
given the description of the problem and the current state of the world, return the
evaluated cost necessary to reach the goals.

• The selection and/or combination is considered as automatic if there is an auto-
mated process that provides the portfolio as output. Such a process can either
be based on some training instances – as is common practice – or can only con-
sider information collected while solving the given instance. It should be noted
that a portfolio-based planner can possibly have no selection (all available tech-
niques are used) or no combination (pure parallel execution), but at least one of
them should be considered and automated. We emphasise the automatic pro-
cess because, in our opinion, a system that runs a set of techniques without any
automated selection or combination is not a portfolio-based planner. It can be
seen as a generic bunch of techniques run together, which relaxes many of the
constraints that otherwise should have been faced.

Approaches that exploit a backup strategy to use when the main one fails, are here-
inafter not classified as portfolios. Systems like SATPlan [30, 31], which can use a
variety of satisfiability engines are not considered portfolios since they do not auto-
matically select the engine to use. In particular, we believe that SATPlan is a planning
framework; it includes different modules –in this case, planning to SAT encoders and
SAT solvers – and allows the user to select the preferred one.

The space of algorithm portfolios, as we defined them, is large and includes ap-
proaches that use all the available algorithms as well as those that select a single al-
gorithm. On the other hand, they all work for selecting (and possibly combining)
algorithms in order to obtain improved performance.

Existing portfolio-based planners
In the field of automated planning, the idea of configuring and using a portfolio of tech-
niques has been investigated by several researchers and has become a very interesting
topic in the last few years.

In this section we present and discuss existing planning systems that explicitly con-
figure, and either exploit or study, a portfolio of one or more planning techniques.

BUS

BUS [26] is the first work, in automated planning, based on the portfolio approach.
It considers 6 different domain-independent planning engines. To solve a problem,

4



BUS firstly determines the order in which the planners should be tried. It calculates an
expected run time for each planner to solve the problem and an expected probability
of success, and orders the incorporated planners by P(Ai)/T (Ai) where P(Ai) is the
expected probability of success and T (Ai) is the expected runtime of planner A on the
problem i. The probability of success and the expected runtime of the incorporated
planners are predicted by linear regression models that evaluate a set of features of the
problem i. A different model is generated for each planner by analysing its performance
on some training problems.

Given the planners’ ordering, the planners are run in a round-robin like scheme,
where each planner is run for the expected runtime needed for solving the current
problem. If the planner solves the problem, the planning process halts. If the planner
fails, then it is no longer considered by the round-robin. If the CPU time allocated to a
planner finishes without solution or failure, the planner is suspended and the next one
is run.

BUS achieved better results, in terms of the number of solved problems, than any
of the incorporated planners. Due to the overhead required for extracting features and
ordering the planners, it was slower then some of the included planners.

PbP

Inspired by a previous work of Roberts and Howe [50] (that will be described in the
section Studies on Planner Performance for Portfolios), Gerevini and collaborators de-
veloped the Portfolio-based Planner PbP [17] (and lately, an enhanced version called
PbP2 [18, 19], that includes a larger set of planners and a better engineered code),
which automatically configures a domain-specific portfolio of domain-independent
planners. PbP considered planners that showed good performance in past editions
of the International Planning Competition, plus a domain-specific configuration of the
well known system LPG [16], obtained by including the ParLPG system [59].

The configuration relies on some knowledge about the performance of the plan-
ners in the portfolio and the observed usefulness of automatically generated sets of
macro-actions. This configuration knowledge is “learned” by a statistical analysis, that
compares all the possible configured portfolios, and consists of: an ordered selected
subset of the planners (at most three) in the initial portfolio, which at planning time
are combined through a round-robin strategy; a set of useful macro-actions for each
selected planner; and some sets of planning time slots [50]. A planning time slot is
an amount of CPU time to be allocated to a selected planner (possibly with a set of
macro-actions) during planning. For each integrated planner, PbP defines a sequence
of increasing planning time slots, 〈t1, ..., tn〉. Each ti is the CPU time that will be allot-
ted to the planner during the testing phase. A ti is defined as the CPU time required to
solve a training problem during the performance measurement phase in a percentage
pi of cases. The sequence of increasing percentages 〈p1, ..., pn〉 from which the plan-
ning time slots are derived is defined by the vector 〈25, 50, 75, 80, 85, 90, 95, 97, 99〉.
The execution order of selected planners is defined by the increasing CPU time slots
associated with them, shortest first.

Both versions of PbP are able to configure two different portfolios: one focusing on
speed and the other focusing on plan quality, in terms of the number of actions. Never-

5



theless, PbP can be used without this additional knowledge. Thus, the knowledge-free
system schedules all planners by a round-robin strategy and it assigns the same time
slot to the randomly ordered planners.

FastDownward StoneSoup

FastDownward StoneSoup (here abbreviated FDSS) [23] is a sequential portfolio
planner that uses various heuristics and search algorithms that have been implemented
in the FastDownward [22] planning system. It is optimised for improving the quality
of the solutions found. Several search algorithms are considered and used for solv-
ing some training problems. Given their results on such instances, they are combined
through a hill-climbing search.

Portfolio generation starts from an initial portfolio which assigns a runtime of 0
to each search algorithm. FDSS then performs hill-climbing: in each step, a set of
possible successors to the current portfolio are generated, which are like the current
portfolio except that each successor increases the time limit of one particular algorithm
by granularity. The best successor w.r.t. the IPC quality score among these candidates
is selected and the configuration continues, for a total of timeout/granularity iterations.
FDSS is able to configure two different portfolios: satisficing and optimal. The main
difference is that the latter halts as soon as one of the solvers finds a solution, while the
former continues until the maximum runtime of the portfolio is reached.

ASAP

An automatic Algorithm Selection Approach for Planning (ASAP) [58] is the only ap-
proach based on pure automatic algorithm selection. For a given domain, ASAP learns
additional knowledge, in the form of macro-operators and entanglements [8], which
is used for creating different encodings of the given planning domain and problems
(i.e. planning domain/problem reformulation). Secondly, it explores the 2 dimensional
space encodings (e)–planners (p), and finally, selects the best algorithm 〈e, p〉 for opti-
mising the runtimes or the quality of the solution plans.

In ASAP, each algorithm has two dimensions: one dimension is represented by
different encodings of a given domain, the other is represented by existing domain-
independent planners. Planning engines have been selected accordingly to their good
performance in International Planning Competitions, and the different planning tech-
niques that they exploit. The algorithm which performed best, in terms of IPC score
[9], on the training instances is selected. IPC score was selected since it is the com-
monly used metric for comparing the performance of planning systems. It considers,
at the same time, coverage and runtime. On the other hand, it should be noted that the
IPC score is “relative”, in the sense that scores can vary while considering different
sets of planners [9].

