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Abstract 

 

Classification using association rules is a research field in data mining that primarily uses 

association rule discovery techniques in classification benchmarks. It has been confirmed by 

many research studies in the literature that classification using association tends to generate more 

predictive classification systems than traditional classification data mining techniques like 

probabilistic, statistical and decision tree. In this thesis, we introduce a novel data mining 

algorithm based on classification using association called “Looking at the Class” (LC), which 

can be used in for mining a range of classification data sets. Unlike known algorithms in 

classification using the association approach such as Classification based on Association rule 

(CBA) system and Classification based on Predictive Association (CPAR) system, which merge 

disjoint items in the rule learning step without anticipating the class label similarity, the proposed 

algorithm merges only items with identical class labels. This saves too many unnecessary items 

combining during the rule learning step, and consequently results in large saving in 

computational time and memory.  

Furthermore, the LC algorithm uses a novel prediction procedure that employs multiple 

rules to make the prediction decision instead of a single rule. The proposed algorithm has been 

evaluated thoroughly on real world security data sets collected using an automated tool 

developed at Huddersfield University. The security application which we have considered in this 

thesis is about categorizing websites based on their features to legitimate or fake which is a 

typical binary classification problem.  Also, experimental results on a number of UCI data sets 

have been conducted and the measures used for evaluation is the classification accuracy, memory 

usage, and others. The results show that LC algorithm outperformed traditional classification 

algorithms such as C4.5, PART and Naïve Bayes as well as known classification based 

association algorithms like CBA with respect to classification accuracy, memory usage, and 

execution time on most data sets we consider.   
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

 

Storage capabilities have developed tremendously in the past years, hundreds and thousands of 

files can be saved in a micro memory card. This innovation has tempted and made it feasible for 

small and large organizations to keep a record of minute details about their customers, like 

Tesco, ASDA and Morrison’s, etc. in retail market businesses and banks and financial 

institutions. The transactions of the daily sales in a retail store are often called the market basket 

data (Agrawal, 1993). The retail stores collect and store the daily purchases and information of 

all customers. Finding the correlations between the items purchased by the customers and the 

features of the customers in different geographical areas can be very useful in deciding the 

marketing strategy and launching targeted promotions. 

Assume a planning and marketing department in a retail business organization decided to 

introduce a store card for their customers. Applications are collected and decisions have to be 

made for each customer, whether to issue a store card and how much credit limit would be 

recommended for each customer. The decision from the management of the store needs to take 

into account the shopping frequency of the customer, geographical area where he lives, and the 

total amount of purchases in a period of time. These associations can be extracted from the data 

by the application of data mining approaches. 

Another example is a medical organization that keeps the record of all the patients with 

different diseases and symptoms. The information is very beneficial when the associations are 

extracted between different symptoms. The extracted information is used to narrow down the 

possibility of a patient’s disease by entering all the symptoms of a new patient in an automated 

system. For instance, the data contain a large number of entries with ‘fever’ and ‘shivering’ 

referring to the possibility of a malarial disease. 

An example of associations in a retail supermarket could be assumed as “80% of the 

customers who have bought a smart phone also have purchased a screen protector”, and “60% of 

the customers who have purchased milk will likely to buy bread as well”. For example the 
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percentage of transactions containing “smart phone and screen protector” is 3%, and the total 

transactions of “milk with bread” are 10% in the transactional database. The customers who will 

buy ‘smart phone’ or ‘milk’ are the antecedent of an association rule and ‘screen protector’ or 

‘bread’ is the consequent of the rule. The confidence of a rule represents its strength and in the 

example above “80% “means that if 100 customers have purchased a smart phone, 80 of them 

have also bought screen protector. The confidence for the other rule is 60%, whereas “3%” and 

“10%” represent a significant statistical measure known as support of the rules.  

In the real world classification data such as medical diagnoses or market basket analysis, 

the problem is to discover rules from the data set of historical transactions. The rules generated 

must have significant support and confidence (frequencies of attribute values above user’s 

thresholds denoted as minimum support and minimum confidence). A subset of the produced 

rules is selected to build a model that is able to predict the outcome of the new set of attributes in 

a database or previously unseen data. The approach that uses association rules to build-up 

classification systems (classifiers) is known as associative classification (AC) (Li et al., 2001), 

(Hao et al., 2009), (Sangsuriyu et al., 2010), (Lucas et al., 2012), (Jiang and Karyros, 2012) and 

(Jabbar et al., 2012). 

The AC approaches tend to explore all the linkages or the associations between the 

values of the attributes (items) and their relative classes in the data set and produce classifiers. 

The classifiers generated by AC algorithms are usually more accurate with respect to 

classification accuracy than classic rule based classification approaches like decision trees 

(Quinlan, 1979) and which tend to generate relatively small size classifiers. The AC approaches 

have made inroads in extracting such knowledge that is missed by traditional classification 

methods and have also improved the accuracy rate of different applications. 

AC is beneficial in many applications and some of them are described in the above 

sections like decisions to issue store card, medical diagnosis and making a decision to supply 

utility supply. It also includes the fraud detections in insurance and credit cards for financial 

institutions, text categorization and especially in detection of phishing in emails. Likewise the 

decision of the potential disease according to the patient’s symptoms, a decision to assign a 

journal or a description in text to one or more possible categories can also be done by AC 

mining. There are large numbers of journals in a digital library and assigning them to their 

specific category is a time consuming and tedious task when done by humans. But the process of 
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assigning journals to particular category or categories becomes very efficient and convenient 

when a classifier is set in the automated system.  

The process of producing the complete set of rules needs substantial CPU time as it 

requires many data set scans and itemsets joining during the training phase (Baralis, et al., 2004; 

Li et al., 2001). Hence it is very important to use a fast and effective method for rule discovery 

that can improve the training time and memory usage. The classical AC techniques like CBA 

(Liu et al., 1998) and CBA (2) (Liu et al., 1999)  may not be able to deal with the increase in the 

database size and the dimensions of  the datasets, meaning adding more attribute columns in the 

data base. These techniques produce many rules and the process of rule generation can be 

complex and exhaustive, because these consider all the attribute values while joining them. 

Therefore it is essential to derive the rules that will be used in the prediction process in 

reasonable time and at the same time using less memory resources, to help decision makers to 

plan without waiting.  

 Use of AC approaches or techniques are used successfully in real world applications in 

the recent years like heart disease prediction (Jabbar et al., 2012), based on the data collected 

from the patients response for treatment of Hepatitis C, (Enas et al., 2012) has implemented a 

predictive system by using AC approaches and also successful application of AC in artificial 

immune systems is done by (Samir, 2012).  

Phishing is currently an interesting research topic for the authorities dealing with the 

money transfer on the web. Researchers are trying to explore the possible nature of the phishing 

attacks by using different intelligent classification and other traditional techniques that are based 

on human experience. Now, since classification using association rule is proven to be effective 

and accurate classification approach in data mining according to several research studies (Tang 

and Liao, 2007), (Li et al., 2008), (Hao et al., 2009), (Sangsuriyun et al., 2010), (Jabbar et al., 

2012), (Samir, 2012) and (Enas et al., 2012). We believe that there is a need to develop and 

implement an AC technique that will explore the associations in security data based on websites 

and emails features in order to alarm end-user of possible phishing attacks. The AC algorithms 

have shown excellent predictive accuracy in detecting phishing in websites as compared with 

other classification techniques and this fact is also studied by (Aburrous et al., 2010) and (Al 

Ajlouni et al., 2013). The use of AC to detect phishing in websites is relatively latest research 

and the main motivation in the thesis to develop an AC algorithm that is fast and effective and 

can be used in prediction the phishing websites accurately. 
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In this thesis, an effective and efficient AC algorithm is proposed for extracting useful 

knowledge missed by classic rules based classification algorithms for the problem of emails and 

websites categorization. This is since the proposed algorithm considers efficiently all possible 

correlations between the websites features and the class in the data set. The proposed algorithm 

improves upon a known AC algorithm called CBA in three main steps to handle appropriately 

the problem of websites features prediction: 

The training step: Unlike CBA algorithm which employs Apriori (Agrawal, 1993) candidate 

generation function that works by repeatedly merging disjoint candidate itemsets without 

considering the class attribute to discover the rules. The proposed algorithm significantly 

improves the training phase of CBA by reducing the number of itemsets and as a consequence 

training time as well as memory allocation gets minimized. This has been accomplished by 

looking at class of candidate disjoint itemsets before merging them and using the minority rule. 

Building the classifier phase: The proposed algorithm implements a new ranking method based 

on the confidence, support, and cardinality, different for the method used by CBA of confidence 

, support and the order of rule generated. The pruning phase of our algorithm uses the same 

method of database coverage. 

Predicting test data: Unlike the majority of current AC algorithms that use one single rule from 

the classifier to assign class to test cases. The proposed algorithm makes use of group of rules to 

make the class assignment of test data. This surely improves upon the classification accuracy of 

the classifiers produced by the proposed algorithm over other AC algorithms since more rules 

are cooperating in making the prediction.  

 

1.2 Main Aim of the Thesis 

 

The main aim of the thesis is to contruct an effective and efficient novel AC algorithm 

based on the CBA with specific focus on improving the rule generation, rule ranking and 

prediction phases and effectively applying this novel AC algorithm on the extracted features 

based on some set of rules from the large pool of phishing and legitimate websites, so to 

efficiently detect and predict the outcome of the new website features whether it is a phishing 

website or legitimate. 
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Considering all the features in experimental study would be a complex problem, the aim 

is to select some set of features from the phishing and legitimate websites and extract them by 

applying some rules. The selected features are then divided into four groups of data sets naming 

Abnormal Based features, Address Base features, HTML Base features and Domain based 

features. The classification accuracy of the phishing datasets will be studied and discussed in 

detail when novel LC algorithm and other AC and classification algorithms are applied. 

 

1.3 Issues Addressed in the Thesis 

 

To achieve the aims of the thesis different issues related to AC mining and the feature selection 

from the websites are addressed that include the efficiency of the training phase, building the 

classifier, the prediction phase and the applicability of AC on real world applications such as 

phishing. These issues will be highlighted here and will be discussed in details in this thesis.  

 

1.3.1 Issue 1: An Associative Classification Algorithm for Emails and Website 

Prediction 

 

In this thesis we deal with the problem of automatically categorizing websites and emails to their 

relevant types based on different features collected and assessed by the proposed AC algorithm. 

Mainly, the proposed algorithm is developed mainly to successfully allocate the appropriate type 

of the website based on features related to fake and accurate websites in automated manner. We 

have developed within the LC algorithm three methods described in the following subsections 

that have enhanced the primarily the efficiency and the accuracy of the classifiers generated by 

the LC algorithm when contrasted with known AC and traditional classification algorithms. In 

other words, we showed the applicability of AC classification as an approach on effectively 

predict the type of emails and websites in two contexts: classification accuracy and efficiency. 

Finally, we conducted experiments to extract the useful and important features from the world 

phishing websites data.  Then we compared AC methods as well as traditional classification 

techniques performance on these data sets to reveal the efficiency and accuracy of LC algorithm. 

 

1.3.2 Issue 2: Efficiency of Rule Discovery Phase 

 



22 

 

The data used in classification problems is large, and therefore the number of candidate ruleitems 

generated also known as potentially frequent ruleitems in each iteration is relatively very large. It 

is computationally expensive to mine this highly correlated data using AC techniques. To 

generate the frequent ruleitems it is really essential to have such an algorithm that executes 

quickly and able to generate rules with minimum use of memory space. Many of the current AC 

approaches like CBA have adopted the Apriori (Agrawal and Srikant, 1994) candidate discovery 

step inherited from association rule mining to extract frequent ruleitems. In our thesis “candidate 

itemset” and “frequent itemset” terms are used when talking about association rule terms like 

“candidate ruleitems” and “frequent ruleitems” are used when we mention AC. The discovery 

of frequent itemsets in Apriori from a transactional data set is achieved in steps, where frequent 

itemsets discovered in the nth iteration are used to generate potentially frequent itemsets, also 

known as candidate itemsets at (n+1)th iteration. During the process of each iteration a database 

scan is necessary to calculate the support and confidence counts of the newly produced candidate 

itemsets.  

Similar to the association rule mining approaches, AC techniques also adopted the 

concept of Apriori candidate generation function to extract the frequent ruleitems. We enhance 

the process of finding frequent ruleitems by only considering frequent ruleitems that share 

common class in the merging process. We also implemented a minority rule method that 

eliminates all the ruleitems that are associated with the minority classes and keeps the ruleitem 

with majority class, if a ruleitem is found linked with more than single class. This substantially 

minimizes the number of frequent ruleitems produced at the end of rule generation phase, 

reduces the number of rules in the classifier after pruning phase, and also decreases the training 

time and reduces memory use. 

 

1.3.3 Issue 3: Enhancing Prediction Procedure of Test Data  

 

Predicting test data is considered one of the most vital steps in classification data mining. Most 

of the current AC algorithms predict test cases using single based rule which is the top ranked 

rule in the classifier that relate to the test case. However, there could be more than one rules that 

may related to the test case ignoring an important fact, which make the prediction decision by 

current AC algorithms doubtful. Our proposed algorithm takes into account all related rules in 

the classifier to the test case during the prediction phase in which these rules get categorised into 
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groups based on their class labels. Then, the average confidences for all rules belonging to the 

same group are computed and the class that belong to the largest average confidence group gets 

allocated to the test case. This prediction method ensures that all related rules participate in the 

class assignment decision.  

The classifier by evaluating the candidate rules produced at the training phase against the 

training data set and only keeping rules that have certain training instances coverage. The 

process of evaluating each candidate rule on the training data set necessitate that the candidate 

rule body must exactly match at least one of the training instance. This process of removing rules 

is carried out in pruning phase thus leading to the improvement in prediction accuracy. 

 

1.3.4 Issue 4: Rule Sorting Criteria 

 

The rules ranking have a significant impact on the prediction step where the top ranked rules are 

used very frequently to classify test objects. The priority of the rule is usually determined 

according to several factors such as the support, confidence and the length of a rule (cardinality). 

In AC, normally a very small support is used and since classification data sets are dense, the 

expected number of rules with identical support, confidence and cardinality is high.  

 For example, for “balance-scale” database taken from (Weka, 2000) while keeping 

minsupp of 5% and minconf of 40% using the CBA algorithm (Liu, et al., 1998), the classifier 

have produced 15 rules, having same support values and the top 4 having same confidence value, 

CBA is not able to discriminate between which rules to select. Furthermore, the 15 rules 

discovered by CBA also have the same length. So it is harder for CBA to rank them.  

 A more detailed rule ranking technique as compared to CBA’s rule ranking approach is 

introduced in the LC algorithms that by looking into class frequencies in the training data set 

associated with the tie rules, and selects the rule associated with the largest class frequency. The 

proposed rule ranking approach provides a more detailed mechanism of favouring one rule on 

another during constructing the classifier. This ranking method is also a useful tool since it 

minimises the use of randomisation in rule selection, and therefore it may positively impact the 

classification accuracy of the resulting rule set. 
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1.3.5 Experimental Study Comparing Data Mining Approaches on UCI  

 

Many experiments have been conducted while comparing a wide range of classification 

approaches like decision trees, statistical approaches and AC on different binary and multi-class 

benchmark problems. We have based our comparisons on accuracy of classification, merging of 

itemsets during each iteration, execution times and number of rules. 

 

1.4 Outline of Thesis 

 

The thesis comprises of 6 chapters.  Chapter 2 describes the data mining with introduction, types 

of data mining and definitions that will be used in this thesis. Discusses research works 

performed in association rule and classification techniques in data mining where detailed 

descriptions of algorithms are given. Chapter 2 also focuses on demonstrating many AC 

techniques in data mining. It includes the methods used by AC algorithms to produce frequent 

ruleitems, discusses the generation of rules, rule sorting and pruning methods and methods for 

the classifier building and the prediction processes. Chapter 2 also includes the literature review 

on phishing and use of AC mining in Phishing. Chapter 3 demonstrates the steps and the process 

of CBA algorithm in detail. The purpose is to explain for the comparison purposes the 

modifications in CBA algorithm. Chapter 4 introduces the “Looking at the Class (LC) 

algorithm” for construction of the frequent ruleitems to produce better and efficient classifiers. 

This chapter presents a fast and effective method to discover frequent ruleitems from databases 

and demonstrates by experiments its effectiveness and efficiency in terms of number of 

candidate ruleitems merging and execution time. It and also studies the impact on the 

performance in terms of accuracy using a number of well-known data sets from UCI. This 

chapter also proposes new methods for rule ranking and prediction.   

Chapter 5 includes the current emerging real world problem called phishing. The main 

challenge of extracting the useful features is addressed in this chapter. The chapter also 

demonstrates in detail the methods and criteria used in the selection of features from the large 

matrix of phishing data and formulate the rules to classify the data. In this chapter, a detail 

analysis of experiments conducted on the extracted data using the new AC algorithm and 

comparison on the performance with well-known classification and AC algorithms are conducted 
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with respect to several evaluation measures. Critical analysis of the experimental results is 

discussed in detail in Chapter 6. Chapter 7 summarises the major achievements and findings in 

the thesis, draws the general conclusions and recommends further research directions. 
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Chapter 2 

 

Literature Review 

 

2.1 Introduction 

 

This chapter is divided mainly into three parts. The first part of the chapter consists of detailed 

review of two data mining tasks of classification and association rule mining. The differences 

between these two approaches are highlighted and the benchmark algorithms are discussed in 

detail for both classification and association rule mining. In the second part of the chapter, third 

data mining approach which is the combination of both association and classification rule 

mining, known as associative classification will be presented and lastly in the third part a very 

important and critical problem of phishing in websites will be discussed in detail. The first part 

of the chapter demonstrates the classification problem followed by a focus on the classification 

approaches and will conclude by comparing the research work done in each technique. The 

benchmark and well known classification approaches such as decision trees (Quinlan, 1986; 

Quinlan, 1988; Quinlan, 1993; Blackmore and Bossomaier, 2002), Naïve Bayes (Duda and Hart, 

1973) and rule induction (Furnkranz, 1999) will be reviewed. The importance of the above 

techniques discussion is significant as some of them will be used in the comparative analysis of 

the experimental results in chapter 4 and 5. In the latter half of this part of the chapter the 

association rule mining technique will be discussed. The association rule mining problem will be 

presented with the explanation of famous and pioneer rule discovery approaches such as Apriori 

(Agrawal and Srikant, 1994). This algorithm will be discussed in details because the proposed 

work has used the basic concept of Apriori rule generation process. The other AR algorithms like 

FP-growth (Han, et al., 2000), partitioning (Brin, et al., 1997) and others will also be discussed. 

The main purpose of the discussion is to understand the tasks in classification and rule 

generation process in Association rule mining before the third type of data mining technique of 

Associative classification(AC) is discussed. 

The discussion in the second part of the chapter will be organized as, a demonstration of 

AC general working, the AC problem and detailed review of related work published will be 

surveyed. The use of AC algorithms in real world applications like heart disease prediction 
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(Jabber et al., 2012), treatment response data in patients of Hepatitis-C (Enas et al., 2012) and 

artificial immune system (Samir, 2012) will be discussed. Different pruning methods and the 

current prediction approaches used in AC will be compared and explained in some detail in this 

part of the chapter.  

In the third part of the chapter a very important information security problem called 

phishing will be introduced. The selection of this important real world problem is due to a fact 

that the number of web users are increasing in volumes and so as the phishing attacks. An 

increase of 59% in phishing attack volumes is reported in 2012 than 2011 and globally the losses 

due to phishing are estimated at $1.5 billion in 2012 an increase of 22% than 2011( RSA’s 

Report, 2013). The literature is reviewed with emphasis on the use of AC approaches in 

detecting phishing and different methods been used to extract the features from websites and 

emails will be discussed in detail.  

 

2.2 Classification Technique in Data Mining 

 

The purpose of classification techniques is to generate rules from a set of training data that 

contains a set of class labels, and then the model or the set of rules will be used in the prediction 

of test data while performance metric of accuracy is calculated. Hence the classification is a two 

stage process as described in Figure 2.1.  In the first phase rules are generated by a learning 

process performed by an algorithm on the training data set. The second phase is the testing of the 

extracted rules in the first step; these are applied on the test data to predict the outcome of the 

values in the test data instance.  

In classification different approaches for knowledge extraction from a database can be 

grouped into rule induction separate and conquer (Furnkranz, 1999), divide and conquer 

(Quinlan, 1987a), statistical approaches (Duda and Hart, 1973; Meretakis and Wüthrich, 1999) 

and covering (Cendrowska, 1987). 

The rule induction approach also known as separate and conquer approach, works by 

generating rules in a greedy manner, extracting rules one by one. When a rule is found, the 

process of checking how many instances this rules covers in the training data set is initiated. The 

instances covered by that rule are then removed from the training data set. The process is 

continued until the best rule with a large error rate is found. The other approach of divide and 

http://portal.acm.org/results.cfm?query=author%3AP28392&querydisp=author%3ABeat%20W%26%23252%3Bthrich&coll=GUIDE&dl=GUIDE&CFID=37120124&CFTOKEN=32033989
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conquer selects a root node at the top level by using information gain (Quinlan, 1979). The root 

node contains an attribute from the training data set. The training data set is then split into many 

subsets depending on the possible values of the attribute selected. The process is iterated until all 

attributes that are linked in one branch represents the same class or the remaining data entry 

values are not able to add or split any more. Naïve Bayes is a statistical approach in which all the 

classes’ probabilities are calculated in the training database. The probabilities are based on the 

occurrence of associations between the attribute values and used to classify the test data. The rest 

of the techniques like covering algorithms pick up all the classes present in the data set one by 

one. In order to extract highly accurate rules, the approaches tries to find a way of covering the 

maximum number of training instances of that class. 

 

Figure 2.1 Classification as two-step process in data mining 

 

The survey of the classification techniques such as PART (Frank and Witten, 1998), decision 

trees (Quinlan, 1986; Quinlan, 1993; Quinlan, 1998), Prism (Cendrowska, 1987), RIPPER 

(Cohen, 1995), and will discuss significance regarding their characteristics and different issues in 

depth in the next sections.  

 

2.2.1 The Classification Problem 

 

A classification problem is defined as: let ‘D’ denote the data table and ‘C’ as the set of classes 

present in the table. Each record Dd   has an outcome in the form of a class Cc . The main 

aim is to find a set of rules known as classifier cdz : that is able to reduce the chances that z 

(d)  c for a new test data instance (d, c). 
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2.2.2 Classification Example 

 

Table 2.1 contains a ‘Lenses’ data set taken from UCI machine learning repository. Depending 

upon any attribute values of the following attributes: age of patient, spectacle prescription,  

 

astigmatic and tear production rate, the data set ‘Lenses’ is classified into three classes like soft, 

none and hard. It would be difficult for an optician or eye specialist to advise the type of lens 

while looking at the data in the above table or a bigger data set. But when the machine learning 

approaches are applied on the above data, few simple rules are generated that are easy to 

understand. These rules generated will help any system or the opticians to make their decision 

such as to advise a new patient about the type of lens. The test data in the Table 2.2 will be 

classified with the rules generated by classification approaches. 

Table 2.1: Lenses data set (UCI machine learning repository) 
 

Age of the Patient Spectacle 

Prescription 

Astigmatic Tear Production 

rate 

Class of Lens 

young myope no reduced none 

young myope no normal soft 

young myope yes reduced none 

young myope yes normal hard 

young hypermetrope no reduced none 

young hypermetrope no normal soft 

young hypermetrope yes reduced none 

young hypermetrope yes normal hard 

pre-presbyopic myope no reduced none 

pre-presbyopic myope no normal soft 

pre-presbyopic myope yes reduced none 

pre-presbyopic myope yes normal hard 

pre-presbyopic hypermetrope no reduced none 

pre-presbyopic hypermetrope no normal soft 

pre-presbyopic hypermetrope yes reduced none 

pre-presbyopic hypermetrope yes normal none 

presbyopic myope no reduced none 

presbyopic myope no normal none 

presbyopic myope yes reduced none 

presbyopic myope yes normal hard 
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Table 2.2 : Test data to advice type of lens 

 

Age of the Patient 
Spectacle 

Prescription 
Astigmatic Tear Production rate Class of Lens 

young myope yes normal ? 

young hypermetrope no normal ? 

pre-presbyopic myope yes reduced ? 

presbyopic myope yes normal ? 

 

2.3 Common Classification Techniques 

 

2.3.1 Simple One Rule  

 

One rule (OneR) proposed by(Holte, 1993), is a straightforward and cheapest classification 

approach in which one-level decision tree is constructed and rules are generated from the training 

records that are linked with frequent classes. The algorithm checks all the existing attributes in 

the training database and also loops among all different values of each attribute. It then calculates 

the occurrence of the attribute value in focus with the class value then extracts the frequent class 

and marks it as a candidate rule. It will count the error rate in classifying the test instances of 

each rule and stores the rule that have the lesser error rate. The process of finding the association 

of class with the attribute values continues until no rules left with a desirable error rate.  

The challenges of real-valued attributes and missing values are faced by classification 

approaches (Quinlan, 1988), (Witten and Frank, 2000). The problem of missing values is solved 

by OneR, by considering them as any other current attribute value. The challenge of real-valued 

attributes is solved by changing them into categorical values by the use of discretisation method 

and lastly for the categorical attributes the algorithm OneR maps all possible value into a 

positive integer set. The research results in (Holte, 1993) have shown that in many of the 

classification problems, OneR performs well and finds classifiers with reasonable accuracy. 
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2.3.2 Decision Trees 

 

A very well-known and mostly discussed technique for classification and then used for 

prediction is decision trees (Quinlan, 1979, 1986, 1998). This approach can be understood by an 

intellectual’s game of asking some number of questions to guess or identify the place, thing, a 

personality, or an event from the history or present. Questions are asked in such a fashion that 

one question is linked and related to the previous question asked. The game starts when one 

person thinks of any famous thing. A group of intellectual people asks about 15 to 20 questions 

to reveal the identity of that thing. The series of questions in the above game are represented by 

decision tree where outcome of one question set up the next question to be asked.  

To build a decision tree, from the instance of a data set the attribute is entered in the root 

node and branches are built for each attribute values that are linked to the root node attribute. 

This recursive process is continuously applied until all the instances in node have the same class 

or there is no further room to split the tree (Quinlan, 1979).  

When the tree is built, the path from the root node to the end nodes, that is leaf nodes, is 

termed as a rule. The conditions or antecedent of a rule is the path from the top root node to the 

leaf node and the consequent of each path is a class attribute value which is assigned by leaf 

node. The most critical task in this approach is to select a candidate attribute to split or separate 

the data, because selection affects the class distributions in the branches.  

  Pruning methods are used to remove the rules that are redundant and unnecessary and as 

a result of this process, the simpler and easy to understand rules are kept. The tree built in the 

above process will be pruned either by doing sub-tree replacement or sub-tree rising (Quinlan, 

1993) .In the sub-tree replacement substitution is carried out of leaf nodes with sub-trees and in 

sub-tree rising the nodes that are higher in the tree are replaced. Both these techniques are known 

as post-pruning techniques (Witten and Frank, 2000). Another pruning method is also very 

effective; firstly it calculates the error rate of the leaf and internal nodes, and then it compares the 

error rates of the replaced leaves (Quinlan, 1987b). Decision tree algorithms like ID3 and C4.5 

will be discussed in the following section. 
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2.3.3 ID3 Algorithm 

 

The first decision tree algorithm introduced is ID3 by (Quinlan, 1979). It uses an information 

gain measure to decide which attribute value should go in the root node. ID3 picks a root node 

attribute from the available attributes in the training database. As we know that this selection has 

very crucial impact on the distribution of the classes, so the aim is to select an attribute for the 

root node with the best information gain value. After the selection is made by the algorithm of 

the root node, the recursive process of selecting the best attribute in the remaining child nodes 

continues until the rest of the training data cannot be split further (Utgoff, 1989). A decision tree 

is constructed after the above process corresponds to an attribute at each node and the arcs 

contain the attribute’s value. Thus the links in the tree starting from the root node to any leaf 

node refers to rules.   

The information gain information that was used to make a decision regarding placing an 

attribute in the root node, is also helpful in predicting the class that can or should be assigned to 

the unclassified test instance.  

The attribute which contains the maximum information is selected. The information in an 

attribute is measured by using Entropy. Give a training data objects D of R rules, 

Entropy (D) = jj PP 2log        (2.1) 

where
jP  is the probability that D belongs to class j. The information gain of a set of data objects 

on attribute X is defined as  

Information Gain (D, X) = Entropy(D) -  ((|Da| / | D|) * Entropy (Da)) (2.2) 

Where the sum is over each value a of all possible values of attribute X, Da = subset of D for 

which attribute X has value a, |Da| = number of data objects in Da , |D| = number of data objects 

in D. 

A training database D is considered in Table 2.1, which represents ‘Lenses’ information , with 

three class labels none, soft and hard, D consists of 24 data objects where 15 are associated with 

class ‘none’, 4 with class ‘hard’ and 5 with class ‘soft’.  

Entropy (T) = - (15/24) 2log (15/24) - (5/24) 2log  (5/24) - (4/24) 2log (4/24) = 0.940. 
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To calculate the information gain value of attribute Age of the Patient, which contains three 

attributes values “young” (8/24), “pre-presbyopic” (8/24) and “presbyopic” (8/24).  

Gain (T, Age of the patient)=Entropy (T) - (8/24)*Entropy(T(young)+(8/24)*Entropy(T(pre-

presbyopic))+ (8/24)*Entropy(T(presbyopic)) 

The missing attributes should be handled in the ID3 by making some modifications to the 

algorithm. As the decision tree takes into consideration all the training data attributed values it 

may produce long paths. Hence pruning is performed to generate a small subset of rules. The 

extension of the ID3 is done by applying different pruning methods like substituting the sub-tree 

by the leaf node. The substitution is carried out when the expected error rate in the sub tree is 

more than the leaf node.  

 

2.3.4 C4.5 Algorithm 

 

C4.5 is a decision tree algorithm that was proposed by Quinlan (Quinlan, 1993), that generates 

rules from data set. C4.5 is a modification of the ID3 algorithm discussed in the section above 

2.3.3. The C4.5 algorithm just like ID3 also uses the information gain measure to determine the 

root attribute. We will explain in detail in the following section, how C4.5 builds a decision tree.  

Let the training data set shown in Table 2.1, the algorithm will determine the Entropy for all the 

four attributes, Age of the Patient, Spectacle Prescription, Astigmatic and Tear Production rate is 

calculated and one is selected as the root. The process of selection continues in the same fashion 

for the rest of the attributes. C4.5 also handles the missing values by using the probabilities of 

the different values representing an attribute. The total numbers of missing values of an attribute 

are calculated and this value is distributed among the different values of an attribute based on 

their probabilities, in order to keep the uniformity. 

As we know that ID3 used sub-tree replacement to perform the pruning. The modification 

is made in C4.5 in that it uses two pruning methods like pessimistic error rate and sub-tree 

replacement (Quinlan, 1987b; Breiman, et al., 1984), to simplify the DT. Sub-tree replacement is 

explained in the above section 2.3.2. Pessimistic error rate pruning was introduced by (Quinlan, 

1987b). The rules are read directly from the constructed decision tree. The rule contains node 

and arc values as the antecedent and the frequent value in leaf node is taken as the consequent. A 
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new rule can be formed i.e., R  by removing some conditions from R . If the error rate of R  is 

lower than R  on the training data set then R is replaced by R .  

 

2.3.5 Statistical Approach (Naïve Bayes) 

 

Statistical approach uses all the attributes in the training data set to predict the outcome. This 

approach works unlike the One Rule Algorithm described in section 2.3.1, which finds a best 

attribute from the training data set which is then used for prediction. The best known statistical 

algorithm is Naïve Bayes proposed by (Duda and Hart, 1973), it calculates each class probability 

for an attribute using the combined probabilities of all attribute values of that data object. The 

algorithm makes an assumption that the conditional probabilities, of the different attributes with 

the same class, are independent of each other. Thus same weight is given to the training 

attributes during the calculation of the probabilities with a class. Naïve Bayes algorithm has 

proven to work well in several experimental studies (Lewis, 1998b; Meretakis and Wüthrich, B, 

1999; Friedman, et al., 1997, Dong, at al., 1999). 

A training data set is considered in Table 2.1, which describes the patient prescription of 

a lens. The Naïve Bayes algorithm works by calculating the probabilistic values. The attribute 

value frequencies in the training data for the age of the patient attribute, we found 8 occurrences 

of “young” of which 4 instances are associated with class “none”, 2 instances are associated with 

class “soft” and remaining 2 are with “hard” class from the values in Table 2.1. The probabilistic 

measure value of each attribute is used to estimate the likelihood. 

When a new instance has to be classified of Table 2.2, the probabilistic values of each 

attribute will be used to predict the likelihood of a class, to be assigned to the test instance. 

Considering the first test instance from Table 2.2, which contains the values: young, myope, yes 

and normal, the likelihood of the possible classes is calculated as follow: 

Likelihood for class (none) = 4/15 * 7/15 * 8/15 * 3/15 = 0.01327 = 2.42% 

Likelihood for class (soft) = 2/5 * 2/5 * 0/5 * 5/5 = 0.16 = 29.18% 

Likelihood for class (hard) = 2/4 * 3/4 * 4/4 * 4/4 = 0.375 = 68.40% 

From the example above the likelihood for class “hard” is larger than that of class “soft”, and 

class “none” and so the test instance shown in Table 2.2 is assigned to class “ hard”.  

http://portal.acm.org/results.cfm?query=author%3AP28392&querydisp=author%3ABeat%20W%26%23252%3Bthrich&coll=GUIDE&dl=GUIDE&CFID=37120124&CFTOKEN=32033989
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  There is one problem in Naïve Bayes algorithm; if an attribute value never occurred for 

any of the classes in the training data set then the final probability value of an attribute with that 

class will be zero. A method called Laplace estimator method by (Snedecor and Cochran, 1989) 

is one solution that adds 1 in the numerator and 3 in the denominator. Another solution is applied 

by a minute addition to the Naïve Bayes method, a small number say ‘n’ to the numerator and 

n/3 to the denominator (Witten and Frank, 2000).  

