
University of Huddersfield Repository

Mahmood, Qazafi

LC an effective classification based association rule mining algorithm

Original Citation

Mahmood, Qazafi (2014) LC an effective classification based association rule mining algorithm.
Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/24274/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

TITLE OF THESIS – LC AN EFFECTIVE

CLASSIFICATION BASED ASSOCIATION RULE MINING

ALGORITHM

FULL NAME OF AUTHOR – QAZAFI MAHMOOD

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

The University of Huddersfield

Submission date as May 2014

1

Copyright statement

The author of this thesis (including any appendices and/or schedules to this thesis) owns any

copyright in it (the “Copyright”) and s/he has given The University of Huddersfield

the right to use such copyright for any administrative, promotional, educational

and/or teaching purposes.

Copies of this thesis, either in full or in extracts, may be made only in accordance with the

regulations of the University Library. Details of these regulations may be obtained

from the Librarian. This page must form part of any such copies made.

The ownership of any patents, designs, trademarks and any and all other intellectual property

rights except for the Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property Rights and Reproductions cannot

and must not be made available for use without the prior written permission of the

owner(s) of the relevant Intellectual Property Rights and/or Reproductions

2

Abstract

Classification using association rules is a research field in data mining that primarily uses

association rule discovery techniques in classification benchmarks. It has been confirmed by

many research studies in the literature that classification using association tends to generate more

predictive classification systems than traditional classification data mining techniques like

probabilistic, statistical and decision tree. In this thesis, we introduce a novel data mining

algorithm based on classification using association called “Looking at the Class” (LC), which

can be used in for mining a range of classification data sets. Unlike known algorithms in

classification using the association approach such as Classification based on Association rule

(CBA) system and Classification based on Predictive Association (CPAR) system, which merge

disjoint items in the rule learning step without anticipating the class label similarity, the proposed

algorithm merges only items with identical class labels. This saves too many unnecessary items

combining during the rule learning step, and consequently results in large saving in

computational time and memory.

Furthermore, the LC algorithm uses a novel prediction procedure that employs multiple

rules to make the prediction decision instead of a single rule. The proposed algorithm has been

evaluated thoroughly on real world security data sets collected using an automated tool

developed at Huddersfield University. The security application which we have considered in this

thesis is about categorizing websites based on their features to legitimate or fake which is a

typical binary classification problem. Also, experimental results on a number of UCI data sets

have been conducted and the measures used for evaluation is the classification accuracy, memory

usage, and others. The results show that LC algorithm outperformed traditional classification

algorithms such as C4.5, PART and Naïve Bayes as well as known classification based

association algorithms like CBA with respect to classification accuracy, memory usage, and

execution time on most data sets we consider.