IBaCoP

The Instance Based Configured Portfolios (IBaCoP and IBaCoP2) [5] won the sequen-
tial satisficing track of the 2014 edition of IPC. They both consider the same set of

6



planners, i.e. all the ones competing in the sequential satisficing track of IPC 2011 plus
LPG-td, and configure the portfolio for maximising the quality of solution plans found.
The systems differs in the way in which portfolios are configured. IBaCoP configures
a domain-independent portfolio by using the Pareto efficiency technique [6] to select a
sub-set of planners; selected planners are those that dominate all the others in at least
one considered training domain in terms of either quality or CPU time. All the selected
planners get the same running time in the testing phase. IBaCoP2 can be seen as an
evolution of IBaCoP, since it considers only the planners selected by IBaCoP. Fur-
thermore, IBaCoP2 performs an instance-based planner selection by using predictive
models. Such models are used for predicting the performance of planners on testing
problems, by taking into account planners’ performance on some training instances,
and correlating performance and instance structure through features extracted by prob-
lems’ description. The planners are ordered following predictive model confidence.
The running time is then uniformly divided among them.

Both IBaCoP and IBaCoP2 participated in various tracks of IPC 2014 achieving
remarkable results in sequential satisficing and multi-core tracks.

Cedalion

FastDownward Cedalion [54, 53] is a system that automatically configures a sequen-
tial portfolio of configurations of a parametrised planner, in this case FastDownward.
Given a set of training instances and a highly-parametrised planning engine, it iter-
atively selects the configuration – and the corresponding time to be allocated – that
improves the current portfolio the most per time spent. At the end of each iteration,
the training instances for which the current portfolio finds the best solution, in terms of
plan quality, are removed from the training set. Configurations are generated by using
the model-based algorithm configurator SMAC [28] on remaining training instances.
Different SMAC are run in parallel in order to obtain different configuration of the
planner. Cedalion took part in both the learning and deterministic tracks of IPC-14. It
was awarded as the best learner of the learning track, and the second overall system in
terms of quality of plans found. It was also the planner that solved the largest number
of problems in the Agile subtrack of the deterministic IPC 2014.

Studies on Planner Performance for Portfolios
It is worth discussing three works by Roberts and Howe [49, 51, 50]. The first work,
which can be seen as an extension to BUS, is focused on using features for learning
planner performance models, to be exploited for combining systems in round-robin
portfolios. In the other two works, the first preliminary while the second extremely de-
tailed and extensive, the authors focused on modelling and predicting the performance
of planners, by considering systems and benchmarks up to the 2006 planning compe-
tition. In their work, Roberts and Howe also investigate how it is possible to combine
planners, by predicting their performance, in order to maximise the coverage or min-
imise the required runtime for solving a problem. In the rest of this paper we will refer
to this study as ModelPerformance.

7



In 2011, a portfolio approach system [41] was designed for evaluating the state-of-
the-art domain-independent planners. They presented a general method based on linear
programming to define the baseline sequential portfolio for a specific set of problems,
against which the real performance of planners can be measured and evaluated. Given
an objective function that balances the quality IPC score achieved by the portfolio, the
time spent and/or memory used by the portfolio, Mixed-Integer Programming (MIP) is
then used for combining the planners that will be used by the portfolio. In a subsequent
work [42], the authors proved that it is possible to exploit MIP for deriving the optimal
portfolio and they actually provided it for the optimal track of IPC 2011. Moreover,
Núñez et al. tackled a very critical topic of portfolio configuration: how to understand
the utility of training problems. They observed that a small set of highly informative
problems allows the configuration of the best possible portfolio. In the rest of this paper
we will refer to these studies as MIPstudy.

In 2012, Seipp et al. [52] studied the performance of several different automatically-
obtained configurations of a single high-performance planner, combined in a portfolio.
In particular, the authors exploited the FDSS framework for generating different se-
quential portfolios of FastDownward configurations. Interestingly, they observe that
the best performance in terms of quality, is achieved by using a “uniform” portfolio,
that allocates the same amount of CPU time to all the considered planning systems.

More recently, in 2013, Cenamor et al. [4] built classification models for predict-
ing whether a given planner will succeed or not on a specific problem, and regression
models for predicting the runtime. For generating the predictive models they extracted
a large set of features, derived from the SAS+ formulation [3]. They compared the
performance of a number of strategies for configuring a portfolio, and evaluated them
on planners and benchmarks of IPC 2011. In 2014, Fawcett et al. [10] provided an
extensive analysis which includes a larger set of instance features, some more accurate
predictive models, and an investigation of the relative importance of features. Here-
inafter we will refer to these studies as IPCstudy

Portfolio-like Systems
In this Section we describe planning techniques that, according to Definition 1, can not
be classified as portfolios but that, intuitively, are not just basic solvers. This is the case
of ArvandHerd [56, 57]; it is a recent pure parallel planner. Following Definition 1, it
is not a portfolio since it does not automatically select or combine planning techniques.
It simultaneously runs, on different cores, different configurations of two significantly
different planning approaches: four configurations of the random walk based domain-
independent planner Arvand [37] and one configuration of the WA*-based domain-
independent planner LAMA [47]. The Arvand configurations differ on the strategy
used for generating random walks (biased, unbiased, considering helpful actions, etc.),
on the initial walk length, the frequency with which walks are lengthened, and the
factor by which they are lengthened. The communication between the processes is
limited to those running Arvand. Specifically they share a walk pool and a single UCB
[2] configuration selection system.

We noticed that in the multicore track of the 2011 and 2014 editions of IPC [9, 34],
participants are either running simultaneously different search algorithms –without an

8



Scope &
Target

Scheduling
Incorporated 

Planners

Size

Portfolio
evaluation

Ordering &
Allocation

Selection

Planners
evaluation

Offline configuration Online configuration

Figure 1: An overview of steps required for configuring a portfolio of planners. Terms
Online and Offline are considered w.r.t. learning instances.

automated selection or combination process– or using some straightforwardly paral-
lelised versions of sequential portfolios. An example of a system exploiting the former
approach is Mp [48]. On the other hand, a few systems exploited communication
and information sharing between techniques. This is the case of DAEyahsp [32] and
ArvandHerd, that have been introduced since information sharing will be important for
the future of portfolio-based planning (this will be discussed in subsequent sections).

Portfolio configuration
In this section we analyse every step of the portfolio configuration process for planning.
Reference to existing systems (described in the previous section) are provided and
discussed when relevant. For the sake of readability, hereinafter we will consider the
configuration of a portfolio of planners. The discussion can be easily generalised to
different planning-related techniques like heuristics.

Fig. 1 gives a high level description of the steps required for configuring a portfolio
of planners. We can divide the decisions into two main sets: decisions to take of-
fline and decisions to take online, w.r.t. the performance achieved by the incorporated
planners on the learning problems used for the portfolio configuration. The former set
concerns:

• Scope; the resulting configured portfolio can be domain-independent or domain-
specific.

• Target; the function that the portfolio is configured for optimizing (e.g., runtime,
quality of solutions).

9



• Size; minimum and maximum number of planners that can be selected during
the configuration.

• Scheduling strategy; the strategy that will be used for running the selected plan-
ners (e.g., pure parallel, sequential, mixed, ...).

• Incorporated planners; the planners that are considered and that can be selected
to be part of the portfolio.

The set of decisions to take online is:

• Evaluation of the planners; the performance metrics used for evaluating the plan-
ners on training instances.

• Planner selection; the techniques used for selecting the planners – out of the
ones incorporated in the corresponding off-line step – to include in the portfolio
(e.g., number of solved problems, statistical tests, ...).