 

2.3.6 Rule Induction and Covering Approaches 

 

2.3.6.1 Incremental Reduced Error Pruning (IREP) 

 

Incremental Reduced Error Pruning (IREP) technique was proposed by (Furnkranz and Widmer, 

1994). It combines the separate and conquer approach with the Reduced Error pruning (REP). 

REP is an effective method that prunes and generates a set of rules. The errors are estimated at 

all nodes of the tree by keeping the chunk of training data as a test data that is independent. The 

process works by estimating the misclassification rate of the test data at each node and is 

compared with the error if the concerned node is exchanged with the resultant majority class. 

While replacing the node if the error is reduced, pruning of the sub tree is carried out. This 

computational and pruning process is performed repeatedly for each node until there is no 

reduction in error at each node.  

IREP works in greedy manner to generate some rules; two sets of data are constructed by 

random partitioning the training data. One set is growing which contains 66.6% and the rest of 

training data is considered as pruning set. IREP starts with an empty rule; a rule condition 

containing the attribute value is added using a Foil-gain metric (Quinlan and Cameron-Jones, 

1993). The algorithm appends those conditions to the current rule continuously that increases the 

Foil-gain value until that rule is not able to cover any data from the growing set. When the rule is 

constructed, the algorithm then picks one rule from the generated rules and prunes it backwards. 

From the selected rule IREP deletes one condition and selects that deletion which showed 

improvement in the function below:   

 MP
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where MP,  represents the total number of data instances in the pruning set and mrpr _,_  are 

the total number of data instances that are predicted by the pruned rule. The pruning process will 

be continued until a deletion in the rule condition does not improve the value of ‘v’. 

The pruned rules are placed in the classifier and the data instances that are linked with it 

are deleted from both the sets. An empirical study was performed on some benchmark problems 

which showed that REP is slower than IREP and both are competitive when compared on the 

basis of error rate (Furnkranz and Widmer, 1994). When compared with C4.5 algorithm, IREP 

performed well on 16 data sets and showed less error rate, whereas IREP is out performed by 

C4.5 on 21 data sets.  

 

2.3.6.2 Repeated Incremental Pruning to Produce Error Reduction  

 

RIPPER is a modified version of the IREP algorithm and was proposed by Cohen (Cohen, 1995). 

RIPPER builds the set of rules called classifier as follows: firstly it divides the training data set 

like IREP into two parts, a pruning and a growing set. The process starts by an empty rule set 

and the algorithm appends heuristically one condition at a time till no error is found on the 

growing set. 

The modification in IREP will be explained in this section. One modification is the 

introduction of revised stopping condition when the rules are generated. In IREP a stopping 

condition is used that checks the error rate of a learned rule and stops adding rules, when error 

rate exceeds 50% on the pruned data. This criterion seems to stop too early, if an application 

domain contains a large number of low coverage rules. RIPPER uses a minimum description 

length principle (MDL) to stop adding a rule (Rissanen, 1985). When the rule is added the 

complete description length of the training and the rule data sets is calculated. If the description 

length is greater than the shortest description length extracted so far, the algorithm will not add 

any more rules. This technique of MDL considers the best set of rules that reduces the size of the 

classifier (set of rules) and also minimizes the quantity of information needed to handle the 

exceptions relating to these set of rules (Witten and Frank, 2000). 

Another modification in IREP algorithm is the procedure that optimizes and reduces the 

number of rules discovered by pruning the discovered rule set. It means that this process is 

applied after the first pruning phase, so known as post-pruning. So the classifier produced by 
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IREP is again processed through an optimization phase, to further simplify the rule set 

characteristics. 

The RIPPER integrates the IREP and optimization procedures. The working is as 

follows: A pruned rule ipr   is selected from the rule set and two alternative rules such as 

replacement and revision of ipr  are built. To create the replacement of ipr , an empty rule 


ipr  is 

constructed and pruned to decrease the error rate of the rule set including 


ipr
 
on the pruning 

data set. And the revision of ipr
 

is built in the same fashion but the rule is constructed 

heuristically and one condition is added at one time to the actual ipr
 
instead of the empty rule. 

The rule with the minimum error rate is selected from these three rules when analysed on the 

pruning data. 

A comparative study is conducted on 36 benchmark data sets (Merz and Murphy, 1996) 

to estimate prediction accuracy of C4.5, IREP and RIPPER algorithms. The results have revealed 

that C4.5 has shown less error rates on 15 data sets while RIPPER has demonstrated better 

values than C4.5 on 20 data sets. On the other hand RIPPER has achieved better results when 

compared with IREP on 28 data sets. 

 

2.3.7  Prism 

 

Prism is categorized as a covering algorithm to generate classification rules and was proposed by 

(Cendrowska, 1987). This approach considers one class from the training data and finds a 

method to cover all the records to that class and the data instances which do not belong to that 

class are excluded. To achieve the maximum accuracy of the created rules, this approach 

appends one attribute value to the current rule. At each step, the algorithm selects the condition 

that increases the probability of the desired classification. The process of rule construction 

continues until the stopping condition is met. Once a rule is constructed, the algorithm stops 

building the rules for the current class when all the data associated with the current selected class 

is covered. After this process another class is selected and so on. 

The rules generated by prism are nearly perfect (0% error rate). The main advantage of 

Prism is that it can add a rule in the generated rule set with no impact on the current rules, when 

compared with decision tree. On the contrary in a decision tree when a rule or a path to the tree 
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has to be added, it requires changing of the complete tree structure (Witten and Frank, 2000). 

When an instance has to be classified, decision tree uses rules from the tree directly unlike in 

Prism due to independence of rules, problems may occur when an instance is linked with more 

than one rule having different classes. 

A study was conducted to investigate the e-learning systems while using classification 

algorithms to produce set of predicting rules for courseware authors in (Romero, et al., 2005). 

The findings from 50 log files for students have shown that Prism has successfully extracted 

more accurate rules when compared with ID3.  

 

2.3.8 Hybrid Approach (PART) 

 

PART is a hybrid approach introduced by (Frank and Witten, 1998). Unlike RIPPER and C4.5 

approaches that work in two phases, PART produces rules all in one go while avoiding extensive 

pruning. PART joins both the approaches of divide-and-conquer as in C4.5 and separate-and-

conquer as in RIPPER to explore and generate the rules. It constructs a partial decision tree by 

using divide-and-conquer approach, from the rules generated by separate-and-conquer approach. 

The PART algorithm avoids building a full decision tree but instead it constructs and prunes a 

partial decision tree like C4.5. While handling of missing values and pruning approaches remain 

same as C4.5. PART is different from RIPPER in the pattern of generate rules; each rule in 

PART refers to the leaf that has the largest coverage in the partial decision tree. On the contrary 

RIPPER constructs the rule in a greedy fashion, beginning from an empty rule and appends 

conditions until the rule does not show any error. 

The results are gathered from the experimental studied conducted on PART, RIPPER and 

C4.5 using data sets from (Merz and Murphy, 1996) and have been written in (Frank and Witten, 

1998). The results have shown that simplicity of PART has not affected its performance. The set 

of rules generated are more accurate than RIPPER though they are lengthy, and are also more 

accurate than C4.5.  

When the comparative study was conducted between PART and C5 (Quinlan, 1998) 

using missing persons profiling data (Henderson, et al., 2000). The experimental analyses have 

indicated the resemblance in features and accuracy of the rules generated by PART and C5 using 

Weka software system (Weka, 2000). 
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2.4 Issues in Classification 

 

2.4.1 Over fitting 

 

There are many issues in classification and over fitting is one of them; as the training segment 

goes on too lengthy with the aim of reducing the error rate to zero, then the general performance 

of the outcome classifier on test data objects may depreciate.  That is called  general explanation 

of the over fitting problem, which can happen due to many reasons like restricted number of 

training data objects or noise among the training objects (Jensen and Cohen, 2000; Freitas, 

2000). In decision tree algorithms for example, it is always possible to create a highly precise 

decision tree for the training data, but, during the construction of the tree it is generally helpful to 

stop the building process near the beginning in order to simplify the performance of the result on 

test data objects. For that reason, pruning approaches like pre-pruning and post-pruning 

(Breiman, et al., 1984; Quinlan, 1993) have been extensively used during building decision trees 

to keep away from fitting the training data very well and to give precise performance on test 

data.  

There are many methods exercised to stay away from the problem of overfitting in the 

classification literature, which includes cross validation (Witten and Frank, 2000) and MDL 

principle (Rissanen, 1985). Cross validation is a well-recognized evaluation approach in data 

mining. Cross validation is generally employed when the amount of data for mining is small. In 

cross validation, the training data set is separated at random into n blocks, every block is held out 

once, and the classifier is trained on the remaining n-1 blocks; after that its error rate is 

calculated on the holdout block. Therefore, the learning procedure is executed n times on to 

some extent different training data sets. When there is enough data, for user then user simply 

divide the data into two sets, these are training and test. User can discover the classifier from the 

training set and calculate its quality on the test set.  

In the end, the MDL principle has been used in decision trees to stop the progress of the 

growth of the tree. Overall, over fitting is believed to be one of the reasons why classification 

task in data mining is so difficult (Jensen and Cohen, 2000). 
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2.4.2 Inductive Bias 

 

Given a training data set, the classification task may be seen as suggest hypotheses (classification 

rules) from the set of accessible training data objects. Inductive bias can be described as a set of 

assumptions that lead to the selection of hypothesises (Liu, et al., 2002). With no inductive 

biases the classification techniques would not be able to help one rule over other ones. In 

addition, all rules when taken collectively will predict that all data objects are evenly likely, and 

subsequently cannot supply a basis for prediction.  

Classification algorithms are capable to generalise their performance on test data objects 

by inductive biases because they have contained assumptions of favouring one rule over another. 

For example, a decision tree algorithms like ID3 (Quinlan, 1979) and C5 (Quinlan 1998) have an 

obvious bias in their searching for the best attribute decision node, which is, the attribute 

selection technique based on information gain. Besides, these algorithms help smaller valuable 

sub-trees over difficult ones by using backward pruning. Probabilistic classification algorithms 

like Naïve Bayes calculate the probability for every one class in the training data set utilizing 

joint probabilities of attribute values for a data object. While inductive bias in Naïve Bayes 

algorithm stands for the assumption that the provisional probability of a data object given a class 

is independent of the probabilities of other data objects given the same class (Liu, et al., 2002).   

At last, because classification algorithms have a bias, the outcomes precision depends a 

lot on the training data quality. (Freitas, 2000) Just to point out if someone is saying that 

algorithm X is more accurate than algorithm Y, it is only because of the application domain 

utilized for the experiment. 

 

2.5 Association Rule Mining 

 

Since 1993 association rule mining introduced by (Agrawal, et al., 1993) is a significant research 

domain in the machine learning and data mining community. In data mining Association rule 

mining (ARM) is a very important task which tends to find correlation among the attribute 

values in a data set. A classic example for association rule mining is a super market basket data, 

the business community needs to know the shopping trends of the customers (Agrawal and 

Srikant, 1994). In association rule mining approach, one tries to explore the association between 
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the shopping basket items of all the customers. For example, in supermarket transactions, if a 

customer buys a mobile then what is the probability that he will buy a mobile cover as well? Or 

if a customer buy a ‘crisps’ what are the chances that he will buy a ‘dip sauce’? And if a 

customer buys ‘bread’ what is the probability that he will buy a ‘jam’ or ‘butter’?  When the 

business decision makers have the knowledge of association between the frequent sold items, the 

answer of all the above questions would be much easier. In short the life becomes easy for 

experts to make strategic decision of buying products, shelving, planning, to launch promotions 

and advertising. Besides the supermarket example Association rule mining is also helpful in 

exploring the information in telesales and marketing (Mackinnon and Glick, 1999) , mail 

ordering (Agrawal and Srikant, 1994) and also in the commerce industry (Pramudiono, et al., 

2002). 

In association rule mining the task of finding the rules can be described (Agrawal, 1993) in the 

following points: 

Let a data set ‘D’ contain the transactions of sales in a super market, and ITEMS = {item1, item2, 

item3, item4, item5………,itemn} is the complete set of items present in the data set ‘D’. Any 

transaction ‘T’ in ‘D’ that have any number of non-empty items called an itemset, in such a way 

that T  ITEMS. 

An item support is calculated as the total number of occurrence of that item in ‘D’ to the total 

number of transactions in the data set ‘D.  

An itemset containing two or more items, support is calculated as the total number of occurrence 

of that itemset in ‘D’ to the total number of transactions in the data set ‘D.  

An Association rule can be described as 1 ii itemitem
, where 1, ii itemitem

 ITEMS and

 1ii itemitem
.  

The association rule confidence can be defined as or calculated as the proportion of the 

transactions that contains 1iitem  also have iitem , so to find confidence

)(support/)( 1 iii itemitemitem  . 

In the association rule approach, inputs of support and confidence values known as minimum 

support “minsupp” and minimum confidence “minconf” are defined by the users and the problem 

is to extract or find all the rules (combination of different number of items) that have the higher 

values than the thresholds of minsupp and minconf. As we know that ARM is a unsupervised 
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learning and only itemsets are used to compute the confidence and support values, in contrary to 

the AC algorithms which considers the class labels with the itemsets to calculate those values in 

question. 

 

2.5.1 Problem Solving Strategy 

 

The generation of association rules from market basket transactional data set can be divided into 

two stages as in (Agrawal and Srikant, 1994). 

Stage 1: The itemsets that are produced with higher support values than minsupp are known as 

frequent itemsets and the rest of the itemsets will be termed as not frequent or infrequent. 

Stage 2: All the frequent itemsets from above stage 1 will be passed through a check of minconf 

value. Those frequent itemsets that have higher value than minconf are kept as rules. rules. 

The first stage of exploring the frequent itemsets, is comparatively more core and tougher 

problem than the second stage, and requires exhaustive computation and memory (storage) 

(Cheung, et al., 1997; Lin and Dunham, 1998; Zaki, et al., 1997; Lim, et al., 2000). We will 

analyse an example from the same sales records data from a supermarket, suppose that data 

contains 1050 distinct items; we can image a combination explosion of 2
1050 

possible associations 

of distinct itemsets, many of them might not be frequent in the next step. We will find only a 

little subset of frequent itemsets from this huge set of candidate itemsets. This is an extensive 

research area and many scientists have keenly investigated this problem of exploring frequent 

itemsets in the past many years. The main aim of the researchers is to improve the efficiency 

(Bayardo and Agrawal, 1999; Liu, et al., 1999; Li, et al., 1999; Zaki, 2000; Baralis, et al., 2004) 

in the process of generating frequent itemsets.  

In the second stage, the rule generation from the set of explored frequent itemsets is 

relatively easy process and quiet straight forward, given their support values are already known 

(Han, et al., 2000). 

The first association rule mining algorithm is proposed by (Agrawal and Srikant, 1994) is 

Apriori. The rule discovery process in Apriori is achieved in levels; in the first level the database 

is scanned and Apriori calculates each item support count and checks whether the support count 

is greater than the minsupp value. All the items that pass the minsupp value are called frequent 1-

items. In the second level the associations or combination of frequent 1-items found in the 1
st
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level are carried out with the disjoint frequent 1-items. Apriori works by decreasing the number 

of candidate items or itemsets at each subsequent level by using a property called as “downward 

closure”. It is defined as if an itemset has support value greater than the minsupp threshold, then 

all its subsets have support value greater than minsupp threshold. So it infers that the subset of 

the frequent itemset will also be frequent and on the contrary the superset of an infrequent 

itemset is also infrequent. By the introduction of this “downward-closure” property, the numbers 

of potential itemsets are reduced significantly at each level and thus enhancing the efficiency of 

the frequent itemset generation process. Many of the algorithms in association rule mining 

proposed after Apriori uses this “downward-closure” approach. 

Approaches that use Apriori have performed efficiently and accurately where the size of 

the data set is small or the candidate itemsets are less (Liu, et al., 1999; Park et al., 1995). 

However where the support value is kept low, the number of possible itemsets generated may be 

huge. Multiple scans over the data set is needed to calculate the itemsets support values at each 

level of the process, and that leads to a significant computational overhead in respect of 

execution time and the use of memory. As we all know that the data is being collected on daily 

basis, all the organizations aim to improve their services to get good profits. As the data is 

growing, to extract and evaluate this data is also becoming computationally expensive. So the 

main focal point is to minimize the complexity and our research is aiming for that bit to improve 

the efficiency in terms of run time without affecting the performance when the data sets are 

large.   

To address the shortcomings in Apriori, different ARM techniques have been introduced 

like Dynamic Itemset Counting (Brin, et al., 1997), multiple-minimum-support (Liu, et al., 

1999), Frequent Pattern Growth (Li, et al., 2000) etc. Some of the approaches will be reviewed 

and discussed that have achieved some significant improvements in the frequent itemset 

generation step.  

 

2.5.2 Association Rules Mining Approaches 

 

2.5.2.1 Apriori  

 

Apriori is proposed by (Agrawal and Srikant, 1994), and as was discussed earlier that the 

algorithm works in steps and in each iteration it generates frequent itemsets taking into account 
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the prior knowledge of the frequent itemsets generated in the previous step. In the discovery 

process of frequent itemsets “downward-closure” property is used by Apriori. In each iteration, a 

complete pass over the training data set is done to extract new candidate itemsets from the 

frequent itemsets found in the previous step. 

Apriori starts by taking an input of training data set and explores all candidate items in 

the data set and those who pass the minsupp threshold are stored as frequent 1-items. The 

algorithm generates the candidate Cn itemsets from merging the frequent 1-items (Fn-1) with 

frequent 1-items (Fn-1).  Aripori calculates the support counts of all the itemsets found in the 

previous step. Then it checks whether the support counts of the candidate itemsets generated are 

greater than the minsupp value. The itemsets that passes this filter will be called frequent 2-

itemsets. The algorithm continues to generate candidate and frequent itemsets, and terminates 

when no more frequent itemsets are found. It will combine all the frequent itemsets found in all 

the iterations. 

 

2.5.2.2 Dynamic Itemset Counting 

 

Researches always desire for the speedy generation of frequent itemsets, so to increase this 

process a new ARM algorithm is proposed known as Dynamic Itemset Counting (DIC) by (Brin, 

et al., 1997). The database is split into many partitions by DIC and each partition is marked with 

a start point. The support counts of all the itemsets generated so far are determined and addition 

of new candidate itemsets is done dynamically as soon as their subsets become frequent. The 

major difference between Apriori and DIC is that DIC begins to generate rest of the candidate 

items based on the candidate item that have just reached the minsupp value and not waiting for 

the scan to complete, unlike Apriori. DIC constructs a prefix-tree to generate the dynamic 

candidate itemets. DIC is sensitive to homogenous data and if the data set is highly correlated. 

The experimental findings have shown that DIC is 30% faster than Apriori using 

synthetic data while keeping minsupp to 0.5% and synthetic data. And on the census data DIC 

performed with excellence than Apriori by 36%. The itemsets generated in census data sets are 

very large, and needs long training time when the support threshold is lowered for both DIC and 

Apriori. 
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2.5.2.3 Frequent Pattern Growth 

 

It is an Apriori like technique and needs a high execution time and space in main memory to 

discover all the frequent itemsets. A new ARM technique known as FP-growth (Han, et al., 

2000) is introduced that constructs a very condense tree for transactional database known as 

frequent pattern tree (FP-tree). One path in the tree corresponds to one transaction in the database 

and the size of the path is the total number of frequent items in the record (transaction).The FP-

tree can be seen as a useful structure as there is a lot of sharing between the frequent itemsets and 

the FP-tree includes all the frequent itemsets present in each transaction of database, thus the FP-

tree is smaller in volume than the main database. The construction of FP-tree is done in the 

second scan after the frequent itemsets are produced with their support values in the first scan.   

Unlike Apriori there is no candidate rule generated in FP-growth algorithm during the 

mining process. The major drawback in FP-method is seen when the FP-tree constructed is 

dimensionally large and not able to fit in the main memory.  

The comparisons between Apriori and FP-growth regarding performance on two data sets 

having 10000 records have shown that FP-growth is faster than Apriori as the candidate sets that 

Apriori must maintain becomes very huge. The searching process to update candidate support 

counts is also very costly for Apriori at all levels. 

 

2.5.2.4 Partitioning 

 

This ARM approach reduces the I/O time by decreasing the frequency of database scan to two is 

been introduced by (Savasere, et al., 1995). The algorithm splits the database into small portions 

such that each portion can be accommodated in main memory so that the frequent item 

generation will be local. It uses Apriori during the first scan and constructs a tid-list for all 

itemsets in the current portion. The algorithm conducts a union process in the second pass on 

frequent itemsets discovered locally in each portion to generate frequent itemsets for all data set. 

The main disadvantage of this approach is that it divides the data uniformly into equal partitions, 

if the occurrence of an itemset is evenly distributed in each partition then this approach will 

produce majority of frequent itemets in the second scan, but in case when the distribution of 

itemsets are not evenly distributed in all the portions or partitions then in the second pass 
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majority of the itemsets produced are infrequent and thus causing a significant overhead for I/O 

(Lin and Dunham, 2000). For the large data sets when the number of partitions is more in 

number, the size of local frequent itemsets also increases leading to redundant generation and 

more time needed for the computation, especially when frequent items are present in more than 

one partitions (Zaki, et al., 1997).  

The performance analysis between partitioning algorithm and Apriori has shown that 

processing time for both increases when the support count value is decreased for 6 market basket 

data sets (Agrawal and Srikant, 1994). When different sizes of partitions are used for 6 

benchmark data sets the decrease in execution time is seen for low number of partitions.  

 

2.5.2.5 Direct Hashing and Pruning  

 

Generally, the execution time of the ARM is mainly dependent on the speed of producing the 

frequent itemsets in the early stages of rule discovery phase, i.e., in first and second 

iterations.frequent-1 and frequent-2 itemsets.  The findings of (Agrawal and Srikant, 1994) have 

revealed that the time taken to generate candidate itemsets in the initial stages has the major 

chunk towards computational cost. It is obvious that if the frequent itemsets are large in 1
st
 

iteration, the number of candidate itemsets in 2
nd

 iteration will also be large. So the main focus is 

to decrease the number of the candidate itemsets at initial scans that may lead to substantial 

reduction of execution time and use of memory. Direct Hashing and Pruning (DHP), was 

introduced by (Park, et al., 1995) that is based on hash-based technique to decrease the number 

of candidate itemsets at the intial stages. 

The working of DHP is described as follow: It builds a hash tree, H1 to discover frequent 

1-itemsets during database scan. If an item is present in the hash table and found during the scan 

then its count is incremented else the item is assigned count 1 in the hash table. After all the 1-

itemsets are calculated for the database, a new hash table H2 is constructed that contains the all 2-

itemsets. We can get candidate 2-itemsets from hash table H2 after the database scan. 

The process of pruning involves the removal and reduction of some of the transactions 

from the data base. In DHP support is set to prune the itemsets, e.g., in H1 candiate-1 items, t = 

ACDEF with occurances count of 3, 2,1,4,3. If the support is set to ‘3’, the frequent 1-itemset 

will only contain the three items in t = {A, E, F}, having values greater than minsupp are kept 

while {C, D} items will be removed from t. 
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Experiment results have shown that DHP minimizes CPU time in the 2
nd

 iteration, but it 

also has shown reduction in execution time in the later cycles (Park, et al., 1995). The processing 

time of DHP in the second iteration to discover candidate 2-itemsets is less than of Apriori. But 

the CPU time is higher than Apriori in the first iteration as DHP needs time to build the hash 

table.  

 

2.5.2.6 Multiple Support Apriori  

 

The number of rules produced is controlled by a constraint of support (Zaki, 2000; Bayardo and 

Agrawal, 1999; Agrawal, et al., 1993). Most of the ARM algorithms consider single support 

value. Setting the support value to a low value generates large amount of useless rules (Liu, et 

al., 1999, Li, et al., 1999) and changing the support value to high leads to non-selection of some 

important rules. 

To tackle the problems as mentioned above, an Apriori like algorithm is build known as 

MSapriori, which takes into account different support values for every item in the data set. This 

has given users the flexibility to express themselves and has given option to select support 

according to different nature of data. The support value of a specific rule in MSapriori is the 

lowest minsupp value between the items in that rule. The generate function of MSapriori is same 

as Apriori’s. 

A study against the real data from (Agrawal and Srikant, 1994) has shown that MSapriori 

produced less number of candidate itemsets as compared to Apriori, however the processing time 

for both algorithms are the almost the same. 

 

2.5.2.7 Confidence-Based Approach 

 

Another approach proposed by (Li et al., 1999) that does make use of the support threshold and 

only mines the rules with high confidence. For a dataset, the user sets an itemset target, and this 

shows the consequent of the desired outcome. All association rules are found keeping in view of 

the target that is consequent. The process of exploring high confidence rules is divided into two 

parts. In step 1, database is split into two halves, first half contains all the records with the target 

itemset T1, and the other half contains the remaining transactions, T2. Then the technique 
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removes all the transactions in T1 and T2 with the target item. The remaining set of items left in 

the original database D , are reduced to D = D – target (item). 

The discovery of all the itemsets, X, is carried out in step 2 of those which are present in 

T1 but are not present in T2, and rules like tgX  are generated. These kinds of itemsets that 

have support value of zero in T2 but contains some support in T1 are called Jumping Emerging 

Patterns (JEP). For the discovery of JEP like items authors of (Li, et al., 1999) inherited two 

border methods from (Dong, 1999). The method of first border explores the data set and 

discovers itemsets with some support value, called horizontal borders. The second border 

method will take two horizontal borders as an input and produce all itemsets with support zero 

and non-zero for one and the other.  

The studies have shown that the high confidence rules extracted by this approach cannot 

be found by traditional approaches of association rules. But the itemsets generated are much 

higher than the actual data set. 

 

2.5.2.8 Tid-list Intersection  

 

One of the efforts made to reduce the execution time is by (Zaki, et al., 1997), an Eclat algorithm 

is build that uses a vertical layout to keep data scans to one. The question is addressed whether it 

is possible to generate all the frequent itemsets in a single pass over the data; Eclat used a tid-

lists intersection approach instead of a complex data structure.  

An extension in Eclat algorithm is proposed by (Zaki and Gouda, 2003) known as dEclat. 

It introduced a new approach of diffset that reduced the memory needed to store the transactions 

identifiers (tids). A vertical layout is used to keep the differnces in tids of a candidate itemset 

from its generating frequent itemsets. The new diffset approach does not keep the complete tids 

of each itemset instead it keeps the differences among class and its member itemsets. 

Results are generated on synthetic and real world data (Zaki and Gouda, 2003) and have 

shown that vertical approaches like dEclat and Eclat performed better than horizontal approached 

like Apriori and FP-growth in reference to memory use and execution time. On dense data,  Eclat 

is outperformed by dEclat, and on sparse databases the volume of the data stored in dEclat grows 

at a faster rate as compared to Eclat. The conclusion of the author is to begin with tidlist and then 
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change to diffset for sparse databases and to start with diffset in case of dense data sets for better 

results. 

 

2.6 Associative Classification Mining  

 

As learned from the review in the first part of the this chapter that classification and Association 

rule mining are playing a significant role in problem solving and decision making in the real 

world. The difference between these two tasks classification and ARM is that former tends to 

predict class labels in a database and later finds the correlation between the attributes of the 

database. In 90’s (Ali et al., 1997) and (Liu et al., 1998) combined these two tasks to build 

classifiers with very encouraging results. This new phenomenon is known as Associative 

classification (AC). The findings of the several researches AREM ( Jiang and Karyris, 2012), 

Fuzzy AC (Lucas et al, 2012), (Niu et al., 2009; Li et al., 2008; Thabtah, et al., 2005; Yin and 

Han, 2003; Liu et al., 1998, 2001) have concluded that AC approaches build more accurate 

classifiers than the previously known classification methods as rule induction (Cohen, 1995, 

Quinlan and Cameron-Jones, 1993;), decision trees (Quinlan, 1998; Quinlan, 1993), and 

probabilistic (Duda and Hart, 1973) approaches.  

Rule induction approaches like ++IREP (Oliver et al., 2003), RIPPER (Cohen, 1995) and 

IREP (Furnkranz and Widmer, 1994) produce local and human readable set of frequent rules in a 

greedy way. In the discovery process of the locally derived rule, all the instances related to the 

rule in the training data are eliminated and this process continues until the error rate is 

unacceptable. In the rule induction techniques rules are derived from the chunks or partitions of 

the training database instead of considering full training dataset. A statistical FOIL gain metric 

measure is used in the above rule induction algorithms, the rule having highest foil-gain metric 

measure is selected and rules with the highest value are placed at the top of the classifier. A good 

example is the IREP rule induction algorithm that selects the rule on the basis of Foil-gain value 

(Quinlan and Cameron-Jones, 1993) and then the rule is inserted at the top of the classifier. In 

comparison to rule induction approaches, associative classification aims to extract a more global 

classifier while using full set of training data.  Generally, when a classifier is built using AC, a 

set of frequent ruleitems called Class Association Rules (CARs) are discovered from a training 

database and based on some methods, a small subset is selected from these large number of 

CARs to produce a classifier. The production of the classifier is accomplished by different 
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approaches in number of ways, such as in CAAR (Xu, et al., 2004), L
3
 (Baralis and Torino, 

2000) and CBA (Liu, et al., 1998) algorithms, selection of these set of rules is carried out by 

examining and evaluation the full set of CARs on the training database and only those rules are 

considered that cover at least one training database object. On the contrary, CPAR algorithm 

chooses a classifier in a greedy manner. The predictive accuracy of the classifier produced is 

evaluated on test data object to predict the class label. 

Several AC algorithms are been introduced in the past decade, such as ARM (Jiang and 

Karyris, 2012), Fuzzy AC (Lucas et al., 2012), PST (Lakshmi, 2012) and use of AC techniques 

in applications like heart disease prediction (Jabbar et al., 2012), hepatitis-C treatment response ( 

Enas et al, 2012), in artificial immune system (Samir , 2012), CBAR (Niu et al., 2009), ACCF 

(Li et al., 2008), BCAR (Yoon and Lee, 2008), ACN (Kundu et al., 2008), MCAR (Thabtah et 

al., 2005), CACA (Tang and Liao, 2007), 2-PS (Qian et al.,2005), MMAC (Thabtah et al., 2004), 

CAAR (Xu, et al., 2004), L
3
 (Baralis et al., 2004),  Negative-Rules (Antonie and Zaïane, 2004), 

CPAR (Yin and Han, 2003), ARC-AC (Antonie and Zaïane, 2002),  CMAR (Li et al., 2001) and 

CBA (Liu et al., 1998), and The above mentioned algorithms use different techniques to find, 

rank, store, prune and predict rules and predict the outcome of a new test case.  

The discussion in the chapter will be organized as, a demonstration of AC general 

working in Section 2.6.1. The AC problem and detailed review of related work published will be 

surveyed in Section 2.6.2. Different pruning methods will be explored in Section 2.6.3, the 

current prediction approaches used in AC will be compared in Section 2.6.4. And finally, the 

chapter summary is given in Section 2.6.6. 

 

2.6.1 Working of Associative Classification  

 

AC is a supervised learning method where the outcome or the prediction of a set of attribute 

values in a dataset is ‘classes’. AC is the combination of two main data mining tasks; association 

and classification. First step in AC rule mining is the extraction of set of rules by using any of 

association rule mining algorithm. These set of rules do satisfy user defined input thresholds for 

minimum support and confidence (minconf). The rules generated are very large in quantity and 

many of them are either redundant or noisy. In the second phase of the AC mining task, pruning 

methods are applied to reduce the amount of rules by eliminating the noisy and redundant rules 
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from a set of frequent ruleitems. The remaining sets of rules are called classifier and are used in 

predicting the outcome of the new data.  

 

2.6.1.1 Main Steps in Associative Classification 

 

The procedure of constructing a classifier involves many steps in AC as demonstrated in Figure 

2.1 and can be summarized as follows: 

i) The Candidate ruleitems discovery process. 

ii) Extraction of all Frequent ruleitems from the Candidate ruleitems that passes the 

minimum support threshold value. 

iii) The rules with values higher than minimum confidence threshold value are 

selected. 

iv) Ranking and pruning methods are applied on all generated frequent ruleitems in 

order to finalize a set of rules called a classifier. 

v) The final step in AC is to evaluate the goodness (accuracy) of the classifier, by 

applying prediction approaches on the test data. 

 

 

Figure 2.2 Main Steps of an associative classification algorithm 
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2.6.2 Associative Classification Problem 

 

AC is a special case of association rule mining in which only the class attribute is considered in 

the rule’s consequent (Liu et al., 1998), for example in a rule such as YX  , Y must be a class 

attribute. The AC problem is summarized from (Thabtah, et al., 2004) as follows: A training 

dataset T has m distinct attributes A1, A2, … , Am and C is a list of class labels. The number of 

rows in T is denoted |T|. Attributes could be categorical (meaning they take a value from a finite 

set of possible values) or continuous (where they are real or integer). In the case of categorical 

attributes, all possible values are mapped to a set of positive integers. For continuous attributes, a 

discretization method is first used to transform these attributes into categorical ones.  

 

Definition 1: A row or a training object in T can be described as a combination of attribute 

names Ai and values aij, plus a class denoted by cj. 