3

Table of Contents

Abstract ... 2

List of Figures ... 10

List of Tables ... 12

Dedications and Acknowledgements .. 14

List of abbreviations .. 15

Chapter 1 ... 17

Introduction ... 17

1.1 Motivation ... 17

1.2 Main Aim of the Thesis .. 20

1.3 Issues Addressed in the Thesis ... 21

1.3.1 Issue 1: An Associative Classification Algorithm for Emails and Website

Prediction ... 21

1.3.2 Issue 2: Efficiency of Rule Discovery Phase .. 21

1.3.3 Issue 3: Enhancing Prediction Procedure of Test Data ... 22

1.3.4 Issue 4: Rule Sorting Criteria .. 23

1.3.5 Experimental Study Comparing Data Mining Approaches on UCI 24

1.4 Outline of Thesis ... 24

Chapter 2 ... 26

Literature Review .. 26

2.1 Introduction ... 26

4

2.2 Classification Technique in Data Mining ... 27

2.2.1 The Classification Problem ... 28

2.2.2 Classification Example .. 29

 ... 30

2.3 Common Classification Techniques ... 30

2.3.1 Simple One Rule ... 30

2.3.2 Decision Trees ... 31

2.3.3 ID3 Algorithm ... 32

2.3.4 C4.5 Algorithm .. 33

2.3.5 Statistical Approach (Naïve Bayes) .. 34

2.3.6 Rule Induction and Covering Approaches .. 35

2.3.7 Prism ... 37

2.3.8 Hybrid Approach (PART) ... 38

2.4 Issues in Classification ... 39

2.4.1 Over fitting .. 39

2.4.2 Inductive Bias .. 40

2.5 Association Rule Mining .. 40

2.5.1 Problem Solving Strategy .. 42

2.5.2 Association Rules Mining Approaches ... 43

2.6 Associative Classification Mining .. 49

2.6.1 Working of Associative Classification .. 50

2.6.2 Associative Classification Problem ... 52

2.6.3 AC and ARM Main Differences ... 53

2.6.4 Association Classification Data Layouts ... 55

2.7 Associative Classification Algorithms ... 56

2.7.1 Classification Based on Associations (CBA 2) ... 56

2.7.2 Classification Based on Multiple Association Rules (CMAR) 57

5

2.7.3 Classification Based on Predictive Association Rules (CPAR) 58

2.7.4 Gain Based Association Rule Mining (GARC) .. 58

2.7.5 Multi-Class Classification Based on Association rule (MCAR) 59

2.7.6 Multi-class, Multi-label Associative Classification (MMAC) 62

2.7.7 Class Based Associative Classification ... 63

2.7.8 Associative Classification Based on Closed Frequent Itemsets (ACCF) 63

2.7.9 Boosting Association Rules (BCAR) ... 64

2.7.10 Association Classification based on Compactness of Rules (ACCR) 64

2.7.11 Improved Classification Based on Predictive Association Rules 65

2.7.12 Hierarchical Multi-Label AC using Negative Rules (HMAC) 66

2.7.13 Probabilistic CBA .. 67

2.7.14 AREM: A Novel Associative Regression Model Based On EM Algorithm 68

2.7.15 Prefix Stream Tree (PST) for Associative Classification. 68

2.8 Use of AC algorithms in Medical Diagnosis and Recommender System 69

2.8.1 Use of Associative Classification and Genetic Algorithm in Heart Disease

Prediction ... 69

2.8.2 Artificial Immune System for Associative Classification 70

2.8.3 Using Associative Classification for Treatment Response Prediction 70

2.8.4 Fuzzy Associative Classification Approach for Recommender Systems................ 71

2.9 Current Pruning Methods ... 72

2.9.1 Database Coverage .. 73

2.9.2 Redundant Rule Pruning ... 74

2.9.3 Pessimistic Error Estimation ... 74

2.9.4 Lazy Pruning ... 75

2.9.5 Laplace Accuracy .. 76

2.9.6 Boosting Weak Association Rules .. 77

2.9.7 I-Prune ... 77

6

2.9.8 PCBA Based Pruning .. 78

2.10 Current Prediction Methods in Associative Classification ... 79

2.10.1 Single Accurate Rule Prediction .. 79

2.10.2 Group of Rules Prediction .. 80

2.11 Phishing in Websites and Emails .. 81

2.11.1 What is Phishing ... 82

2.12 Common Approaches to Detect Phishing ... 84

2.12.1 Pilfer Approach .. 85

2.12.2 Machine Learning Approaches to Detect Phishing .. 86

2.12.3 Bayesian Additive Regression Trees (BART) ... 86

2.12.4 Multi-tier Classification of Phishing Websites and Emails 87

2.12.5 Hybrid Features using Information Gain .. 88

2.12.6 BoosTexter ... 89

2.12.7 Phishing Evolving Clustering Method (PECM) ... 89

2.12.8 Data Mining Classification Methods .. 90

2.12.9 Detecting Phishing Websites Using Associative Classification 91

2.12.10 Phishing Detection Taxonomy for Mobile Device .. 91

2.12.11 Anti-Phishing Prevention Technique (APPT) ... 92

2.12.12 Automated Detection of Phishing using Classification Scheme and Feature

Selection …………………………………………………………………………………..93

2.12.13 Rouge DHCP-Enabled LAN Used in Phishing Attacks 93

2.13 Summary ... 94

Chapter 3 ... 96

Classification Based on Association Rule (CBA) ... 96

3.1 Introduction ... 96

3.2 CBA-RG Basic Concepts ... 97

7

3.3 CBA-CB Basic Steps .. 98

3.4 Summary of the Chapter ... 102

Chapter 4 ... 103

Looking at the Class Associative Classification Algorithm (LC) ... 103

4.1 Introduction ... 103

4.2 Main Differences of LC and CBA Algorithms... 104

4.3 The Development of New AC Algorithm .. 105

4.3.1 The Proposed Rule Discovery Algorithm ... 106

4.3.2 Classifier Construction .. 113

4.3.3 Rule Sorting ... 113

4.3.4 Pruning of Rules .. 114

4.3.5 Prediction Method of LC ... 116

4.4 Experimental Environment Setup ... 118

4.4.1 Data Sets Used in Experiments ... 118

4.4.2 Experimental Parameters and Setup .. 119

4.5 Experimental Results and Discussion ... 119

 ... 129

4.6 Summary of Chapter ... 129

Chapter 5 ... 131

Phishing Data Collection Model and Implementation of LC and other Algorithms 131

5.1 Introduction ... 131

5.2 Features Selection for Experiments .. 131

5.2.1 Phishing Data Sources, How and Why Features are Selected 132

5.3 The Model for Extraction and Evaluation of Chosen Features 133

8

5.3.1 Abnormal Based Features ... 134

5.3.2 Address Bar Based Features .. 135

5.3.3 HTML and JavaScript Based Features .. 136

5.3.4 Domain Based Features ... 137

5.4 Experimental Setup and Data Sets Used .. 138

5.5 Experimental Results and Discussion ... 138

5.6 Summary of the Chapter ... 147

Chapter 6 ... 149

Critical Analysis of the Experimental Results .. 149

6.1 Reduction in the Number of merging of itemsets in LC and its Impact on the Execution

time and Memory Usage ... 149

6.2 Total Number of CARs Generated Before and After Pruning 150

6.3 Analysis of the Prediction Accuracy Measure .. 152

6.4 Summary of the Chapter ... 154

Chapter 7 ... 155

Conclusions and Future Directions ... 155

7.1 Conclusions ... 155

7.1.1 Issue 1: An Associative Classification Algorithm for Emails and Website Prediction

 ... 156

7.1.2 Issue 2: Efficiency of Training Phase of AC .. 157

7.1.3 Issue 3 & 4: Prediction Based on Group of Rules and Rule Ranking 157

7.1.4 Issue 5: Experimental Study on UCI and Phishing Data Sets 158

7.2 Future Directions ... 158

7.2.1 Phishing in Mobile Applications ... 158

7.2.2 Distributed Learning in AC ... 159

9

7.2.3 Noise in Source Databases .. 160

Appendix A ... 162

Bibliography .. 171

10

List of Figures

Figure 2.1 Classification as two-step process in data mining ... 28

Figure 2.2 Main Steps of an associative classification algorithm ... 51

Figure 2.3 MCAR algorithm ... 60

Figure 2.4 MCAR classifier builder algorithm .. 61

Figure 2.5 Rule discovery algorithm of MCAR .. 61

Figure 3.1 Frequent itemset generation step in CBA algorithm .. 97

Figure 3.2 Building a classifier in CBA algorithm ... 98

Figure 3.3 Rule ranking steps in CBA .. 99

Figure 4.1 Frequent itemset generation step in LC algorithm ... 107

Figure 4.2 Generate candidate ruleitems function and support count calculation in LC algorithm.

 ... 108

Figure 4.3 Rule ranking in LC algorithm .. 114

Figure 4.4 Classifier building in LC algorithm (database coverage pruning method) 115

Figure 4.5 Prediction method in LC .. 117

Figure 5.1 Feature extraction and phishing detection model .. 133

Figure 5.2 No. of merging for all iterations of address bar feature data set of LC and CBA 140

Figure 5.3 Total number of itemsets merging of phishing data sets ... 140

Figure 5.4 No. of candidate rules generated for LC and CBA for domain base feature data set 143

Figure 5.5 No. of candidate rules generated for LC and CBA for Abnormal base features 143

Figure 5.6 No. of candidate rules generated for LC and CBA for HTML base feature data set . 144

file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034007
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034008
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034009
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034010
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034011
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034012
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034013
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034014
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034014
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034015
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034016
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034017
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034018
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034019
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034020
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034021
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034022
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034023

11

Figure 5.7 Sample for no. of rules generated in C4.5 algorithm for Abnormal base data set 145

Figure 5.8 Sample for no. of rules Generated in PART algorithm for HTML and Java Script Base

Features data set .. 145

Figure 5.9 Sample for no. of rules Generated in PART for Abnormal Base data set 145

Figure 5.10 Sample for no. of rules Generated in C4.5 HTML and Java Script Base Features data

set from WEKA ... 145

Figure 5.11 Comparison of prediction accuracy in (%) of LC, CBA, PART, C4.5 and Naïve

Bayes algorithms ... 146

file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034024
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034025
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034025
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034026
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034027
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034027
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034028
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034028