• Allocation strategies and planner ordering; the strategy for deciding the CPU
time allocated to the selected planners and the planners’ execution order.

Finally, it is good practice to define the strategy for the evaluation of the perfor-
mance of the configured portfolio on a subset of testing problems. It should be clear
that most of the phases are strictly related, and they do not have a clear predefined or-
dering. In the remainder of this section we will describe each step of the two sets, in
order to give the clearest representation of the whole configuration process.

Offline decisions
Target and scope

A portfolio of planners is configured for optimizing a predefined objective function.
Typically these functions are very easy and concern three different performance areas,
usually taken individually: runtimes, quality of solution plans (in terms of number of
actions or actions cost) and number of solved problems. A classical target, that is often
required in IPCs is to maximize the solution quality.

From the scope point of view, we can identify two different categories of portfolios:

1. domain-independent;

2. domain-specific;

A domain-specific portfolio is configured for solving problems from a given do-
main only, it should have great performance on the specific domain and – since it is
focused on a single domain – it can exploit additional domain-related knowledge (e.g.,
macro-actions [39]). Domain-specific approaches usually have very good performance
on the selected domain, and it might appear not worthwhile to look for further improve-
ments. On the other hand, in domains in which problems’ structure can significantly
vary, performance can quickly decrease as testing problems differ from training ones.

10



A domain-independent portfolio can be used on every possible benchmark domain,
therefore it is aimed at obtaining good performance on average. Intuitively, no domain-
specific knowledge can be exploited. In this category there are either systems that
exploit a static portfolio, i.e., it is always the same for every problem, or approaches
that configure a different portfolio per instance. In order to select and combine planners
for a given problem, they usually need to extract additional information, not given in
the original description, about the problem to solve. Such information is extracted in
the form of features related to the specific instance (e.g. number of objects), to the
domain (e.g. number of operators), to the SAS+ representation of the problem (e.g.,
features of the causal graph) or to the performance of some planners (e.g., length of a
relaxed plan). This is the case, for instance, for the techniques designed and compared
in ModelPerformance and IPCstudy.

Portfolio size

In this section we use the terminology of Xu et al. in [62] who define:

An (a, b)-of-n portfolio as a set of n incorporated planners and a technique
for selecting among them at least a and no more than b algorithms to be
executed. We also use the terms a-of-n portfolio to refer to an (a, a)-of-n
portfolio, and n-portfolio for an n-of-n portfolio.

In order to exemplify, let us recall and classify some of the existing portfolio-based
planners. ASAP has a 1-of-n structure, and PbP a (1, 3)-of-n. BUS exploits n-of-n
structures. FDSS is a bit more complex to categorise since the number of selected
planners is defined by a heuristic algorithm; the most correct way for describing its
structure is (1, n)-of-n. FDSS2 exploits and compares different structures; as in FDSS
it relies on heuristic algorithms for some of them, but it is also able to use all the in-
cluded planners together; it goes from a (1, n)-of-n to n-of-n, depending on the selected
approach for combining planners.

Scheduling strategy

Portfolios can be parallel (all algorithms are executed concurrently), sequential (the
execution of one algorithm only begins when the execution of the previous algorithm
has ended), or mixed (some combination of parallel and sequential). Formally, given
a cutoff CPU time for solving a problem T , a set of planners P = {p1, p2, ..., pn}, and
the time allocated to each planner as t(pi):

• Sequential: planners are executed following a given order and ∑
n
i=1 t(pi) = T .

• Parallel: planners are executed concurrently on different CPUs, and t(pi) = T .

In parallel portfolios, there are enough CPUs for running all the selected planners in
pure parallel. The portfolio can finish as soon as some of the planners finds a solution
if the criterion is to minimise runtime. Otherwise, all the planners have spent their
maximum available time. This can be due to the fact that a planner does not find a

11



solution, or that it found a solution, and it is incrementally improving its quality. While
a parallel portfolio seems in principle easy to implement, it becomes complex to deal
with planners that share information, such as the best solution found.

On the contrary, sequential portfolios run all the selected planners on a single CPU.
This strategy executes the planners to their maximum allotted time and quits at the first
success or after all planners have either spent their time or found a solution. While it is
easy to implement, this strategy requires refined techniques for estimating the amount
of CPU time to allot to each planner. Moreover, if the portfolio’s target is minimising
runtime, it is crucial to find the best order among the selected planners. In this case, it is
important to include in the portfolio the fastest planner for solving the given problem,
but it is even more important to schedule it as soon as possible. Intuitively it is better
to have an approach which firstly runs quick planners, rather than an approach that
includes the best possible planner, but schedules it very late. For this reason – and also
for avoiding features extraction on problems that can be quickly solved – the idea of
pre-solving has been introduced in SATZilla [62]: the pre-solver is a system that is able
to quickly solve a large number of problems.

Finally, a mixed strategy tries to mix the two previous techniques. This is usually
done by “simulating” parallelism on a single CPU; for instance this could be done by
using round-robin scheduling as in PbP.

Obviously, there is not a clear limit to the combinations that it is possible to ob-
tain. It is theoretically possible, for instance, to configure a set of several sequential
portfolios and execute them in parallel on different CPUs.

Incorporated planners

One of the most important decisions to take while building portfolio-based planning
systems, is choosing the planning algorithms to consider for the configuration of the
portfolio.

The AI planning community constantly designs faster and more efficient heuristics
and algorithms for solving Automated Planning problems. Currently, there is a large
collection of domain-independent planners that can be considered while configuring
a portfolio framework. The first temptation is, evidently, to consider all the available
planning systems. This requires a dramatically high amount of CPU time for evaluating
the planners on learning problems (step described in the following section), as well as
a large amount of human-time for configuring and compiling all the required sources.
Therefore selecting all the existing planners is suitable only for the configuration of
domain-independent portfolios, for which the evaluation step is done once.

Another possibility is to consider different configuration of the same planning
framework. This can only be done on planners, like FastDownward, that are highly
parametrised and include numerous algorithms and techniques for planning. In such
planners it is presumable that, if correctly configured, their different configurations
work well on several different search space structures.

A third option is to consider a number of systems that are believed to be compet-
itive and, hopefully, efficient. This is commonly done by selecting winners –or top
performers– of various editions of the IPC, by selecting planners that exploit very dif-
ferent planning strategies, or even by considering all the planners that took part in some

12



editions of the IPC.
Summarising, it is important to include a large selection of uncorrelated planning

techniques: including a very small set of algorithms will probably lead to poor perfor-
mance on some domains. On the other hand, including a lot of planners will take a
remarkable amount of CPU time for evaluating them on learning problems.

Online decisions
In the following we detail decisions that are taken online, with regards to the per-
formance of the considered planners on the training instances. In other words, the
following decisions must take into account the performance on training instances.

Evaluation of the planners incorporated

This is, generally, the computationally most expensive step in the configuration of a
portfolio.