Definition 2: An item can be described as an attribute name Ai and a value ai, denoted < (Ai, 

ai)>. 

Definition 3: An itemset can be described as a set of disjoint attribute values contained in a 

training object, denoted < (Ai1, ai1)… (Aik, aik)>. 

Definition 4: A ruleitem r is of the form <itemset, c>, where cεC is the class. 

Definition 5: The actual occurrence (actoccr) of a ruleitem r in T is the number of rows in T that 

match the itemset of r. 

Definition 6: The support count (suppcount) of ruleitem r is the number of rows in T that match 

r’s itemsets, and belong to the class c of r. 

Definition 7: The occurrence of an itemset i (occitm) in T is the number of rows in T that match 

i. 

Definition 8: An itemset i passes the minsupp threshold if (occitm(i)/|T|) ≥ minsupp. 

Definition 9: A ruleitem r passes the minsupp threshold if (suppcount(r)/|T|) ≥ minsupp. 

Definition 10: A ruleitem r passes the minconf threshold if (suppcount(r)/actoccr(r)) ≥ minconf. 

Definition 11: Any itemset i that passes the minsupp threshold is said to be a frequent itemset. 

Definition 12: Any ruleitem r that passes the minsupp threshold is said to be a frequent ruleitem. 
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Definition 13: A class association rule (CAR) is represented in the for ( Ail,ail) ^…..^ ( Ail,ail) → 

c , where the left-hand-side (antecedent) of the rule is an itemset and the consequent is a class. 

 

2.6.3 AC and ARM Main Differences 

 

The best survey found regarding the difference in AC and ARM is well presented in (Thabtah, 

2006), and before going further in the discussion of AC it is necessary to point out the 

differences in both the approaches and we will summarize them as follows: 

 ARM is termed as unsupervised learning as no class outcome is involved, 

whereas AC is a supervised learning approach and the outcome is always some 

value from the set of class labels. 

 In ARM over fitting is not an issue but in AC approaches, when they aim to 

decrease the error rate to the lowest while exploring the training data set, the 

training phase might take too long. This will deteriorate the efficiency of the 

classifier. (Witten and Frank, 2005) and hence results in overfitting. 

 In the consequent of ARM there may be different and more than 1 attribute, but in 

AC the consequent is only class attribute value. 

 The main purpose of AC is prediction of a class label while exploring the 

correlation among, whereas, ARM tends to discover the associations between the 

itemsets contained in the transactional data. 

 Basically, in association rule mining, the algorithm goes through a number of iterations 

until no more frequent items are left in the dataset. In the first iteration the single item or 

attribute is said to be frequent in the dataset that satisfies a user defined minimum support value, 

are extracted. The frequent items are called frequent 1-itemset. In Table 2.3, a training data 

contains three attribute values (attribute1, attribute2 and attribute3) and two classes (class1, 

class2). Minimum support value of 20% is used to extract the frequent attributes in the training 

dataset. 

For example, keeping the minsupp to 20%, the frequent 1-itemset in training Table 2.3 are < 

(Attribute1, X1)>, <(Attribute1, X2)>, <(Attribute1, X3)>, <(Attribute2, Y1)>, <(Attribute2, 

Y2)>, <(Attribute2, Y3)>, <(Attribute3, Z1)>, <(Attribute3, Z2)>, <(Attribute3, Z3)> and 

<(Attribute3, Z4)>.  A combination of itemsets and a class is called ruleitem in the form att(1), 
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Table 2.3: Training data 

 
 Attribute 1 Attribute 2 Attribute 3 Class 

1 X1 Y2 Z1 class1 

2 X1 Y3 Z2 class2 

3 X1 Y2 Z1 class2 

4 X1 Y1 Z2 class1 

5 X2 Y1 Z1 class2 

6 X2 Y3 Z3 class1 

7 X2 Y1 Z3 class2 

8 X1 Y1 Z3 class1 

9 X3 Y2 Z4 class1 

10 X3 Y3 Z1 class1 

 

att(2),…..att(m) →C where att(i) is the set of itemsets and ‘C’ as class. If a ruleitem satisfies a 

user defined minsupp they are called frequent ruleitems. 

 

Associative Classification algorithms scan the training database or datasets more than once to 

produce frequent ruleitems. Firstly they produce frequent 1 ruleitems and in the first scan, they 

find the support of 1- ruleitems, and then in each subsequent scan, they start with ruleitems found 

to be frequent in the previous scan in order to produce new possible frequent ruleitems involving 

more attribute values. In other words, frequent 1- ruleitems is used for the discovery of frequent 

2- ruleitems, and frequent 2- ruleitems is the input for the discovery of frequent 3- ruleitems and 

so forth. When frequent ruleitems have been discovered, classification based on association rules 

algorithms extract a complete set of class-association-rules (CAR) from those frequent ruleitems 

that pass the minconf threshold. 

One of the first algorithms to merge classification with association rules was proposed in 

(Liu et al., 1998). It consists of two main phases: Phase one implements the Apriori algorithm 

(Agrawal and Srikant, 1994) in order to discover frequent ruleitems, and phase two involves 

building the classifier. Experimental results indicate that the approach developed in (Liu et al., 

1998) produced rules which are competitive to popular learning methods like decision trees 

(Quinlan, 1988). In the next section, data layouts used in AC will be reviewed.  
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Table 2.5: Horizontal data layout 

 
Transaction # Purchased Items 

1 bread milk juice 

2 bread cola milk 

3 milk eggs bread juice 

4 bread basket milk 

5 cola juice bread milk 

 

Table 2.4: Vertical data layout tid-list 

 
basket cola bread eggs juice milk 

4 

3 1 3 1 1 

5 2 

 

2 2 

 

3 5 3 
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 5 
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2.6.4 Association Classification Data Layouts 

 

 The term data layout means the manner in which data is kept or represented during the 

execution of the algorithm. Selection of appropriate data layout is very useful for reducing 

execution times. The reason for data layout discussion in this section is to demonstrate the 

advantages and effectiveness in the associative classification algorithms. Generally, two forms of 

representations will be discussed below; they are the vertical layouts (Shenoy et al., 2000; Zaki 

et al., 1997; Holsheimer et al., 1995) and horizontal layout (Agrawal and Srikant, 1994). In a 

horizontal layout, the data table comprises of hundreds of thousands of transactions with each 

transaction having a unique identification and contains different set of items.  

Table 2.5 presents the horizontal layout for a data base that contains the records of daily 

transactions. In the vertical layout as shown in Table 2.4 constructed in such a way that it 

contains all the items in a transactions data base followed by an array of their tid-list (transaction 

id list) (Savasere et al., 1995). The array of tid-list, stores the location of all row numbers of each 

item that are present in the transactional data set. Unlike the horizontal layout that has high 

computational costs for support counting; in vertical layout the support counts for frequent items 

are calculated by simply intersecting the tids. For example, we can calculate the support counts 

of candidate itemsets of size k easily, only by finding the intersections between tid-lists of (k-1) 

subset. The tid-lists are easy to handle and their data structure is relatively simple, and can store 

all the needed information of all item relating to the database. The execution time to get the 

support count of any new candidate itemset is relatively less as in the tid-list approach, the 

database is not scanned again and again. (Zaki and Gouda 2003; Zaki et al., 1997).  
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2.7 Associative Classification Algorithms 

 

By combining the classification and association rule mining accurate classifiers with efficiency 

are produced (Liu et al., 1998). Studies followed by (Baralis et al. 2008; Vyas et al., 2008; Li et 

al., 2008; Kundu et al., 2008; Thabtah, et al., 2004; Thabtah et al., 2005; Liu et al., 1998) 

revealed that AC techniques construct mostly accurate systems that can predict classes better 

than the traditional approaches. AC has the capability to produce rules that are much easier to 

understand or interpret and modified by the end-user as comparison to the models produced by 

probabilistic approaches and neural networks, which generate models that are difficult to 

manipulate and interpret. In the following section different AC algorithms will be explained in 

detail. 

 

2.7.1 Classification Based on Associations (CBA 2) 

 

Some of the classification data sets show uneven distribution of the of class labels. This may 

cause the production of fewer rules for minority class and more number of rules for the majority 

class. CBA (2) is introduced to solve the problem and uses multiple support values (Liu et al., 

1999). The major enhancements in CBA (2) when compared with CBA are: 

 The minimum support is assigned to each class depending on its frequency distribution in 

the data table. 

Minimum Support = total (minimum support) x Class (frequency Distribution) 

 For those data sets which are highly correlated, it would be computationally very 

expensive and sometimes very difficult for original CBA, due to the possibility of 

combinational explosion to produce long rules containing many conditions. These long 

rules may be significant in classification hence classifiers may suffer. Here the CBA (2) 

is merged with decision tree method to extract lengthy rules (Quinlan, 1992). The 

procedure is to first segment the data by one classifier and the best classifier is chosen for 

the classification of each segment. Experiment findings show that CBA and C4.5 are 

outperformed by CBA (2) in regards to accuracy (Liu, et al. 1999). 
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2.7.2 Classification Based on Multiple Association Rules (CMAR) 

 

This algorithm is proposed by (Han et al., 2000) and adopts an ARM algorithm of FP-growth, to 

discover and construct an FP-tree and mines the large training datasets with efficiency (Li et al., 

2001). It comprises of rule generation and classification phases. 

i) Rule Generation: 

 FP-growth algorithm is adopted, to scan the training dataset and explore the full rule 

set that passes a certain confidence and support thresholds.  

 F-list is a sorted list in descending order which comprises of frequent items explored 

in the first scan. The training data is scanned again and FP-tree is constructed. The 

attribute values of each tuple that appears in the F-list are produced and then sorted as 

per F-list. 

 The complexity of exploring specific frequent item in the complete training data set is 

minimized to find frequent items in an item-projected dataset. 

 The generated rules are sorted in a prefix tree structure known as CR-tree. 

 Rules are selected from large amount of generated rules by using pruning techniques 

like database coverage. This in turn helps to make classification more effective and 

efficient. 

ii) Classification 

 To classify a new instance, CMAR starts by matching the pruned rules with any new 

instance. If the same class label is found, it is assigned by CMAR to the test instance.  

 CMAR checks the consistency in the class labels, if the answer is no then the algorithm 

divides the rules into different class label groups. Each group has a unique label and the 

rules contained in the group are linked to the same label. The strength of the group is 

measured by the combined effect of the rules. The group is said to be strong if it contains 

rules in the group that have high positive correlation and shows high support value. The 

CMAR uses a weighted Chi-square to measure the strength of each group in order to 

decide which group class to assign to the test instance. 

Experimental results on 26 datasets in UCI database repository have demonstrated that the 

algorithm CMAR performed efficiently and more accurately as compared to CBA, and is more 

scalable and efficient than C4.5 and CBA. One drawback documented in CMAR is that it utilizes 

a large amount of memory resources in the training phase. 
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2.7.3 Classification Based on Predictive Association Rules (CPAR) 

 

The algorithm of CPAR (Yin and Han, 2003) works in a greedy manner and adopts the main idea 

of FOIL (Cohen, 1995) in rule production and integrates rule generation step with AC features. 

CPAR main steps can be summarised as follows: 

 Uses FOIL greedy strategy for generating the best rules for each class that cover the 

training data instances. It deletes all the instances that are positive and are matched by the 

best rule until all the positive instances in the database are covered.  

 It avoids generating redundant rules and therefore, it produces a smaller set of predictive 

rules. 

 It uses a group of rules for the prediction of test data instances class labels.  

 It selects the best rule for every class and then the average of expected accuracy is 

compared for all individual classes and the class with a high expected accuracy is chosen. 

 Repeated calculations are avoided by using dynamic programming  

 Close-to-the-best literals are selected to avoid rule missing 

When compared with C4.5, Ripper, CBA and CMAR in terms of accuracy CPAR achieves high 

accuracy and efficiency when experiments were performed on datasets from UCI machine 

learning repository. 

 

2.7.4 Gain Based Association Rule Mining (GARC) 

 

GARC is an approach in AC that uses an extended association rule mining method to construct a 

classifier. The key idea in GARC lies in the domain of ARM but it is different from the 

benchmark technique of CBA which apply the Apriori candidate generation mining methods. 

The key features of the technique are explained in three steps. First to discover candidate 

itemsets it applies an information gain measure and includes and generates the itemsets that have 

best-split attribute value. This step also helps in the reduction of candidate itemsets. Secondly 

combining the rule generation and frequent item generation processes and uses the information 

kept for rule itemsets and for the itemsets that are excluded. Thirdly to produce a resultant 

compact set in the process of mining that is more condense and easily understandable. The 

GARC algorithm gets rid of many candidate itemsets in the training phase and the resultant 
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numbers of rules are much less than CBA.The GARC gain based association rule classification 

algorithm works as follows: 

Any one transaction in a training data set contains ‘n’ number of items and generates 2
nd

 

candidate itemsets. GARC uses an information gain measure to decrease the count of candidate 

itemsets. In the first scan of the data set, all 1-itemsets that contains the best split-value are 

generated and stored in a variable. 

The performance of GARC when compared with other algorithms, on 30 data sets from 

UCI including continuous and discrete, has revealed interesting results. GARC has not shown 

any significant difference in accuracy when compared with two extensions of C4.5, one is C4.5 

Tree and other is C4.5 pruning tree. But GARC produced a classifier with explicit rules when 

compared with NN and SVM. . The pruning strategies applied in GARC has demonstrated that 

GARC when used with the pruning strategies produced better results in terms of efficiency, 

accuracy and understandability. The effects of changing the minconf value on the results are, as 

the minconf value increases, there is seen an increase in accuracy first and then a decrease. It 

happens because when the minconf is low many useless rules are generated and when its high 

some significant rules are not discovered leading to a decrease in accuracy. It is concluded that 

the best accuracy is achieved where a=0.01 and b=0.7. When information gain measures are 

incorporated in GARC the results regarding the number of rule generated and execution time are 

extremely good. The average number of rules with gain is 39% of GARC with no information 

gain measure. The run time with gain is 3.2% with no information gain. But the accuracy 

measures are fairly similar when results are formulated for both with and without information 

gain measures in place. The experimental results have shown when GARC is compared with 

CBA, that GARC produced very few rules by a ratio of 4.3% of that of CBA.  

 

2.7.5 Multi-Class Classification Based on Association rule (MCAR) 

 

 MCAR employs an effective technique to produce frequent ruleitems and uses a method to rank 

rules that keeps the rules with high confidence values for prediction. MCAR works in two steps: 

generation of rules and classifier building. The first stage starts by searching the training data and 

extract frequent-1 rule itemsets, and these ruleitems are combined together to generate candidate-

2 ruleitems using other attributes. The ruleitems that passes a certain set values of minimum 

support and minimum confidence is treated as a frequent rule. In the second stage, effectiveness 
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Input:, minconf ,minsupp thresholds and Training data (D),   

Output: A Rule Set 

 

Preprocessing phase 

If D having integer/real attributes 

   Discretise continuous columns using a Multi-interval discretisation method.  

Shuffle the training objects locations randomly 

 

The Algorithm 

Scan D for the set of frequent one-ruleitems   

 

 

while  

{ 

  

  

  
} 

 

Rank R according to the method shown in fig 3.7.  

Evaluate R on D  

Remove all rules from R where there is some rule of a higher rank and . 

 

Figure 2.3 MCAR algorithm 
 

of the rules on the training datasets is measured to build a classifier. The rules that cover or can 

classify a certain number of training data instances are placed in the classifier. The MCAR 

algorithm is presented in Figure 2.4 Figure 2.3 shows the rule discovery procedure used by 

MCAR, In Figure 2.4, the Multi-interval discretisation technique of (Fayyad and Irani, 1993) is 

applied in MCAR for real and integer type of data. MCAR scan the training dataset calculates 

the frequencies of the itemsets. The itemsets along with their classes, which have support count 

more than the minsupp value, are stored in vertical format in an array. Rest of the itemsets are 

discarded.  Produce function as described in the Figure 2.3 is used to discover ruleitems of size k 

by combining the different column itemsets of size k-1 and then their rowIds are intersected. The 

outcome of intersection between two itemsets rowIds is a set that holds the rowIds of both the 

itemsets occurrence in the training data. The above set and the array containing the frequencies 

of the class labels were generated in the first scan. The values are used to formulate the 

confidence and support of new combinations of ruleitems. 

.  
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Input: set of created rules (R),a array (Tr), class array C 

  A rule r in R has the following properties: Items, class, rowIds(tid-list) 

  The class array, C, contains the occurrences of class labels in the training data 

Output: classifier (Cl) 

           R’ = sort(R);  

       insert r1.rowIds into Tr 

       for each rule r  R’ in sequence do  

                   if r classifies at least a single case  

             begin 

                       insert r at the end of Cl; 

                       insert r.rowIds into Tr 

             end if 

        end 

       If Tr.size > 0 then 

              select the majority class as a default class from  (C-Tr ) 

          else 

              select the majority class as a default class from the current Cl and add it to Cl 

       end if 

      for each rule ( ) Cl in sequence do 

               if there is a lower ranked rule where  

                          prune  

                end if 

       end 

 

Figure 2.4  MCAR classifier builder algorithm 
 

 

  Function produce 

 Input: A set of ruleitems S  

  Output: set of produced ruleitems 

 

 
Do 

 For each pair of disjoint items I1, I2 in S Do 

          If (<I1  I2>, c) passes the minsupp threshold 

               if (<I1  I2>, c) passes the minconf threshold 

               
              end if 

          end if 

      end  

end 

Return  

 

Figure 2.5 Rule discovery algorithm of MCAR 
 

 The function in Figure 2.5 is called in each iteration of the algorithm and produces a frequent 

ruleitems at iteration K in order to discover frequent itemsets  at K+1 iteration. As documented 

that the number of rules generated by the AC algorithms are large (Baralis et al., 2004; Li et al., 
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2001). MCAR ranks and then prunes the redundant rules to form a set of classifier that have less 

number of rules, which are eventually easy to understand and handle. Rule ordering procedure of 

MCAR is shown in Figure: 2.5. 

MCAR uses a different approach in ranking the rules.  Instead of using the confidence, 

support and cardinality measures, it ranks by taking into consideration the class frequencies 

distribution in the main data and rules are prioritized which are linked with classes that are 

dominant. If two rules have the same confidence, support value and length of item, MCAR 

selects a rule that is associated with the dominant class. Rules with the same class frequencies 

are selected randomly.  

Figure 2.5 shows the build classifier algorithm. After the classifier is built it is used to 

classify the test case data. MCAR uses a method, which implies that in the ranked rules, the first 

rule that matches the portion of the test instance classifies it. The default class is assigned to the 

test instance where no rule match is found for the test instance condition.   

 MCAR is found very competitive in terms of predictive accuracy when analysed with the 

traditional approaches like C4.5 and RIPPER, on 20 data sets from collected from UCI data 

repository. MCAR has shown good scalability when comparison is drawn between well-known 

AC technique CBA (Liu et al., 1998) with regards to prediction capacity, efficiency and rule 

features. MCAR has shown 2-5% higher accuracy than CBA and C4.5. 

  

2.7.6 Multi-class, Multi-label Associative Classification (MMAC)  

 

The first multi-label algorithm documented in AC is MMAC algorithm (Thabtah et al., 2004). 

All the steps in finding the classifier are the same as the algorithms described in the above 

sections. But the unique feature of MMAC is the capacity to produce rules with multiple classes. 

The idea behind the research was to keep the rules that are discarded by the existing AC 

approaches. For example an item ‘x’ with class ‘c1’ has a support count of 40% and same item 

‘x’ with class ‘c2’ has support count of 20%. In other approaches of AC rule itemset (x, c1) is 

selected over (x,c2) is discarded but in MMAC both are kept. The information kept is very useful 

for the decision makers. In the first step MMAC generates rules; it scans all the training data to 

form all the possible set of CARs. The training cases associated with the discovered CARs are 

removed from the data. In the second stage MMAC finds more rules depending on some 

criterion set by user of minsupp and minconf from the left unclassified data, until no more rules 
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are left to be found. Finally, a global classifier is built by merging all the frequent rule itemsets 

generated in each iteration.  

Experiments conducted on 28 unique data sets (Merz and Murphy, 1996) have shown that 

the MMAC is an effective and accurate classification approach. It has shown high 

competitiveness and found scalable when compared with traditional and other AC approaches 

like RIPPER, PART and CBA. 

 

2.7.7 Class Based Associative Classification 

 

 In (Tang and Liao, 2007), a new AC technique based on class is proposed called CACA. The 

algorithm aims at reducing the search space in the generation of rules by introducing some 

innovations: 1, combine the rule generation and classifier building stages; 2, using the class 

based criterion to reduce the number of frequent patterns generated; 3, implement an Ordered 

Rule Tree (OR-Tree) structure to store and then in the iteration update the rules and the 

information; 4, compact set is redefined to make it unique and non-sensitive to reduction in rules. 

It scans the training data and keeps the items in a vertical format. Then it calculates the 

frequency of all the attributes and sorts them in descending order. The rules that pass a user 

defined criterion of minsupp are kept while remaining rules are deleted. For the rest of the 

attribute values in the first step, intersection between the attributes is carried out based on the 

class strategic to reduce the searching space to produce frequent pattern. The attributes values in 

a class group that pass the minconf threshold, are added in Ordered Rule Tree (OR-Tree) starting 

from the root node and the last node in the every path of the rule contains the information of the 

support and confidence. Like CBA, CACA also has the capacity to classify unseen data. 

Experiments performed on 15 UCI datasets have shown that CACA and MCAR have better 

accuracy than CBA. When compared with MCAR, CACA has shown slightly better accuracy 

while generating less number of candidate rules. The execution time of CACA is also better due 

to the reduced search space to generate candidate ruleitems than MCAR.  

 

2.7.8 Associative Classification Based on Closed Frequent Itemsets (ACCF) 

 

ACCF is another AC algorithm that was proposed in (Li et al ,. 2008) and consists of two phases, 

rule generation and Classifier construction. ACCF algorithm employs an extended version of 
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CHARM (Zaki et al., 1999) in mining the frequent itemsets that would be used later in extracting 

the set of classification rules (CARs). After passing over the training dataset, ACCF discovered 

the set of Closed Frequent Items (CFIs) along with their. tidsets as well as the class labels i.e. the 

rows numbers where each item occurred though CHARM approach (Zaki and Hsiao, 1999). By 

getting tidsets for both the items and their class labels, the support and confidence for each rule is 

then computed. Only those rule that survive the predefined thresholds Minsupp and Minconf  are 

proceeded to the evaluation step where a rule evaluation procedure is invoked to evaluate the set 

of CARs produced in the previous step. 

The set of CARs are ranked according to their confidence, support, rule length and first 

rule generated with no redundancy, Then they are evaluated using Database coverage pruning 

procedure adopted from CBA (Liu et al., 1998) where all rule that can’t cover at least one 

training case will be discarded.  In classifying test case ts, ACCF starts with the first ranked rule, 

the first rule applicable to ts classify it. In case where no rule is applicable to ts, the default class 

is assigned.   

Experiential results against one AC algorithm states that the proposed algorithm has out-

performed CBA with respect to the efficiency and effectiveness, however not enough details are 

demonstrated.  For instance, details such as the time taken for learning and/or classification were 

absent.   

 

2.7.9  Boosting Association Rules (BCAR) 

 

In the boosting association rule (BCAR) approach proposed by (Yoon and Lee, 2008), very large 

number of rules are produced in the first step. Then the derived rules are filtered by using a 

technique that is equivalent to the deterministic boosting algorithm (Freund and Schapire, 1997). 

BCAR can be used in huge scale classification such as TC data. Experiments performed on text 

collections showed that the algorithm has achieved prediction better than SVM (Vapnik, 1995) 

and Harmony (Li et al., 2007). 

 

2.7.10  Association Classification based on Compactness of Rules (ACCR) 

 

ACCR was proposed by (Niu et al., 2009), which also is an extension of the Apriori algorithm. It 

generates rules and builds a classifier. If the value of support is set very low the rule generated 
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are large in number and are redundant and time to generate these rules is also high. If the support 

value is set higher then there is always a danger of ignoring good quality rules. In ACCR a new 

approach is adopted to keep the high quality rules by developing a metric measure called 

"compactness". It stores ruleitems with low support but high value of confidence. The 

compactness is calculated as: 
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where the "lift" is the degree of independence between two items (A) and (B) of the measured 

rule A→B. If the value of the lift is near 1, the relationship between two items (A) and (B) is 

small. ACCR builds similar classifier as CBA. Experimental findings against the UCI datasets 

have shown that ACCR algorithm performs better when compared with CBA and CMAR. 

 

2.7.11  Improved Classification Based on Predictive Association Rules 

 

Classification based on predictive association rules was used first in CPAR (Yin X. and Han J. 

2003) to generate CARs and build classification model, another algorithm adopt predictive rule . 

Traditional AC algorithms are spending more time in generating the set of rule and learning the 

classifiers since they have repeated calculations. Alternatively, Classification based on PRM 

takes less time due to the fact that it discovers the frequent items and generates rules 

simultaneously. 

A new AC algorithm that uses PR in building the classifier is that to generate the set of 

CARs is proposed in (Hao et al., 2009) which is taking the advantages from AC and traditional 

association rules mining. The proposed algorithm has been developed in an attempt to fix some 

falls in its predecessor CPAR which lies in rule evaluation and the classification phases. 

Hereunder these falls are listed along with the suggested solution by the proposed algorithms: 
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(1) Class imbalancing since each class has imbalanced number of rules in it because CPAR 

consider each rule's weight only but not the weight for each class. This may lead to 

favoring the class with more rules to class the test case than the one with fewer rules. To 

overcome this fall, the proposed algorithm developed a new "Class Weighting 

Adjustment" which will help in balancing the power of classification rules by adjusting 

the weight criterion at each iteration.  

(2)  In CPAR, particularly in the classification phase, every class is treated uniformly for 

cases. This will increase the wrong classification rate. To overcome this issue, similarity 

calculations between the case and the "center vector" of each class is proposed. The 

algorithm only fetches the rules of a class whose similarity of center vector to the example 

is above the average similarity. Similarity calculation is done using vector space model 

(Hao et al., 2009). And (3) CPAR is not applicable for the cases that don't satisfy any rule. 

ICPAR proposed a Post-processing using SVM (Vapnik et al., 1995) is employed for 

classification because of the ability of SVM to avoid over-fitting as well as the ability of 

handling large feature spaces.  

Experimental results show that ICPAR has greatly enhanced the efficacy and 

effectiveness when compared to CPAR.  

 

2.7.12  Hierarchical Multi-Label AC using Negative Rules (HMAC)  

 

A new Hierarchical Multi-Label AC algorithm has been developed in (Sangsuriyun, et al., 2010) 

that uses negative rules in predicting the class labels for test cases. It should be noted here that 

“mutli-abel rule” denotes a rule that have more than one class in its consequent such as r:  

     , “negative association rule” , given Pa and Pc where pa is the rule antecedent is a 

combination of three items, X: positive item-set, N: negative item-set and NP: negation of 

positive item-set  and Pc is the rule consequent which can be one of three type, C: positive class, 

NC: negative class or NPC: negation of the positive class means none simultaneous presence of 

classes; a negative rule can be given as      .  

After generating the complete set of rules (CARs), HMAC invokes the ranking procedure 

based on a number of parameters, F-measure, Jaccard, Support, ActOcc and rule length. It 

should be noted here that HMAC replaced the confidence parameter by F-measure, Jaccard.  In 

evaluation the set of rules, the algorithm then fires two pruning procedures (1) Pearson’s 
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correlation coefficient procedure and (2) redundant rule pruning. The classification model is then 

constructed using only those rules that are not redundant and positively correlated. Lastly, in 

classifying a test case t, HMAC classifier, a test case ts is compared with the set of ordered rules, 

if ts matches rule positive class rpci without any rules negative class RNC it classifies it, if failed 

to match any rule then HMAC moves to the next rule set, if still didn’t match any rule in all sets 

then the default class is assigned. Although it has been reported in this article that algorithms 

using Pearson’s test can result in gaining good accuracy results, it is difficult to validate this as 

inadequate experimental results are available and much of the information relating to their 

generation is absent. 

 

 2.7.13 Probabilistic CBA  

 

Research work on Class imbalancing issue is very rare since very little attention was paid to this 

issue; SBA (Liu et al., 2003) raised the issue by introducing a scoring mechanism for training 

cases in order to reveal the likelihood that the case belongs to a rare class. Although SBA 

employs pessimistic error estimation measure to perform pruning, but still the number of rules is 

a bit large and results in complication upon scoring step. Yet, a new AC algorithm called PCBA 

that addresses the class imbalancing issue by proposing a new pruning method has been 

introduced in (Wen-Chen et al., 2012) called PCBA pruning aiming to improve CBA in accurate 

prediction of rare data cases. CBA deals only with Class association rules of the form I  , 

where I is the set of items and c is the class that can be either positive or negative; these CARs 

are then ranked according to confidence, support and generated first rule.  It should be noted here 

that CBA ranking procedure is adequate only when classes are evenly/ semi even distributed 

(Balanced data). On the other hand if the class distribution is not adequate, notably differ due to 

the fact that positive classes are often much smaller than negative ones when dealing with 

imbalanced data which may degrade the classification accuracy. Evaluation on six imbalanced 

dataset (benchmarking and real_life applications) is conducted; results revealed that the proposed 

algorithm performs better than C5.0 and SBA. 
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2.7.14  AREM: A Novel Associative Regression Model Based On EM 

Algorithm 

 

AREM algorithm that uses the regression model is proposed by (Jiang and Karyris, 2012). It 

algorithm starts with extracting regression rules by applying a pruning technique that is instance 

based and the aim is to discover the best rules and then  a EM algorithm is applied to train the 

probabilistic model. The AREM model consists of two components. First component is the rule 

discovery component and regression rules that are frequent are discovered. To find the entire 

frequent itemsets FP growth algorithm is used and then the instance based technique is applied to 

prune the frequent set of rules found in the first step. The second component, each regression 

rule value on the right hand side is updated after learning from a probabilistic model. The EM 

algorithm is an iterative technique used for learning and optimization. 

 The AREM performance is measured and evaluated on 10 data sets. The six data sets are 

downloaded from three websites of CitySearch, BestBuy and Yelp. The other data sets are 

downloaded from DataExpo09 and CMU StatLib. For the evaluation purposes mean Squared 

Error(MSE) is used as the performance metrics between predicted and actual variables. The 

model is trained on the training data sets MSE is calculated for each parameter and average MSE 

is calculated. 

The results have shown that AREM has performed well as compared to all other AR and 

regressions models such as SVR, CART, Boosted Regression, Cubist when MSE is taken as the 

performance measure. It is also evaluated that AREM is more suited to sparse and high 

dimensional data sets. 

 

2.7.15  Prefix Stream Tree (PST) for Associative Classification. 

 

In data stream mining a PST (Prefix Stream Tree) model is used by (K.P. Lakshmi, 2012) in AC. 

It is not possible to store in the primary and the secondary memory during the data streaming.  

Extraction of the frequent itemsets from the recent data is a challenge. The efficient updation of 

the existing frequent itemsets with a addition or deletion of itemsets will increase the 

performance.Firstly a single full scan of data is carried out to build a compact structure of data. 
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The compact constructed structure helps in efficient mining in terms of time and memory. For 

the new data stream the compact tree is reconstructed.  A memory efficient data structure called 

PStree is proposed in this paper. 

 A prefix schema is used to construct the PSTree. The tree uses the sliding window to 

capture the data and construct a tree, as the window slides batch by batch the tree is updated. The 

tree consists of nodes, where first node is known as root node and represented as “null”. Other 

nodes are known as ordinary nodes. The end nodes or last nodes in the tree are called leaf nodes 

and contains the class label, support and count of batch. A list of all itemsets called I-list is 

maintained and contains the support counts. Two phases that are used in the construction of 

PSTree are Insertion and Restructuring. Both the phases execute in a dynamic fashion and 

restructuring is carried out after insertion.  Reconstruction phase is executed either by Branch 

Sorting method (Tanbeer et al., 2008) or Path Adjusting method (Koh and Shieh, 2004). The 

confidence of the extracted rules is calculated by using the FP-Growth mining algorithm (Han et 

al., 2000) and sorting is carried out in the memory. The frequent itemsets in the classifier are 

used to predict the class labels of the test dataset. 

 

 

2.8 Use of AC algorithms in Medical Diagnosis and Recommender System 

 

2.8.1 Use of Associative Classification and Genetic Algorithm in Heart Disease 

Prediction 

 

AC classifiers are used in the applications where maximum accuracy is desired. The fact is 

explored by (M. A. Jabbar et al, 2012) by applying AC and genetic algorithm in predicting heart 

disease. The genetic algorithm is used to explore the prediction rules with high level so the rules 

discovered will be comprehensible, with high interestingness and high accuracy.  

 The model of the heart disease prediction system uses the APRIORI algorithm to 

discover the frequent itemsets that are large in number. To enhance the accuracy of the AC a 

hypothesis testing Z-statistics and informative attribute entered rule generation are proposed in 

the study. In the algorithm, use of Gini index is introduced as a filter to minimize the number of 
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candidate itemsets and the best attribute is selected. The attributes having Gini index value at the 

lowest are selected for rule discovery. 

The evaluations are based on the 2 data sets from UCI repository and 6 data sets from 

SGI machine learning repository. Tenfold cross validation is used to evaluate the results. The 

performance of the proposed model is compared with Naïve Bayes, J48, Neural Network and 

GNP. The accuracy is increased by 1% using GNP than Naive Bayes and 4.6% increase in 

accuracy in breast cancer data set. An increase of 4% in accuracy is seen in the heart disease data 

when evaluated with J48 than NN. The proposed approach has shown 7.5% increase as 

compared to GNP for Pima Indian data. The Proposed algorithm has performed well than the 

well-known classification algorithms in terms of accuracy. 