12

List of Tables

Table 2.1: Lenses data set (UCI machine learning repository) ... 29

Table 2.2 : Test data to advice type of lens ... 30

Table 2.3: Training data .. 54

Table 2.4: Vertical data layout -tid-list ... 55

Table 2.5: Horizontal data layout .. 55

Table 2.6: Summary of AC algorithms ... 95

Table 3.1: Training data .. 99

Table 3.2: Rule discovery in CBA .. 100

Table 3.3 : Ranked rules .. 101

Table 3.4: Data for testing ... 101

Table 4.1: Main differences between LC and CBA algorithms .. 105

Table 4.2: Training data .. 109

Table 4.3 : LC candidate 1-ruleitems .. 109

Table 4.4: LC candidate 1-ruleitems when minority rule is applied ... 109

Table 4.5: LC frequent 1-ruleitems ... 110

Table 4.6: LC candidate-2 ruleitems ... 110

Table 4.7: Frequent 1-itemsets lkproduced by CBA ... 111

Table 4.8: CBA candidate-2 itemsets .. 111

Table 4.9: Frequent rule itemsets at each iteration with support and confidence counts 112

Table 4.10: UCI data sets used in experiments ... 118

Table 4.11: The number of itemsets joining of LC and CBA algorithms 121

Table 4.12: Execution time (milliseconds) of LC and CBA algorithms 122

file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034029
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034030
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034031
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034032
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034033
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034034
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034035
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034036
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034037
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034038
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534327
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534325
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534326
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534328
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534329
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534330
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534331
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534332
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534334
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534335

13

Table 4.13: Physical, paged and virtual memory (bytes) used by CBA and LC algorithms 123

Table 4.14: LC and CBA number of CARS and rules generated after pruning, using

minSupp=5% and minconf =40% ... 124

Table 4.15: LC and CBA number of rules generated after ... 126

Table 4.16: Comparisons between LC, CBA and C4.5 for prediction accuracy 127

Table 4.17: Comparison of single vs group of rule prediction accuracy 129

Table 5.1: Comparison of number of merging for the security data sets using minsupp =5% and

minconf = 40% .. 139

Table 5.2: Comparisons of number of CARs and candidate rules generated for LC and CBA .. 142

Table 5.3: Number of rules in classifier of AC and classification algorithms 144

Table 5.4: Number of correctly classified instances for security data sets for AC and

classification algorithms .. 147

file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534336
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534337
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534337
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534338
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534339
file:///C:/Users/Mah/Desktop/MODIFIED%20CHAPTERS/Second_modified_version.docx%23_Toc386534340
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034152
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034152
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034154
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034155
file:///C:/Users/Mah/Desktop/Second_modified_version.docx%23_Toc389034155

14

Dedications and Acknowledgements

First of all, I would like to dedicate this research to my ALLAH, whose mercy, blessings and

grace has led me to this important moment of my life.

I would like to express my special thanks to my supervisors Dr Fadi Thabtah and Professor

Lee McCluskey for their encouragement, patience, support and guidance throughout this

research project.

Many many thanks to my father who is always an inspiration for me and mother for her

prayers, ongoing support and advice, and my wife, who has been supportive towards me during

this period of life.

Special thanks to my friends especially, Munir, Umair, Misbah, Bilal and Ahsan for their

support. And many thanks to all my brothers who encouraged me and were supportive during the

PhD study.

15

List of abbreviations

AC Associative Classification

AUC Area under the ORC curve

ADT Association based Decision Tree

AREM Associative Classification Regression Model based on EM Algorithm

BART Bayesian Additive Regression Trees

CAEP Classification by Aggregating Emerging Patterns

CART Classification and Regression Trees

CAR Class Association Rule

CBA Classification based on Association Rule

CMAR Classification based on Multiple Class-Association Rules

CPAR Classification based on Predictive Association Rules

DIC Dynamic Itemset Counting

DHP Direct Hashing and Pruning

EP Emerging Patten

ECMC Evolving Clustering method for Classification

FP Frequent Pattern

IREP Incremental Reduced Error Pruning

L
3

Live and Let Live

LB Large Bayes

LR Logistic Regression

MCAR Multi-class Classification based on Association Rule

MCMC Markov chain Monte Carlo

MMAC Multi-class, Multi-label Associative Classification

OneR One Rule

16

PECM Phishing Evolving Clustering Method

PST Prefix Stream Tree

REP Reduced Error Pruning

RF Random Forest

RIPPER Repeated Incremental Pruning to Produce Error Reduction

RMR Ranked Multi-label Rule

TF/IDF Frequent inverse document frequency

17

Chapter 1

Introduction

1.1 Motivation

Storage capabilities have developed tremendously in the past years, hundreds and thousands of

files can be saved in a micro memory card. This innovation has tempted and made it feasible for

small and large organizations to keep a record of minute details about their customers, like

Tesco, ASDA and Morrison’s, etc. in retail market businesses and banks and financial

institutions. The transactions of the daily sales in a retail store are often called the market basket

data (Agrawal, 1993). The retail stores collect and store the daily purchases and information of

all customers. Finding the correlations between the items purchased by the customers and the

features of the customers in different geographical areas can be very useful in deciding the

marketing strategy and launching targeted promotions.

Assume a planning and marketing department in a retail business organization decided to

introduce a store card for their customers. Applications are collected and decisions have to be

made for each customer, whether to issue a store card and how much credit limit would be

recommended for each customer. The decision from the management of the store needs to take

into account the shopping frequency of the customer, geographical area where he lives, and the

total amount of purchases in a period of time. These associations can be extracted from the data

by the application of data mining approaches.

Another example is a medical organization that keeps the record of all the patients with

different diseases and symptoms. The information is very beneficial when the associations are

extracted between different symptoms. The extracted information is used to narrow down the

possibility of a patient’s disease by entering all the symptoms of a new patient in an automated

system. For instance, the data contain a large number of entries with ‘fever’ and ‘shivering’

referring to the possibility of a malarial disease.

An example of associations in a retail supermarket could be assumed as “80% of the

customers who have bought a smart phone also have purchased a screen protector”, and “60% of

the customers who have purchased milk will likely to buy bread as well”. For example the

18

percentage of transactions containing “smart phone and screen protector” is 3%, and the total

transactions of “milk with bread” are 10% in the transactional database. The customers who will

buy ‘smart phone’ or ‘milk’ are the antecedent of an association rule and ‘screen protector’ or

‘bread’ is the consequent of the rule. The confidence of a rule represents its strength and in the

example above “80% “means that if 100 customers have purchased a smart phone, 80 of them

have also bought screen protector. The confidence for the other rule is 60%, whereas “3%” and

“10%” represent a significant statistical measure known as support of the rules.