Firstly, the learning instances, on which the incorporated planners will be evalu-
ated, must be selected. For configuring domain-independent portfolios, it is common
practice to use a set of the IPC’s benchmark domains and problems; that is helpful
because they have been generated by human experts and, moreover, there exist official
results for a preliminary evaluation of their hardness. On the contrary, random gener-
ators are typically used for configuring domain-specific portfolios. These generators
have some parameters that can be used for tuning the problems’ difficulty; by working
on them, it is possible to finely set the hardness of problems. On this matter, Núñez et
al. [42] showed that given a training set, the same results – in terms of portfolio con-
figuration – achieved by using the whole training set can be obtained by considering
a small subset of the training set. For selecting the subset, it is useful to consider the
number of planners that solved each problem: those solved by a reduced number of
solvers are informative. Even though it is not guaranteed that the resulting portfolio
will be able to generalise on different instances, it will work well on problems similar
to those used for training.

In order to evaluate the incorporated planners on the selection of learning problems,
the performance metrics must be defined. It is usual to measure whether a plan is found
or not (success or failure), the runtime needed for finding solutions and the quality of
solutions. All of them are useful for configuring a portfolio for optimising any target
function, as described in the section Target and scope.

When the learning instances have been selected and the metrics have been defined,
all the incorporated planners have to be run on the learning instances. Since each plan-
ner has its own way of declaring success, they are not very standardised. It is important
to develop a code to automatically extract these metrics from planners’ output. More-
over, if incremental planners2 are incorporated, it will be essential to define the way to
measure their performance. In PbP, for instance, the authors handle this by measuring
the quality of all the solutions generated for a problem, and the corresponding CPU
times needed.

2Planners that are able to incrementally optimize solution plans after finding an initial satisficing one.

13



Planner selection

Selecting the planners to include in the portfolio is strictly related to the number of
incorporated planners and the maximum allowed size of the configured portfolio. This
step could be redundant in some portfolio structures: n-of-n design does not require
any selection. The configured portfolio includes all the incorporated planners, and is
based on the hypothesis that typically planners either solve a problem quickly or not at
all [25]. This strategy is reasonable when all the following hold:

• the number of incorporated planners is limited;

• the incorporated planners have either really good mean performance or very good
performance on some domains;

• the maximum amount of CPU time for solving a problem is large, with regards
to the number of planners;

Specifically, with regards to the third condition, this refers to the fact that all the
planners have enough CPU time to run. Reasonably, this means that each planner
should run for at least a few tens of seconds: this is because, according to [25], if a
planner does not find a solution quickly, it will not find it at all. Finally, we would
emphasise that if the target of the portfolio is minimising the runtime, including all the
incorporated planners will possibly make it hard to effectively order them.

In most of the cases, it is necessary to select only a subset of all the incorporated
planners. In [42], the authors showed that it is possible to derive the optimal selection
of solvers, with regard to the coverage, for the optimal track by using MIP techniques.
When runtime has to be optimised, also the order of planners in the portfolio is crit-
ical. In that case, the number of possible configurations exponentially increases with
the allowed maximum size of the portfolio, it is often computationally impossible to
offer an exhaustive comparison: in those cases the most convenient approach is using
heuristic techniques. For instance, a large selection of heuristics have been exploited
and compared in the FDSS and FDSS2 papers [23, 52].

Other techniques can be adopted for pre-selecting a number of planners. This first
step allows a reduction in the number of systems, and to perform a sophisticated anal-
ysis on the remaining ones. For instance, in ModelPerformance only planners that
solved at least a predefined percentage of learning problems have been taken into ac-
count.

On the contrary, if the number of possible portfolios is limited, for instance because
the maximum number of planners per portfolio is manually fixed, it is suggested to
exhaustively compare all of them. The comparison can be done by a statistical analysis,
as in PbP, or by evaluating the performance of planners using some metrics like the
IPC scores [9, 34].

Allocation strategies and planner ordering

In this step of the portfolio configuration, the CPU time allocated to selected planners
and planners’ execution order are computed w.r.t. the selected scheduling (as described

14



in section Scheduling strategy). It must be noted that the planners’ ordering is funda-
mental for portfolios focusing on criteria defined upon time (such as speed), but irrele-
vant on portfolios with targets that are independent of time (such as coverage). Another
common metric, namely the quality of solution plans, can be either time-dependent (its
increment is measured over time) or time-independent (it is assessed at the end of the
allotted time). In the latter case, which is commonly used in IPCs, for optimising qual-
ity the order of planners is irrelevant as well. On the other hand, the optimisation of
quality over time depends strongly on the planners’ scheduling.

If parallel portfolios do not need complex techniques for allocating CPU time to a
selected planner, it is a critical step for portfolios with different scheduling (both serial
and mixed): giving too much (not enough) CPU time to a planner, could significantly
worsen performance.

For serial portfolios, the classical strategy is to equally divide the maximum amount
of CPU time through all the selected planners [52]. This strategy, even though it is very
easy, has been shown to achieve significant results in terms of quality of plans. Other
approaches involve the estimation of time needed by a planner to solve a problem.
Such estimation can be done heuristically or by exploiting empirical predictive models
which relies on features evaluation.

Finally, in mixed portfolios the order of planners is not as critical as in serial ones.
This is because planners are not run only once, but they are kept in the scheduling. On
the other hand, a few works have investigated this strategy (ModelPerformance and
PbP) by using the same approach. Time slots, to be used in a round-robin scheduling,
corresponds to the CPU time needed by planners to solve increasing percentages of
training instances.

Evaluating the portfolio
Typically, a portfolio is configured by evaluating the performance of incorporated plan-
ners on a set of learning instances, that are somehow related to the testing problems.
Since the portfolio has been configured on problems different from the one on which it
will be used, it is essential to evaluate its performance on (a subset of) testing instances.

Currently, no standard procedures have been defined and exploited in the existing
portfolio-based planners for the evaluation step. Commonly, they are evaluated on a
subset of the benchmark problems used in the IPCs.

In very large experimental studies, like IPCstudy and ModelPerformance ones,
configured portfolio performance is usually estimated by N-fold cross-validation or
leave-one-out techniques. The former randomly divides the training set in N equal
size slices, regardless of the planning domains, the N − 1 of the slices are used for
training and the remaining one for testing. The process is repeated N times, with each
of the slices used exactly once as a testing one. The estimated performance is the
average of performance on testing slices. The leave-one-out technique is similar to
cross-validation, but it is done considering planning domains. For each step a different
domain is considered for testing, while all the others are used for training. It should
be noted that both approaches are forms of cross-validation, but their aims are differ-
ent. N-fold allows testing of how the performance generalises on different instances

15



of known planning domains, while the leave-one-out approach provides information
about the capability of the portfolio in generalising on a previously unseen domain.

Challenges
In this section we provide a list of what we consider to be open issues or future av-
enues in portfolio-based approaches for AI Planning. We are aware that this list is
not complete, but we are highlighting the most important ones: we have not included
those challenges and future avenues that are dependent on the selected ones. This is the
case, for instance, for challenges related to determining the minimum and maximum
portfolio size, which mainly depends on the planner selection strategy.