 

2.8.2 Artificial Immune System for Associative Classification 

 

The proposed model is introduced by (Samir A. Elsayed, 2012) combines two novel approaches 

of AC-CS (Associative Classification with Clonal Selection) and ML-DS (Multi-Level 

Deterministic Sampling). The AC-CS while maintaining the running time enhances the accuracy. 

The algorithm starts with large sample selected deterministically from the dataset and then it runs 

in iterations. The data is divided into equal sizes of disjoint groups that are smaller in size. The 

subgroups with larger distance are discarded and the subgroups with less or minimum distance 

are kept. This process is iterated until all the rest of the transaction size becomes equal to the 

threshold values. The sampling technique implied by AC-CS, starts with a small size of frequent 

single ruleitems and then the ruleitems passes the process of cloning, pruning and mutation. The 

rules with the higher quality are added in the classifier, and then the rules are used to classify the 

test dataset. 

The studies have revealed that the approach has generated less number of rules than 

benchmark AC algorithms. The execution time is reduced clearly for all datasets and the 

accuracy of AC-CS with sampling is almost similar as compared to without sampling. It can be 

concluded that the sampling approach used in the model is effective and produced better 

representative sample of the original data set.  

 

2.8.3 Using Associative Classification for Treatment Response Prediction 

 

http://link.springer.com/search?facet-author=%22Samir+A.+Mohamed+Elsayed%22
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In the research, a KDD framework is used to predict the outcome of the treatment with ribavirin 

and interferon in the patients with hepatitis C virus by (Enas et al., 2012). The framework 

contains main phases of pre-processing and data mining. In the initial phase of pre-processing 

the data is cleaned and suitable features are selected from the data of the patients and then 

proposed data mining technique is applied. 

The data gathered at Cairo University from the data base of Egyptian patients, 200 cases 

were selected from the patients of hepatitis C virus genotype 4. The features selected are from 

the blood test, patient characteristics and response features. The three features like HAI, ALT 

and fibrosis stage are selected along with features of response and all are grouped together in 

such a form that data mining approach can be applied. To find the patterns among the selected 

features an AC technique of adapted PMA (Enas, 2010) is used to generate CARs and then these 

CARs are used to construct the classifier and the classifier is used to predict the possible 

response of the patient to treatment. 

 It is concluded in the paper that an AC algorithm is used to predict the response of the 

patients to the treatment with hepatitis C virus (HCV). The algorithm is trained on only 200 

tuples and so the sample size is not very high and a much larger sample size is desired for future 

training of the algorithm. The accuracy achieved is 90% with adapted PMA.  

 

2.8.4 Fuzzy Associative Classification Approach for Recommender Systems 

 

A hybrid methodology is proposed for recommender systems by (J. P Lucas et al., 2012) which 

make use of the content based and filtering approaches. Fuzzy logic is also applied to improve 

the quality of recommendations.  A fuzzy associative classifier called CBA-Fuzzy is developed, 

which has basics from CBA algorithm.  

 The CBA algorithm is obtained from the LUCS-KDD repository in the University of 

Liverpool and a portable CBA-fuzzy algorithm is built in Java using Java2 SDK. The approach 

consists of rule generator and classifier builder components. A hybrid methodology was build 

that can generate a set of CARs which are used for the classification. Three components of the 

proposed methodology are, building of group of users, generation of rule sets and 

recommendations. The two components that are built online and used to induce the estimated 

model, also includes the CARs produced by CBA –Fuzzy. At the runtime, the third component 

provides the user with recommendations and also responsible for classifying. 
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 A case study was conducted for evaluation of proposed framework. One of the two 

experiments is performed to compare the accuracy of the classifier and the second for the 

comparative analysis of quantity of false positives. The experiments also take in to consideration 

the main reason for using AC classifier in recommender system, analyze the effects on 

associative classifiers performance due to sparsity and general classification based on association 

compared with fuzzy logic and false positive rate is compared with learning classifiers and 

proposed CBA-fuzzy algorithm. The performance of the algorithm is analyzed using five 

datasets, one extracted from MovieLens that contains rating of the movies by users in 200 and 

others from BookCrossing databases. To estimate the accuracy of the algorithm tenfold cross 

validation method is used and experiments are conducted using WEKA tool for data 

preprocessing and transformation. 

In the study C4.5, FURIA, BayesNet, CPAR, CBA and CMAR are analyzed. WEKA tool 

is used to run C4.5, FURIA and BayesNet and rest of the three are taken from LUCS-KDD 

repository. The purpose of the experiments is to compare the accuracy of the algorithms. And 

before experiments, the sparsity of the data sets is measured. The sparse datasets are BCrossing 

World and BCrossing USA and less sparse data sets are BCrossing USA10 and BCrossing 

World10 and MovieLens is dense data set. 

The results have shown higher or similar accuracy of AC algorithms on Book Crossing 

data except CMAR when compared with classification algorithms. The CBA achieved the 

highest accuracy on two datasets of BookCrossing. CMAR achieved the highest accuracy on 

MovieLens data. It is concluded from the experiments that AC methods can be effective in 

recommender systems than classification techniques. It is also concluded from FURIA results 

that fuzzy rules have produced better results in recommender systems and hence can be used in 

development of Fuzzy AC systems.   

 

2.9 Current Pruning Methods 

 

As we know now that in the process of rule generation the rule are generated in AC algorithms 

by a factor of 2
(n)

-1, where ‘n’ is the number of frequent attribute values. If the value of ‘n’ is 

large the number of rules generated is obviously large. Handling of these huge numbers of rules 

in large
 
data sets consumes storage and needs longer execution times. In the real world the data is 

growing on daily basis, so we need some optimization techniques that can reduce the size of the 
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rules without affecting the predictive capability of the rules generated. Many pruning methods 

are adopted to shrink the size of the classifier in Associative classification. There are two specific 

points documented where pruning methods are applied; 1, during the process of classifier 

building such as pessimistic estimation (Quinlan, 1987) used in decision trees and from statistics 

like Chi-square testing (χ2) (Snedecor and Cochran, 1989). At this point the ruleitems that have 

less support value than minsupp are eliminated and frequent ruleitems are produced. Pruning 

technique like chi-square testing is used during the rule generation stage.2, Post classifier builder 

pruning methods such as database coverage (Liu et al., 1998) are used when all the rules are 

generated. In the following section pruning method in AC are explained. 

 

2.9.1 Database Coverage  

 

The main focus in our research is on Database coverage technique as it is used by CBA and is 

also used by our proposed algorithm for the sake of comparison. Database coverage approach is 

a post pruning technique and used in AC (Liu et al., 1998) when all the rules have been 

discovered. This technique starts by picking each rule with highest ranked rule, all training cases 

that fully covered by the rule and the class is matched are marked for deletion from the training 

dataset and the rule gets inputted into the classifier. In cases where a rule cannot cover a training 

case (the rule body does not fully match any training case) then the rule is discarded. The 

database coverage method ends when either the training dataset gets is totally covered and 

becomes empty or there are no more rules to be evaluated. In the case when no more rules are 

left without evaluation, the remaining uncovered training cases are used to generate the default 

class rule which represents the largest frequency class (majority class) in the remaining 

unclassified cases. 

It should be noted that the default class rule is used during the prediction step in cases 

when no rule covers that instance of the test data. When all the rules are inserted then cut-off rule 

is identified, it is defined as a rule with minimum number of errors. The rules after the cut-off 

point are removed from the classifier as they will only show errors and will affect the accuracy. 

Database coverage method has been criticized by (Baralis, et al., 2004) since in some cases it 

discards some useful knowledge. Alternatively, they urge that rich classifiers often provide 

useful and rich knowledge during the classification step. 
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2.9.2 Redundant Rule Pruning 

 

Rule generated in AC algorithms are placed in classifier when they satisfy some conditions. All 

rules have rule condition that contains combination of different attribute values of the training 

data. The combination of attribute values in one rule condition can be same in another rule 

condition. It means that we can have rules in the classifier that are redundant. If the rule 

contained in the classifier is extremely large, many redundant rules exist. Redundancy of rules is 

unnecessary in classifier and is a serious issue. The process of removing redundant rules from the 

classifier is carried out by redundant rule pruning.  

Redundant rule pruning removes some particular rules containing low confidence value 

than remaining other rules was introduced in (Li et al., 2001). The algorithm works as described 

below: when the rules generation and ranking phase finishes, then these rules are pruned by an 

evaluation step like CI  from the generated rule set, where general rules  cI  of a high 

confidence are present and II  . This redundant pruning approach decreases the size of the 

final classifier and reduces the rule redundancy (Li et al., 2001).  

Algorithms like CACA (Tang and Liao, 2007), ACN (Gourab Kundu et al., 2008), ARC-

BC (Antonie and Zaïane, 2003) and CMAR (Li et al., 2001), have used currently discussed 

technique of redundant rule pruning. The rule is firstly added in the CR-Tree, the algorithm 

checks the redundancy in the compact data structure, either it removes another already existing 

rule from the CR-Tree or it does not insert the current rule in hand.  

 

2.9.3 Pessimistic Error Estimation 

 

Two pruning techniques of pre pruning and post pruning (Witten and Frank, 2000) are worth 

mentioning here used in decision trees. The latter approach is more popular and it uses backward 

pruning. Backward pruning is adopted by most decision tree methods such as C5 and C4.5 

(Quinlan, 1998, 1993). Pessimistic error estimation is mainly used in data mining within decision 

trees (Quinlan, 1993) in order to  decide whether to replace a sub-tree with a leaf node or to keep 

the sub-tree unchanged. The sub-tree replacement is the phenomenon of a leaf node substitution 

by the sub-tree. On the basis of training data, error is measured by pessimistic error estimation 

measure.  
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The pessimistic error estimation has been exploited successfully in decision tree 

algorithms including C4.5 and C5.0. In AC mining, the first algorithm which has employed 

pessimistic error pruning is CBA. For a rule R, CBA removes one of the attribute value in its 

antecedent to make a new rule R’, then it compares the estimated error of R’ with that of R. 

When the estimated error value of  R’ calculated as smaller as compared to R, then the original 

rule R gets changed with the new rule R’.  

It should be mentioned here that CBA employs two pruning methods, pessimistic error 

and database coverage. Some studies reported that employing several pruning procedures may 

affect the accuracy rate (Baralis, et al., 2004) (Abumansour et al., 2010) (Thabtah et al., 2011). 

 

2.9.4 Lazy Pruning 

 

Few of the AC techniques hold a strong argument when they say that pruning process should be 

restricted to “negative” rules only (Baralis et al. 2008 ; 2004) and (Baralis and Torino, 2000), 

because negative rules  lead to inaccurate classification. They also argue that database coverage 

pruning removes some rules that contain very useful knowledge. Alternatively, Lazy based 

associative algorithms store those rules discarded by database like methods in a compact-set 

aiming to use them during the prediction step especially when no primary rules cover a test case. 

Lazy pruning is initiated when the rules are extracted and stored, it starts by taking each training 

instance one by one and the instance is checked by the first rule in the ranked rules set. If the rule 

correctly classifies the training instance, it will be inputted into the primary rule set, and all of its 

corresponding cases will be deleted from the training dataset. Whereas, if a higher ranked rule 

covers correctly the selected rule training case(s), the selected rule will be inserted into the 

secondary rule set (Spare rule-set). Lastly, if the selected rule does not cover correctly any 

training case, it will be removed. The process is repeated until all discovered rules are tested or 

the training data set becomes empty. At that time, the output of this lazy pruning will be two 

rules sets, a  primary set which holds all rules that cover correctly a training case, and a 

secondary set which contains rules that never been used during the pruning since some higher 

ranked rules have covered their training cases. 

The distinguishing feature between the database coverage and lazy pruning is that the 

secondary rules set which is held in the main memory by the lazy method is completely removed 

during building the classifier by the database coverage. In other words, the classifier resulting 
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from CBA based algorithms which employ the database coverage pruning does not contain the 

secondary rules set of the lazy pruning, and thus it is often smaller in size than that of lazy based 

algorithms. This is indeed an advantage especially in applications that necessitate a concise set of 

rules that the end-user can control and maintain. 

Experimental findings based on 26 different datasets from (Merz and Murphy, 1996) 

outlined in (Baralis et al. 2008; 2004) and (Baralis and Torino, 2000) have shown that 

approaches that uses lazy pruning like L
3
G and L

3
, depict higher accuracy than other approaches 

that incorporate database coverage pruning method (Li et al., 2001) and (Liu et al. 1998) on 

average by 1.63%. The main disadvantage is that lazy pruning may produce a large classifier, 

which adds up the difficulty level for a human to interpret and understand. The experiments have 

indicated that AC techniques which uses lazy pruning methods utilizes more memory space in 

comparison to other AC methods because they generate and keep the rules in main memory and 

there is always a fear of failure of this approach when the support values are kept at a low value. 

 

2.9.5 Laplace Accuracy 

 

Laplace accuracy by (Clark and Boswell, 1991) is used in classification and AC problems to 

calculate the accuracy of derived rules. The formula to calculate the accuracy of a rule, r, is: 

  

Laplace (r) =
))((

)1)((

mrp

rp

tot

c





 (2.6) 

 

where totp (r) refers to the no. of instances covering r antecedent, m refers to the no. of classes 

that occurs in the training data and cp (r) refers to number of instances matched by r . 

CPAR (Yin and Han; 2003), uses this approach to prune the rules and calculates the 

expected accuracy of each rule before it classifies test data. This is to ensure that only those rules 

with best expected accuracy are participating in the classification phase. One disadvantage in the 

proposed algorithm is that the rules are of a lower quality than those generated through other AC 

algorithm. The reason is that CPAR is using greedy algorithm (FOIL) and rule r is generated for 

the remaining cases in training dataset instead of the whole dataset. 
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Experimental findings on 26 data sets (Merz and Murphy, 1996) have demonstrated that 

CPAR performed more accurately by an average of +0.48% and +1.83% than CBA and C4.5 

algorithms, respectively. 

 

2.9.6 Boosting Weak Association Rules 

 

The Boosting Weak Association Rules algorithm (Yoon and Lee, 2008) uses the principle of 

boosting and is a modified version of database coverage pruning. The algorithm selects a rule 

and checks on all the training data .The value of the cover count Vi is incremented when the rule 

correctly predicts an instance in the training data. This process of updating the cover count Vi 

continues till it exceeds a coverage threshold. All the instances covered by the rule are deleted 

from the training dataset.  

 

2.9.7 I-Prune 

 

Item prune is a recent proposed method in (Baralise and Garza, 2012), I-Prune is a pre-pruning 

method and tends to mark uninteresting items based on interestingness measure (correlation 

measures e.g “Chi Square”, “Lift”, “Odd ration”) and remove them and use only interesting 

items to build a high quality rules which will be used in building the classification model. 

Consequently, such early pruning step will reduce the number of generated rule as well the tame 

taken for learning the classifier. 

Several AC algorithms such as CBA, CPAR, CMAR, and MCAR consider an item 

interesting according to the support count. Alternatively, I-prune selects only those that are 

frequent and correlated, Given an item i that is correlated to class c, an interestingness measure is 

given as follows: if  interestegness-measuer (i,c)> predefined-threshold then i is selected else 

items are discarded as soon as detected. Assume I is a subset of frequent and correlated items 

with respect to class c, set of rules R is generated for c.; only the rules that contains interesting 

items are generated. On the other hand, I-prune may inadvertently discard some items that might 

produce useful classification rules. Among the set of all measures used to measure, experimental 

results shows that Chi Square is the best correlation measure with respect to effectiveness. 

Lastly, I-Prune can be easily and effectively integrated with a number of AC algorithms 

especially those are Apriority based algorithms such as CBA. 
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2.9.8 PCBA Based Pruning 

 

Class imbalancing problem has not received big attention in the context of information retrieval 

and data mining approaches. Classifiers with Imbalance class examples may increase the 

misclassification ratio (Liu et al., 2003) (Wen-C et al,. 2012). 

A new pruning method that consider class imbalancing has been introduced in (wen-C et 

al,. 2012), PCBA pruning method was proposed in an attempt to deal with imbalanced class 

when the associative classification is applied. Conventional AC algorithms used one fixed 

minsupp and minconf which might be working properly when dealing with balanced data but not 

for imbalanced one. Alternatively, the algorithm uses different minsupp and minconf values, 

these are defined based on the rule distribution each class through “under-sampling” concept. 

PCBA is proposed aiming to adjust CBA algorithm by proposing a new pruning method that 

filters the set of deemed CARs to be suitable to SBA algorithm which will lead to better 

accuracy in cases where classes are imbalanced. PCBA has improved three aspects in the 

original CBA, which are: adopting sampling method which usually used to adjust the confidence 

of the minority classes that lead to enhancement on the ranking effectiveness and decrease the 

level of class imbalancing that consequently makes minority classes more common. There are 

two sampling approaches, “under-sampling” and “over-samples”, due to the fact that over-

sampling might cause over-fitting problems; PCBA adopts under-sampling approach in adjusting 

the confidence of the rare CARs. When under sampling is used during the ranking procedure it 

controls the amount of positive rules by decreasing the amount of negative rules. 

Second issue addressed in this work is setting multiple minsupps and minconfs 

thresholds, setting single value is not appropriate when dealing with imbalanced data since two 

problems might occur; when setting the support to high value, it becomes impossible to locate 

those rule from the minority classes and on the other hand, setting the support to a low value in 

order to locate the rule from minority class will lead to a huge number of rules which need high 

computational cost and might degrade. As for setting the confidence threshold to low value 

results in having a meaningless rules on the other hand high confidence value will eliminate the 

possibility of having classes form minority classes.  
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2.10 Current Prediction Methods in Associative Classification  

 

Prediction measures are used to judge the accuracy of the classifier built at the end of all the rule 

generation and pruning phases. It is performed on the test data whose class label of each instance 

is unknown. The test data is actually the training data with hidden class values. The prediction 

approaches apply the rules generated to predict the class labels of the test data and computes the 

prediction accuracy percentage at the end of this process. In AC predicting class labels are 

divided into two main groups, one is single Accurate Rule Prediction and second is Group of 

Rules Prediction. In the former approach prediction is based on single rule that has highest 

precedence and is applied to the test data.  The latter measures the prediction on the basis of 

multiple rules. Both the approaches are discussed in the section below. 

 

2.10.1  Single Accurate Rule Prediction  

 

Consider a set of classified rules R and a test data instance test(i), where i ={1,…..testdata. 

length}, single rule  prediction approaches considers the top ranked rule with high confidence 

value in R and matches the test(i) attribute values or the body of test instance. Where there is no 

rule in R that can predict any instance of the test(i) then the instance is allocated the value of the 

default class. The majority class in the training data that is not covered during pruning process is 

called the default class.  

The AC algorithms that use the single rule comparison approach for prediction are (Liu et 

al., 1998; Baralis and Torino, 2000; Wang et al., 2000; Tang and Liao, 2007; Baralis, et al., 

2004; Li et al., 2008; Niu et al., 2009; Kundu et al., 2008). It is simple, useful and effective 

approach for classification. Rules with the high confidence values are used for prediction and 

these contribute mainly in test instances classification. When the confidence value is high, 

likelihood of the test instance to be measured correctly is also high and so is the probability 

measure to predict the test instances correctly (Liu et al., 2003). However this approach can show 

some drawbacks when data sets have uneven class distribution (Liu et al., 2003; Li et al., 2001) 

and there could be more than one rule with same confidence in ‘R’ that can match the test 

instance. The above shortcoming led to a discovery of more appropriate technique which groups 

a small subset of the rules having same confidence value but different class labels. Grouping of 



80 

 

rules in a subset have shown better results. The next section will explain different ways in which 

this approach is used. 

 

2.10.2  Group of Rules Prediction  

 

The process to predict the test instance and the decision to allocate a class value, multiple rules 

having nearly same confidence values are applied to match the conditions of a test instance. In 

(Vyas et al., 2008; Yin and Han, 2003; Antonie and Zaïane, 2002; and Li et al., 2001) it is argued 

that making decision on one rule has shown poor results. Some techniques in AC are reviewed in 

the next section that incorporated multiple rules in the prediction step. 

 

2.10.2.1 Score based Prediction Methods 

 

A new score based prediction method is proposed in CMAR algorithm (Li et al., 2001) that 

selects all the rules with high confidences that can be applied to a test instance and calculates the 

associations between the selected rules. The correlation is measured to estimate the bonding 

between the rules, which is calculated by considering the support and frequency of the class by a 

method called weighted chi-square (Li, 2001).  

CMAR finds a group of rules ‘Ck’ from a discovered classifier in ‘C’ those cover the test 

instance test(i). If the same class is predicted by all the rules in subset ‘Ck’ then this class is 

obviously assigned to the test instance test(i). But if the rules in ‘Ck’ points to different classes, 

the algorithm CMAR divides the classes into groups and then the strength of each group is 

measured and compared. The strength of the group is determined by the support and correlation 

among the rules. The class of the group showing the highest value of strength is selected and 

allocated to the test(i). Weighted (χ
2
) analysis (Li, 2001) tries to find the positively of the rules in 

the group which in turn helps to evaluate the correlation within each group.  

A related prediction method is introduced by (Dong, et al., 1999), final decision to select 

a class label for a test instance is based on all emerging patterns (ep) of a class that have the test 

instance. Suppose a test database (test), all the classes that are present are assigned an estimated 

score. The score is formulated from the emerging patterns (ep’s) that covers test(i) for the related 

class, and the test instance is linked with class containing highest score value.  
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Experimental results have shown that (Dong et al., 1999) and (Vyas et al., 2008) 

classification methods that have used correlation in a group of rules to predict the class label of a 

test instance increased the prediction accuracy slightly when comparison is drawn with single 

rule methods. 

 

2.10.2.2 Laplace based Prediction Method 

 

It is also a prediction method implemented by CPAR (Yin and Han; 2003) and uses multiple 

rules for prediction. The groups are compared by using the Laplace expected error estimates 

(Clark and Boswell, 1991) and here to classify a test instance, expected accuracy of all rules is 

calculated in advance. The process to classify a test instance in CPAR works as follows: 1) it 

selects all the rules from the classifier ‘C’ whose attributes values satisfies the test instance. 2) 

Selection of the best rule is determined for each class from the step 1. 3)  Comparison of average 

expected accuracy is done among the best rule for each class and the one rule is selected with the 

highest expected accuracy to predict the test instance.  

 

2.11 Phishing in Websites and Emails 

 

Communication through email and addiction to internet has become an effective way of people 

contacting each other in today’s fast-paced world. People access different social, educational, 

informative and other kind of websites, exchange a huge quantity of email messages daily to 

share texts, files, photos and video links. Phishing  is one of the active social engineering 

practices used to gain advantage of website users unaware of phishing traps (Toolan and Carthy, 

2010).  

Shortcoming in email and web security technologies also allows abusers to take 

advantage of the unaware web/email users. In computing, "phishing" is termed as an activity that 

uses social engineering techniques to try to get confidential information from the email/web user, 

such as identity, usernames/passwords, pin codes, bank account details and credit card 

information, by pretending to be someone else and hiding their real identity (Ma et al.,2009). 

Due to the number of the users using the internet are increasing rapidly, the numbers of 

phishing attacks are also increasing. The increase of 59% in phishing attack volumes is reported 

in 2012 than 2011 and globally the losses due to phishing are estimated at $1.5 billion in 2012 an 

http://www.allspammedup.com/2009/06/phishing-down-under/
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increase of 22% than 2011( RSA’s Report, 2013).  The countries that are mostly affected by 

attacks are UK, USA, Canada, South Africa, Germany, France, Colombia and Brazil. The 

phishers attack mostly the financial activities and because of better economic growth of Canada 

the phishing attacks increased to 400% in 2012. 

In 2012, cyber criminals have used the simple hosting method tactics and targeted the 

hijacked websites to launch the phishing attack. The web shells, smarter web analytical tools and 

automated toolkits are used to hack huge number of websites (RSA Report, 2013). The RSA 

analysts have noted that the combined attack schemes are in use to phish users and redirecting 

them to infection points.  

In 2013, the launch of 4-G channels in mobile communication and the growth in the use 

of the mobile usage in the personal and office life, and the increasing pivotal need of the 

application in mobiles. It is forecasted in 2013 that the phishing attacks expected to be more 

directed at the mobile and smart phone users. The expected attacks would be by voice (vishing), 

Mobile applications, SMS (smishing) and spammed emails that the user will open on their 

mobiles. The use of social networking, shopping and gaming applications is very common. Only 

from the Google and Apple stores 25 billion app are downloaded in 2012 and by 2015, the 

number may grow up to 185 billion (RSA’s Report, 2013). 

 

2.11.1  What is Phishing  

 

The idea behind phishing is that bait is thrown out in the web by abusers with the hope that a less 

aware user will grab it and bite into it just like the fish. In most cases, bait is floated either 

through an e-mail or disguised web page that requires user to input data that are hosted by a 

phishing website. The popular methods usually used by fishermen to camouflage are to be a 

well-known bank, Online tradesman, credit card company, people who say their deceased 

parents have left huge sums of money and they want help to get the money by offering a part out 

of the sum, and emails congratulating that a lottery is won by you and require some personal 

information to redeem the cash. Victims of phishing websites may lose their identity, pin codes, 

passwords, bank account and credit card details to the phishing email senders. 

Phishing is sometimes confused with spam and conventionally spam blocking techniques 

were tried to block it, but were not as effective due to the structural variance and close 

resemblance of phishing websites to legitimate websites. The main difference between SPAM 
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and phishing is that SPAM is used for mass advertisement to sell a product whereas phishing is 

employed to collect information that can be further used for some illegal activity (Irani et al., 

2008). 

As the world is becoming a global village, quick access to useful and actionable 

information has become very vital for accurate decision making and to survive in this very 

competitive market. Although, phishers are now employing several techniques in creating 

phishing websites to fool and allure users, they all use a set of mutual features to create phishing 

websites. Since, without those features they lose the advantage of deception (Sophie et al., 2011). 

This helps us to differentiate between legitimate and phishy websites based on the features 

extracted from the visited website. 

Overall, two approaches are employed in identifying phishing websites. The first is based 

on blacklist (Sanglerdsinlapachai and Rungsawang, 2010), in which the requested URL is 

compared with those in that list. The downside of this approach is that the blacklist usually 

cannot cover all phishing websites since, within seconds, a new fraudulent website is expected to 

be launched. The second approach is known as heuristic-based methods (Sophie et al., 2011), 

where several features are collected from the website to classify it as either phishing or 

legitimate. In contrast to the blacklist method, a heuristics-based solution can recognize freshly 

created phishing websites in real-time (Miyamoto et al., 2008). The efficiency of the heuristic-

based method, sometimes called features-based method, depends on picking a set of 

discriminative features that could help distinguish phishing websites from legitimate one's 

(Guang et al., 2011). The way in which the features are processed also play an extensive role in 

classifying websites accurately.  

Data mining is a process of extracting meaningful information from a large data bank 

(Fayyad et al., 1998). Data mining and knowledge discovery techniques have been employed in 

different capacities including financial analysis, market forecasting, retail industry and decision 

support systems (Toolan and Carthy, 2010). The two important data mining techniques which are 

discussed in Chapter 3 are association rule mining and classification rule mining. Classification 

and association rule are alike unless classification rule mining exercises prediction of one 

attribute, for instance, the class, on the other hand, association rule discovery can describe the 

relationships among attributes in the data set (Thabtah et al., 2010).  

As mentioned in this chapter, AC integrates association rule mining with classification to 

find additional knowledge missed by traditional classification techniques (Furnkranz, 1999). 
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Many experimental studies, e.g. (Hao et al., 2009),  (Sangsuriyun et al., 2010 ) and (W-C et al., 

2012) showed that AC is a high conceivable technique that developed more predictive and 

accurate classification systems than traditional classification methods like decision trees (Abu-

nimeh et al., 2009). This is axiomatic while AC finds hidden correlations among the different 

features. Moreover, many of the rules found by AC methods cannot be found by traditional 

classification techniques such as decision trees, PART (Frank and Witten, 1998), RIPPER 

(Cohen, 1995), Prism (Cendrowska, 1987) since the AC algorithm discovers all relationship 

between the class attribute and the other attributes in the training data set. 

Through this part of the chapter, the intention is to discuss the intelligent data mining 

techniques to solve the complex problem of detecting phishing. This will surely show the 

usability of the developed AC algorithm in practical applications. The detailed review of 

common approaches in machine learning and data mining that are currently used to detect 

phishing will be demonstrated and the detailed description of the methods used to extract the 

features from the website will be discussed in later chapter 5. 

 

2.12 Common Approaches to Detect Phishing  

 

The Internet community in general has a reasonable understanding of the spam problem. 

Phishing, on the other hand, is a relatively newer and more insidious threat (Irani et al., 2008). 

While spam and phishing are similar on the surface, phishing attacks are comparatively 

sophisticated and logistically different from spam in a number of ways. Understanding these 

differences is important when designing a framework for the protection of users from these 

attacks. Here we examine some more important differences between spam and phishing. 

The messages and techniques used in phishing attacks are complex and often amended 

than the techniques used in spamming. Messages that phishers send out are usually carefully 

constructed to impersonate familiar and reliable financial institutions or organizations. Many 

anti-spam filtering systems are unable to distinguish phish websites or emails from legitimate 

websites from these organizations due to such close resemblance to the real communication 

(Toolan and Carthy, 2010). Phishers also systematically exploit software vulnerabilities in web 

browsers, web servers, and local operating systems in order to trick both filtering software and 

users, and steal as much information as possible (Ma et al., 2009).  
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Unlike spam, phishing messages are directed to a more targeted user base in which 

spammers often send messages in bulk without any specific target in mind in an attempt to 

increase their response rate. Phishers normally target carefully selected email addresses lists and 

individual entities by which they try to evade less sophisticated data collection and filtration 

systems which might alert authorities of their scam. 

A major difference between spam and phishing is that spam is dumped on the internet in 

large batches whereas phishing on the other hand is targeted and has a short life span on the 

internet to avoid getting too many hits that it eventually becomes noticeable in the community 

and is detectable by various filtering solutions. Moreover, spammers advertise a specific range of 

product brand mostly have a static source of emergence whereas phishers who tend to attack 

specific targets do not have a fixed source of emergence simply to avoid or obfuscate the real 

source of attack. Phishers dynamically install web server software through Worms and Trojans 

onto vulnerable or compromised hosts to launch their attacks. Also the phishers keep switching 

between multiple hosts to avoid detection of source, and mostly the switching is automated. 

Hereunder common approaches related to phishing are reviewed. 

 

2.12.1  Pilfer Approach 

 

Pilfer is a machine learning and adaptive method that extracts the features in the websites and 

analyses them to predict an outcome or classify the website as phishing or good also called as 

‘ham’. For instance, the authors of (Fette et al., 2007) have selected ten features like IP-based 

URLs, Age of linked-to domain names, HTML emails, number of domains and number of dots 

etc., from a large set of features, which have significance in detecting phishing in websites. The 

authors have acknowledged that these features can be used to detect the website phishing attacks 

in the browser environment. The phishing websites usually lasts for two days or so, making it 

difficult to extract information from aged emails. WHOIS (i.e., DNS) query is often performed to 

establish the date when the domain of a phishing website is registered. The success rate of 

WHOIS query to establish correct registration dates is 505 out of 870 different domain names. 

Experiments (Fette et al., 2007) were performed using the ten-fold cross validation 

method and comparative evaluation was conducted on PILFER and SpamAssassin (Apache 

Software Foundation, 2006). The open source data sets used in the evaluation are ham corpora 

(Apache Software Foundation, 2006) containing non phishing 6950 and phishing corpus having 
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860 websites data. PHILFER showed 96% accurate classification of phishing websites with 

0.0013% wrong classification of genuine websites (false positive) and 0.035% mis-classification 

of phishing websites (false negative). The results have revealed that spam and phishing filter 

combination proves to be an excellent solution, as the accuracy is improved when the decision of 

a spam filter is taken as a seed to PILFER, as compared to their performances alone. The authors 

concluded with thoughts on the future for such techniques to specifically identify deception, 

specifically with respect to the evolutionary nature of the attacks and information available. 

 

2.12.2  Machine Learning Approaches to Detect Phishing 

 

The predictive accuracy of phishing emails were detected by different Machine Learning 

approaches like CART (Breiman et al, 1984), SVM (Joachims, 1999), BART (Fette et al., 2007), 

RF (Breiman, 2001), and Neural Networks (NN) (Marques 2001) in a comparative study of 

(Abu-nimeh et al., 2007). The comparative study of the above classifiers used 43 features from 

the phishing email data for training and testing. The phishing data set that represents newer 

trends in phishing emails was constructed from 1171 phishing, 1718 legitimate emails and 

contains 2889 emails in total. In the comparison, the authors used a number of evaluation metrics 

but here the focus is only on two evaluation measures of false positive and false negative. False 

positives have more significance as users dislike when their important messages are deleted due 

to misclassification. On the other hand false negative are the email messages that are malicious 

(phishy) and classified as genuine. 

The results of the experiments on number of simulation runs have shown that LR 

algorithm produced the lowest false positive (FP) rate of 04.89% followed by BART algorithm 

with FP value of 05.82%. The highest FP value is generated by LR algorithm and it was 08.29%. 

Though, the RF algorithm has the lowest false negative (FN) value of 11.12% and NN has the 

highest FN value of 21.72%.  