In the real world classification data such as medical diagnoses or market basket analysis,

the problem is to discover rules from the data set of historical transactions. The rules generated

must have significant support and confidence (frequencies of attribute values above user’s

thresholds denoted as minimum support and minimum confidence). A subset of the produced

rules is selected to build a model that is able to predict the outcome of the new set of attributes in

a database or previously unseen data. The approach that uses association rules to build-up

classification systems (classifiers) is known as associative classification (AC) (Li et al., 2001),

(Hao et al., 2009), (Sangsuriyu et al., 2010), (Lucas et al., 2012), (Jiang and Karyros, 2012) and

(Jabbar et al., 2012).

The AC approaches tend to explore all the linkages or the associations between the

values of the attributes (items) and their relative classes in the data set and produce classifiers.

The classifiers generated by AC algorithms are usually more accurate with respect to

classification accuracy than classic rule based classification approaches like decision trees

(Quinlan, 1979) and which tend to generate relatively small size classifiers. The AC approaches

have made inroads in extracting such knowledge that is missed by traditional classification

methods and have also improved the accuracy rate of different applications.

AC is beneficial in many applications and some of them are described in the above

sections like decisions to issue store card, medical diagnosis and making a decision to supply

utility supply. It also includes the fraud detections in insurance and credit cards for financial

institutions, text categorization and especially in detection of phishing in emails. Likewise the

decision of the potential disease according to the patient’s symptoms, a decision to assign a

journal or a description in text to one or more possible categories can also be done by AC

mining. There are large numbers of journals in a digital library and assigning them to their

specific category is a time consuming and tedious task when done by humans. But the process of

19

assigning journals to particular category or categories becomes very efficient and convenient

when a classifier is set in the automated system.

The process of producing the complete set of rules needs substantial CPU time as it

requires many data set scans and itemsets joining during the training phase (Baralis, et al., 2004;

Li et al., 2001). Hence it is very important to use a fast and effective method for rule discovery

that can improve the training time and memory usage. The classical AC techniques like CBA

(Liu et al., 1998) and CBA (2) (Liu et al., 1999) may not be able to deal with the increase in the

database size and the dimensions of the datasets, meaning adding more attribute columns in the

data base. These techniques produce many rules and the process of rule generation can be

complex and exhaustive, because these consider all the attribute values while joining them.

Therefore it is essential to derive the rules that will be used in the prediction process in

reasonable time and at the same time using less memory resources, to help decision makers to

plan without waiting.

 Use of AC approaches or techniques are used successfully in real world applications in

the recent years like heart disease prediction (Jabbar et al., 2012), based on the data collected

from the patients response for treatment of Hepatitis C, (Enas et al., 2012) has implemented a

predictive system by using AC approaches and also successful application of AC in artificial

immune systems is done by (Samir, 2012).

Phishing is currently an interesting research topic for the authorities dealing with the

money transfer on the web. Researchers are trying to explore the possible nature of the phishing

attacks by using different intelligent classification and other traditional techniques that are based

on human experience. Now, since classification using association rule is proven to be effective

and accurate classification approach in data mining according to several research studies (Tang

and Liao, 2007), (Li et al., 2008), (Hao et al., 2009), (Sangsuriyun et al., 2010), (Jabbar et al.,

2012), (Samir, 2012) and (Enas et al., 2012). We believe that there is a need to develop and

implement an AC technique that will explore the associations in security data based on websites

and emails features in order to alarm end-user of possible phishing attacks. The AC algorithms

have shown excellent predictive accuracy in detecting phishing in websites as compared with

other classification techniques and this fact is also studied by (Aburrous et al., 2010) and (Al

Ajlouni et al., 2013). The use of AC to detect phishing in websites is relatively latest research

and the main motivation in the thesis to develop an AC algorithm that is fast and effective and

can be used in prediction the phishing websites accurately.

20

In this thesis, an effective and efficient AC algorithm is proposed for extracting useful

knowledge missed by classic rules based classification algorithms for the problem of emails and

websites categorization. This is since the proposed algorithm considers efficiently all possible

correlations between the websites features and the class in the data set. The proposed algorithm

improves upon a known AC algorithm called CBA in three main steps to handle appropriately

the problem of websites features prediction:

The training step: Unlike CBA algorithm which employs Apriori (Agrawal, 1993) candidate

generation function that works by repeatedly merging disjoint candidate itemsets without

considering the class attribute to discover the rules. The proposed algorithm significantly

improves the training phase of CBA by reducing the number of itemsets and as a consequence

training time as well as memory allocation gets minimized. This has been accomplished by

looking at class of candidate disjoint itemsets before merging them and using the minority rule.

Building the classifier phase: The proposed algorithm implements a new ranking method based

on the confidence, support, and cardinality, different for the method used by CBA of confidence

, support and the order of rule generated. The pruning phase of our algorithm uses the same

method of database coverage.

Predicting test data: Unlike the majority of current AC algorithms that use one single rule from

the classifier to assign class to test cases. The proposed algorithm makes use of group of rules to

make the class assignment of test data. This surely improves upon the classification accuracy of

the classifiers produced by the proposed algorithm over other AC algorithms since more rules

are cooperating in making the prediction.

1.2 Main Aim of the Thesis

The main aim of the thesis is to contruct an effective and efficient novel AC algorithm

based on the CBA with specific focus on improving the rule generation, rule ranking and

prediction phases and effectively applying this novel AC algorithm on the extracted features

based on some set of rules from the large pool of phishing and legitimate websites, so to

efficiently detect and predict the outcome of the new website features whether it is a phishing

website or legitimate.

21

Considering all the features in experimental study would be a complex problem, the aim

is to select some set of features from the phishing and legitimate websites and extract them by

applying some rules. The selected features are then divided into four groups of data sets naming

Abnormal Based features, Address Base features, HTML Base features and Domain based

features. The classification accuracy of the phishing datasets will be studied and discussed in

detail when novel LC algorithm and other AC and classification algorithms are applied.

1.3 Issues Addressed in the Thesis

To achieve the aims of the thesis different issues related to AC mining and the feature selection

from the websites are addressed that include the efficiency of the training phase, building the

classifier, the prediction phase and the applicability of AC on real world applications such as

phishing. These issues will be highlighted here and will be discussed in details in this thesis.

1.3.1 Issue 1: An Associative Classification Algorithm for Emails and Website

Prediction

In this thesis we deal with the problem of automatically categorizing websites and emails to their

relevant types based on different features collected and assessed by the proposed AC algorithm.