Definition
Although there are attempts to define either “portfolios” or “basic solver”, none of
the existing definitions can in all cases clearly distinguish whether the planner is a
portfolio or basic solver. The need for such a distinction is driven by the necessity for
fair comparison and evaluation of basic solvers. It might be unfair to compare basic
solvers against portfolios and, moreover, this could have a detrimental effect on the
development of new basic solvers. This is especially important in competitions such
as IPC or SAT competition. In the SAT competition 2013, basic (“core”) solvers were
defined as follows3:

Core solvers – this type of solvers are allowed to use at most two different
SAT solving engines for all runs and at any time during one track. Type of
solvers that fall into this category are single engine solvers like: minisat,
glucose, lingeling, SAT4J, clasp, CCASat, Sparrow, sattime and hybrid
solvers like: CCCeq. A preprocessor is not considered a solver so that a
hybrid solver could additionally run a preprocessor. A portfolio approach
consisting of only two different core solvers can also participate in this
track.

Although such a definition seems to clearly distinguish between basic solvers and port-
folios, there are some critical points. For instance, it is not clear why using “two”
different SAT solving engines can be still considered as a basic solver. In the IPC 2014
Learning track, basic solvers have been awarded separately, however, earlier in this
paper we made some critical points against the used definition of the basic solver. In
the IPC 2014 Deterministic track, an “innovative planner award” has been introduced
to support developing of novel (core) planning techniques. This award is based on the
jury’s judgement, so no clear criteria are given.

In this paper we provided a practical way for classifying planning approaches,
which relies on the analysis of: (i) selection and combination process, and (ii) use
of considered planning techniques. Nevertheless, some planning systems are still hard
to classify, and stay in the “grey zone”. Previous attempts to make a clear cut distinc-
tion between basic solvers and portfolios have shown themselves to be controversial on

3http://satcompetition.org/2013/description.shtml

16



some points. For a better classification, we have to raise and answer several questions.
For example, how to classify planning systems that exploit concurrent runs of a search
technique that share information and visit different areas of the search space?

Target
Every portfolio must have a target function to optimise. Typically these functions are
very easy and concern three different performance, usually taken individually: run-
times, quality of solution plans (in terms of number of actions or action cost) and
number of solved problems.

Most of the existing approaches are optimised for finding good quality plans (in
terms of the number of actions or action costs) or for maximising the number of solved
problems, and all of them exploit configured portfolios composed of several different
planners. The existing systems that are able to configure a domain-specific portfolio for
minimising runtime are PbP (and its latest version, PbP2) and ASAP. By observing
the runtimes-configured portfolios that PbP generated for IPC-6 benchmark domains
[17, 11], it is noticeable that a single planner (possibly with additional knowledge ex-
tracted from the domain in the form of macro-actions) is often selected. Such a trend is
also confirmed by ASAP, that demonstrated extremely good performance in terms of
runtime, while exploiting a single planner per domain. It would be interesting to offer
an in-depth analysis for better understanding this behaviour. Is it related to the schedul-
ing strategy, to the knowledge extracted from the domain, to the size/structure of the
considered testing problems, or is it typical of domain-specific portfolios focusing on
speed?

Probably, it is possible to find some planners that work particularly well on a subset
of problems of a specific domain, while a single planner (possibly with some type
of additional domain-related knowledge) is able to achieve good performance in the
average case. This is especially true in domains where problems’ structure vary a lot.
Thus, in such domains, a more specialised portfolio (class-specific rather than domain-
specific) will be appropriate.

Training instances
Two main decisions have to be taken with regard to the training instances. Firstly, a
large set of training instances have to be generated or selected from existing collections;
secondly, an informative subset of them is used for the actual training of the portfolio.
The two decisions can be taken at the same time, but they address two significantly
different problems. While the former focuses on identifying reasonable –neither trivial
nor too complex– instances, the latter deals with the issue of investigating the informa-
tiveness of the considered instances. To this extent, it should be noted that the problem
of evaluating the utility of training instances has been addressed by Núñez et al. in
[42].

Traditionally, training problems are selected from IPC’s benchmark or obtained by
random generators that offer some parameters to tune the problem’s difficulty. The
former approach is limited to the number of already existing domains and instances. In

17



terms of number of instances, hundreds of problems are available, but the actual num-
ber of domains is small – some domains are also analogous – and problems are usually
generated by a single generator; therefore their structure is often similar. Moreover,
many benchmark problems from earlier IPCs are trivial for the current state-of-the-art
planners as observed in [51, 52].

On the other hand, the latter approach – which relies on exploiting random gen-
erators – has two main limitations: (i) although in some domains the solvability of
problems can be guaranteed, it is generally not trivial to guarantee the problems’ solv-
ability; (ii) the generators’ parameters are domain-specific and tuning them to generate
good quality learning examples implies significant domain expertise. In order to avoid
the requirement for domain expertise, Fern et al. [12] introduced an approach based on
random walks. It generates a random initial state and takes n random actions to produce
a state sequence. In domains where complexity depends on the number of objects, this
approach is not enough. Fuentetaja and Borrajo [13] proposed an approach for gen-
erating problems using a given “sample” problem: the learning process has the bias
imposed by this sample problem and could generate unsolvable problems, but it allows
the generation of a random exploration of problems of increasing objects. A combi-
nation of these two approaches would possibly lead to the autonomous generation of
learning problems.

Planner selection and ordering
A striking result [52] is that, in terms of the quality of solutions found, none of the more
sophisticated strategies for configuring domain-independent static portfolios, performs
better than the uniform portfolio (i.e., all the incorporated planners are selected, in a
random order, and have the same amount of CPU time). Clearly, such an approach
can be used when the number of incorporated planners is limited. A similar behaviour
is observed in IPCstudy; although the best strategy consists of selecting the best 10
planners with regard to the confidence, and allocating them the same amount of CPU
time, the approach that uses all the 27 planners in a random order is able to achieve
comparable performance. Moreover, the latter is often better than strategies which
select a small number of planners.

Additionally, Seipp et al. [52] indicate that portfolio performance can be improved
much more by diversifying the set of incorporated planners than by adjusting selected
planners’ runtimes or ordering. From these results we can argue that configuring a
portfolio for maximising plan quality is useless if enough (but not too many) different
planning techniques are considered. Intuitively, we believe that each scheduled plan-
ners should have at least a few hundreds of allotted CPU time seconds. Moreover, a
very specific portfolio configuration (selecting planners, allocating different runtimes
and giving a specific order to them) could be wasteful because the selection techniques
could make mistakes.

We are not totally convinced by this result, we believe that the aforementioned ap-
proaches work well on testing instances that are from similar distribution, or similar
domains, of training problems. Moreover, allotting short CPU time to planners might
prevent solving large instances, where most of the time is spent in generating the data
structures. Even though some works showed that most planners either solve a prob-

18



lem fast or not at all, our intuition is that this is true on deterministic IPC benchmark
instances, but is not always true on larger instances, such as those from the learning
tracks of IPC. On this matter, Gerevini et al. [19] showed that on large instances, a
single planner can require almost all the available (900 seconds) CPU time for finding
a plan. On the other hand, while the selection of planners is critical for optimising
metrics defined upon time, the ordering of planners could be irrelevant if portfolios
are configured for optimising other criteria that are independent of time, as previously
discussed.