 

2.12.3  Bayesian Additive Regression Trees (BART) 

 

Due to the increase in the use of mobile devices to browse the internet recently, the likelihood of 

SMishing and Vishing attacks (Abu-nimeh, et al., 2009) have increased, as they are weak in their 

protective mechanisms. The features of phishing email are changing on a regular basis and the 
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use of the entire variables in training phase may lead to over fitting and poor prediction results.  

(Abu-nimeh et al., 2009) introduced a client-server model to detect phishing emails by using 

automatic selection of variables in Bayesian Additive Regression Trees (BART). The model 

used by the authors in the classification process is called CBART. The CBART selects the 

variables in the training phase automatically from a huge set of input features and discovers the 

relationship among features and response. As variable selection is a tedious and computationally 

complex process, methods like Bayesian Networks and Naive Bayes (Duda and Hart, 1973) 

perform this process separately hence classifier performance is poor as compared to CBART 

technique. 

A phishing dataset containing 178 financial and 4974 other legitimate emails, and 1409 

phishing emails, in total containing 6561 records with 71 features were used in the experiments. 

CBART selects frequent variables in Markov chain Monte Carlo (MCMC) simulations. The 

experiments are performed using 60 features that appear frequently in the phishing emails and 

TF/IDF (term frequency/inverse document frequency) is calculated by multiplying the number of 

occurrences of a word in a document to a function that computes the inverse of the total number 

of documents where that word appeared. The remaining 10 features are extracted from the 

structural behaviour of phishing emails, and the effectiveness is compared with Kruskal-Wallis 

(KW) test (Howard and Lee, 2006). 

CBART has been compared with common classification data mining techniques such as 

Support Vector Machines (SVM) (Joachims, 1999), Classification and Regression Trees (CART) 

(Breiman et al, 1984), NN (Marques 2001), Random Forests (RF) (Breiman, 2001) and Logistic 

Regression (LR). The results depicted that an AUC (area under the ORC curve) value is lowered 

for all the classifiers except for the LR algorithm. While when variable selection is done through 

CBART, false negative rate, false positive rate and error rate showed a decrease in all 

approaches except SVM. When the CBART is applied the classifier’s false positive values are    

-0.24%,-1.65%, +3.36%, 3.15%, 2.39% for CART, RF, SVM, LR and inNNet respectively.  

 

2.12.4  Multi-tier Classification of Phishing Websites and Emails 

 

Many investigations have used classification algorithms to filter the phishing websites and 

emails such as (Zhang et al., 2003) and (Sanglerdsinlapachai and  Rungsawang, 2010). An 

approach presented in (Islam et al., 2009) first extracted the features from the suspicious 
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websites and then three classification methods named as support vector machine (Joachims, 

1999), AdaBoost and Naive Bayes (Duda and Hart, 1973) is applied to detect the correlations 

among the features attribute values. The multi-tier filtering of phishing emails system relies on 

the spam filtering. The algorithms works by classifying the email messages in a sequence and 

sending the output to decision fusion process. The emails are sent to their mailboxes according to 

the class label. In case the email is misclassified by classifiers at any tier, the output will be 

finalized by the last tier. Different classifier is used at each tier and the results of the experiments 

have shown a reduction in the false positive and improvement in efficiency.  

 

2.12.5  Hybrid Features using Information Gain 

  

The phishing websites and emails contain many different features and considering all the 

features for the experimental studies can lead to complexity. The approach used by (Ma et al., 

2009) works by generating a classifier while exploring each feature from the phishing data set, 

using the evaluation metric of information gain (IG)  and then a set of high quality features were 

selected. The author defined three types of features: content, orthographic and derived. Out of 

these types, 7 features were extracted from each email and were used in the experiments. The 

model represents four components: Feature generator, machine learning method selection, 

inductor and feature evaluation (Ma et al., 2009). The model starts by generating a matrix of 

features from websites or documents by feature selection component. Then few selected machine 

learning algorithms such as C4.5 (Quinlan, 1993), RF (Breiman, 2001), and SVM (Joachims, 

1999) are applied on the feature matrix and their performance evaluations are done. The main 

purpose of this step is to select the best machine learning algorithm for detecting phishing 

websites. Then induction step generates IG and lastly feature evaluation step is performed by 

calculating the accuracy of a feature before and after its removal from a small vector space. The 

last procedure is repeated several times till a best group of features are generated.  

The experiments are conducted using a data set of 659,673, consisting of both phishing 

and legitimate websites, of which 7% of the websites were phishing. The results demonstrated 

that decision tree based algorithms such as C4.5 (Quinlan, 1993) have outperformed other 

machine learning algorithm in terms of prediction accuracy. The prediction values of other 

algorithms in comparison to C4.5 are, RF (- 0.02%), multi-layer perceptron (-0.72%), and SVM 

(-1.92%).  The accuracy of the short feature selected data of the training and testing phases when 
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compared with original data came out to be same. So the author concluded that with feature 

selection few features are used in the classifier building and prediction without affecting the 

accuracy.  

 

2.12.6  BoosTexter  

 

Profiling is very useful to judge or predict the intention or the possible activity of an individual 

or a group of phishers (Toolan & Carthy, 2010). The method proposed by (Yearwood et al., 

2010) profiles the phishing emails by considering the structural features of websites that are sent 

to different persons and then gathering information about the hyperlinks from the WHOIS 

database like APNIC and RIPE NCC. The properties of the structural features are taken as 

classes and for experimental purposes, three data sets are extracted from the information of 

hyperlinks by applying the boosting algorithm known as AdaBoost and a classification algorithm 

based SVM (Joachims, 1999). During the profile building up, the classifier generates the 

prediction weights for all classes to show the significance and relevance of each class. The main 

aim of the above process is to extract the classes that are more presentable in profiling and 

explore useful features.  

The results are obtained from 2038 phishing websites that contain hyperlinks using cross 

validation. AdaBoost was executed 300 times and profile generation is performed.  The 

performance analysis is performed by one-error, coverage and average precision with 

BoosTexter. The findings of the BoosTexter have shown high values of accuracy with the multi-

label classes if contrasted with the other classification algorithms.  

 

2.12.7  Phishing Evolving Clustering Method (PECM) 

 

A new clustering base learning model called Phishing Evolving Clustering Method (PECM) is 

proposed in (Al-Momani et al., 2011), and is a modification of evolving clustering method for 

Classification (ECMC) (Song and Kasabov, 2003).The PECM model works in online mode and 

its functionality is to extract the similarities within the groups of the phishing dataset of emails. 

The method consumes less memory and generates the classifier from only one pass. The model 

works in 3 stages, first is the pre-processing of the emails where parsing is done to discover the 

features of phishing emails and stemming is performed to remove the test data linked with the 
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phishing email features. In the second stage the ranking and classification of the features is 

carried out and the highly effective feature is selected followed by creation of crisp values and 

then the features with the similarities are grouped together like body features and URL features. 

In the last stage, the ECM (Song and Kasabov, 2003) algorithm is applied on the data pairs (x,y) 

where ‘x’ is the group value of the feature and ‘y’ is the output . The learning phase works in a 

sequential manner and deals with the input vectors having the knowledge of class label and then 

the new input vectors are classified. The new email feature values are entered, and depending on 

the distance of the input vectors with the rule nodes, if the input vector values are present in one 

of the fields of rule nodes it will belong to the class of that rule node. Otherwise, the input vector 

‘x’ will be placed with the closest rule node.   

The results have shown that PECM is very effective to classify websites, while it 

decreases the false negative and positive values. 

 

2.12.8  Data Mining Classification Methods  

 

A phishing case study is demonstrated and implemented in real world to explain the process of 

phishing in e-banking by (Aburrous et al., 2010). The data collected clearly indicated that the 

users are very vulnerable to phishing attacks that can steal the customers’ online banking details. 

Six classification methods were contrasted and comparative analysis was demonstrated for 

accuracy, performance and rules size. The rules produced from the different classification 

techniques identifies and characterizes all the correlations between different features in the 

phishing data and factors in the archive data of e-banking phishing site. The experiments were 

conducted on classification algorithm like C4.5, PART, PRISM and RIPPER , using an open 

java source WEKA, and comparative analysis is done between two AC algorithms CBA and 

MCAR. The authors have used APWG and Phishtank web access archive (Phishtank.com) and 

successfully extracted 27 phishing features and then clustered them into 6 groups. 

The results are compared taking into consideration the number of rules formed and 

predictive accuracy. Further, the number of test cases used for evaluation is 1006 and prediction 

test method is ten-fold cross validation. Among the classification algorithms considered, the 

MCAR has shown the lowest error rate of 12.62%. PRISM has produced the highest number of 

rules i.e., 155 among the classification approaches, as it does not perform pruning. MCAR 

algorithm has performed well and predicted more accurately test data than the rest of the 
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classification approaches. The experiments have found interesting relationships and significant 

impact of Domain Identity and URL, and Encryption and Security and non-significant 

implication of Content and page style features with the Social factor in Humans to identify 

phishing in e-banking website.  

 

2.12.9  Detecting Phishing Websites Using Associative Classification 

 

The automated mining techniques are used to investigate the difficult problem of phishing in 

websites using associative classification algorithms by (Al Ajlouni et al., 2013). The data is 

collected from 1010 phishing and legitimate banking websites. In total 27 features are selected to 

test and train classifiers. Short programming scripts are used to extract the features and stored in 

a excel sheet. Depending on the difference in the strategies for learning, four classification and 

associative classification approaches used in the experiments are SVM (Vapnic, 1995), NB 

(Thabtah et al., 2009), MCAR (Thabtah et al., 2005) and CBA (Liu et al., 1998). MCAR is 

implemented using the java and other three approaches are implemented using the WEKA 

(www.weka.com). The parameters for experiments are set at 2% minsupp and 40% minconf to 

calculate the classification accuracy of all four approaches.  

The experiments results have shown that MCAR has achieved 6.1%, 5.4% and 6.8% 

better accuracy than CBA, NB and SVM respectively. The other associative classification 

algorithm of CBA has also outperformed NB and SVM. It is also demonstrated that associative 

classification approaches are better than probabilistic and statistical approaches and are much 

feasible to be used for the large data pools to detect phishing in websites.  

 

2.12.10 Phishing Detection Taxonomy for Mobile Device 

 

The recent trends for the detection of phishing for the mobile devices are studied by (Foozy et 

al., 2013). The existing applied approaches are analysed and compared and recommendation 

were made to make necessary improvements in the phishing techniques in mobile devices.About 

5% of the users click on a phishing link on an Andriod device every year and detection of 

phishing is handled differently because of the nature of the attacks on mobile and it is 

characterized as Voice over IP Phishing or known as vishing, Bluetooth phishing and Short 

http://www.weka.com/
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Message Service (SMS) phishing (Dunham, 2009). The common detection techniques discussed 

are Content Based Filtering, blacklist and whitelist (Foozy et al., 2013). 

The data are collected from various sources like, SpringerLink, ScienceDirect, Yahoo, 

Google Scholar, Google, IEEE Xplore and ACM Digital Library. The analysis is carried out in 

two steps, first step is to study the phishing attack on a device category and second step is the 

detection and classification of phishing attack. The taxonomy of the phishing attack on mobile 

devices is analyzed and categorized as Bluetooth, SMS, Vishing and Mobile Web application. 

The comparison between the six detection techniques like Content Based (Peizhou et al., 2008 

and Yoon et al., 2010), Blacklist (Singh, 2011) and (Mahmoud and Mahfouz, 2012), Whitelist 

(Mahmoud and Mahfouz, 2012), Hotspot and Gaussian Mixture Model (Chang and Lee, 2010) 

are studied in the paper.  

The whitelist detection technique is used to detect phishing attacks on SMS and Mobile 

Web, the technique works by collecting the data from known users and only detects phishing 

attack from the already known senders. Wireless defense hotspot tools, can spot any change in 

MAC address default gateway and access point, ESSID and signal fluctuations on network and 

are used to prevent Phishing attack in Bluetooth. Gaussian mixture model is used to detect 

vishing attacks and helps in identifying the true and false statements. The study is helpful in 

understanding the other solutions that can be used in the detection of phishing attacks on mobile 

devices, one of the modern era technologies. 

 

2.12.11 Anti-Phishing Prevention Technique (APPT) 

 

A novel technique for anti-phishing prevention is introduced by (A. A. Khan, 2013) that uses one 

time password and encrypted token to access the website. APPT works in two steps, in the first 

step the user enter his/her information in the retrieval site to get a random onetime password.  is 

generated by the machine when the user go to the one time password retrieval site .This one time 

password is sent via SMS or email, then an encrypted token is generated which contains the user 

specific data. In the second step an encrypted token is generated by PKIEncrypt function, it 

consists of user’s machine IP address and its validity is 15 minutes. The primary website is 

authenticated by using both the one time password and the token. 

 The attacker will not be able to cause any damage while trying to get the one time 

password through forged website, because the site is only used to get the password via email or 
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SMS which is accessed by legitimate user. The prevention against the cookie attack is achieved 

by transmitting the token on encrypted channel and will expire in 15 minutes. CAPTCHA is the 

program that is used to protect the user from flooding of emails and SMS messages when in case 

the phishing attacker is successful in getting the user information via forged website. 

It is successfully demonstrated that by using the APPT technique prevention of Phishing 

attacks can be reduced. But at the same time it is important to get user aware of the kind of 

danger they are in and use of antivirus/malware/spyware are recommended in the study. 

  

2.12.12 Automated Detection of Phishing using Classification Scheme and 

Feature Selection 

 

A hybrid approach is proposed by (Hamid et al., 2013) that combines the behaviour and content 

based approaches for selection the features in websites and emails. The behavioural features are 

identified because of the fact that these cannot be disguised by attackers. The message-ID tag in 

the header of the email is studied and if it indicates that the email has come from more than one 

domain, it is considered as phishing email.  

 The study was conducted using hybrid feature selection from 6923 datasets from Nazario 

(www.monkey.org) and SpamAssasin. The results have shown that the approach of hybrid 

feature selection achieved an accuracy of 94% and effectively identified and classified phishing 

emails. 

 

2.12.13 Rouge DHCP-Enabled LAN Used in Phishing Attacks 

 

A laboratory based research is conducted by (Purkait, 2013) to demonstrate the use of rouge 

Dynamic Host Control Protocol (DHCP) server by phishers. The study is conducted in Kharagur 

Laboratory and shown how a phisher uses rouge DHCP that bypasses all the security filters and 

toolbars and thus compromising the DHCP- enabled LAN. 

Tests were carried out using two main web browsers like Internet Explorer and Mozilla, 

two security toolbars and Norton Antivrus. All counter measures taken are not able to detect the 

phishing attack and the toolbars used have given a clean go for the phishing sites tested. 
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2.13 Summary  

 

In this chapter, a detailed discussion on classification and association rule mining approaches in 

data mining is conducted. In the first part of the survey some well-known approaches in 

classification like decision trees, statistical ad rule induction were discussed. The aim is to 

understand them well enough as they will be used in the comparative study with the proposed 

work in experimental chapter. In the later part of the chapter the review of some popular 

association mining algorithms is carried on with special emphasis on Apriori algorithm.  

Promising AC techniques have been also discussed in this chapter which started with the 

first algorithm in AC, CBA and then followed by CPAR, CMAR, MMAC, MCAR, BCAR, 

ACCA, GARC, ARM, PST etc. Most of the algorithms in the review have shown two main 

phases in AC, one is the generation of rules and second is the classifier building in all the 

algorithms. All the work mainly focused on improving the processing time and accuracy of the 

generated classifiers and prediction. The methods have demonstrated with success that by 

integrating classification and association rule mining shown better results in terms of 

effectiveness and built more accurate classifiers when compared with traditional approaches in 

classification C4.5 and decision tree. The table presented below is taken from the literature 

survey on AC by (Thabtah F., 2006). In Table 2.6 the summary of the all the steps (rules 

discovery, rules ranking, rules pruning, and test cases prediction) for nearly all AC algorithm 

discussed. After all the literature review on AC, the new approach in AC mining called Looking 

at the Class (LC) will be presented in the next Chapter. The results with the traditional 

approaches in classification and AC mining are also compared. 

Phishing is a serious security issue for the internet users. In the third part of the chapter, a 

survey of common approaches related to phishing in the literature like CART (Breiman et al, 

1984), SVM (Joachims, 1999), BART (Fette et al., 2007), RF (Breiman, 2001), Neural Networks 

(NN) (Marques, 2001), Pilfer approach (Fette et al., 2007), Boostexter( Toolan and Carthy, 

2010), PECM (Al- Momani, 2011), Taxonomy for Mobile devices ( Foozy et al., 2013), Hybrid 

approaches like (Ma et al., 2009 and Hamid et al., 2013) and APPT (A.A Khan., 2013) were 

discussed. The implementation of some of the approaches in classification and AC mining would 

be carried out in experimental chapter 5 on phishing datasets. 

  



95 

 

Table 2.6: Summary of AC algorithms 

 

Name Data 

Layout 

Rule 

Discovery 

Ranking Pruning Prediction 

Method 

Reference 

CBA horizontal Apriori 

candidate 

generation 

Support, 

confidence, rules 

generated first 

Pessimistic error, 

database coverage 

Maximum 

likelihood 

(Liu, et al., 1998) 

CMAR horizontal FP-growth 

approach 

Support, 

confidence, rules 

cardinality 

Chi-square, 

database coverage, 

redundant rule 

CMAR 

multiple label 

(Li, et al., 2001) 

CPAR horizontal Foil greedy Support, 

confidence, rules 

cardinality 

Laplace expected 

error estimate 

CPAR 

multiple label 

(Yin and Han; 2003) 

ARC-BC horizontal Apriori 

candidate 

generation 

Support, 

confidence, 

cardinality 

Redundant rule dominant 

factor multiple 

label 

(Antonie and 

Zaïane, 2003) 

MMAC Vertical Tid-list 

intersections 

and 

recursive 

learning 

Support, 

confidence, 

cardinality, class 

distribution 

frequency 

Database coverage Maximum 

likelihood 

(Thabtah et al., 

2004) 

MCAR Vertical Tid-list 

intersections 

Support, 

confidence, 

cardinality, class 

distribution 

frequency 

Database coverage Maximum 

likelihood 

(Thabtah et al., 

2005) 

2-PS horizontal Apriori 

candidate 

generation   

Support, 

confidence, rules 

cardinality 

Database coverage dominant 

factor 

(Qian et al., 2005) 

ACN horizontal Apriori 

candidate 

generation  +  

Negative 

Rules 

Confidence, rules 

Correlations, 

Support, rules 

cardinality , 

Positive  Rules 

redundant rule , 

pearson’s 

correlation 

coefficient 

 

Maximum 

likelihood 

(Gourab Kundu et 

al., 2008) 

BCAR horizontal Boosting 

Association 

Rule 

Support, 

confidence, 

cardinality 

Boosting Weak 

Association Rule 

normalized 

prediction 

score model 

(Yongwook and 

Gary Lee, 2008) 

ACCR horizontal Cluster-based 

association 

rule 

Support, 

confidence, 

cardinality 

Pessimistic error, 

database coverage 

Maximum 

likelihood 

(Qiang Niu et al. 

,2009) 

ACCF Vertical Charm  Support, 

confidence, rules 

generated first 

Pessimistic error, 

database coverage 

Maximum 

likelihood 

(Li X. et al. , 2008) 

CACA Vertical Class-based 

associative 

classification 

Support, 

confidence, rules 

generated first 

Compact  set, 

redundant rule 

Maximum 

likelihood 

(Tang and Liao, 

2007) 
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Chapter 3 

 

Classification Based on Association Rule (CBA) 

 

3.1 Introduction 

 

This chapter is included to explain the steps of rule generation and classifier building in the CBA 

algorithm so as to make the comparative analysis between CBA and proposed LC algorithms 

easier. The proposed LC algorithm is explained in the next chapter 4. The CBA uses the Apriori 

candidate generation function to generate rules in each iteration and LC algorithm is also based 

on the Apriori candidate generation function with modifications. The effects of the modification 

on the processing time and the number of candidate ruleitems generated at each step will be 

discussed in chapter 4. The CBA is the first algorithm in Associative classification and pioneer 

work or the new approach of CBA to build classifiers and to predict classes by using the 

association rules is presented by (Liu et al., in 1998). It was shown that using association in rule 

mining to generate all the rules, whose right hand side are bonded with a class attribute, is much 

more effective and accurate than traditional classification system like C4.5. The algorithm 

comprises of two main steps, rules generation (CBA-RG) and classifier building (CBA-CB).  

Firstly it finds and generates all ruleitems like Apriori algorithm (Agarwal and Srikanth, 1994). 

The ruleitems that passes the minsupp value are called frequent ruleitems. In the classifier 

building part the frequent ruleitems are used in building the full set of CARs and these generate 

the final classifier. The two stages of the algorithm are described in depth in the following 

sections. It is important to understand the full concept of CBA in this study as the proposed 

algorithm is based on CBA’s working and introduces major improvements in CBA and 

demonstrates it with a comparative study. 
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3.2 CBA-RG Basic Concepts 

 

In the main step of CBA-RG, firstly all ruleitems are found that contains the support value 

greater than minsupp. The algorithm uses multiple iterations over the dataset to generate frequent 

ruleitems. Figures 3.1 shows the rule or candidate generation. In the first iteration support count 

of all the items is calculated and then checked whether they are frequent. In the second iteration 

these frequent 1-ruleitems are used as seed set for more possible frequent 2-ruleitems. When the 

disjoint frequent 1-ruleitems are combined together candidate 2-ruleitems are produced. The 

candidate 2-ruleitems that passes the minsupp threshold are called frequent 2-ruleitems. This 

process continues till no more frequent ruleitems are left.  

 

F 1 = {large 1-ruleitems};    

CAR 1 = genRules (F 1 );   

prCAR 1 = pruneRules (CAR 1 );  

  for (k = 2; F k-1 Ø; k++)  

{             C k = candidateGen (F k-1 );  

   for each data case d D     

C d = ruleSubset (C k , d);  

  for each candidate c C d  

 {               c.condsupCount++; 

                 if d.class = c.class then 

                  c.rulesupCount++; 

             } 

          F k = {c C k | c.rulesupCount minsup};  

         CAR k = genRules(F k );  

         prCAR k = pruneRules(CAR k );  

} 

CARs =  k CAR k ;    

prCARs= k prCAR k 

 

 

Figure 3.1 Frequent itemset generation step in CBA algorithm 
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1     sort(R) 

2     For each rule r   R in sequence do 

3 temp = Ø; 

4 for each case d   D do 

5  if d satisfies the conditions of r then 

6   store d.id in temp and mark r if it correctly classifies d; 

7 if r is marked then  

8  insert r at the end of C; 

9  delete all the cases with the ids in temp from D; 

10            selecting a default class for the current C; 

11            compute the total number of errors of C; 

12 end 

13    end 

14   Find the first rule p in C with the lowest total number of errors and drop all the rules after p 

in C;        

15   Add the default class associated with p to end of C, and return C (our classifier). 

 

Figure 3.2 Building a classifier in CBA algorithm 
 

3.3 CBA-CB Basic Steps 

 

This section will explain how CBA algorithm builds a classifier. When all the itemsets that are 

frequent are formed by doing multiple iterations on the dataset, then the main aim is the selection 

of subset of frequent ruleitems with the perfect rule sequence and minimum errors. All the 

subsets are evaluated on the training dataset and the best subset is called the classifier. It is a 

heuristic algorithm and the classifier built performs more accurately than C4.5.  

After the CARs are derived the algorithm ranks them according to the procedure 

described in Figure 3.3. When the CARs are sorted then a rule qualifies to be placed in the 

classifier if it can cover at least one instance in the training dataset. Then all the instances in the 

training dataset covered by that rule are deleted from the training dataset. This process will not 

stop until all the training instances covered by a set of rules or all the rules are used. If all the 

rules are used and still we are left with some part of the training data then the majority class 

between all instances will be considered as default class.  
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Consider two rules, rulea and ruleb, rulea precedes ruleb (rulea  ruleb) if: 

1. Confidence value of rulea is higher than ruleb. 

2. Confidence value of rulea and ruleb are same, but support value of rulea is higher than ruleb. 

3. Confidence, support of rulea and ruleb are same, but rulea is produced before ruleb. 

 

Figure 3.3 Rule ranking steps in CBA 
 

  When a new data instance or a document is classified, the first ruleitem that correctly 

satisfies the data instance values or the body of the document classifies them. And if no rule can 

predict the class label of the document or data instance then it will take the default class (Zaiane 

and Antonie 2002; Liu et al. 1998).  

Now we will explain by an example the complete process of frequent ruleitem generation 

and building a classifier by CBA. Consider the training data shown in Table 3.1, which 

represents three attributes Age (senior, youth, junior), income (middle, low, high) and Has_Car 

(n,y) and a class (yes, no). User defined input values are set as minimum support = 15% and 

minimum confidence = 50%, the frequent ruleitems found are presented in Table 3.2, with their 

confidence and support values.  

Next step is the formation of a classifier as described in Figure 3.1. Firstly the process of 

rule ranking is carried out as seen can be seen in Table 3.3, and then these ranked rules are 

applied on the training dataset to get the classifier. The process of rule pruning helps to group or 

find the set of rules that predicts the highest number or the full set of training data.  

Table 3.1: Training data 
 

Has_Car Income Age Buy_car 

n middle senior Yes 

y low youth no 

y high junior yes 

y middle youth yes 

n high senior yes 

n high junior no 

n low senior no 
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Table 3.2: Rule discovery in CBA 
 

Pass 

Count 

Candidate/Frequent 

Itemsets 

Rule Itemsets Support Confidence 

1stPass Frequent-1 <({Age,senior)},3), ((Buy_car, yes), 4)> 

<({(income, middle)}, 2), ((Buy_car, yes), 4)> 

 <({(income,low)}, 2), ((Buy_car, no), 3)> 

 <({( income,high)}, 3), ((Buy_car, yes), 4)> 

<({(Has_car,n)}, 4), ((Buy_car, yes), 4)> 

<({(Has_car,n)}, 4), ((Buy_car, no), 3)>                   

<({(Has_car,yes)}, 3), ((Buy_car, yes), 4)> 

2/7 

2/7 

2/7 

2/7 

2/7 

2/7 

2/7 

2/4 

2/4 

2/3 

2/4 

3/5 

2/4 

2/3 

2ndPass Candidate-2 <{(Age,senior), (income, middle)}, (Buy_car,yes)>  

<{(Age,senior), (income, middle)}, (Buy_car,no)>  

<{(Age,senior), (income, low)}, (Buy_car,yes)> 

<{(Age,senior), (income, low)}, (Buy_car,no)>  

<{(Age,senior), (income, high)}, (Buy_car,yes)> 

<{(Age,senior), (income, high)}, (Buy_car,no)>   

<{(Age,senior), (Has_car,n)}, (Buy_car,yes)>  

<{(Age,senior), (Has_car,n)}, (Buy_car,no)>  

<{(income,middle), (Has_car,n)}, (Buy_car,yes)>  

<{(income,middle), (Has_car,n)}, (Buy_car,no)>  

<{(income,middle), (Has_car,y)}, (Buy_car,yes)>  

<{(income,middle), (Has_car,y)}, (Buy_car,no)> 

<{(income,low), (Has_car,n)}, (Buy_car,yes)>  

<{(income,low), (Has_car,y)}, (Buy_car,yes)>  

<{(income,low), (Has_car,n)}, (Buy_car,no)>  

<{(income,low), (Has_car,y)}, (Buy_car,no)>  

<{(income,high), (Has_car,y)}, (Buy_car,yes)>  

<{(income,high), (Has_car,n)}, (Buy_car,yes)>  

<{(income,high), (Has_car,y)}, (Buy_car,no)>  

<{(income,high), (Has_car,n)}, (Buy_car,no)>  

1/7 

0/7 

0 

1/7 

1/7 

0 

2/7 

1/7 

1/7 

0 

1/7 

0 

0 

0 

1/7 

1/7 

1/7 

1/7 

0 

1/7 

2/3 

0 

0 

1/1 

1/1 

0 

2/3 

1/3 

1/1 

0 

1/1 

0 

0 

0 

1/1 

1/1 

1/1 

1/2 

0 

1/2 

 Frequent-2 <{(Age,senior), (Has_car,n)}, (Buy_car,yes)>  2/7 2/3 

 Candidate-3 <{(Age,senior),(income,high),(Has_car,n)}, 

(Buy_car,yes)>  

1/7 1/1 

 Frequent -3 None   

CAR1 {(Age,senior)} → (Buy_car, yes) 

{(income, middle)} →  (Buy_car, yes) 

{(income,low)} → ((Buy_car, no) 

{( income,high)}  →  ((Buy_car, yes) 

{(Has_car,n)}  →  ((Buy_car, yes) 

{(Has_car,n)} → ((Buy_car, no)                 

{(Has_car,yes)}→ ((Buy_car, yes),  

CAR2 {(Age,senior), (Has_car,n)} → (Buy_car,yes) 

CARs CAR1 U CAR2 
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Table 3.3 : Ranked rules 
 

Row-id Rules Conf Sup 

1 {(Age,senior), (Has_car,n)} → (Buy_car,yes) 2/3 2/7 

2 {(income,low)} → ((Buy_car, no) 2/3 2/7 

3 {(Has_car,yes)}→ ((Buy_car, yes),  2/3   2/7 

4 {(Has_car,n)}  →  ((Buy_car, yes) 3/5 2/7 

5 {(income, middle)} →  (Buy_car, yes) 2/4 2/7 

6 {( income,high)}  →  ((Buy_car, yes) 2/4 2/7 

7 {(Has_car,n)} → ((Buy_car, no)                 2/4 2/7 

8 {(Age,senior)} → (Buy_car, yes) 2/4 2/7 

 

Table 3.4: Data for testing 
 

Transaction -id Age Has_Car Income 

1 senior n middle 

2 youth y low 

 

The final step of the algorithm is to pick a test instance, apply the first top rank rule and 

predict the class of the test instance.  CBA prediction step matches the test instance body with 

the rule and if the body matches it will assign the class of that rule to the test instance. We will 

explain this with an example of the test data in Table 3.4, first test instance with the values 

{(Age,senior), (Income,middle)) and (Has_car,n) is picked from the Table 3.1, to classify this test 

instance  CBA algorithm picks the top ranked rule {(Age,senior), (Has_car,n) from Table 3.4. The 

body of test instance matches the body of the 1
st 

rule selected from the Table 3.3. The class value 

of the rule that is ‘yes’ is assigned to the test instance. Then CBA picks the second test instance 

{(Age,youth), (Income,low)) and (Has_car,y)}  is picked from the Table 3.4 and this test instance   

 

tends to be classified by the ranked rules from Table 3.3. Again the top rank rule {(Age,senior), 

(Has_car,n) is selected from the Table 3.3 but this time the rule does not match the body of the 

test instance, so the second rule {(income,low)} → ((Buy_car, no)} from Table 3.3 is selected. 

The algorithm checks whether this rule matches the test instance value and the answer is yes. 

The class label of this rule ((Buy_car, no) will be assigned to the test instance. The above 

procedure to classify the test data will continue until all the test instances are classified.  
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3.4 Summary of the Chapter 

 

The chapter explains the working of the first algorithm CBA in the associative classification 

domain. The detailed working of CBA’s rule generation and the classifier building steps with an 

example is described in section 3.2 and 3.3. In the next chapter the proposed LC algorithm is 

presented with its implementation on bench mark datasets and the complete analysis of the 

results are discussed in comparison to CBA and other AC algorithms. 
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Chapter 4 

 

Looking at the Class Associative Classification Algorithm 

(LC) 

 

4.1 Introduction 
 

As explained in Chapter 2, two data mining tasks, classification and association rule 

mining are integrated to form AC algorithms. The AC algorithms build accurate classifiers than 

classification approaches in data mining. The classifiers produced by AC algorithms contain 

simple yet effective rules that are understandable and are easily interpreted and used by the 

domain experts. AC tends to discover rules that cannot be found by other classification 

algorithms (Antonie and Zaïane, 2002).  

Some of the AC approaches use an exhaustive search technique to find the set of rules by 

scanning the database again and again. This time consuming searching method is proposed in 

Apriori algorithm (Agrawal and Srikant, 1994) to generate rules and the main drawback is the 

high execution CPU time (Liu, et al., 2001; Thabtah, et al., 2010). In terms of rule ranking, most 

of the AC algorithms rank rules on the basis of confidence values, support values, the time when 

rule is generated and the cardinality of the rule. Another tie breaking criteria is added which is 

adopted from (Thabtah, et al., 2004) that takes into account the class distribution frequencies 

among rules in the training data set. This can be utilized beside confidence, support and rule 

length to discriminate among rules. 

Chapter “4” main focus is to investigate and improve the efficiency of the rule generation 

phase, to reduce the number of merging at each iteration, to decrease the size of frequent 

ruleitems generated, to cut down the size of produced rules in classifier, and investigate and 

implement the methods to improve and maintain the prediction accuracy when compared with 

other classification and AC algorithms. This is all accomplished in a new AC algorithm that 

deals with the problem of large number of itemsets joining in the training phase within the 

known CBA algorithm. It tends to find an effective rule generating method that can derive the 

rules efficiently without negatively affecting the classification rate. As a consequence, a new AC 

algorithm, called Looking at the Class (LC) AC algorithm is proposed. LC also adds new criteria 
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during the process of predicting new test data instance and proposes a new effective prediction 

procedure that improves accuracy. 

The LC algorithm while dealing with both types of attributes (categorical and continuous) 

is an improved version of the CBA algorithm and introduces a novel method of itemset merging 

in the training phase of CBA, a new rule ranking procedure that includes the cardinality and class 

distribution criterion to rank rules and a proposes a new prediction method that is based on 

selecting and assigning the class with highest average of confidence in the group of rules  that 

correctly matches the conditions of the test instance. The results obtained from the 

implementation of the above proposed changes are demonstrated in the experimental section of 

this chapter. The comparative analysis of the results with the current well-known AC and 

classification algorithms are also discussed. 