Mainly, the proposed algorithm is developed mainly to successfully allocate the appropriate type

of the website based on features related to fake and accurate websites in automated manner. We

have developed within the LC algorithm three methods described in the following subsections

that have enhanced the primarily the efficiency and the accuracy of the classifiers generated by

the LC algorithm when contrasted with known AC and traditional classification algorithms. In

other words, we showed the applicability of AC classification as an approach on effectively

predict the type of emails and websites in two contexts: classification accuracy and efficiency.

Finally, we conducted experiments to extract the useful and important features from the world

phishing websites data. Then we compared AC methods as well as traditional classification

techniques performance on these data sets to reveal the efficiency and accuracy of LC algorithm.

1.3.2 Issue 2: Efficiency of Rule Discovery Phase

22

The data used in classification problems is large, and therefore the number of candidate ruleitems

generated also known as potentially frequent ruleitems in each iteration is relatively very large. It

is computationally expensive to mine this highly correlated data using AC techniques. To

generate the frequent ruleitems it is really essential to have such an algorithm that executes

quickly and able to generate rules with minimum use of memory space. Many of the current AC

approaches like CBA have adopted the Apriori (Agrawal and Srikant, 1994) candidate discovery

step inherited from association rule mining to extract frequent ruleitems. In our thesis “candidate

itemset” and “frequent itemset” terms are used when talking about association rule terms like

“candidate ruleitems” and “frequent ruleitems” are used when we mention AC. The discovery

of frequent itemsets in Apriori from a transactional data set is achieved in steps, where frequent

itemsets discovered in the nth iteration are used to generate potentially frequent itemsets, also

known as candidate itemsets at (n+1)th iteration. During the process of each iteration a database

scan is necessary to calculate the support and confidence counts of the newly produced candidate

itemsets.

Similar to the association rule mining approaches, AC techniques also adopted the

concept of Apriori candidate generation function to extract the frequent ruleitems. We enhance

the process of finding frequent ruleitems by only considering frequent ruleitems that share

common class in the merging process. We also implemented a minority rule method that

eliminates all the ruleitems that are associated with the minority classes and keeps the ruleitem

with majority class, if a ruleitem is found linked with more than single class. This substantially

minimizes the number of frequent ruleitems produced at the end of rule generation phase,

reduces the number of rules in the classifier after pruning phase, and also decreases the training

time and reduces memory use.

1.3.3 Issue 3: Enhancing Prediction Procedure of Test Data

Predicting test data is considered one of the most vital steps in classification data mining. Most

of the current AC algorithms predict test cases using single based rule which is the top ranked

rule in the classifier that relate to the test case. However, there could be more than one rules that

may related to the test case ignoring an important fact, which make the prediction decision by

current AC algorithms doubtful. Our proposed algorithm takes into account all related rules in

the classifier to the test case during the prediction phase in which these rules get categorised into

23

groups based on their class labels. Then, the average confidences for all rules belonging to the

same group are computed and the class that belong to the largest average confidence group gets

allocated to the test case. This prediction method ensures that all related rules participate in the

class assignment decision.

The classifier by evaluating the candidate rules produced at the training phase against the

training data set and only keeping rules that have certain training instances coverage. The

process of evaluating each candidate rule on the training data set necessitate that the candidate

rule body must exactly match at least one of the training instance. This process of removing rules

is carried out in pruning phase thus leading to the improvement in prediction accuracy.

1.3.4 Issue 4: Rule Sorting Criteria

The rules ranking have a significant impact on the prediction step where the top ranked rules are

used very frequently to classify test objects. The priority of the rule is usually determined

according to several factors such as the support, confidence and the length of a rule (cardinality).

In AC, normally a very small support is used and since classification data sets are dense, the

expected number of rules with identical support, confidence and cardinality is high.

 For example, for “balance-scale” database taken from (Weka, 2000) while keeping

minsupp of 5% and minconf of 40% using the CBA algorithm (Liu, et al., 1998), the classifier

have produced 15 rules, having same support values and the top 4 having same confidence value,

CBA is not able to discriminate between which rules to select. Furthermore, the 15 rules

discovered by CBA also have the same length. So it is harder for CBA to rank them.

 A more detailed rule ranking technique as compared to CBA’s rule ranking approach is

introduced in the LC algorithms that by looking into class frequencies in the training data set

associated with the tie rules, and selects the rule associated with the largest class frequency. The

proposed rule ranking approach provides a more detailed mechanism of favouring one rule on

another during constructing the classifier. This ranking method is also a useful tool since it

minimises the use of randomisation in rule selection, and therefore it may positively impact the

classification accuracy of the resulting rule set.

24

1.3.5 Experimental Study Comparing Data Mining Approaches on UCI

Many experiments have been conducted while comparing a wide range of classification

approaches like decision trees, statistical approaches and AC on different binary and multi-class

benchmark problems. We have based our comparisons on accuracy of classification, merging of

itemsets during each iteration, execution times and number of rules.

1.4 Outline of Thesis

The thesis comprises of 6 chapters. Chapter 2 describes the data mining with introduction, types

of data mining and definitions that will be used in this thesis. Discusses research works

performed in association rule and classification techniques in data mining where detailed

descriptions of algorithms are given. Chapter 2 also focuses on demonstrating many AC

techniques in data mining. It includes the methods used by AC algorithms to produce frequent

ruleitems, discusses the generation of rules, rule sorting and pruning methods and methods for

the classifier building and the prediction processes. Chapter 2 also includes the literature review

on phishing and use of AC mining in Phishing. Chapter 3 demonstrates the steps and the process

of CBA algorithm in detail. The purpose is to explain for the comparison purposes the

modifications in CBA algorithm. Chapter 4 introduces the “Looking at the Class (LC)

algorithm” for construction of the frequent ruleitems to produce better and efficient classifiers.

This chapter presents a fast and effective method to discover frequent ruleitems from databases

and demonstrates by experiments its effectiveness and efficiency in terms of number of

candidate ruleitems merging and execution time. It and also studies the impact on the

performance in terms of accuracy using a number of well-known data sets from UCI. This

chapter also proposes new methods for rule ranking and prediction.

Chapter 5 includes the current emerging real world problem called phishing. The main

challenge of extracting the useful features is addressed in this chapter. The chapter also

demonstrates in detail the methods and criteria used in the selection of features from the large

matrix of phishing data and formulate the rules to classify the data. In this chapter, a detail

analysis of experiments conducted on the extracted data using the new AC algorithm and

comparison on the performance with well-known classification and AC algorithms are conducted

25

with respect to several evaluation measures. Critical analysis of the experimental results is

discussed in detail in Chapter 6. Chapter 7 summarises the major achievements and findings in

the thesis, draws the general conclusions and recommends further research directions.