Predictive model
A large number of approaches build and exploit predictive models for configuring
domain-independent portfolios of planning systems. These approaches are based on
feature extraction and evaluation. Usually, a very large set of features, characteris-
ing both the domain and the problem is used. Nowadays, a few hundred features are
available to the planning community. On the basis of the observed performance of plan-
ners on training instances, performance and features are correlated for predicting the
behaviour of planners on unseen instances, by generating empirical predictive models
[29]. These models have shown to be useful for selecting and combining planning algo-
rithms by predicting their performance –see for instance results described in IPCstudy
and ModelPerformance, or the performance of IBaCoP –, but are generated by using
techniques, like random forests, that can hardly be analysed. This significantly limits
the understanding of how features affect performance, which is fundamental for ex-
ploiting the knowledge encoded under the form of predictive models for improving ex-
isting planners. In particular, being able to identify a small set of features that strongly
affects the behaviour of a planning engine, would allow experts to better understand
the planning process and, subsequently, to design solutions that enhance planners and
planning techniques. Understanding what affects planners’ performance, would possi-
bly lead experts to understand also why planners are affected, and therefore shed some
light on them and, generally, on automated planning.

Automated framework
Existing systems, since most of them has been developed for participating in IPCs, do
not have an automated configuration process that allows the configuration of different
types of portfolios. It would be useful, for a better understanding of portfolios’ perfor-
mance, to have a framework (hopefully, user-friendly) that is able to automatically gen-
erate several different classes of portfolios and to compare all of them through different
techniques. Such a framework will provide an easy tool for studying the performance
of portfolios and to evaluate the impact of new ideas in configuration steps. Moreover,
that framework would also suggest a potential method for testing new planners, based
on measuring the performance improvements obtained in several different portfolios
by adding them as incorporated planners. This is similar to techniques applied in areas
of AI different from planning [63].

In different fields of Artificial Intelligence such tools already exist (e.g. HAL [38]).
Regarding AI Planning, a well known existing tool is itSIMPLE [61, 60]. This Knowl-

19



edge Engineering tool currently focuses on disciplining the design cycle of planning
problems. It includes a sort of testing phase, which consists of running a set of included
planners on the generated domains and measuring their performance using different
metrics. Improving the testing phase by integrating a portfolio-based evaluation would
result in a very complete tool for evaluating domain encodings and planner combina-
tions.

Share information
Existing portfolio approaches use planning systems as black-boxes. Usually selected
planners do not share any kind of information, knowledge or evaluations about the
search space of the current problem. On the other hand it is true that some existing
systems share some sort of information: FDSS and PbP (while exploiting the portfolio
for optimising plan quality) share between included planners the best solution found
so far; most notably, ArvandHerd shares the walks explored and the control strategy
for allocating the next ones. Even though, according to our definition, it would not be
classified as a portfolio, it shows an interesting example of communication between
planning techniques.

On the other hand, some existing planners already implement a form of information
sharing. This is the case of FastDownward, that by virtue of its multiple open lists it
is able to to alternate and combine heuristics and preferred operators in the search
procedure [46].

In order to push forward the performance of planners based on a portfolio of plan-
ning systems, they should share information, communicate and cooperate to reach the
goal. The information to be shared is that which contemporary planning systems use
to guide their search; e.g. heuristic estimates, preferred operators, landmarks, dead
ends, subplans. To this end, we believe that treating each portfolio member as an agent
will allow portfolio approaches to exploit techniques used in multi agent systems. We
allow the agents to share information, however, a communication protocol is needed.
It is also important to carefully balance communication and search; the overhead intro-
duced by the communication should not significantly worsen the performance of agents
(selected planners). Works in this area have been recently carried out by Nissim et al.
[40], investigating the cooperation between agents that have private information they
do not want to reveal, and specific capabilities.

Evaluation
Typically, a portfolio is configured by evaluating the performance of the incorporated
planners on a set of learning instances, that are somehow related to the testing prob-
lems. Since the portfolio has been configured on problems different from the one on
which it will be used, it is essential to evaluate its performance on (a subset of) testing
instances. A configured portfolio must achieve, at least, better performance than every
individual incorporated planner, so it is good practice to compare against all of them.
After that, the main questions are:

1. given the selected structure of the portfolio, did we correctly configure it?

20



2. is the selected portfolio structure suitable for our target and scope?

For finding an answer to the former question, the best strategy is to compare the
configured portfolio with an oracle: a portfolio with same structure but configured ex-
actly on the testing problems. This is the strategy adopted by Núñez et al. in MIPstudy
for generating a baseline of the performance, to compare with other planners.

For the latter question, there is still no answer. This problem has not been consid-
ered yet. Ideally, it would be good to have some “guidelines” that provide indications
about the portfolio structure to exploit with regards to some specific needs. Generally,
it would be enough to compare against differently structured portfolios, that share the
same training instances and incorporated planners. It should be noted that selecting the
most appropriate portfolio structure for this comparison is -at least- as difficult as se-
lecting the preferred portfolio configuration. Currently, the most convenient strategy is
to compare with state-of-the-art portfolio-based planners, e.g. by selecting them from
recent IPCs.

Reformulation
Techniques for reformulating domain or problem models have been studied in plan-
ning since the 1970s, and include online and offline approaches for identifying macro-
actions [33, 39], entanglements [8], or for decomposing complex operators into simpler
ones [1]. State-of-the-art portfolios that exploit reformulation techniques, consider –
for the purpose of portfolio configuration– a reformulated model and a planning engine
as a single algorithm. This means that the same planner, provided with different input,
is treated as if it were two completely unrelated algorithms. ASAP, as well as PbP,
exploit this approach. While this approach reduces the complexity, at the cost of a
potentially significant increase in the number of considered algorithms, it does not al-
low to directly relate the effectiveness of reformulation with domains’ structure and
planners’ strategy. An alternative which should be investigated could be based on a
hierarchical selection approach that, given a testing problem, selects a promising re-
formulation technique –on the basis of previously observed performance on similar
structures– and then selects a planning engine that has shown good performance on
reformulated problems that share some similarities with the considered one.

Hierarchical selection processes have been exploited in some areas of AI like SAT
[62], and it might be fruitful to test them also in planning. It can both boost portfolio
performance and provide insights into the actual reformulation impact on different kind
of problems.

Updating Knowledge
In state-of-the-art portfolio-based planners, as well as in most of the portfolio ap-
proaches exploited in AI, the knowledge used for configuring a portfolio is extracted
once and hardly updated. This has been called one-shot learning approach [35], since
no evolution of the knowledge is considered. The drawback of this approach is that
in a dynamic environment, like real-world planning applications, the type of problems
that the system is expected to solve changes. Currently, no investigation in planning

21



has been performed for providing any mechanism to evaluate if the performance of the
configured portfolio is decreasing and it should be trained again. Intuitively, a possible
solution is to periodically re-train the portfolio, regardless of actual performance. This
can be computationally expensive and, moreover, raises the question of when is the
right time to train. On the other hand, since a large number of problem-related features
are nowadays available [10], it is worth considering to exploit them also for measur-
ing if the structure of current problems is significantly different than the structure of
training ones.

Evolution of knowledge exploited by portfolio approaches is a novel topic also for
AI in general, and a first work in this direction has been done in 2013 by Malitsky et
al. [35].