The summary of main differences between LC and CBA are discussed in section 4.2, the 

development of a new proposed algorithm LC is discussed in Section 4.3 with the rule 

generation, rule ranking, rule pruning and discusses the new prediction algorithm. Experimental 

parameters, datasets and findings are demonstrated in Section 4.4. In the final Section 4.5, the 

summary of the chapter is given. 

 

4.2 Main Differences of LC and CBA Algorithms 

 

CBA algorithm is discussed in the previous chapters; in this section the main differences in CBA 

and LC algorithm are highlighted, so to get an idea of the modifications made in the CBA 

algorithm. The main differences in both the approaches to build a classifier are pointed out in the 

Table 4.1 below which analyses the data layout, rule discovery, rule ranking, pruning and 

prediction phases of both the approaches. 
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Table 4.1: Main differences between LC and CBA algorithms 

 

Name LC CBA 

Data 

Layout 

Horizontal Horizontal 

Rule 

Discovery 

Apriori Candidate Generation function with 

looking at the class labels. 

Use Minority rule, in selecting class with the 

itemset. 

Uses highest frequent class in the dataset with 

the ruleitem, if a ruleitem contains more than 

single class attribute. 

Generation function without looking at the 

class labels. 

Don’t uses Minority Rule 

 

Keeps all rulesitems with different class 

values. 

Ranking Confidence, Support, Rule length and Class 

Distribution 

Support, confidence and selects rule which 

generated first 

Pruning Database Coverage Database Coverage, Pessimistic error 

Estimation 

Prediction 

Method 

Based on Confidence value of Group of Rules Maximum likelihood 

 

4.3 The Development of New AC Algorithm  

 

An experimental work is conducted and a new algorithm and its experimental evaluations are 

presented to demonstrate the improvements in the procedure of rule generation in CBA 

algorithm. The programming language used for the implementation of the algorithm is Visual C 

# and Visual C++. It was noted in the training or the rule generation phase of CBA and CBA (2) 

(Liu et al., 1998, Liu et al., 1999), that the joining of frequent itemsets of size ‘k’ to generate 

candidate itemsets of size ‘k+1’, is carried out without the consideration of their class labels. The 

above process of merging is computationally expensive and needs excessive CPU time. At the 

same time it produces a large number of candidate itemsets in each iteration due to unnecessary 

itemsets joining. Our main focus and aim is to minimize the CPU time during frequent itemsets 

generation process of CBA. In the training phase of CBA we will consider the class labels of the 

frequent itemsets and only merge the itemsets that have same class labels. So, if  ‘item_A’  and 

‘item_B’ are two disjoint itemsets that are found at iteration “0”, our proposed training approach 
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in LC considers merging itemset ‘item_A’,‘item_B’ only if ‘item_A’ and ‘item_B’ have the 

same class labels. The reduction in the number of itemsets merging in each iteration may 

improve the searching process and consequently minimizes the CPU time for dense and large 

datasets significantly. 

 

4.3.1 The Proposed Rule Discovery Algorithm 

 

In the rule discovery phase of the CBA algorithm it uses the Apriori candidate itemsets 

generation function in which the frequent itemsets are discovered by level wise search.  The 

CBA starts by counting the support values of items of size 1(1-itemset) in the first level, and 

checks whether they are frequent or not. In each of the subsequent level, process of merging the 

itemsets that are found frequent in the last level will continue regardless of their class labels, to 

extract candidate itemsets at all levels. Our basic idea is to enhance the merging process of 

disjoint frequent itemsets in CBA training phase by considering the class labels of the itemsets in 

each level. If the selected disjoint itemsets are linked with the common class in the last iteration 

then join them, else do not join them. A minority class rule is applied in case when the itemset 

has more than one class, the class with the highest support count in the training data set is 

selected and the remaining class labels are ignored. If the itemset’s class labels have the same 

frequency of support count then the class of the itemset is selected randomly.  

 Data used by LC algorithm contains a header that reads relation name, attribute names, 

and total number of data instances in the table. The values of all the attributes are comma 

separated and the last column of the data file must present the class attribute. The missing values 

are considered as other existing values (Witten and Frank, 2000). For categorical attribute, all the 

possible values are mapped to a set of integers. For the attributes that are continuous, multi-

interval technique for discretization (Fayyad and Irani, 1993) has been used. 

 The process of discretization starts by selecting a continuous attribute from the training 

data and sorted in ascending order with the class values of each instance. A break point is placed 

where the class value changes and information gain (Quinlan, 1979) measure is calculated for all 

break points. The information gain depicts the quantity of information required to specify the 

class values. The break point is selected which minimizes the information gain over all other 

break points. The process starts again on the lower range of that attribute.  
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Input: Training Data (D), minsupp and minconf values  

Output: Frequent set of rules 

1. read the table from D; 

2. Candidate_Ruleitem_1 = genCandidate_Ruleitem_1(D); 

3. Maximum_Class_Frequency = Class_values_Max();// determines class with highest frequency in data table 

4. Candidate_Ruleitem_1 = minority_Rule(Candidate_Ruleitem_1); // removal of ruleitems with lowest class 

frequencies 

5. Frequent_Ruleitem_1  = genFrequent Ruleitem_1 (Candidate_Ruleitem_1, minsupp); 

6. ClassAssociationRules_1 = genRules(Frequent_Ruleitem_1, minconf) 

7. for (k = 2; Fk-1 Ø; k++)  

8. { 

9. Candidate_Ruleitems_k = genCandidate_Ruleitems_k (Frequent_Ruleitems_(k-1)); // candidate ruleitems are 

generated with their number of occurances in data table (support counts) 

10. Candidate_Ruleitem_1 = minority_Rule(Candidate_Ruleitem_1); // removal of ruleitems with lowest class 

frequencies 

11. Frequent_Ruleitem_1  = (Candidate_Ruleitems_k,, minsup); 

12. ClassAssociationRules_k = genRules(Frequent_Ruleitem_1, minconf); 

13. } 

14. ClassAssociationRule’s = k ClassAssociationRules_k ;  

15. Compute total number of merging; 

16. Calculate total time needed to generate Ruleitems; 

 

Figure 4.1 Frequent itemset generation step in LC algorithm 

 

The frequent itemsets generation step known as the training phase is explained of the LC 

algorithm as shown in Figure 4.1: 

Line 1: The algorithm begins by reading the training data table from the selected location and 

takes user defined minsupp and minsconf values.  

Line 2: The candidate 1-ruleitems are generated with the support values. 

Line 3-4: The class with the maximum frequency in the data table is determined first and then 

the minority rule is applied, if the ruleitems contains more than single class values in candidate 

1-ruleitems, the ruleitems with the highest frequency class are kept and all other are removed 

from the list of candidate 1-ruleitems. If the class values are same then the ruleitem is assigned 

the highest frequency class that is extracted in line 3. 

Line 5: The frequent 1-rueitems are generated from the candidate 1-ruleitems that passes the 

minsupp threshold value defined by user. 

Line 6: The confidence values of all the frequent 1-rueitems are determined and ruleitems that 
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passes the minconf value are termed as Class Association Rules (CARs). 

Line 7-13: This process of candidate ruleitems generation in each iteration or cycle is repeated 

until all frequent ruleitems are produced.  

Line 14-16: All the CARs are combined together in one file and these rules are then ranked 

considering their support, confidence and length of rule metrics. The number of merging at each 

iteration, total number of merging, and the time taken to execute the algorithm is calculated. 

The Figure 4.2 represents the candidate ruleitems generation at each step including the 

support count values of the ruleitems.   

Line 1: The function takes as an input the frequent ruleitems from the previous iteration and data 

table. 

Line 3-5: The itemsets are picked from the frequent ruleitems and their class labels are matched, 

if the class labels are identical then the itemsets are combined together otherwise the process of 

class label matching continues for all the itemsets in the frequent ruleitems and candidate 

itemsets are produced. 

Line 6-13: The class labels of the joined itemsets are determined and the support counts of the 

candidate ruleitems are calculated. A complete set of candidate ruleitems are returned with their 

support counts. 

Input: Frequent_Ruleitems_k, data Table ‘D’ 

Output: Candidate set of rules at each kth iteration, support counts of each ruleset contained in the Candidate set 

1. for(i=0; i < frequent_Ruleitem_(k-1).count; i++) 

2. { 

3. if (c.rulesubset_k-1 == c.Rule_item) 

4. { 

5. Candidate_Ruleitems_k = rulesubset_k-1    Rule_item // candidate ruleitems are generated 

6. for each data instance d D  

7. Cd = ruleSubset (Candidate_Ruleitems_k, d); 

8. for each candidate c Cd 

9.  { 
10. condsupCount++;     //Calculates the support count of each rule subset 

11. if d.class = c.class  

12. then 
13. c.rulesupCount++;  

14. } 

15. else 

16. break; 

17. }}}} 

18. Return Candidate_Ruleitems_k; 

 

 

 Figure 4.2 Generate candidate ruleitems function and support count calculation in LC algorithm. 
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  Table 4.3: LC candidate 1-ruleitems 

 

ITEMSET CLASS support 

senior yes 2/7 

senior no 1/7 

youth yes 1/7 

youth no 1/7 

junior yes 1/7 

junior no 1/7 

middle yes 2/7 

low no 2/7 

high yes 2/7 

high no 1/7 

y yes 2/7 

y no 1/7 

n yes  2/7 

n no 2/7 

 

 

 

Table 4.4: LC candidate 1-ruleitems when 

minority rule is applied 
 

ITEMSET CLASS support 

senior yes 2/7 

youth yes 1/7 

junior yes 1/7 

middle yes 2/7 

low no 2/7 

high yes 2/7 

y yes 2/7 

n yes  2/7 

 

 

4.3.1.1 Example on the New Training Algorithm  

 

To explain our proposed training algorithm, consider for example Table 4.2 (Thabtah, et al., 

2005) which contains three attributes (age, income, has_car) and a class label (buy_car) and 

represents whether an individual will buy a new car.  Assume that minSupp (support count) is set 

to 2.  In the first iteration, LC generates candidate 1-ruleitems of size “14” as shown in Table 4.2, 

Table 4.2: Training data 
 

Age Has_Car Income Buy_car 

senior n middle yes 

youth y low no 

junior y high yes 

youth y middle yes 

senior n high yes 

junior n high no 

senior n low no 
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     Table 4.5: LC candidate-2 ruleitems 

 

ITEMSET ITEMSET CLASS 

senior middle yes 

senior high yes 

senior n yes 

middle n yes 

middle y yes 

high y yes 

high n yes 

 

 

  

Table 4.6: LC frequent 1-

ruleitems 

 

ITEMSET CLASS support 

senior yes 2/7 

middle yes 2/7 

low no 2/7 

high yes 2/7 

y yes 2/7 

n yes 2/7 

 

it is important here to notice the number of ruleitems generated. The minority rule (Figure 4.1, 

line 4), is applied on the candidate 1-ruleitems. In case when a rule item is found that is linked 

with more than single class then the minority rule will select the class with the highest frequency 

with that ruleitem. If the classes’ frequencies are same for that ruleitem then the class with the 

highest support value in the data table is selected with that ruleitem, and if the classes 

frequencies are same in the data set then a class is selected randomly. Table 4.4 shows the 

candidate 1-ruleitems after the minority rule is applied and we can notice the number of 

ruleitems are reduced to “8”. For example in the case of <Age=Senior, yes> and <Age=Senior, 

no> ,the frequency of class “yes” is “2” and “1” respectively, the minority rule has selected 

<Age=Senior, yes> as seen in Table 4.4. We take another example to explain in more detail, both 

ruleitems of <has_car= n, yes> and <has_car= n, no> has same frequencies of “2” in Table 4.3 

Our approach has selected the ruleitem <has_car= n, yes> (see Table 4.3) because the support 

value of class “yes” is “4” that is higher than the support value of class value “no” i.e., “3’ as in 

Table 4.2. After the first iteration, frequent 1- ruleitems can be seen in Table 4.6. In the second 

iteration, disjoint frequent ruleitems are merged based on their classes to generate candidate 2-

ruleitems; so in this case, <Age=senior, yes> and <Income=middle, yes> is merged because they 

have the same class, i.e., “yes”, “senior” and “high” are merged in the same way, as in Table 4.4. 

Our method did not consider joining “senior” with “low” and “middle” with “low” since 

they have uncommon class. On the other hand, CBA and other AC algorithms such as CBA (2) 

consider joining itemsets without checking their class labels. Table 4.7 illustrates the itemsets 

produced by CBA from Table 4.2 using a minSupp of 2 in the first iteration, and Table 4.8 
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Table 4.7: CBA candidate-2 itemsets 

 
 

ITEMSET 

 

ITEMSET 

  

ITEMSET 

 

ITEMSET 

 senior middle   junior middle 

senior high  junior high 

senior low  junior low 

senior y  junior y 

senior n  junior n 

youth middle  middle y 

youth high  middle n 

youth low  low y 

youth y  low n 

youth n  high y 

 high n 

 

 

Table 4.8: Frequent 1-itemsets 

produced by CBA 

 

ITEMSET support 

senior 3/7 

junior 2/7 

youth 2/7 

middle 2/7 

low 2/7 

high 3/7 

y 2/7 

n 2/7 

 

displays the possible 2-candidate itemsets obtained after merging frequent 1-itemsets. Now we 

will examine the total number of merging in the second iteration of both CBA and our approach 

In Table 4.5, the number of frequent itemsets from Table 4.2 column “Age” are 3 (senior, 

junior and youth), 3 frequent itemsets (middle, low and high) from “income” column and 2 

frequent itemsets from column  “has_car”. The total number of possible candidate-2 itemsets can 

be calculated by a simple formula (2
n1 

+2
n2

 +2
n3

) +1 = (2
3
 +2

3
 +2

2
) +1 = (8+8+4) +1 = 21.  As in 

comparison the total number of candidate-2 itemsets produced by LC in 2
nd

 iteration is “7”. It is 

obvious from Table 4.7 that the number of merges performed by CBA is larger than LC. 

The first iteration of CBA has produced “7” frequent-1 ruleitems (See chapter 3) as 

compared to LC “6” (see Table 4.9). The second iteration has produced the same number of 

Frequent-2 ruleitems for both CBA and LC that is 1, and there are no Frequent-3 ruleitems 

generated in third iteration for both algorithms. So it is very clear that the total numbers of 

frequent ruleitems generated in both the approaches are not similar for both algorithms, CBA’s  
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“8” and LC’s “7”, and also the number of candidate ruleitems merge of CBA during the training 

phase in most iterations is significantly high as compared to LC algorithm. So if the data set is 

large or highly correlated it would be obvious that there will be an exhaustive search by any AC 

algorithm during the discovery of the frequent ruleitems and the number of candidate ruleitems 

join is expected to be massive. Later in the experimental section of this chapter we compare the 

Table 4.9: Frequent rule itemsets at each iteration with support and confidence counts 
 

Pass Count Frequent 

Itemsets 

Rule Itemsets Support Confidence 

1st Pass Frequent-1 <({Age,senior)},3), ((Buy_car, yes), 4)> 

<({(income, middle)}, 2), ((Buy_car, yes), 4)> 

 <({(income,low)}, 2), ((Buy_car, no), 3)> 

 <({( income,high)}, 3), ((Buy_car, yes), 4)> 

<({(Has_car,n)}, 4), ((Buy_car, yes), 4)> 

<({(Has_car,n)}, 4), ((Buy_car, no), 3)> 

<({(Has_car,y)}, 3), ((Buy_car, yes), 4)> 

2/7 

2/7 

2/7 

2/7 

2/7 

2/7 

2/7 

2/4 

2/4 

2/3 

2/4 

3/5 

2/4 

2/3 

2nd Pass Frequent-2 <{(Age,senior), (Has_car,n)}, (Buy_car,yes)>  2/7 2/3 

3rd Pass Candidate-3 <{(Age,senior),(income,high),(Has_car,n)}, (Buy_car,yes)> 

<{(Age,senior),(income,middle),(Has_car,n)}, (Buy_car,yes)> 

1/7 

1/7 

1/1 

1/1 

3rd Pass Frequent -3 None   

CAR1 {(Age,senior)} → (Buy_car, yes) 

{(income, middle)} →  (Buy_car, yes) 

{(income,low)} → ((Buy_car, no) 

{( income,high)}  →  ((Buy_car, yes) 

{(Has_car,n)}  →  ((Buy_car, yes) 

{(Has_car,yes)}→ ((Buy_car, yes) 

CAR2 {(Age,senior), (Has_car,n)} → (Buy_car,yes) 

CARs CAR1 U CAR2 
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results of CBA and LC algorithms in regards to different measures especially training time and 

memory resources using medium and large datasets that have various size and number of 

columns. We can assume from here that as the number of iterations increases to generate 

frequent ruleitems the likelihood is that our approach will significantly reduce the unnecessary 

ruleitems merging and this will improve the efficiency in terms of execution time and memory 

usage of the algorithm.   

 

4.3.2 Classifier Construction 

 

The second stage of LC algorithm is the construction of a classifier, the main aim of the process 

is to extract a number of rules that can be used for the prediction of test data. Rule ranking and 

pruning of the rules generated in the training phase of LC algorithm, is performed in this step.   

 

4.3.3 Rule Sorting 

 

The number of rules produced by the AC techniques may be large (Baralis, et al., 2004), and 

extraction of reduced number of rule set is very significant. The rule ranking is the first step to 

build a classifier in AC and it is mainly utilized to choose the most useful rules for prediction. 

LC ranks rules on the basis of different criteria mainly rule’s confidence, support, length and 

class distribution in the training data set. 

Rule ranking is very helpful in pruning specific rules which have low confidence than 

general rules and are also redundant. As in rule evaluation step of ADT algorithm (Wang, et al., 

2000), when the choice has to be made between two rules, the highest ranked rule is selected.  

Mostly rule ranking in AC is carried out on parameters such as confidence, support and 

rule length (number of items in the rule body (Left Hand Side)). This ordering of parameters was 

used in a number of AC approaches such as those in (Thabtah, et al., 2010, Antonie, et al. 2003; 

Liu, et al., 2001; Wang, et al., 2000). In the above techniques if the support, confidence and the 

cardinality values are same for some rules then these techniques select one of the tied rules 

randomly which in many cased may degrade the accuracy performance (Thabtah et al., 2011). 

In this section, we will present the rule ranking procedure used in our algorithm. We have 

selected the rule ranking criteria used by MCAR to be used in our study. The LC algorithm uses 

the general rule ranking procedure that is based on rule’s confidence, support and length while 
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input : Class Association Rules( CARs) 

output : Ranked rules based on their confidence, support and rule length counts 

 

1. Ranked_Rules = ClassAssociationRules; 

2. for (i=1 ; i= ClassAssociationRules.Count ; i++) 

3. { 

4.  if (confidence_value(i-1) >  confidence_value(i) )  //comparing confidence value 

5. { Swap= Ranked_Rules (i-1) & Ranked_Rules (i);} 

6. if (confidence_value(i-1) ==  confidence_value(i) ) 

7. {if (support_value (i-1) > support_value(i)) // checking support count 

8. {Swap= Ranked_Rules (i-1) & Ranked_Rules (i); } 

9. elseif (support_value (i-1)== support_value(i)) 

10. {If(Ranked_Rules (i-1).rowlenght > Ranked_Rules (i).rowlenght) 

11. {Swap = Ranked_Rules (i-1) & Ranked_Rules (i);}  

12. elseIf(Ranked_Rules (i-1).rowlenght== Ranked_Rules (i).rowlenght) 

13. {If(Ranked_Rules(i-1).class_distribution > Ranked_Rules(i).class_distribution)//checking class frequency 

14. {Swap = Ranked_Rules (i-1) & Ranked_Rules (i);}  

15. elseif (If(Ranked_Rules (i-1).class_distribution == Ranked_Rules(i).class_distribution) 

16. {random select a rule } 

17. }}} 

18. return Ranked_Rules; 

 

Figure 4.3 Rule ranking in LC algorithm 
 

adding another tie breaking parameter that considers the class frequencies in the training data and 

when required the rule linked with the highest distributed class is preferred. For example if two 

rules, rule1 and rule2 having the same confidence, support and rule length, but rule2 is linked to 

the class that have more frequency in the training data than rule1, LC selects rule2 in the process 

of rule ranking.  

In case when we come across a rule that shows same class frequencies, then we will 

select rule on random basis. The procedure used in LC is presented in Figure 4.3. 

 

4.3.4 Pruning of Rules 

 

A significant rule is a rule that is contained in the classifier and will be used in the step of 

prediction of accuracy of the test data. In our rule generation and then selection system a rule 

will be a part of the classifier if it correctly covers at least one training instance during building 

the classifier. After the rule generation step finished, we usually ends up having very huge 

number of rules some of which are redundant or contradictory. To minimize the size of the rules 
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Input: Ranked rule set, Training instance ‘T’ 

Output: A Classifier 

1 R = Ranked rule set 

2 For each rule r   R 

3 do 

4 temporary = Ø; 

5 for each case t   T  

6 do 

7 if t  satisfies the conditions of r then 

8 store t.id in temporary and mark r if it correctly classifies t; 

9 if r is marked then  

10 insert r at the end of Classifier; 

11 delete all the cases with the ids in temporary from T; 

12     select a default class for the current Classifier; 

13            calculate total number of errors of Classifier; 

14 end 

15 end 

16 Find the first rule p in C with the lowest total number of errors and drop all the rules after p in C;        

17 Add the default class associated with p to end of C, and return C (our classifier). 

 

 Figure 4.4 Classifier building in LC algorithm (database coverage pruning method) 
 

 

in this step pruning unnecessary rules becomes important. In the LC algorithm, we use database 

coverage like pruning and its functionality is discussed in Figure 5.4, which can be summarized 

as follows. 

Step 1 (line 1-13): rules are applied against the training data set from the set of ranked rules R 

which were produced after training phase and rule ranking. LC selects a rule   such that    , 

and then it goes through the training data set T searching for the instances or records covered by 

  (meaning those satisfy the     body) (line 7). Rule   is marked if it covers an instance t (line 8). 

In our classifier building step   is a potential rule and will be added to our final classifier (line 

10). The instances that are correctly classified by   will be deleted from the training data T (line 

11). If some of the data is not covered by the ranked rules, then we will select a default class 

from this data. Default class will be the highest class in the remaining training data (line 12). The 

error made by the ranked rules that wrongly classified the classes of the training data T will be 

computed and stored along with the default class (line 13). The errors are calculated when there 

is no rule left in      or when all the training data is covered by the selected rules. This will 

conclude the selection process of rules. 

All rules that are marked during evaluation get generated as a classifier and all other unmarked 

rules are discarded by the LC. 
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The remaining uncovered training instances are utilized to produce a default rule that represents 

the largest frequency class among them. LC and CBA require that all items in the candidate rule 

to be contained in the training case during evaluation in order to consider the rule significant.  

 

4.3.5 Prediction Method of LC 

 

Prediction is the final and most important step in classification. It helps in determining the 

accuracy of the classifiers produced and it uses the classifier’s set of to make the decision of 

assigning the class label to the test instance. The basic structure of the new LC prediction method 

named as “Group Base Decision Prediction Algorithm” is presented in Figure 4.5. It works by 

selecting the rules from the classifier (C) that match the conditions of the test instance (testi). 

Then divides these rules into different groups based on class labels and compute the average 

group confidence to select the class that belongs to the largest group average confidence. This 

class will be assigned to the test instance (testi). The description of the steps in the algorithm is as 

under: 

Inputs for the algorithm are set of rules (Classifier), test data and default class. The output is a 

prediction error rate generated after assigning the new class labels to test instances. 

Line 1: Start of the loop for each test data instance. 

Line 3: Another loop starts for each rule in the classifier. 

Line 4-6: The test data instance TestData(i) conditions are matched with the all the rules in the 

classifier and all the rule that matches the test instance conditions is placed in an array 

“ArrayRule”  rule conditions .  

Line 9-12: ArrayRule count is checked and if it is not zero then it means that at least one rule is 

found that matched test data instance condition. The confidence of all rules having similar class 

is calculated and the group of rules belonging to a specific class with the highest average 

confidence is selected. If the ArrayRule is found empty then the default value is assigned to the 

test instance. And the value of “assign” variable is set to “true”. 

Line 15-16: If the a rule or  set of rules are found that matches the test instance, the class with the 

highest average value of confidence is assigned to the test instance TestData(i). 

Line 20: The total numbers of errors (Pe) are calculated of the instances that are wrongly 

classified. 
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Input: Classifier (CRules), default class (dc), test data (TestData), training data  

Output: Prediction error rate Pe 

 

1 For (i=0, i<= TestData.count; i++) 

2 { Assign=false; 

 3 For (j=0 ; j<= CRules.count ; j++) 

 4    { verify(TestData(i).conditions , CRules(j).conditions) 

 5     If (TestData(i).conditions == CRules(j).conditions)  

 6          { ArrayRules.Add(CRules(j)); 

7  } 

8  } 

9  if ArrayRules.count ≠ ∅ 

10  { calculate average_confidence per class; 

11  HAC = Select highest average confidence class;} 

12  else { TestData(i) == dc; 

13   Assign== true; 

14         } 

15  If (assign==false) 

16  { TestData(i)== class.HAC;//assign highest    //average_confidence  class 

17  } 

18       ArrayRules=null; 

 19  } 

 20       Pe= verify (TestData , TrainingData); // error calculation 

 

Figure 4.5 Prediction method in LC  

 

 

  Normally, in AC prediction methods, to predict the classes of the test data, generally the 

techniques work on the principle that, when rule     in the classifier C matches the test instance 

(Ts) attribute value(s) or is contained in Ts classifies it. So the test case Ts will be assigned the 

first rule in the classifier that matches it. This is typically called single rule prediction and it has 

been criticized for allowing only very limited of rules to classify test data. Instead we have 

developed a multiple rule prediction approach which employs a collection of rules to predict the 

outcome of a test instance in LC. Therefore, more than one rule play role in deciding the class 

label that should be given to the test case and consequently we minimized the dominancy of a 

single rule predicting the class for most test cases. 
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4.4 Experimental Environment Setup 

 

4.4.1 Data Sets Used in Experiments 

 

Experiments are conducted using a number of different data sets from the UCI repository 

(Murphy and Merz, 1996). The data sets of balloon, Sick, Cleve, Vote, Weather, Breast-w, 

Diabetes are the binary class dataset and multiple class datasets used in the experiments are 

Glassd, Iris, Led7, Lymph, Zoo and Contact-lenses. For the authenticity of the experiments the 

small, medium and large sized datasets are considered. The descriptions of the datasets used in 

the experiments are shown in the table 4.10. 

 

Table 4.10: UCI data sets used in experiments 

 

Data Set Name No of Classes Data set Size 

Balloon 2 20 

Sick 2 3772 

Cleve 2 303 

Glassd 7 214 

Iris 3 150 

Led7 10 3200 

Lymph 4 148 

Vote 2 435 

Zoo 7 101 

Contact-lenses 3 24 

Weather 2 14 

Breast-w 2 699 

Diabetes 2 768 
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4.4.2 Experimental Parameters and Setup 

 

The algorithms of LC and CBA are designed using Visual C++ and C# and evaluations are 

performed on 1.6 GHz processor machine with 1GB memory. The comparison of LC algorithm 

with CBA with reference to the number of merges for both approaches at each iteration in the 

training phase or rule generation phase, the number of frequent rules generated, the number of 

rules contained in the classifiers of both algorithms, CPU time, memory usage and prediction 

accuracy. The pruning and prediction methods for both algorithms are also implemented. The 

minSupp in our experiments are set at 5% and minConf to 40%.  

One of the main aims of the experiments is to calculate the total number of merging 

(joining) of the itemsets in each iteration in both our proposed algorithm LC and CBA. It will 

also be investigated whether the reduction in the number of joining during all the iterations has 

any impact on the execution time and memory usage (paged memory, physical memory and 

virtual memory). It should be noted that the learning of the rules phase (training phase) and the 

classifier construction step (building a classifier) as well as the prediction phase are thoroughly 

investigated in this section. In other words, the investigation is done experimentally and a 

comparative study is carried out with CBA. 

 

4.5 Experimental Results and Discussion 

 

In this section, thorough analysis of the experimental findings will be discussed. Table 4.11 

represents a comparison of the rule generation phase for both LC and CBA on different binary 

and multi-class classification data sets from UCI repository. Specifically, and for all data sets 

considered, the number of times disjoint itemsets are merged in each iteration are computed and 

shown in columns 4-9, and the sum of all the itemsets joining (merging) is presented in the last 

column of the table. The third column of the Table 4.11 represents the merging of a single item 

with the class attribute values, and it can be seen that the values are same for both LC and CBA 

for all the data sets. While analysing the results it can be said that a significant change is seen in 

the number itemsets merging during each iteration in both algorithms. The number of itemsets 

merging is our proposed algorithm LC is reduced to merely 2%, 4.2%, 5.18%, 4.95%, 7.66% and 

3.4% of CBA on the  “Zoo”, “Breast–w”, “Vote”, “Lymph”, “Glassd” and “Cleaved” data sets 

respectively. For the remaining small data sets like “balloon”, “contact” and “weather” and 
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“irisd” the number of merging has also reduced for the LC when contrasted with CBA training 

phase by 48.84%, 24%, 41.97% and 58.04% respectively. This means that LC training phase has 

improved upon CBA learning by cutting down unnecessary itemsets joining very significantly 

during the training phase for small, medium and large data sets. 

Furthermore, it is notable from Table 4.11 that the differences in the number of joining 

between LC and CBA in the later iterations of large data sets like “Zoo” and “Lymph” is large. 

This is because the number of itemsets available before any merging in the later iterations such 

as iteration (2) is often larger that of the previous iteration, i.e. iteration (1), excluding the last 

iteration. For instance in the “Zoo” data set, the number of itemsets merged using CBA are 1086, 

4374, 10220, 15187, 14875, and 6414 for iterations, 2,3,4,5,6 and 7 respectively. In comparison, 

the LC algorithm decreases the number of merging for the same iterations significantly to 38, 

122, 195, 271, 223 and 0 respectively. 

According to Table 4.11 and in general, our new approach has presented a new idea of 

avoiding so many unnecessary merging for all the data sets whether they are large or small. The 

reduction in the search space of rule generation process in LC may lead us to the reduction in the 

execution time because efficiency is always a significant issue when dealing with software 

related solutions, and it may lead us to decrease in the memory usage.  

The processing time of CBA and LC are calculated and shown in Table 4.12. For 

example for “Zoo” data set, the time required to execute the experiment is significantly 

decreased from 39515ms in CBA to 6942ms in LC with high margin of 82.43% improvement for 

the LC algorithm. It is noticed in the data set of “Led7” that iterations from 3-6 have “zero” 

values in Table 4.11. This was due to fact that “Led7” is a multiclass problem and contains many 

different classes about ‘10’and as our algorithm considers only those itemsets for merging that 

have same class labels, so it explains the zero values in iteration of 3-6, and consequently shown 

a large saving in execution time of “Led7” data set.   

 



121 

 

. 

Table 4.11: The number of itemsets joining of LC and CBA algorithms 

 

Approach Data set 
Iteration 

1 

Itemsets Merging in each iteration 
Total Number 

of merging in 

all iteration 

Iteration 

2 

Iteration 

3 

Iteration 

4 

Iteration 

5 

Iteration 

6 

Iteration 

7 

LC* Balloon 14 14 12 4 0 0 0 44 

     CBA**  14 24 32 16 0 0 0 86 

LC Contact 23 23 28 0 0 0 0 74 

CBA  23 30 44 0 0 0 0 97 

LC Iris-Id 27 18 12 3 0 0 0 60 

CBA  27 45 52 19 0 0 0 143 

LC Vote 60 102 423 775 897 791 0 3048 

CBA  60 399 2605 8832 17396 21159 8386 58837 

LC Zoo 196 38 122 195 271 223 0 1045 

CBA  196 1086 4374 10220 15187 14875 6414 51266 

LC Led7 140 21 24 16 6 1 0 208 

CBA  140 84 280 560 669 432 62 2227 

LC Glassd 90 39 49 26 8 1 0 213 

CBA  90 152 525 885 759 325 42 2778 

LC Lymph 93 169 631 909 642 212 0 2656 

CBA  93 430 2585 8460 16103 18549 7381 53601 

LC Sick 45 86 537 1173 1721 1722 0 5284 

CBA  45 228 1103 3136 5650 6669 2829 19660 

LC Cleaved 50 108 380 697 935 796 3 2969 

CBA  50 296 2008 8356 21794 35928 16959 85391 

LC Weather 19 23 20 3 0 0 0 65 

CBA  19 35 44 14 0 0 0 112 

LC Breast-w 59 172 371 371 513 471 285 1871 

CBA  59 387 2565 8479 14493 13816 4519 44318 

LC 
Breast  

cancer 
82 284 848 993 559 123 0 2889 

CBA  82 591 3438 10091 16071 14618 5050 49941 

LC Diabetes 30 62 134 130 36 0 0 392 

CBA  30 92 290 486 394 0 0 1292 

LC*= Looking at labels of the class    CBA **= Not looking at labels of the class 
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Table 4.12: Execution time (milliseconds) of LC and CBA algorithms 

 

Data set CBA LC Difference (%) 

Balloon 97 82 15.46 

Contact 115 96 16.52 

Cleved 457129 116346 74.54 

glassd 1294 530 59.04 

Irisd 109 94 13.76 

Led7 22948 2917 87.28 

lymph 71432 8954 87.46 

Vote 152117 63461 58.28 

Sick 242706 276683 -13.99 

weather 94 78 17.02 

Zoo 39515 6942 82.43 

Breast cancer 47081 11825 74.88 

Breast-w 59452 23712 60 

Diabetes 1092 920 15.75 

 

 

It is very obvious from the numbers displayed in Table 4.12 that our proposed algorithm needs 

less time to execute while generating the rules in the training phase when compared with CBA. 