26

Chapter 2

Literature Review

2.1 Introduction

This chapter is divided mainly into three parts. The first part of the chapter consists of detailed

review of two data mining tasks of classification and association rule mining. The differences

between these two approaches are highlighted and the benchmark algorithms are discussed in

detail for both classification and association rule mining. In the second part of the chapter, third

data mining approach which is the combination of both association and classification rule

mining, known as associative classification will be presented and lastly in the third part a very

important and critical problem of phishing in websites will be discussed in detail. The first part

of the chapter demonstrates the classification problem followed by a focus on the classification

approaches and will conclude by comparing the research work done in each technique. The

benchmark and well known classification approaches such as decision trees (Quinlan, 1986;

Quinlan, 1988; Quinlan, 1993; Blackmore and Bossomaier, 2002), Naïve Bayes (Duda and Hart,

1973) and rule induction (Furnkranz, 1999) will be reviewed. The importance of the above

techniques discussion is significant as some of them will be used in the comparative analysis of

the experimental results in chapter 4 and 5. In the latter half of this part of the chapter the

association rule mining technique will be discussed. The association rule mining problem will be

presented with the explanation of famous and pioneer rule discovery approaches such as Apriori

(Agrawal and Srikant, 1994). This algorithm will be discussed in details because the proposed

work has used the basic concept of Apriori rule generation process. The other AR algorithms like

FP-growth (Han, et al., 2000), partitioning (Brin, et al., 1997) and others will also be discussed.

The main purpose of the discussion is to understand the tasks in classification and rule

generation process in Association rule mining before the third type of data mining technique of

Associative classification(AC) is discussed.

The discussion in the second part of the chapter will be organized as, a demonstration of

AC general working, the AC problem and detailed review of related work published will be

surveyed. The use of AC algorithms in real world applications like heart disease prediction

27

(Jabber et al., 2012), treatment response data in patients of Hepatitis-C (Enas et al., 2012) and

artificial immune system (Samir, 2012) will be discussed. Different pruning methods and the

current prediction approaches used in AC will be compared and explained in some detail in this

part of the chapter.

In the third part of the chapter a very important information security problem called

phishing will be introduced. The selection of this important real world problem is due to a fact

that the number of web users are increasing in volumes and so as the phishing attacks. An

increase of 59% in phishing attack volumes is reported in 2012 than 2011 and globally the losses

due to phishing are estimated at $1.5 billion in 2012 an increase of 22% than 2011(RSA’s

Report, 2013). The literature is reviewed with emphasis on the use of AC approaches in

detecting phishing and different methods been used to extract the features from websites and

emails will be discussed in detail.

2.2 Classification Technique in Data Mining

The purpose of classification techniques is to generate rules from a set of training data that

contains a set of class labels, and then the model or the set of rules will be used in the prediction

of test data while performance metric of accuracy is calculated. Hence the classification is a two

stage process as described in Figure 2.1. In the first phase rules are generated by a learning

process performed by an algorithm on the training data set. The second phase is the testing of the

extracted rules in the first step; these are applied on the test data to predict the outcome of the

values in the test data instance.

In classification different approaches for knowledge extraction from a database can be

grouped into rule induction separate and conquer (Furnkranz, 1999), divide and conquer

(Quinlan, 1987a), statistical approaches (Duda and Hart, 1973; Meretakis and Wüthrich, 1999)

and covering (Cendrowska, 1987).

The rule induction approach also known as separate and conquer approach, works by

generating rules in a greedy manner, extracting rules one by one. When a rule is found, the

process of checking how many instances this rules covers in the training data set is initiated. The

instances covered by that rule are then removed from the training data set. The process is

continued until the best rule with a large error rate is found. The other approach of divide and

http://portal.acm.org/results.cfm?query=author%3AP28392&querydisp=author%3ABeat%20W%26%23252%3Bthrich&coll=GUIDE&dl=GUIDE&CFID=37120124&CFTOKEN=32033989

28

conquer selects a root node at the top level by using information gain (Quinlan, 1979). The root

node contains an attribute from the training data set. The training data set is then split into many

subsets depending on the possible values of the attribute selected. The process is iterated until all

attributes that are linked in one branch represents the same class or the remaining data entry

values are not able to add or split any more. Naïve Bayes is a statistical approach in which all the

classes’ probabilities are calculated in the training database. The probabilities are based on the

occurrence of associations between the attribute values and used to classify the test data. The rest

of the techniques like covering algorithms pick up all the classes present in the data set one by

one. In order to extract highly accurate rules, the approaches tries to find a way of covering the

maximum number of training instances of that class.

Figure 2.1 Classification as two-step process in data mining

The survey of the classification techniques such as PART (Frank and Witten, 1998), decision

trees (Quinlan, 1986; Quinlan, 1993; Quinlan, 1998), Prism (Cendrowska, 1987), RIPPER

(Cohen, 1995), and will discuss significance regarding their characteristics and different issues in

depth in the next sections.

2.2.1 The Classification Problem

A classification problem is defined as: let ‘D’ denote the data table and ‘C’ as the set of classes

present in the table. Each record Dd  has an outcome in the form of a class Cc . The main

aim is to find a set of rules known as classifier cdz : that is able to reduce the chances that z

(d)  c for a new test data instance (d, c).

29

2.2.2 Classification Example

Table 2.1 contains a ‘Lenses’ data set taken from UCI machine learning repository. Depending

upon any attribute values of the following attributes: age of patient, spectacle prescription,

astigmatic and tear production rate, the data set ‘Lenses’ is classified into three classes like soft,

none and hard. It would be difficult for an optician or eye specialist to advise the type of lens

while looking at the data in the above table or a bigger data set. But when the machine learning

approaches are applied on the above data, few simple rules are generated that are easy to

understand. These rules generated will help any system or the opticians to make their decision

such as to advise a new patient about the type of lens. The test data in the Table 2.2 will be

classified with the rules generated by classification approaches.

Table 2.1: Lenses data set (UCI machine learning repository)

Age of the Patient Spectacle

Prescription

Astigmatic Tear Production

rate

Class of Lens

young myope no reduced none

young myope no normal soft

young myope yes reduced none

young myope yes normal hard

young hypermetrope no reduced none

young hypermetrope no normal soft

young hypermetrope yes reduced none

young hypermetrope yes normal hard

pre-presbyopic myope no reduced none

pre-presbyopic myope no normal soft

pre-presbyopic myope yes reduced none

pre-presbyopic myope yes normal hard

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope no normal soft

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic myope yes normal hard

30

Table 2.2 : Test data to advice type of lens

Age of the Patient
Spectacle

Prescription
Astigmatic Tear Production rate Class of Lens

young myope yes normal ?

young hypermetrope no normal ?

pre-presbyopic myope yes reduced ?

presbyopic myope yes normal ?