Planner Portfolios for different paradigms
A number of planner portfolios have been recently developed. We notice that they are
mostly focused on classical planning. In particular, the majority deal with satisficing
planning, while a few approaches – in many cases straightforward implementations
of satisficing systems – are able to deal with optimal planning. We are not aware of
portfolio-based planners for temporal planning or probabilistic planning. On the one
hand, this is probably due to the fact that a large number of planners are available for
classical planning. On the other hand, having portfolios of systems that are able to
handle different planning paradigms would be undoubtedly helpful. Firstly, it can lead
to an improvement of the state-of-the-art by stimulating development of portfolios as
well as new planning techniques. Secondly, it might shed some light on aspects that
affect planners performance in order to predict planners’ performance more accurately.

Conclusions
The existing AI Planning technology offers a large, growing set of powerful techniques
and efficient domain-independent planners, but none of them outperforms all the oth-
ers in every known planning domain. This observation, and the results achieved by
portfolio approaches in different fields of AI, motivated the idea of configuring and ex-
ploiting a portfolio of planners to achieve better performance than any individual plan-
ner: recently, several different high-performance portfolio-based planners have been
developed.

In this paper we described the idea of algorithm portfolio, and outlined the existing
planning systems based on this approach. Then, we listed the different decisions that
have to be taken for configuring a portfolio of planners, and divided them in two sub-
sets: decisions to take offline and decisions to take online, w.r.t. the learning problems
used for the portfolio configuration. We exhaustively described every configuration
step, and analysed how existing portfolio approaches in planning deal with them. Fi-
nally, we focused on the challenges of existing techniques for configuring a portfolio
of planners, in order to

• give an overview of the state-of-the-art of portfolio-based planners;

22



• describe the decisions that have to be taken during the configuration process;

• stimulate the development of new high-performance planning frameworks based
on this approach.

This analysis is motivated by the excellent results achieved by portfolio-based plan-
ning systems in recent IPCs: they won, or got very close to winning, in almost every
track in which they took part. These impressive results let us suppose that future of AI
Planning will be related to algorithms and techniques for effectively combining plan-
ners, in order to obtain results that cannot be achieved by a single domain-independent
planner. We recognise that further studies are needed to analyse the highlighted open
issues and to increase the performance that can be achieved by exploiting a portfolio
approach in AI Planning, since we are confident that portfolio techniques, having only
recently been extensively applied in AI Planning, will lead to further significant im-
provements in the near future. Such improvements will be twofold: on the one hand, a
further enhancement of portfolio-based approaches; on the other hand, the amelioration
of basic solvers led by a better comprehension of planners’ behaviour.

References
[1] C. Areces, F. Bustos, M. Dominguez, and J. Hoffmann. Optimizing planning

domains by automatic action schema splitting. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling, ICAPS,
2014.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47:235–256, 2002.

[3] C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computa-
tional Intelligence, 11:625–655, 1993.

[4] I. Cenamor, T. de la Rosa, and F. Fernández. Learning predictive models to con-
figure planning portfolios. In Proceedings of the 4th workshop on Planning and
Learning (ICAPS-PAL 2013), pages 14–22, 2013.

[5] I. Cenamor, T. de la Rosa, and F. Fernández. Ibacop and ibacop2 planner. In The
Eighth International Planning Competition. Description of Participant Planners
of the Deterministic Track, 2014.

[6] Y. Censor. Pareto optimality in multiobjective problems. Applied Mathematics
and Optimization, 4(1):41–59, 1977.

[7] Y. Chen, B. W. Wah, and C.-W. Hsu. Temporal planning using subgoal partition-
ing and resolution in SGPlan. Journal of Artificial Intelligence Research (JAIR),
26:323–369, 2006.

[8] L. Chrpa and T. L. McCluskey. On exploiting structures of classical planning
problems: Generalizing entanglements. In 20th European Conference on Artifi-
cial Intelligence (ECAI-2012), pages 240–245, 2012.

23



[9] A. Coles, A. Coles, A. G. Olaya, S. Jiménez, C. L. Lòpez, S. Sanner, and S. Yoon.
A survey of the seventh international planning competition. AI Magazine, 33:83–
88, 2012.

[10] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. H. Hoos, and K. Leyton-Brown.
Improved features for runtime prediction of domain-independent planners. In
Proceedings of the Twenty-Fourth International Conference on Automated Plan-
ning and Scheduling, ICAPS, pages 355–359, 2014.

[11] A. Fern, R. Khardon, and P. Tadepalli. The first learning track of the international
planning competition. Machine Learning, 84:81 – 107, 2011.

[12] A. Fern, S. W. Yoon, and R. Givan. Learning domain-specific control knowledge
from random walks. In Proceedings of the 14th International Conference on
Automated Planning & Scheduling (ICAPS), pages 191–199, 2004.

[13] R. Fuentetaja and D. Borrajo. Improving control-knowledge acquisition for plan-
ning by active learning. In Proceedings of the 17th European Conference on
Machine Learning (ECML), pages 138–149. Springer, 2006.

[14] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. T. Schneider, and S. Ziller.
A portfolio solver for answer set programming: Preliminary report. In Logic
Programming and Nonmonotonic Reasoning, pages 352–357. Springer, 2011.

[15] H. Geffner and B. Bonet. A Concise Introduction to Models and Methods for
Automated Planning. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2013.

[16] A. Gerevini, A. Saetti, and I. Serina. Planning through stochastic local search and
temporal action graphs. Journal of Artificial Intelligence Research (JAIR), 20:239
– 290, 2003.

[17] A. Gerevini, A. Saetti, and M. Vallati. An automatically configurable portfolio-
based planner with macro-actions: PbP. In Proceedings of the 19th International
Conference on Automated Planning & Scheduling (ICAPS-09), pages 350 – 353.
AAAI Press, 2009.

[18] A. Gerevini, A. Saetti, and M. Vallati. PbP2: Automatic configuration of a
portfolio-based multiplanner. In Working notes of 21st International Conference
on Automated Planning & Scheduling (ICAPS-11) – 7th International Planning
Competition, 2011.

[19] A. Gerevini, A. Saetti, and M. Vallati. Planning through automatic portfolio con-
figuration: The PbP approach. Journal of Artificial Intelligence Research (JAIR),
50:639–696, 2014.

[20] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers, 2004.

24



[21] C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126(1-
2):43–62, 2001.

[22] M. Helmert. The Fast Downward planning system. Journal of Artificial Intelli-
gence Research (JAIR), 26:191 – 246, 2006.

[23] M. Helmert, G. Röger, and E. Karpas. Fast Downward Stone Soup: A baseline
for building planner portfolios. In Proceedings of the ICAPS-11 Workshop of AI
Planning and Learning (PAL), 2011.

[24] J. Hoffmann. The Metric-FF planning system: Translating “ignoring delete lists”
to numeric state variables. Journal of Artificial Intelligence Research (JAIR),
20:291–341, 2003.

[25] A. Howe and E. Dahlman. A critical assessment of benchmark comparison in
planning. Journal of Artificial Intelligence Research (JAIR), 17:1 – 33, 2002.

[26] A. Howe, E. Dahlman, C. Hansen, A. vonMayrhauser, and M. Scheetz. Exploiting
competitive planner performance. In Proceedings of the 5th European Conference
on Planning (ECP-99), pages 62 – 72. Springer, 1999.