The small data sets of “balloon”, “contact” and “weather” and “irisd” showed the reduction in 

execution time by an average of 15.79% as compared to CBA. On the other hand for the medium 

and large data sets of  “Zoo”, “Breast–w”, “Vote”, “Lymph”, “Glassd” and “Cleaved” , the 

average decrease in execution time is 71.1% which shows a very significant decrease as 

compared to CBA. This is due to the fact that LC does not perform the unnecessary joining of 

itemsets that have different class labels, in n
th

   iteration that follow the previous (n-1)
th

 iteration. 

This has eventually reduced the search space and consequently decreased CPU time (execution 

time). The execution time findings of our LC approach is better and consistent than CBA on ‘13’ 

data sets with only one exception the “Sick” data set. When we have analysed the “Sick” data 

set, we found out that it is a binary classification problem with only two classes and the class 

frequency of the one class is much higher than the frequency of the other class. It was found that 

most of the itemsets in “Sick” data set are linked with the dominant “negative” class. In fact, out 

of “3772” instances or entries in “Sick” data set “3541” contains “negative” class in their 

consequent, so it constitutes about 93.8% of the data set. Hence the large number of itemsets that 

passes the minSupp threshold at the initial iterations are associated with the same dominant class 

i.e., “negative’. Our approach has took longer time to execute than CBA because our approach 
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Table 4.13: Physical, paged and virtual memory (bytes) used by CBA and LC algorithms 
 

Data set 

Physical Memory Paged Memory Virtual Memory 

CBA LC CBA LC CBA LC 

Balloon 3440640 3432448 6307840 6307840 82763776 82763776 

Contact 3432448 2719744 7340032 3846144 82763776 69636096 

Iris-Id 3432448 3428352 6307840 6307840 82763776 82763776 

Vote 12103680 12066816 14462976 14458880 130703360 130703360 

Sick 11382784 12070912 13963264 14450688 126967808 130678784 

Cleved 12107776 12075008 14458880 14458880 130678784 131203072 

Led7 11354112 11313152 13971456 13946880 126967808 126418944 

Zoo 12029952 12013568 14446592 14446592 130703360 130678784 

Lymph 12038144 12029952 14450688 14454784 130703360 130703360 

Weather 3440640 3432448 7340032 6307840 82763776 82763776 

Glassd 11476992 10354688 14254080 13750272 129814528 126078976 

 

looks at the classes before merging and here the class associated with most of the itemsets is 

identical. On the other hand CBA do not look at the class labels and saves an extra effort of 

checking, this explains the higher CPU time and memory usage in our case for the “Sick” data 

set.  

Table 4.13 shows the memory usage in terms of physical, paged and virtual for both 

approaches during the training phase. The memory usage of LC in terms of physical, paged and 

virtual is also less for all the data sets except the “Sick” if compared with CBA because of the 

facts described above.  
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We have generated the results of the number of frequent ruleitems and rules produced in 

LC and CBA before building the classifier (pruning) and after building the classifier. We have 

performed our experiments by keeping the minSupp to 5%, and the minConf value kept at 40%. 

The results are computed while generating the frequent ruleitems in all the iterations of the 

training phase in the LC and CBA approaches against the 14 UCI datasets considered. The 

results depicted in Table 4.14 revealed that the numbers of CARs derived for both LC and CBA 

against the 14 data sets without pruning are different 13 datasets and same for only “Sick” data 

set.  In Table 4.14, column 4 we have also shown the results of the number of rules generated 

after performing pruning on both CBA and LC algorithms.  

Table 4.14: LC and CBA number of CARS and rules generated after pruning, using minSupp=5% and 

minconf =40% 

Approach Data set 

Total no of CARs  

generated (w/o) pruning 

minsupp = 5, minconf =40% 

Total no of Candidate rules  

generated (with pruning) 

LC* Balloon 38 3 

      CBA**  88 3 

LC Contact 51 5 

CBA  72 9 

LC Irisd 45 11 

CBA  64 15 

LC Vote 1865 79 

CBA  3729 83 

LC Zoo 629 7 

CBA  1996 8 

LC Led7 82 33 

CBA  588 206 

LC Glassd 129 24 

CBA  511 30 

LC Lymph 640 44 

CBA  2007 50 

LC Sick 2406 16 

CBA  2406 16 

LC Cleaved 2211 73 

CBA  5513 78 

LC Weather 56 6 

CBA  121 6 

LC Breast-w 676 59 

CBA  1455 61 

LC Breast cancer 751 62 

CBA  829 74 

LC Diabetes 213 52 

CBA  315 70 
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The dataset of “Lymph” has produced only “640” frequent ruleitems as compared with 

“2007” with CBA. The medium and large data sets of “Zoo”, “Vote”, “Lymph”, “Glassd”, 

“Breast–w” and “Cleaved” have produced on an average of 62.97% less number of CARs for LC 

when evaluated against CBA. For the smaller data sets of “balloon”, “contact” and “weather” 

and “irisd”, LC has shown a considerable decrease in the number of CARs generated i.e., 

42.34% of CBA.  

When the comparisons are drawn for the number of candidate rules generated after the 

pruning is applied on the CARs the amount of candidate rules generated by our approach LC are 

found less than the CBA for “11” data sets except “Balloon”, “Weather” and “Sick”, these three 

data sets have shown same number of candidate rules generated of “3’, “6” and “16” respectively 

for both LC and CBA approaches. The average number candidate rules generated for all “14” 

UCI data sets for CBA is 50.64 as compared to 30.57 for LC, the average decrease of 39.63% of 

CBA is calculated when the total number of candidate rules are considered for LC.  

It can be concluded after the results evaluation of our experiments for Table 4.14, that the 

number of CARs generated for LC are much less than the number of CARs of CBA for the data 

sets considered, due to the fact that LC algorithm implies two conditions before and after 

merging of itemsets, the first condition is to only merge the disjoint itemsets which have 

common class labels and second is the removal of the ruleitems with less frequent class if the 

ruleitem is associated with more than single class in the consequent and keeping only the 

ruleitems with the frequent class. These two conditions that are not applied in CBA have led to 

the significant decrease in the number of frequent ruleitems generated in LC. The decrease in the 

number of CARs has a significant impact on the total number of candidate rules generated, and 

hence smaller size candidate rules are generated. This may have an impact on the total number of 

rules in the final classifier. We will demonstrate in our description below the number of rules 

contained in the final classifier and the prediction accuracy of these rules for both AC algorithms 

and classification algorithms for better comparisons.  

It is noticeable from the results given in Table 4.15 that LC produced smaller size 

classifiers than CBA and for most of the data sets used during the experiments. The main reasons 

for the less number of rules generated for the LC algorithm is explained in the above section.  
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The most important and the final step now to check the prediction power and accuracy of 

our algorithm and compare it with that of CBA, the minsupp is kept at 5% and minconf  is set to 

40%, the results are shown in the Table 4.16. The results are very promising and our proposed 

algorithm LC has outperformed CBA algorithm on the accuracy measure for almost all the data 

sets. The results of Table 4.16 revealed that LC algorithm derived an average of 87.45% 

prediction accuracy on the classification benchmarks we consider, whereas the average 

prediction accuracy of CBA was 86.15%. In general, LC is +1.3 % better than CBA with respect 

to classification accuracy on the benchmark problems utilised in this section. We have explored 

the reasons why the prediction accuracy is low for “Led7” data set; it contains 7 attributes with 

each having two attribute values, and 10 classes. By calculating the class distribution with the 

attribute values, it came to our knowledge that these are evenly distributed.  Each attribute value 

Table 4.15: LC and CBA number of rules generated after 
 pruning,using minSupp=5% and minconf =40%  

 

Data Set 

Total No. of Rules in Classifier 

“C” of LC 

minsupp = 5%, minconf =40% 

Total No. of Rules in Classifier 

“C” of CBA 

minsupp = 5%, minconf =40% 

Difference 

(no of rules) 

Balloon 1 3 2 

Contact- 

lenses 
5 6 1 

Irisd 5 5 0 

Vote 32 34 2 

Sick 16 16 0 

Cleved 44 70 26 

Led7 27 52 25 

Zoo 7 7 1 

lymph 33 35 2 

weather 6 6 0 

glassd 19 26 7 

Breast-w 51 33 18 

Breast 

cancer 

48 49 1 

Diabetes 34 42 8 
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is linked with all the ten classes. In our LC algorithm, the minority rule in the training phase 

tends to remove all the ruleitems that are linked with the minority class values. In case of 

“Led7”, considering that an attribute value is associated with “10” classes, so “9” of the 

ruleitems with same attribute value and different classes will be removed and only one ruleitem 

is kept with the majority class. This has led to the removal of significant potential rules in case of 

“Led7”data set and may have degraded the prediction accuracy. Our LC is working well for 

multiclass problems of “Zoo”, “Glassd”, “Lymph” and “Contact–Lenses” except “led7” data set, 

because of the reasons described above. Our algorithm LC has outperformed C4.5 in “8” data 

sets, showed same accuracy for “3” data sets and C4.5 have shown better accuracy for “2” data 

sets considered in our experiments.  

Our next step is to demonstrate the effectiveness of our new prediction approach that 

considers group of rules to make the prediction rather than a single rule. For that purpose we 

have conducted experiments using the LC algorithm and implementing a method for prediction 

Table 4.16: Comparisons between LC, CBA and C4.5 for prediction accuracy 
 

Data Set 

Name 

No of 

Classes 

Data set 

Size 
C4.5 CBA LC 

Balloon 2 20 100 100 100 

Sick 2 3772 93.87 91.56 93.90 

Cleve 2 303 81.54 83.13 89.76 

Glassd 7 214 66.82 69.89 71.02 

Iris 3 150 96 93.25 95.33 

Led7 10 3200 73.56 71.74 58.78 

Lymph 4 148 85.13 76.38 87.84 

Vote 2 435 89.19 86.91 90.57 

Zoo 7 101 93.06 95.96 93.06 

Contact-

lenses 
3 24 83.33 91.66 91.66 

Weather 2 14 100 100 100 

Breast-w 2 699 94.56 95.84 98.14 

Diabetes 2 768 73.85 75.34 78.13 
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using single rule and another method using multiple rules. In single rule prediction method, the 

class value of the first rule that matches the test instance condition will be assigned to that test 

case. In the case of the multi rule the decision to assign the class value will be made by a group 

of rules. All the rules are selected that matches the condition of the test instance, the average 

confidence of all the classes in the group is calculated and the class with the highest value of 

confidence is assigned to the test instance. Hereunder is the description of the columns in Table 

4.16. 

Column 1: Contains the data sets used. 

Column 2: Shows the number of records or entries in the data set. 

Column 3 and 4: Presents the total number of rules in the classifier that have produced the least 

number of errors, and the total minimum number of errors using single rule for prediction. 

Column 5: Shows the prediction accuracy percentage for single rule prediction method. 

Column 6-7: Presents the number of rules from the classifier that has achieved minimum number 

of errors.  

Column 8: the prediction accuracy of using group of rules prediction depending on average 

confidence for each group  

The results in Table 4.17 have shown an improvement in accuracy of four data sets using 

group of rules prediction including “Cleve”, “Zoo”, “Lymph” and “Glassd” with prediction 

accuracies of 89.76%, 93.06%, 87.83% and 71.02%. On the other hand, single rule prediction 

method achieved 86.46%, 91.08%, 85.81% and 69.62% respectively on the same data sets. The 

prediction accuracy remained the same for single and multiple rules prediction on  six data sets 

including “ Balloon”, “Weather”, “Irisd”, “Contact”, “Diabetes” and “Sick”. The prediction 

accuracy is decreased by a fraction of 0.14 % for “Breast-w” and 0.39 % for “Led7” data sets 

when multiple rules based prediction is applied as compared with single rule prediction.  
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4.6 Summary of Chapter 

 

In this chapter we have discussed in detail the rule generation, rule ranking, rule pruning, 

classifier builder steps in the proposed algorithm with the experimental results. The proposed 

algorithm enhanced on CBA main steps especially frequent ruleitems discovery by reducing the 

candidate ruleitems merging at each iteration and using the minority rule have improved the 

performance with reference to memory use and training time. The experimental results, against 

UCI data sets from UCI repository, of proposed algorithm LC and CBA have been produced. 

The results have shown that the number of merging at each stage of the rule generation has 

reduced significantly for the LC algorithm in comparison to CBA and for all the data sets 

considered. The experimental findings have clearly shown a positive impact when the number of 

Table 4.27: Comparison of single vs group of rule prediction accuracy 
 

Data Set 

No of 

Records in 

Data Sets 

Single Rule Prediction  

Prediction % 

(Single Rule) 

Group of Rules 

Prediction 
Prediction % 

(Group of 

Rules) 
No of 

Rules 

No of 

errors 

No of 

Rules 
No of errors 

Balloon 20 1 0 100 1 0 100 

Contact 24 5 2 91.66 5 2 91.66 

Iris-Id 150 5 7 95.33 5 7 95.33 

Vote 435 32 45 89.65 32 41 90.57 

Sick 3772 16 230 93.90 16 230 93.90 

Cleved 303 44 41 86.46 44 34 89.76 

Led7 3200 27 1306 59.18 27 1319 58.78 

Zoo 101 10 9 91.08 10 7 93.06 

lymph 148 37 21 85.81 37 18 87.83 

weather 14 6 0 100 6 0 100 

glassd 214 19 65 69.62 19 62 71.02 

Breast-w 699 51 12 98.28 51 13 98.14 

diabetes 768 34 168 78.13 34 168 78.13 
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candidate ruleitems merging at each iteration is reduced on the execution time and the memory 

usage of the LC algorithm for all data sets except “Sick”. 

In the experiments of the classifier building step, the number of frequent rules generated 

before pruning starts have reduced significantly when different values of support and confidence 

are used if contrasted to CBA. The results have also shown that when pruning of those frequent 

ruleitems is performed using database coverage method, the numbers of rules generated are less 

than the CBA.  In the final part of the chapter the most important step of checking the accuracy 

of the classifiers build by our proposed prediction algorithm that uses multiple rules to predict 

the class labels was shown. The comparative analysis with CBA and C4.5 have shown 

significant and better prediction accuracy for almost all the test data sets, using the classifiers 

build by LC algorithm and using  our prediction algorithm. The results have shown some 

improvement in the prediction accuracy when comparisons are presented while using group of 

rules as compared to single rule prediction. 

In the next Chapter 5 we will discuss an example from the real world relating phishing. 

We will demonstrate and discuss in detail the process of data collection from the real data 

repositories and findings of our LC approach with comparison to the classification and AC 

mining techniques.   
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Chapter 5 

 

Phishing Data Collection Model and Implementation of LC 

and other Algorithms 

 

5.1 Introduction 

 

In this chapter one of the main problems in information security will be addressed in detail that is 

phishing. The main focus will be to explain the steps to collect the phishing data of websites, to 

extract useful or important features from the data and to implement the proposed AC algorithm 

LC along with other classification and AC algorithms to demonstrate the use of data mining 

techniques in Phishing. The results of all the approaches on phishing data sets are compared and 

critical analysis will be discussed in later part of the chapter. The chapter is organized as section 

5.2 demonstrates the model for data extraction from phishing and legitimate websites, section 5.3 

explains the features selection process and section 5.5 discusses the experiments setup and 

results. 

 

5.2 Features Selection for Experiments 

 

To execute the experiments, the task of extracting the features from the phishing and legitimate 

emails is very vital. This task is mutually related to the process of accurately predicting phishing. 

So it can be said that if the rule used in the feature extracting process from the sample of 

phishing emails is accurate then the affects will be reflected in the accuracy percentage of 

detecting phishing. In the next sections, we will describe the procedures of extracting a set of 

features from a set of phishing, will figure out the features that have significant impact to predict 

phishing, and will formulate some rules on the basis of some findings for each feature extracted 

to classify them. 
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5.2.1 Phishing Data Sources, How and Why Features are Selected  

 

The websites have large domain or matrix of features that can be considered for experimental 

purposes. How and where these website features are selected has an answer that these set of 

phishing websites are collected from a free community site of Phishtank archive (Phishtank.com) 

where phishing data is shared, can be submitted, verified and tracked. The other source of data 

collection is Millersmiles archive (Millersmile.co.uk), which is the prime source of data for 

phishing scams and spoof websites. We have collected around 4500 URLs and 250 phishing 

URLs sample is selected randomly for our experiments. The data is collected in the AI centre at 

University of Huddersfield.  

 

The preparatory step adopted to construct our data sets are as follows: 

 The abnormal base features are extracted by a script as we need to connect with the 

external website like Who.is (DNS) and results are exported to Excel. 

 Data Extractor and HTML extractor tool is used for the extraction of HTML and Java 

Script base features. 

 A Java script is used to extract the domain base features from Who.is (DNS) and 

Alexa.com. 

Initially 27 features are selected from the phishing URLs by the steps explained above. To 

handle these features and use them together in experiments is not possible and have produced 

poor results. To select the best features out of the 27 extracted features, frequency analysis and 

Chisquare testing methods are used. Frequency analysis is based on group base decision and 

chisquare testing is a mathematical measure used to measure the correlation between the class 

and feature value and evaluates each feature value. The features that have exceeded the threshold 

of 3.84 are been selected.  

 Finally 16 features are selected grouped in four categories. The abnormal base features 

selected contain three features, address bar features have six, HTML and Java Script base 

features represents four features and Domain base features have three features. What are the 

criterion used to extract these features are explained in detail in the following section. 
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5.3 The Model for Extraction and Evaluation of Chosen Features 

 

It is learnt from the literature that websites and mails have large domain or matrix of features and 

considering all the features together could be complex and showed poor performance. The model 

used extracts features from the phishing page that can take at least one input. The features are 

divided here into four main categories depending on the impact factor in predicting phishing and 

then are allocated to one of the four categories. The proposed model uses output from higher 

WEBSITE DATA FOR PHISHING & LEGITIMATE WEBSITES 

Website(1,2,3….n) = {f1,f2,f3,……..fn} 

 

 

Address bar 

based 

feature  

Abnormal 

based 

feature 

Html 

&JavaScript 

based feature 

Domain 

based feature 

Address bar 

based 

CLASSIFIER 
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based 

CLASSIFIER 
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&JavaScript  

CLASSIFIER 

Domain based 

CLASSIFIER 

TEST DATA OF NEW WEBSITES 

PHISHING WEBSIES LEGITIMATE WEBSITES 
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AC-Algorithm (LC) and other 
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Figure 5.1 Feature extraction and phishing detection model  
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level as the input to the next lower level, and then different AC mining techniques are applied on 

the extracted features to generated rules and detection accuracy. These rules will be used for 

future prediction of the websites. In this sub-section, we describe the categories of the features 

used. 

 

5.3.1 Abnormal Based Features 

 

5.3.1.1 Request URL 

 

Webpages contains objects that may be externally linked to different domains. Normally in a 

genuine website nearly all the objects would be linked to the current domain. In the experiments 

the extraction of the <src=> from the http://www.dft.gov.uk/dvla/ website source code and 

compared it with the domain <src=> present in the URL, if it is different than the website is 

“phishing”.  

The rule condition to classify the above feature is produced by calculating the percentage of 

URLs that have different domain name in the source code to the entered domain name in the 

address bar.   

 

5.3.1.2 URL of Anchor Feature 

 

The website is classified as phishing if the domain of the anchor usually defined by <a> tag is 

different than the website or the anchor that do not show any link to a webpage, e.g. <a href= ”# 

content”> and <a href= ”#skip”>. This feature is same as the feature of request URL. When we 

analysed our data set, we found 58 URLs of anchor feature and that refers to 23.2% of the total 

data set.   

 

5.3.1.3 Feature of Server Form Handler (SFH) 

 

When the domain name in SFH-s is not similar to the domain name of the website then the 

website is termed as “suspicious”, and when the SFH have “about:blank” or have empty 

string(“”) then its termed as “ phishy” as some action has to be taken. We have found 10 URLs 

containing SFH-s and presents only 4% of data pool.  

 

Extractio

n of 
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5.3.2 Address Bar Based Features 

 

5.3.2.1 Use of IP Address in Domain Name 

 

If a user notices an IP address e.g. 196.25.6.101 in place of a normal domain name in the URL, 

he should be pretty sure that something is wrong and suspicious. The user may find a 

hexadecimal in the IP address like: http://0xDD.0xBE.0x25.0xAA/3/ebay.uk/html. This feature 

is very important and selected in the proposed group, because it is used in most of the previous 

researches. 22.8% of our collected data has this feature.   

 

5.3.2.2 URL Length  

 

The Phishing emails are often linked with long URLs to cover the suspicious portion of the 

address box. The exact length of the phishing URL is not established yet and it is difficult to 

differentiate between a legitimate URL and phishing ones. In our study we calculated a mean of 

the URL length of the phishing URL collected from the Phishtank archive. The outcome of the 

calculation is, if the URL length is >= 54, then URL is marked as Phishing. When the datasets 

are checked 122 URLs of size 54 are found and greater and this makes 48.8% of our data. This 

feature is classified in our study into three types; ‘Low’, ‘Moderate’ and ‘High’, when length of 

URL is <54, >= 54 and <=75, and >75 respectively. 

 

5.3.2.3 URL having @ Symbol 

 

The Phishers uses "@"symbol in the URL because the browser may overlook the actual address 

following the "@" symbol. This "@" symbol is used to dodge the system that URL is genuine. 

We have found 9 URLs with @symbol in our data set which represents 3.6%.  

  

5.3.2.4 Prefix or Suffix in the Domain Part 

 

Phishers try to hide information in the domain part of the URL as a suffix or a prefix separated 

by dash (-). Dash is used in the genuine URL but very rarely. Users have no idea whether they 

are dealing with the phishing website or with legitimate website. In our study 66 URLs are found 

containing (-) symbol in our data set which comprises about 26.4% of total URLs. 
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5.3.2.5 URL having Sub Domain  

 

A domain name comprises of mainly two levels: top level domain (TLD) and a second level 

domain (SLD). We analyse a link like http://www.dft.gov.uk/dvla/, where .uk is TLD, .gov is an 

abbreviation for government, joined “.gov.uk” is known as SLD and “dft” is main domain name. 

Thus it can be noted that a genuine URL contains two dots when ignoring the dot with ‘www’. 

The collected data set having 111 URLs that contains >= 3 dots in the domain section represents 

44.4% of the data set. 

 

5.3.2.6 SSL (Secure Sockets Layer) Final State 

 

Due to growth in online transactions large quantities of personal and important information are 

transferred. The websites provide security by using domain names that are secure, and protocols 

uses SSL to ensure a safe transfer of sensitive data by generating certificates. Presence of HTTPs 

gives genuineness to the website, but as Netcraft’s community have extracted 450 phishing 

URLs that uses HTTPs since 2005 [6], this fact is not valid any more. Authorities like GoDaddy, 

Verisign and GeoTrust that generate certificates are trust worthy. 

In the pool of data 92.8% of the data found contains 232 URLs not supporting HTTPs or 

used a fake https. In the past studies, researchers have not considered fake https but the extracted 

feature does take up these fake providers. 

 

5.3.3 HTML and JavaScript Based Features 

 

5.3.3.1 OnMouseOverfeature 

 

A fake URL is displayed in the status bar when the OnMouseOver function changes the status 

bar. The extracted dataset have counted 50 URLs and these comprise 20% of whole data pool. 

 

5.3.3.2 Redirect Feature 

 

The phishers are looking for the sites that offer open redirects; these are exploited and phishers 

create links to phishing sites, this gives an impression of a genuine website. Only one click leads 
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the unaware user to the phishing site. 10% of the data sets collected contain the redirect page 

features. 

 

5.3.3.3 PopUp Window Feature 

 

The genuine websites normally do not ask the user to enter their login information via a popup. It 

is found that 9.2% of the users entering their personal information in the popup window (PW).  

 

5.3.3.4 RightClick Disabled Feature 

 

Right click is disabled by phishers when they use JavaScript in the phishing website, thus 

preventing the user from viewing source code. In the collected data only 4 URLs of such nature 

were found.  

 

5.3.4 Domain Based Features 

 

5.3.4.1 Domain’s Age Feature 

 

Some of the features from the WHOIS database are extracted and used in our study. Domain’s 

age feature used in our dataset is assigned “Low” value if the age of the domain is more than 1 

year. If the domain’s age is less than 1 year then it is assigned “High” value. In the data set it is 

found that 239 URLs, where the domains were originated for less than 1 year and this constitute 

95.6% of the data set. 

 

5.3.4.2 Record from DNS Feature 

 

This feature is also collected from the WHOIS repository. The identity of the phishing website 

domain name cannot be found in the DNS database. In the data set build up, if the hostname’s 

record cannot be found in the DNS entries or the identity of the website is not matched by 

WHOIS then the website is marked as “phishing” and assigned “high”, otherwise the website is 

genuine and assign it value of “low”. 
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5.3.4.2 Website Traffic  

 

The analysis of the website traffic feature is very significant in recognizing the legitimacy of the 

websites. When no traffic is recorded in Alexa database, then the website is marked as 

“phishing”. The trusted websites are included in the top 10,000 ranked entries. This feature is the 

popularity measure of the URL. If the URL ranked inside the top 10,000 then the website is 

“legitimate and trusted”, else “suspicious”.   

 

5.4 Experimental Setup and Data Sets Used 

 

The experiments are conducted and evaluations are demonstrated on the phishing data sets of 

AddressBarBaseFeatures, HTMLandJavaScriptBasedFeatures, AbnormalBasedFeatures and 

ALEXA data set also named as DomainBaseFeatures , extracted by the procedures described in 

section 5.3., for number of merging at each iteration of LC and CBA, the number of rules 

generated and accuracy of the classification and AC algorithms. All the data sets constructed 

represent binary classification problem and contains two possible values for the class attribute: 

“Legitimate” or “Phishing”. We will use different classification data mining algorithms including 

PART (Frank and Witten, 1998), C4.5 (Quinlan, 1993) and Naïve Bayes (Duda and Hart, 1973), 

and an AC algorithm of CBA (Liu et al., 1998) and proposed LC algorithm in the experiments.  

 We have performed experiments using WEKA tool (weka.com), an open source Java 

application, for PART, C4.5 and Naïve Bayes classification algorithms. On the other hand, the 

experiments are conducted for LC and CBA using the implemented version in Visual C#. The 

training database used is composed of 564 phishing instances and 450 legitimate ones and has 

been gathered from Yahoo at the University of Huddersfield. 

 

5.5 Experimental Results and Discussion 
 

A comparative analysis will be conducted for all the above mentioned algorithms in the 

following sequence.  

 Finding the number of disjoint itemsets merging at each iteration for the proposed 

algorithm LC and CBA. 

 Finding the number of CARs and number of candidate rules for rules for the final 

classifier. 
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 Finding the number of rules in the final classifier for all classification algorithms 

including PART, C4.5, CBA, LC and Naïve Bayes  

 Deriving the accuracy figures for all classification algorithms to demonstrate the most 

predictive algorithm that is able to detect phishing accurately.  

 

Table 5.1 and Figure 5.2; demonstrate the number of times itemsets have been merged during 

each iteration for LC and CBA using minSupp and minConf of 5%, 40% respectively. The 

generated values in have revealed that the number of itemsets  merging at each cycle in LC and 

for all the data sets have decreased significantly as compared to CBA. For example, since the 

AddressBarBaseFeatures data set contains more number of features than the other phishing data 

sets it has shown larger number of merging in the iterations during the rule generation phase, the  

 

 

 

Table 5.1: Comparison of number of merging for the security data sets using minsupp =5% and minconf = 40% 

 

Website Data set Algorithm 
(single item with 

class) Cycle 1 

Cycle 

2 

Cycle 

3 

Cycle 

4 

Cycle 

5 

Cycle 

6 

Total of All 

Cycles Merging 

Abnormal Base 

Feature Data Set 

LC* 21 11 5 - - - 37 

CBA* 21 35 24 - - - 80 

Address Bar 

Feature Data Set 

LC 30 52 89 75 26 2 274 

CBA 30 92 236 296 177 40 871 

Domain Base Data 

Set 

LC 18 11 5 - - - 34 

CBA 18 23 14 - - - 55 

HTML Base 

Data Set 

LC 22 25 27 9 - - 83 

CBA 22 50 64 25 - - 161 
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total number of itemsets merging in LC and CBA are ‘274’ and ‘871’ respectively. Meaning the 

number of itemsets merging during the training phase has been reduced in LC to 52, 89, 75, 26 

and 2 as compared to CBA 96, 236, 296, 177 and 40 in the 2
nd

, 3
rd

, 4
th

, 5
th

 and 6
th

 iterations, as 

 

 Figure 5.2 No. of merging for all iterations of address bar feature data set of LC and CBA 
 

Figure 5.3 Total number of itemsets merging of phishing data sets 
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shown in Figure 5.3. These results are consistent with the UCI results discussed in Chapter 4 

which means LC training phase has improved the performance and efficiency of CBA’s current 

training method in particular the training time and memory usage. 

Figures 5.2 and 5.3 depict the difference in the number of itemsets merging at each cycle 

of the AddressBarFeature and total number of candidate itemsets merging for all phishing data 

sets for LC and CBA algorithms. It can be concluded from Figures 5.2 and 5.3 that the CBA 

algorithm generates larger number of candidate itemsets than LC algorithm on the 

AddressBarFeature and HTMLBaseFeature data and for most iterations.  

Experiments are also conducted to find the total number of CARs and total number of 

candidate rules after pruning in the security data sets. Table 5.2 displays the results for the 

frequent ruleitems and candidate rules for the final classifier for LC and CBA. The results have 

shown that total number of CARs generated for LC is much less than CBA for all the security 

data sets.  For example the total number of CARs produced for the Address bar feature data set 

in LC is “148” i.e., 47.88% less than CBA “284”, the total number of frequent ruleitems for 

CBA is “417” in all the “4” security data sets and “244” for LC i.e 58.51% of CBA. This 

significant decrease is due to the reasons explained in the experimental section of Chapter 4. For 

example, the number of candidate rules generated from the “Address Bar” data set for the LC 

algorithm is less than that of CBA. In fact, LC generated ‘18’ rules for minSupp value of 5% and 

minconf of 40% whereas CBA produced ‘24’ for the same values of minSupp and minconf . 

However, for Abnormal Base feature data set, the number of candidate rules is ‘17’ rules and 

‘15’ for CBA and LC algorithm respectively. 

The detailed comparative analysis on the number of candidate rules generated by CBA 

and LC against the four categories data sets are displayed in Figure 5.4-5.7.  It clear from the 

below figures that LC often derives smaller classifiers that CBA algorithm. This surely is an 

advantage for the decision makers since it increases understand ability and control on behalf of 

the end-user. The main reasons for generating less number of rules by LC is due to the fact it 

uses a looking at class condition before merging of itemsets in each iteration and uses a minority 

rule to remove less frequent associations of ruleitems with different class attribute values. 
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Table 5.2: Comparisons of number of CARs and candidate rules generated for LC and CBA  

 

 

  

 

 

Website URL’s 

Data set 

Algorithm 

Number of Frequent rules (CARs)  

in all iteration (w/o pruning) 

Number of Candidate Rules  

(with pruning) 

minsupp = 5%           minconf= 40%      minsupp = 5%     minconf =40% 

Abnormal Base Feature Data Set 
LC* 21 15 

CBA 32 17 

Address Bar Feature Data Set 
LC 148 18 

CBA 284 24 

Domain Base Data Set 
LC 18 9 

CBA 26 11 

HTML Base 

Data Set 

LC 57 9 

CBA 75 12 
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 Figure 5.5 No. of candidate rules generated for LC and CBA for Abnormal base features 
 

 

 

Figure 5.4 No. of candidate rules generated for LC and CBA for domain base feature data set 
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The experiments are performed using AC algorithms of LC and CBA and for better 

comparative study the evaluated is carried out in the well-known classification algorithms of 

C4.5, PART and Naïve Bayes, for the number of rules in the final classifier. The experiments on 

classification algorithms are conducted using WEKA tool and for AC algorithms and 

implemented versions are used for LC and CBA. The results are demonstrated in the Table 5.3 

and the sample of number of rules for classification algorithms of C4.5 and PART are shown in 

Figure 5.7 – 5.10.  