2.3 Common Classification Techniques

2.3.1 Simple One Rule

One rule (OneR) proposed by(Holte, 1993), is a straightforward and cheapest classification

approach in which one-level decision tree is constructed and rules are generated from the training

records that are linked with frequent classes. The algorithm checks all the existing attributes in

the training database and also loops among all different values of each attribute. It then calculates

the occurrence of the attribute value in focus with the class value then extracts the frequent class

and marks it as a candidate rule. It will count the error rate in classifying the test instances of

each rule and stores the rule that have the lesser error rate. The process of finding the association

of class with the attribute values continues until no rules left with a desirable error rate.

The challenges of real-valued attributes and missing values are faced by classification

approaches (Quinlan, 1988), (Witten and Frank, 2000). The problem of missing values is solved

by OneR, by considering them as any other current attribute value. The challenge of real-valued

attributes is solved by changing them into categorical values by the use of discretisation method

and lastly for the categorical attributes the algorithm OneR maps all possible value into a

positive integer set. The research results in (Holte, 1993) have shown that in many of the

classification problems, OneR performs well and finds classifiers with reasonable accuracy.

31

2.3.2 Decision Trees

A very well-known and mostly discussed technique for classification and then used for

prediction is decision trees (Quinlan, 1979, 1986, 1998). This approach can be understood by an

intellectual’s game of asking some number of questions to guess or identify the place, thing, a

personality, or an event from the history or present. Questions are asked in such a fashion that

one question is linked and related to the previous question asked. The game starts when one

person thinks of any famous thing. A group of intellectual people asks about 15 to 20 questions

to reveal the identity of that thing. The series of questions in the above game are represented by

decision tree where outcome of one question set up the next question to be asked.

To build a decision tree, from the instance of a data set the attribute is entered in the root

node and branches are built for each attribute values that are linked to the root node attribute.

This recursive process is continuously applied until all the instances in node have the same class

or there is no further room to split the tree (Quinlan, 1979).

When the tree is built, the path from the root node to the end nodes, that is leaf nodes, is

termed as a rule. The conditions or antecedent of a rule is the path from the top root node to the

leaf node and the consequent of each path is a class attribute value which is assigned by leaf

node. The most critical task in this approach is to select a candidate attribute to split or separate

the data, because selection affects the class distributions in the branches.

 Pruning methods are used to remove the rules that are redundant and unnecessary and as

a result of this process, the simpler and easy to understand rules are kept. The tree built in the

above process will be pruned either by doing sub-tree replacement or sub-tree rising (Quinlan,

1993) .In the sub-tree replacement substitution is carried out of leaf nodes with sub-trees and in

sub-tree rising the nodes that are higher in the tree are replaced. Both these techniques are known

as post-pruning techniques (Witten and Frank, 2000). Another pruning method is also very

effective; firstly it calculates the error rate of the leaf and internal nodes, and then it compares the

error rates of the replaced leaves (Quinlan, 1987b). Decision tree algorithms like ID3 and C4.5

will be discussed in the following section.

32

2.3.3 ID3 Algorithm

The first decision tree algorithm introduced is ID3 by (Quinlan, 1979). It uses an information

gain measure to decide which attribute value should go in the root node. ID3 picks a root node

attribute from the available attributes in the training database. As we know that this selection has

very crucial impact on the distribution of the classes, so the aim is to select an attribute for the

root node with the best information gain value. After the selection is made by the algorithm of

the root node, the recursive process of selecting the best attribute in the remaining child nodes

continues until the rest of the training data cannot be split further (Utgoff, 1989). A decision tree

is constructed after the above process corresponds to an attribute at each node and the arcs

contain the attribute’s value. Thus the links in the tree starting from the root node to any leaf

node refers to rules.

The information gain information that was used to make a decision regarding placing an

attribute in the root node, is also helpful in predicting the class that can or should be assigned to

the unclassified test instance.

The attribute which contains the maximum information is selected. The information in an

attribute is measured by using Entropy. Give a training data objects D of R rules,

Entropy (D) = jj PP 2log (2.1)

where
jP is the probability that D belongs to class j. The information gain of a set of data objects

on attribute X is defined as

Information Gain (D, X) = Entropy(D) -  ((|Da| / | D|) * Entropy (Da)) (2.2)

Where the sum is over each value a of all possible values of attribute X, Da = subset of D for

which attribute X has value a, |Da| = number of data objects in Da , |D| = number of data objects

in D.

A training database D is considered in Table 2.1, which represents ‘Lenses’ information , with

three class labels none, soft and hard, D consists of 24 data objects where 15 are associated with

class ‘none’, 4 with class ‘hard’ and 5 with class ‘soft’.

Entropy (T) = - (15/24) 2log (15/24) - (5/24) 2log (5/24) - (4/24) 2log (4/24) = 0.940.

33

To calculate the information gain value of attribute Age of the Patient, which contains three

attributes values “young” (8/24), “pre-presbyopic” (8/24) and “presbyopic” (8/24).

Gain (T, Age of the patient)=Entropy (T) - (8/24)*Entropy(T(young)+(8/24)*Entropy(T(pre-

presbyopic))+ (8/24)*Entropy(T(presbyopic))

The missing attributes should be handled in the ID3 by making some modifications to the

algorithm. As the decision tree takes into consideration all the training data attributed values it

may produce long paths. Hence pruning is performed to generate a small subset of rules. The

extension of the ID3 is done by applying different pruning methods like substituting the sub-tree

by the leaf node. The substitution is carried out when the expected error rate in the sub tree is

more than the leaf node.

2.3.4 C4.5 Algorithm

C4.5 is a decision tree algorithm that was proposed by Quinlan (Quinlan, 1993), that generates

rules from data set. C4.5 is a modification of the ID3 algorithm discussed in the section above

2.3.3. The C4.5 algorithm just like ID3 also uses the information gain measure to determine the

root attribute. We will explain in detail in the following section, how C4.5 builds a decision tree.

Let the training data set shown in Table 2.1, the algorithm will determine the Entropy for all the

four attributes, Age of the Patient, Spectacle Prescription, Astigmatic and Tear Production rate is

calculated and one is selected as the root. The process of selection continues in the same fashion

for the rest of the attributes. C4.5 also handles the missing values by using the probabilities of

the different values representing an attribute. The total numbers of missing values of an attribute

are calculated and this value is distributed among the different values of an attribute based on

their probabilities, in order to keep the uniformity.