[27] B. Huberman, R. Lukose, and T. Hogg. An economics approach to hard compu-
tational problems. Science, 265:51–54, 1997.

[28] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In Learning and Intelligent Optimiza-
tion, pages 507–523. Springer, 2011.

[29] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime predic-
tion: Methods & evaluation. Artif. Intell., 206:79–111, 2014.

[30] H. Kautz and B. Selman. Unifying sat-based and graph-based planning. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 318–325. IJCAI Organization, 1999.

[31] H. Kautz, B. Selman, and J. Hoffmann. Satplan: Planning as satisfiability. In
Abstract Booklet of the 5th International Planning Competition, 2006.

[32] M. R. Khouadjia, M. Schoenauer, V. Vidal, J. Dréo, and P. Savéant. Multi-
objective AI planning: Evaluating dae YAHSP on a tunable benchmark. In
Proceedings of the 7th International Conference on Evolutionary Multi-Criterion
Optimization (EMO), pages 36–50, 2013.

[33] R. Korf. Macro-operators: A weak method for learning. Artificial Intelligence,
26(1):35–77, 1985.

[34] C. L. Lpez, S. J. Celorrio, and ngel Garca Olaya. The deterministic part of the
seventh international planning competition. Artificial Intelligence, 2015.

25



[35] Y. Malitsky, D. Mehta, and B. O’Sullivan. Evolving instance specific algorithm
configuration. In Proceedings of the Sixth Annual Symposium on Combinatorial
Search SOCS, pages 132–140, 2013.

[36] P. J. Matos, J. Planes, F. Letombe, and J. Marques-Silva. A MAX-SAT algorithm
portfolio. In the 18th European Conference on Artificial Intelligence ECAI, pages
911–912, 2008.

[37] H. Nakhost and M. Müller. Monte-carlo exploration for deterministic planning. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI), pages 1766–1771, 2009.

[38] C. Nell, C. Fawcett, H. H. Hoos, and K. Leyton-Brown. HAL: A framework for
the automated analysis and design of high-performance algorithms. In Proceed-
ings of the 5th International Conference on Learning and Intelligent Optimization
(LION), pages 600–615. Springer, 2011.

[39] M. H. Newton, J. Levine, M. Fox, and D. Long. Learning macro-actions for arbi-
trary planners and domains. In Proceedings of the 17th International Conference
on Automated Planning & Scheduling (ICAPS), pages 256–263, 2007.

[40] R. Nissim and R. I. Brafman. Distributed heuristic forward search for multi-agent
planning. J. Artif. Intell. Res. (JAIR), 51:293–332, 2014.

[41] S. Núnez, D. Borrajo, and C. L. Lòpez. How good is the performance of the best
portfolio in ipc-2011? In Proceedings of ICAPS-12 Workshop on International
Planning Competition, 2012.

[42] S. Núñez, D. Borrajo, and C. L. López. Performance analysis of planning port-
folios. In Proceedings of the Fifth Annual Symposium on Combinatorial Search
SOCS, pages 65–71, 2012.

[43] L. Pulina and A. Tacchella. A multi-engine solver for quantified boolean formu-
las. In Principles and Practice of Constraint Programming - CP, pages 574–589,
2007.

[44] L. Pulina and A. Tacchella. A multi-engine solver for quantified boolean formu-
las. In Proceedings of the Thirteenth International Conference on Principles and
Practice of Constraint Programming (CP), pages 574–589. Springer, 2007.

[45] J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65 –
118, 1976.

[46] S. Richter. Landmark-Based Heuristics and Search Control for Automated Plan-
ning. PhD thesis, Griffith University, 2010.

[47] S. Richter and M. Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. Journal of Artificial Intelligence Research (JAIR),
39:127 – 177, 2010.

26



[48] J. Rintanen. Engineering efficient planners with SAT. In Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI-12), pages 684–689. IOS
Press, 2012.

[49] M. Roberts and A. Howe. Directing a portfolio with learning. In AAAI 2006
Workshop on Learning for Search, pages 129–135, 2006.

[50] M. Roberts and A. Howe. Learned models of performance for many planners.
In Proceedings of the ICAPS-07 Workshop of AI Planning and Learning (PAL),
2007.

[51] M. Roberts and A. Howe. Learning from planner performance. Artificial Intelli-
gence, 173(5-6):536–561, 2009.

[52] J. Seipp, M. Braun, J. Garimort, and M. Helmert. Learning portfolios of auto-
matically tuned planners. In Proceedings of the 22nd International Conference
on Automated Planning & Scheduling (ICAPS), pages 369 – 372. AAAI Press,
2012.

[53] J. Seipp, S. Sievers, M. Helmert, and F. Hutter. Automatic configuration of se-
quential planning portfolios. In Proceedings of the Twenty-fourth National Con-
ference on Artificial Intelligence (AAAI), 2015.

[54] J. Seipp, S. Sievers, and F. Hutter. Fast downward cedalion. In The Eighth Inter-
national Planning Competition. Description of Participant Planners of the Deter-
ministic Track, 2014.

[55] W. F. Sharpe and W. Sharpe. Portfolio theory and capital markets, volume 217.
McGraw-Hill New York, 1970.

[56] R. Valenzano, H. Nakhost, M. Müller, J. Schaeffer, and N. Sturtevant. Arvand-
herd: Parallel planning with a portfolio. In Proceedings of the 20th European
Conference on AI (ECAI-12), pages 786 – 791. IOS Press, 2012.

[57] R. Valenzano, H. Nakhost, M. Müller, J. Schaeffer, and N. Sturtevant. Arvand-
herd 2014. In The Eighth International Planning Competition. Description of
Participant Planners of the Deterministic Track, 2014.

[58] M. Vallati, L. Chrpa, and D. E. Kitchin. An automatic algorithm selection ap-
proach for planning. In IEEE 25th International Conference on Tools with Artifi-
cial Intelligence (ICTAI), pages 1–8, 2013.

[59] M. Vallati, C. Fawcett, A. Gerevini, H. Hoos, and A. Saetti. Automatic genera-
tion of efficient domain-specific planners from generic parametrized planners. In
Proceedings of the Sixth Annual Symposium on Combinatorial Search (SOCS),
2013.

[60] T. Vaquero, J. R. Silva, and J. C. Beck. Analyzing plans and planners in it-
SIMPLE3.1. In Proceedings of the Knowledge Engineering for Planning and
Scheduling workshop. The 20th International Conference on Automated Planning
& Scheduling (ICAPS), 2010.

27



[61] T. Vaquero, R. Tonaco, G. Costa, F. Tonidandel, J. R. Silva, and J. C. Beck. itSIM-
PLE4.0: Enhancing the modeling experience of planning problems. In Proceed-
ings of the 22nd International Conference on Automated Planning & Scheduling
(ICAPS-12) – System Demonstration, pages 11–14, 2012.

[62] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research (JAIR),
32:565–606, 2008.

[63] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Evaluating component solver
contributions to portfolio-based algorithm selectors. In Theory and Applications
of Satisfiability Testing - SAT, pages 228–241, 2012.

28