 

 

 

 

  

 

  Figure 5.6 No. of candidate rules generated for LC and CBA for HTML base feature data set 
 

Table 5.3: Number of rules in classifier of AC and classification algorithms 
 

  ALGORITHM 

Website Dataset PART J48(C4.5) CBA LC 

Address Bar Based Features 7 9 17 10 

Domain Based Features 4 5 7 7 

Abnormal Based Features 7 7 13 12 

HTML and JavaScript Based Features 4 9 12 8 
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J48 (C4.5) pruned tree 

------------------ 

 

SFH = HIGH: Phishing (543.0/21.0) 

SFH = LOW 

|   URL_of_Anchor = HIGH: Ligitemate 

(44.0/16.0) 

|   URL_of_Anchor = LOW: Ligitemate 

(291.0/10.0) 

|   URL_of_Anchor = MODERATE: Phishing 

(14.0) 

SFH = MODERATE 

|   Request_URL = LOW: Ligitemate (0.0) 

|   Request_URL = HIGH: Phishing (2.0) 

|   Request_URL = MODERATE: Ligitemate 

(120.0) 

 

Number of Leaves:  7 

Size of the tree:   10 

 

  Figure 5.7 Sample for no. of rules generated 

in C4.5 algorithm for Abnormal base data set 
 
------------------------- 

J48 (C4.5) pruned tree 

------------------------ 

on_mouseover = LOW: Ligitemate (420.0/4.0) 

on_mouseover = MODERATE 

|   Redirect = LOW: Phishing (144.0) 

|   Redirect = MODERATE 

|   |   RightClick = False: Phishing (79.0/8.0) 

|   |   RightClick = True: Ligitemate (8.0) 

|   Redirect = HIGH: Phishing (123.0/8.0) 

on_mouseover = HIGH 

|   RightClick = False: Phishing (204.0) 

|   RightClick = True 

|   |   Redirect = LOW: Ligitemate (8.0) 

|   |   Redirect = MODERATE: Phishing (0.0) 

|   |   Redirect = HIGH: Phishing (24.0) 

 

Number of Leaves:  9 

Size of the tree:   14 

 

 Figure 5.10 Sample for no. of rules Generated in C4.5 

HTML and Java Script Base Features data set from 

WEKA 
 

PART decision list 

------------------ 

on_mouseover = LOW: Ligitemate (420.0/4.0) 

RightClick = False: Phishing (538.0/16.0) 

Redirect = HIGH: Phishing (36.0) 

: Ligitemate (16.0) 

Number of Rules:  4 

 

  Figure 5.8 Sample for no. of rules Generated in 

PART algorithm for HTML and Java Script Base 

Features data set 
 

------------------ 

PART decision list 

------------------ 

 

SFH = MODERATE AND 

Request_URL = MODERATE: Ligitemate 

(120.0) 

SFH = HIGH: Phishing (543.0/21.0) 

URL_of_Anchor = LOW: Ligitemate 

(291.0/10.0) 

URL_of_Anchor = HIGH AND 

Request_URL = LOW: Ligitemate (28.0/8.0) 

URL_of_Anchor = HIGH AND 

Request_URL = HIGH: Phishing (16.0/6.0) 

URL_of_Anchor = MODERATE: Phishing 

(14.0) 

: Ligitemate (2.0) 

 

Number of Rules:  7 

 

 Figure 5.9 Sample for no. of rules Generated in 

PART for Abnormal Base data set 
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Table 5.3 shows that the classifiers build by AC algorithms of LC and CBA are larger 

than classification algorithms of PART and C4.5 (J48) by 65.38%. The total number of rules for 

all security data sets are ‘86’ and ‘52’ for AC and classification algorithms respectively. The 

rules in the final classifier for our approach of LC are found 24.48% less than CBA. Our LC has 

shown the similar results for security data set for generating less number of rules for the 

classifier as it has shown on the UCI data sets, due to the factors described in Chapter 4. 

Therefore these findings show the strength of the new algorithm to adapt to different data sets. 

 Figure 5.11 shows the predictive accuracy of the considered classification data mining 

algorithms. The algorithm LC has achieved higher accuracy than classification and AC 

approaches of PART, CBA, C4.5 and Naïve Bayes for ‘2’ data sets, domain base feature and 

HTML and JavaScript feature. The LC has shown same accuracy percentage for Address bar 

feature data of 94.07% with PART, CBA, C4.5 and Naïve Bayes. The LC has achieved 0.34%. 

0.43%, 0.42% and 1.7% higher average prediction accuracy for all the ‘4’ security data sets, 

when compared with average accuracy of PART, C4.5, CBA and Naïve Bayes algorithms 

respectively. Overall the AC approaches of LC and CBA have generated large size classifiers 

with better accuracy than classification approaches. The prediction results as shown in the Figure 

5.11 have shown that LC has performed better against other approaches for Domain based and 

 

Figure 5.11 Comparison of prediction accuracy in (%) of LC, CBA, PART, C4.5 and Naïve Bayes 

algorithms 
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HTML and JavaScript base, and Address bar base feature data sets except Abnormal base feature 

data set. 

 In Table 5.4, the results of the number of instances correctly classified by all the AC and 

classification approaches are demonstrated for better comparative analysis. 

 

 

5.6 Summary of the Chapter 

 

Phishing is a serious security issue for the internet users. In chapter 2, we surveyed common 

approaches related to phishing in the literature like CART (Breiman et al, 1984), SVM 

(Joachims, 1999), BART (Fette et al., 2007), RF (Breiman, 2001), Neural Networks (NN) 

(Marques, 2001), PECM (Al Momani, 2011), APPT (A.A Khan, 2013), and hybrid approaches 

(Hamid et al., 2013). In this chapter, a comparative analysis is conducted to show the 

applicability of the proposed LC algorithm on the difficult problem of phishing. Phishing data is 

collected and different types of features are extracted like HTML and JavaScript, Abnormal, 

Address Bar and domain base. An experimental section using the proposed algorithm and other 

known classification techniques like CBA, C4.5, PART and Naïve Bayes against the features 

data set has been conducted. The main factors considered in the experimentation are the number 

of itemsets merging of LC and CBA, The number of rules in the final classifier produced by 

CBA and LC and the prediction accuracy of all considered algorithms. The results revealed that 

LC algorithm have very promising results and generated less number of frequent ruleitems and 

 

Table 5.4: Number of correctly classified instances for security data sets for AC and classification 

algorithms 
 

 
ALGORITHM  

Website Dataset PART J48(C4.5) CBA LC 
Naïve 

Bayes 

Address Bar Based Features 
952 952 952 952 932 

Domain Based Features 
906 904 898 920 898 

Abnormal Based Features 
964 962 967 960 953 

HTML and JavaScript Based Features 
990 990 992 994 974 
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rules in the final classifier when compared with CBA. LC has also outperformed the other 

classification approaches (PART, C4.5 and Naïve Bayes) and AC approach of CBA in terms of 

accuracy on most data sets considered.  

It can be concluded from the results that LC has an execution time faster than the CBA as 

it has shown a significant reduction in the number of merging at each iteration and so it also uses 

less memory space. The prediction accuracy of the approach has shown significant results with 

less number of mis-classification. 
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Chapter 6 

 

Critical Analysis of the Experimental Results  

 

 

The results obtained by all the experiments using LC, CBA and classification algorithm 

on 14 UCI datasets and phishing datasets will be analyzed and discussed critically in this 

chapter. The results that are explained are extracted from the experiments conducted on AC 

algorithms of LC and CBA by using the implementation version in Visual C, and using a 

statistical algorithm of Naïve Bayes, a decision tree algorithm of C4.5 and a hybrid approach 

known as PART. The aim is to compare and analyze the results of all the bench mark and well 

known approaches in classification rule mining and associative classification rule mining for 

better understanding. 

 

6.1 Reduction in the Number of merging of itemsets in LC and its Impact 

on the Execution time and Memory Usage 

 

The findings as demonstrated in Table 4.11 and Table 5.1 have clearly indicated that the LC is 

able to reduce the research space to find the candidate rule itemsets during each iteration. Many 

researcher as mentioned in literature review chapter 2 are trying to handle the complexity in the 

training phase of AC where frequent rule itemsets are produced. In this research reduction in the 

search space is successfully achieved by reducing the number of candidate itemsets generation at 

each iteration. Table 4.11 and Table 5.1 indicates that the number of merging is reduced 

significantly for all UCI and phishing data sets used in the experiments because of the 

modifications made in LC algorithm. 

 The LC algorithm works well for the small data sets like “Balloon”, “Contact”, 

“Weather” and “Irisid”, large datasets like “Zoo” and “Lymph” and phishing datasets like 

“Abnormal Base Feature Dataset”, “Address Bar Feature Dataset”, “Domain Base Feature 

Dataset” and “HTML Base Dataset”, and decreases the total no of CARs generated without 

pruning when compared with CBA as in Table 4.14 and Table 5.2.  
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 By digging deep in the results of table 4.11 at each iteration, it is observed that the LC 

algorithm for rule generation phase terminates before the iteration 7 for all medium and large 

datasets like “Vote”, “Glassd”, “Lymph”, “Zoo”, and “Led7” etc except the “Breast-w” and 

“Cleaved” datasets. So the number of mergings at the iteration 7 column in Table 4.11 shows “0” 

value for the above mentioned datasets. It is noticeable that for the multi class problems like 

“Zoo”, “Led7”, “lymph” and “glassd” with 7, 10, 4 and 7 numbers of classes, the number of 

ruleitemsts produced at the end of each iteration is much less than the datasets with binary 

classes like “Breast-w” and “Cleaved”. As the LC look at the class lables of itemsets before 

merging and uses minority rule after merging, so the number of merging reduces with each 

iteration and there are no itemsets left to merge with same class lables after iteration 6. 

The “Zoo” dataset has ‘7’ classes and the number of itemset merging at iteration 2, 3, 4, 5 

and 6 are 3.49% , 2.78%, 1.9%, 1.78% and 1.49% of CBA respectively which is much less than 

the number of itemset joining 44%, 14.46%, 4.37%, 3.53% and 3.4% of CBA in “Breast –w” 

dataset with two classes for the same iterations.The difference in ratio in the number of the 

itemsets merging at each iteration for multiple class datasets and binary class datasets are 

consistent in the experimental results of Table 4.11 and 5.2. This shows that the LC is 

performing efficiently for all type of UCI datasets and also for phishing datasets in the rule 

generation phase. 

Because the number of frequent rule itemsets produced in the rule generation phase is 

significantly reduced as explained in chapter 4 and 5. The effects of this reduction is studied on 

the memory usage and processing time. Both are found to be reduced as shown in the Table 4.12 

and 4.13 for all the datasets used in the experiements except the dataset of “Sick” because the 

frequency of the class “negative” constitutes about 93.8% of the dataset and large number of 

itemsets are associated with the “negative” class. Hence the approach in LC algorithm has taken 

longer time to execute the training phase as its looks at the class lables to join the itemsets as 

compared with CBA and so as the physical and page and virtual memory used is also higher as 

shown in Table 4.13.  

 

6.2 Total Number of CARs Generated Before and After Pruning 

 

Table 4.14 and table 5.2 shows the total number of CARs produced after and before pruning, it is 

noticeable that the number of CARs produced in LC for all the phishing datsets and UCI datsets 
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are considerably reduced as compared to CBA. The reduction percentage is the highest for the 

datasets used with the highest number of classes like in “led7” dataset the number of classes are 

‘10’ and the decrease in the total number of CARs is 13.94% of CBA. The datsets with ‘7’ 

classes like “Glassd” and “Zoo” have the reduction percentage in number of CARs is 25.24% 

and 31.5% respectively. And the percentage is 40.10% and 46.46% of CBA in datasets of 

“Cleaved” and “Breat-w” with 2 classes. So it is concluded that the number of CARs generated 

is dependent on the number of classes in the dataset and the number of attributes. The percentage 

of reduction in the number of CARs is found to be highest in the datasets with highest number of 

classes and a linear relationship is found between the number of CARs and number of classes in 

datasets when the numbers of classes are changing in datasets. There is no reduction in the 

number of CARs found in “Sick” dataset when compared with CBA in Table 4.14 and 4.15 

because of the reason that the “Sick” dataset contains one dominant class which is about 93.8% 

of the total data. So the numbers of frequent itemsets generated are same as “2406” and “16” 

before and after pruning respectively for both LC and CBA approaches which show that LC 

algorithm will generate same number of CARs as CBA algorithm for the datasets with one 

dominant class with percentage more than 90%. 

 In the phishing datasets as the number of classes is same for all ‘4’ datasets. The number 

of CARs generated for LC is found to be dependent on the number of attributes in the phishing 

datasets. The decrease in the percentage of number of CARs in “Address Bar Feature Dataset” 

with 6 attributes, “Domain Base Data set” with 3 attributes and “Abnormal Base Feature Data 

set” with 3 attributes are 52.11%, 69.23% and 65% of CBA respectively.  

 Analyzing the results of Table 4.15 and Table 5.3, the number of rules in the final 

classifier is found to be less for LC than CBA but are more than the other classification 

approaches like PART and C4.5. The reason for the less number of rules produced in C4.5 for 

phishing datasets is becasuse the algorithm selects one attribute as the root value by the entropy 

measure and then builds the tree around this attribute. In PART the number of rules generated 

are found to be minimum in phishing datasets among the other approaches is due to the fact that 

its uses the partial decision tree approach of C4.5 and separate and conquer approach of RIPPER. 

The rules generated by PART are simple, less in number and accurate. In AC algorithms of CBA 

and LC the rules generated are more in number because these approaches tends to explore the 

correlations between attributes that cannot be found by classification approaches like PART and 

C4.5 and hence increases the understandability of the data.  
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6.3 Analysis of the Prediction Accuracy Measure 

 

The most important performance measure is the prediction accuracy of any algorithm. The 

modifications made in the LC algorithm training and prediction phases have achieved 

improvements in execution times, memory and also shown better results for prediction accuracy 

when compared with well-known classification algorithm of C4.5 and CBA as demonstrated in 

table 4.16. The LC algorithm has also shown promising results on the phishing data sets as in 

Table 5.4 and Figure 5.11 when compared with CBA, statistical and hybrid approaches.  

The main focus and concern is for the results of prediction accuracy of the LC algorithm 

as it avoids two many merging and in the process may eliminate some important rules and 

consequently may decrease the prediction accuracy. But mostly the results for all the data sets 

used for experiements in chapter 4 and 5 are promising except for “led7” dataset where the 

prediction accuracy has decreased as shown in Table 4.16. The resaon for this low accuracy for 

the “led7” dataset is that it contains 7 attributes and 10 classes. The class distribution is evenly 

distributed and each attribute is linked with all 10 classes. When LC algorithm applies the 

minority rule in rule generation phase, it removes all the ruleitems that are with the minority 

class values. So “9” out of “10” ruleitems are deleted with same attribute value but differenet 

classes. This has led to the poor performance in terms of accuracy of LC in case of “led7” dataset 

because of the removal of some potential significant rules. The critical analysis has found that 

the LC algorithm did not perform well in term of prediction accuracy for multiple class problems 

with evenly distributed classes among all the items in the dataset. 

The prediction accuracy as shown in Figure 5.11 and Table 5.4 are studied in depth to 

critically analyze the reasons behind these results. It is found that as C4.5 algorithm works by 

finding the root value, the root value found in case of “HTML and JavaScript Base Dataset” is 

the attribute value of “on_mouseover” and all the leaves are constructed by appending other 

attribute values and ‘7’ rules are generated. In the PART algorithm the numbers of rules 

produced are ‘4’ for the same dataset. Referring to Figures 5.8 and 5.9 and looking at the rules 

produced by LC algorithm it was found that LC is able to explore rules that are not found by the 

PART and C4.5 like “<RightClick --False  and popUpWindow– HIGH = phishing>” and 

“ <RightClick—False and Redirect--Low = Phishing>”. These different correlations found in LC 

have contributed in the higher prediction accuracy result in the “HTML and JavaScript dataset”. 
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While analyzing the results of the “Abnormal Base Dataset” it is found that the 

prediction accuracy is the lowest for the LC algorithm. The in depth exploring of the results in 

Figure 5.7 and 5.9 has revealed that both classification approaches of C4.5 and PART has 

produced ‘7’ rules each. But only two rules, if <SFH =HIGH then Phishing> and if SFH = 

MODERATE and Request_URL= MODERATE then website is Ligitimate are found for both 

approaches and rest of the ‘5’ rules are different. The prediction accuracy is 95.44% that is 

higher in PART than C4.5’s 95.24%. It means that the rest of the ‘5’ rules that are different in 

composition have contributed in the difference found in the results of prediction accuracy. When 

the results are analyzed in the LC algorithm, it is noticed that LC algorithm have produced some 

rules that have generated more errors hence are responsible for the lower accuracy. The rules that 

are not found in PART and C4.5 are < URL_of_Anchor –HIGH, SFH –HIGH  Phishing> and 

< URL_of_Anchor –HIGH, SFH –HIGH  Phishing >, have shown ‘4’ errors each and have 

contributed to the lower prediction accuracy result in “Abnormal Base Dataset” for LC 

algorithm. 

The new novel prediction method of LC that uses group of rules prediction method has 

also contributed to the better results in UCI datsets as indicated in Table 4.17. So it is concluded 

that in the future application of the algorithm it is advised to use the group of rules prediction 

method for higher prediction accuracy. 

The reduction in the number of frequently generated ruleitems in phishing datasets used 

is due to the factors of looking at the class labels while merging of itemsets at each iteration and 

use of minority rule in training phase of LC algorithm. This also reduces the time needed to 

generate all CARs and it is demonstrated in chapter 4. It shows that the proposed LC algorithm 

can be used in the datasets that are large and appending and can be effective in the extraction of 

rules from the data streams. As the data of phishing websites are growing on daily basis, every 

minute or hour there is a new phishing website emerging and the phishing attacks are proving to 

be damaging, need for an efficient and effective technique to predict the phishing website is the 

need of the day and our proposed LC algorithm will serve the purpose. It is concluded from the 

results as in Figure 5.11 that the LC has shown better prediction accuracy than the other bench-

mark algorithms of classification and AC. 
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6.4 Summary of the Chapter 

 

The in depth analysis of the results is carried out in this chapter considering all the findings of 

Chapter 4 and 5. The results generated by LC, CBA and other classification approaches are 

studied in terms of search space, itemset merging, execution time, memory usage and prediction 

accuracy. The reasons behind all the experimental results are explored in depth and analyzed 

critically. It was found that the LC approach works well and reduces the search space and 

execution time for all datasets used except few exceptions and the application of LC algorithm 

has significant results in terms of prediction accuracy when used to detect phishing and 

compared with CBA, PART, C4.5 and Naïve Bayes approaches. In the next chapter the 

conclusions will be drawn and the future directions will be highlighted. 
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Chapter 7 

 

Conclusions and Future Directions 

 

 

7.1 Conclusions 

 

In this thesis the training, pruning and prediction phases are investigated in AC data mining. The 

outcome is two novel methods, one a training method in the rule generation phase and second is 

a new prediction method. These methods have been implemented in a novel AC algorithm called 

LC. The LC algorithm can be applied to both binary and multi-class benchmark data sets. The 

effective use of modified version of CBA algorithm LC is used effectively in data of features 

selected from the phishing and legitimate websites. The training phase of the LC algorithm 

enhances the efficiency and performance of AC with reference to decrease in number of rules 

generated in classifier, training time, and memory usage as demonstrated in Chapter 4. 

The rule generation phase of the AC algorithms often do itemsets merging regardless of 

class labels while training phase of LC only considers the class labels of the disjoint candidate 

ruleitems in each iteration when performing merging operation and uses a minority rule in the 

training phase of LC that only selects a ruleitem with the highest frequency class, to reduce the 

number of frequent rules and candidate rules. The rule ranking phase of the LC implements the 

criteria of confidence, support, cardinality and the frequency of the class to rank rules. The 

training, rule ranking and pruning phases of the LC builds the classifier and reduces the number 

of generated rules in the final classifier solving one important problem in AC approach which is 

the exponential growth of rules. Moreover, new prediction method has been implemented and 

evaluated in the LC algorithm that takes the advantage of employing all related rules to the test 

case in the class assignment decision. This improves the classification accuracy of the classifiers 

over current AC mining algorithms that utilize single rule for prediction as demonstrated in 

Chapter 4. Lastly the LC algorithm has been applied to a real world emerging problem called 

phishing in which a model is designed to extract related and significant features of legitimate and 

phishing websites. Then, LC has been used to mine important knowledge from the features data 

sets that can on the fly detect the phishing websites. This has been validated in Chapter 5 where 
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the contrast is demonstrated of the LC algorithm with well know classification and AC 

algorithms with respect to accuracy, number of rules produced and training phase efficiency. 

In the section below the thesis contributions will be discussed in details. 

 

7.1.1 Issue 1: An Associative Classification Algorithm for Emails and Website 

Prediction 

  

Phishing is an issue of serious concern all over the world. Stealing of internet user’s private 

information has costed millions of pounds to individuals and banks. Detecting phishing is the 

need of the time. Many machine learning and classification techniques are been used to detect 

phishing. Our thesis presents the introduction of an AC approach to be applied on phishing data. 

Our contribution is not just the application of our LC on phishing data but also the model and 

formulation of rules to extract the most significant features in the phishing data pool, our thesis 

demonstrates successfully the extraction process of these features based on some rules.  

 The problem of automatically categorizing the websites and emails to phishing or 

legitimate is successfully demonstrated in the thesis. The development of the proposed algorithm 

LC described in chapter 4 have shown to accurately classify the phishing data sets as compared 

to other classification approaches like C4.5, PART, Naïve Bayes and AC approaches like CBA. 

The LC algorithms have shown better execution time as it has produced less candidate itemsets 

and subsequently produced less no of CARs and classifier size is also less than the traditional 

and most effective AC algorithm of CBA. The modifications made in the proposed algorithm of 

LC in its training and prediction phases have contributed to its effective use in information 

security domain of phishing in websites. The experimental results conducted on ‘4’ extracted 

data sets from phishing and legitimate websites data pool have demonstrated that our LC new 

algorithm outperformed classification algorithms like C4.5, PART and Naïve Bayes on 

prediction accuracy on ‘2’ data sets and showed highly competitive results for other ‘2’ data sets 

in terms of accuracy measure, as demonstrated in Chapter 5 and at the same time out performed 

AC approach of CBA in ‘3’ data sets in %age accuracy (see Chapter 5). It is concluded that LC 

algorithm should be used to detect phishing or to predict the category of a website as legitimate 

for fake. 
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7.1.2 Issue 2: Efficiency of Training Phase of AC  

 

There are several AC algorithms like CBA (Liu et al., 1998), CMAR (Li et al., 2001), ARC-BC 

(Antonie and Zaïane, 2003),2-PS (Qian et al., 2005)  and ACN (Gourab Kundu et al., 2008) uses 

the Apriori candidate generation property or Frequent Pattern Growth technique to generate 

candidate ruleitems in the training or the rule generation phase of the AC. In these approaches 

candidates are joined at each iterations irrespective of looking at the class labels of the itemsets. 

The rule discovery step consumes majority of the computational time of all the AC algorithms. 

We have introduced a new fast and effective method in our thesis that considers the class labels 

of the itemsets before merging them at each iteration to generate candidate ruleitems. Our LC 

algorithm has implemented a minority rule in each iteration which removes the less frequent 

class labels with the ruleitem if a ruleitem is associated with more than one class and selects only 

the ruleitem which is associated with the most frequent class. 

Our new training method is proposed in LC algorithm, which discovers all the frequent 

ruleitems 40.06% faster than the CBA algorithm for ‘14’UCI repository data sets while reducing 

the number of merging at each iteration very significantly as demonstrated in Chapter 4 and 5, 

when experiments are conducted against CBA for ‘14’ benchmark problems and ‘4’ security data 

sets we considered. As our LC algorithm generates less number of candidate ruleitems and 

reduced number of rules in final classifier, as evaluated and demonstrated in the results section of 

Chapter 4 and 5 and hence experimental results have shown that physical memory used by the 

new approach is less as compared to CBA for ‘17’ problems considered.  

  

7.1.3 Issue 3 & 4: Prediction Based on Group of Rules and Rule Ranking 

 

Since most of the AC algorithms like CBA, MMAC, MCAR, ACCF, ACCR, CACA and ACN 

use single rule prediction method to predict the accuracy of the resultant classifier on test data. 

Our new LC algorithm uses a multi rule approach that considers all rules that matches the test 

instance in the decision process of assigning a class label. Our new prediction method calculates 

the confidence values of all classes in the group of rules that have correctly classified a test 

instance, and selects a class with the highest average confidence value. 

The results of our experiments for single rule prediction and our approach that uses multi 

rule prediction is investigated for our LC algorithm that showed improvement in the accuracy of 
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relatively large datasets, as described in Chapter 4, that contains more number of rules in their 

classifier and demonstrated same results for accuracy for small data sets when 13 UCI datasets 

are considered when compared with CBA. 

Our algorithm LC have used a much better rule ranking procedure that takes care of all 

the possibilities of the counts of support, confidence, cardinality and class frequencies. Hence it 

has produced better results for all the data sets of UCI and Phishing data sets. 

 

7.1.4 Issue 5: Experimental Study on UCI and Phishing Data Sets 

 

A thorough investigation of our LC and other classification and AC algorithms are carried out 

using the data sets from UCI repository and also on the data generated by our methods relating 

phishing in websites. The experiments on both the type of data sets have shown that our LC 

approach is adaptable to different types of data, as in Chapter 4 and 5. 

 

7.2 Future Directions 

 

7.2.1 Phishing in Mobile Applications 

 

The taxonomy of the phishing attack on mobile devices is analyzed and categorized as 

Bluetooth, SMS, Vishing and Mobile Web application. The mobile application downloads on 

smart phones and android phones are in millions. 5% of the Android application users click on 

the phishing websites. The people are using mobile to access the financial institutions and the 

banks. Due to the vast availability of free application and games download, mobile users are very 

susceptible to the phishing attacks. Research work is carried out by (Foozy et al., 2013) has 

discussed the taxonomy of mobile phishing attacks. The comparison between the six detection 

techniques like Content Based (Peizhou et al., 2008 and Yoon et al., 2010), Blacklist (Singh, 

2011) and (Mahmoud and Mahfouz, 2012), Whitelist (Mahmoud and Mahfouz, 2012), Hotspot 

and Gaussian Mixture Model (Chang and Lee, 2010) are studied. The mobile user market is 

growing and so as the need to develop accurate prediction models to detect phishing in mobile 

technology and applications. 
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7.2.2 Distributed Learning in AC 

 

The data is collected in most of the applications on daily basis and so the data sets have grown 

enormously.  The data operations of addition, deletion and updation are going on for almost all 

existing data sets. To extract the desired outcome all the existing AC algorithms scan the 

complete training data set at least one time to reflect the changes in the data. The cost of I/O 

operations and CPU time, when the database is scanned at the time of any change in the data set 

to update the rules generated previously, is very high and the data sets are growing as well. 

Incremental AC algorithms that can keep track of last results and only uses the records updated 

may prove to be an effective and efficient approach and can lead to enormous saving in 

computational times. 

It is believed that incremental AC mining is a challenging problem in data mining, which 

has not carefully studied. Further, the key success to solve this problem is to determine the 

frequent ruleitems that overlap between the original training dataset and the records, which have 

been updated regardless whether the operation is insert, delete or edit. Finally, incremental 

mining in AC framework is a promising approach, which can be applied to dynamic real world 

applications where training datasets are updated frequently. 

There has been some research work on incremental association rule mining algorithms, 

i.e. (Zhou and Ezeife, 2001; Valtchev, et al., 2002; Valtchev, et al., 2003). These can be 

considered as a starting point for incremental AC mining. For example, an incremental 

association rule mining algorithm called Maintenance Association Rule with Apriori Property 

(MAAP) (Zhou and Ezeife, 2001), has been presented in 2001. This algorithm efficiently 

generates incremental rules from an updated database using Apriori candidate generation step 

(Agrawal and Srikant, 1994). MAAP computes high level frequent n-itemsets and then starts 

producing all lower level n-1, n-2, …, 1 frequent itemsets. This approach decreases the 

processing overhead for generating some of the low-level frequent itemsets that have no chance 

of being frequent in the updated database. Thus, the key feature of MAAP is the downward 

closure property presented in Apriori. 
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7.2.3 Noise in Source Databases 

 

A classifier in data mining is constructed from labelled data records, and later is used to forecast 

classes of previously unseen data as accurately as possible. Training data set may contain noise, 

including, missing or incorrect values inside records. One has to think carefully about the 

importance of missing or incorrect values in training datasets. As a result, only human experts in 

the application domains used to generate the datasets can make an implicit assumption about the 

significance of missing or invalid values. 

  In data mining and machine learning communities, several classification algorithms have 

been proposed, where most of them produce classifiers with an acceptable error rate. However, 

these algorithms assume that all records in the training or even test data collection are complete 

and no missing data are present. When training/test datasets suffer from missing attribute values 

or incomplete records, classification algorithms often produce poor classifiers with reference to 

prediction accuracy. This is due to that these algorithms tend to tailor the training dataset too 

much.  

  In real world applications, it is common that a training or test data contains attribute with 

missing values. For instance, the “labor” and “hepatid” datasets published in the UCI data 

repository contain many missing records. Thus, it is imperative to build classifiers that are able 

to predict accurately the classes for test datasets with missing attribute values. These classifiers 

are normally called robust classifiers. Unlike traditional classifiers, which assume that the test 

data is complete, robust classifiers deal with existing and non-existing values in test data. 

  There have been some solutions to avoid noise in the training datasets. Naïve Bayes 

algorithm for instance ignores missing values during the computation of probabilities, and thus 

missing values have no effect on the prediction since they have been omitted.  Although omitting 

missing values may be not the ideal solution since these unknown values may provide a good 

deal of information. Other classification techniques like CBA assume that the absence of missing 

values may be of some importance, and therefore they treat them as other existing known values 

in the training data. However, if this is not the case, then missing values should be treated in a 

special way rather than just consider them as other possible values that the attribute might take 

(Witten and Frank, 2000). Decision tree algorithms such as C4.5 and C5 deal with missing 

values using probabilities, which are calculated from the frequencies of the different values for 

an attribute at a particular node in the decision tree. 
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The problem of dealing with unknown values inside datasets has not yet been explored 

well in traditional classification or AC approach.   
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Appendix A 

 

Class Form.cs 

Main form class for the programme from where to control all the input and options and click the 

Process button. 

 

Main Methods: 

DoMining(double support_min, int support_count, double confidence_min, 

ArrayList Table_Data_Main, long start) 

Purpose: 

Do mining of the main file for processing 

Input: 

Support value 

Support count 

Confidence value 

Test data 

 

DoPrediction(DataTable dtTrainingData, string fileRuleItemSet) 

Purpose:  

Do prediction data coverage of the data 
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Input: 

Training data 

Name of file to do prediction on 

DoPruning(string fileRuleItemSet, DataTable trainingData) 

Purpose: 

Do prunning of the data 

Input: 

Name of file for prunning 

Trainning data 

 

Helper Functions 

ArrayList ConvertList2ArrayList(List<List<string>> lsArray) 

Purpose: 

Helping Function: Convert the list of string to arraylist 

Input: 

List of strings 

Output: 

Converted arraylist 
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List<List<string>> ConvertArrayList2List(ArrayList tmpArray) 

Purpose: 

Helping Function: Convert the array list to list of strings 

Input: 

Array list to convert 

Output: 

Converted list of strings 

 

List<T>[] Partition<T>(List<T> list, int totalPartitions) 

Purpose: 

Dividing the list of data to partitions for 10 Fold cross validation 

Input: 

List for partition 

Number of partitions 

Output: 

Partitioned data after processing 

 

 

Class Candidate_Items_Generation.cs 

Class to handle operations for item set generation, frequent items, etc. 
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Main Methods: 

ArrayList Candidate_itemset_Gen(ArrayList Table_Columns) 

Purpose: 

This generates the itemset with the input of array list of the data 

Input: 

The array list of the input data 

Output: 

Array list of output data 

 

ArrayList Candidate_1_Rule_item_generation(ArrayList Table_Columns) 

Purpose: 

Function for candidate rule item generation with the array list of data 

Input: 

Array list of data 

Output: 

Array list of output data 

 

 

ArrayList Candidate_1_Rule_Prunning(ArrayList Candidate_1_Rule_itemset_Pruned) 

Purpose: 
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Rule prunning of the data input from the array list 

Input: 

Array list of data to rule prune 

Output: 

Array list of output data 

 

ArrayList Confidence_support_calculations(ArrayList Prunned_Candidate_1_array, doubl

e conf_percentage, double supp_percentage, int s_count) 

Purpose: 

Calculate support and confidence of the prunned input data 

Input: 

Array list of prunned data 

Confidence percentage value 

Support percentage value 

Support count value 

Output: 

Array list of output data 

 

ArrayList Candidate_1_Rule_Itemset_Rest(ArrayList frequent_Rule_itemset, ArrayList T

able_Columns) 

Purpose: 
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Calculate rules itemset rest data 

Input: 

Array list of rule itemset data 

Columns of the data in array list form 

Output: 

Array list of output data 

 

Class DataCoverageAlgo 

Class for data coverage algo and other operations. 

Main Methods: 

void dataCoverage(DataTable rulesTbl, DataTable trainTbl) 

Purpose: 

This function implements the data coverage algorithm and also picks one rule from the rule table

 and search all the items verified by it in the training data table and take action acoordingly 

Input: 

Table for the rules data 

Table for trainning data 

     

 

Boolean verifyTrainingData(Array arrRuleItems, Array arrTrainItems, out bool isLastRo

wChecked) 
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Purpose: 

This function compares a rule and data row item by item to check the validity of the rule for the s

pecified data row 

Input: 

Array of rules data 

Array of trainning data 

To check last row or not 

Output: 

True if everthing runs fine, False if there is error for verifying data 

 

 

Class DataCoverageAlgoPrediction 

Main Methods: 

DataTable dataCoverage(DataTable rulesTbl, DataTable testTbl, string defaultClass, 

Boolean bSingleRule) 

 

 

 

 

Purpose: 

This function implements the Prediction Method algorithm. This algo picks one rule 

from the rule table and search all the items verified by it in the test data table 

and take action accordingly 
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Input: 

Rules table data 

Test table data 

Default class name 

Single rule or All rules 

Output: 

Returns data table after processing the input data 

int computeErrors(DataTable testTbl, DataTable trainTbl) 

Purpose: 

Calculate errors of the test data abd the trainning data 

Input: 

Test table data 

Trainning table data 

Total number of errors counted 

   

 

 

string verifyTrainingData(Array arrRuleItems, Array arrTestItems) 

Purpose: 
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This function compares a rule and data row item by item to check the validity of the rule for the s

pecified data row 

Input: 

Rules data array 

Test data array 

Output: 

Returns null if failed, else the string of the failed array rule 
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