As we know that ID3 used sub-tree replacement to perform the pruning. The modification

is made in C4.5 in that it uses two pruning methods like pessimistic error rate and sub-tree

replacement (Quinlan, 1987b; Breiman, et al., 1984), to simplify the DT. Sub-tree replacement is

explained in the above section 2.3.2. Pessimistic error rate pruning was introduced by (Quinlan,

1987b). The rules are read directly from the constructed decision tree. The rule contains node

and arc values as the antecedent and the frequent value in leaf node is taken as the consequent. A

34

new rule can be formed i.e., R by removing some conditions from R . If the error rate of R is

lower than R on the training data set then R is replaced by R .

2.3.5 Statistical Approach (Naïve Bayes)

Statistical approach uses all the attributes in the training data set to predict the outcome. This

approach works unlike the One Rule Algorithm described in section 2.3.1, which finds a best

attribute from the training data set which is then used for prediction. The best known statistical

algorithm is Naïve Bayes proposed by (Duda and Hart, 1973), it calculates each class probability

for an attribute using the combined probabilities of all attribute values of that data object. The

algorithm makes an assumption that the conditional probabilities, of the different attributes with

the same class, are independent of each other. Thus same weight is given to the training

attributes during the calculation of the probabilities with a class. Naïve Bayes algorithm has

proven to work well in several experimental studies (Lewis, 1998b; Meretakis and Wüthrich, B,

1999; Friedman, et al., 1997, Dong, at al., 1999).

A training data set is considered in Table 2.1, which describes the patient prescription of

a lens. The Naïve Bayes algorithm works by calculating the probabilistic values. The attribute

value frequencies in the training data for the age of the patient attribute, we found 8 occurrences

of “young” of which 4 instances are associated with class “none”, 2 instances are associated with

class “soft” and remaining 2 are with “hard” class from the values in Table 2.1. The probabilistic

measure value of each attribute is used to estimate the likelihood.

When a new instance has to be classified of Table 2.2, the probabilistic values of each

attribute will be used to predict the likelihood of a class, to be assigned to the test instance.

Considering the first test instance from Table 2.2, which contains the values: young, myope, yes

and normal, the likelihood of the possible classes is calculated as follow:

Likelihood for class (none) = 4/15 * 7/15 * 8/15 * 3/15 = 0.01327 = 2.42%

Likelihood for class (soft) = 2/5 * 2/5 * 0/5 * 5/5 = 0.16 = 29.18%

Likelihood for class (hard) = 2/4 * 3/4 * 4/4 * 4/4 = 0.375 = 68.40%

From the example above the likelihood for class “hard” is larger than that of class “soft”, and

class “none” and so the test instance shown in Table 2.2 is assigned to class “ hard”.

http://portal.acm.org/results.cfm?query=author%3AP28392&querydisp=author%3ABeat%20W%26%23252%3Bthrich&coll=GUIDE&dl=GUIDE&CFID=37120124&CFTOKEN=32033989

35

 There is one problem in Naïve Bayes algorithm; if an attribute value never occurred for

any of the classes in the training data set then the final probability value of an attribute with that

class will be zero. A method called Laplace estimator method by (Snedecor and Cochran, 1989)

is one solution that adds 1 in the numerator and 3 in the denominator. Another solution is applied

by a minute addition to the Naïve Bayes method, a small number say ‘n’ to the numerator and

n/3 to the denominator (Witten and Frank, 2000).

2.3.6 Rule Induction and Covering Approaches

2.3.6.1 Incremental Reduced Error Pruning (IREP)

Incremental Reduced Error Pruning (IREP) technique was proposed by (Furnkranz and Widmer,

1994). It combines the separate and conquer approach with the Reduced Error pruning (REP).

REP is an effective method that prunes and generates a set of rules. The errors are estimated at

all nodes of the tree by keeping the chunk of training data as a test data that is independent. The

process works by estimating the misclassification rate of the test data at each node and is

compared with the error if the concerned node is exchanged with the resultant majority class.

While replacing the node if the error is reduced, pruning of the sub tree is carried out. This

computational and pruning process is performed repeatedly for each node until there is no

reduction in error at each node.

IREP works in greedy manner to generate some rules; two sets of data are constructed by

random partitioning the training data. One set is growing which contains 66.6% and the rest of

training data is considered as pruning set. IREP starts with an empty rule; a rule condition

containing the attribute value is added using a Foil-gain metric (Quinlan and Cameron-Jones,

1993). The algorithm appends those conditions to the current rule continuously that increases the

Foil-gain value until that rule is not able to cover any data from the growing set. When the rule is

constructed, the algorithm then picks one rule from the generated rules and prunes it backwards.

From the selected rule IREP deletes one condition and selects that deletion which showed

improvement in the function below:

 MP

mMp
MPmrprrulev






)(
),,_,_,(

 (2.3)

36

where MP, represents the total number of data instances in the pruning set and mrpr _,_ are

the total number of data instances that are predicted by the pruned rule. The pruning process will

be continued until a deletion in the rule condition does not improve the value of ‘v’.

The pruned rules are placed in the classifier and the data instances that are linked with it

are deleted from both the sets. An empirical study was performed on some benchmark problems

which showed that REP is slower than IREP and both are competitive when compared on the

basis of error rate (Furnkranz and Widmer, 1994). When compared with C4.5 algorithm, IREP

performed well on 16 data sets and showed less error rate, whereas IREP is out performed by

C4.5 on 21 data sets.

2.3.6.2 Repeated Incremental Pruning to Produce Error Reduction

RIPPER is a modified version of the IREP algorithm and was proposed by Cohen (Cohen, 1995).

RIPPER builds the set of rules called classifier as follows: firstly it divides the training data set

like IREP into two parts, a pruning and a growing set. The process starts by an empty rule set

and the algorithm appends heuristically one condition at a time till no error is found on the

growing set.

The modification in IREP will be explained in this section. One modification is the

introduction of revised stopping condition when the rules are generated. In IREP a stopping

condition is used that checks the error rate of a learned rule and stops adding rules, when error

rate exceeds 50% on the pruned data. This criterion seems to stop too early, if an application

domain contains a large number of low coverage rules. RIPPER uses a minimum description

length principle (MDL) to stop adding a rule (Rissanen, 1985). When the rule is added the

complete description length of the training and the rule data sets is calculated. If the description

length is greater than the shortest description length extracted so far, the algorithm will not add

any more rules. This technique of MDL considers the best set of rules that reduces the size of the

classifier (set of rules) and also minimizes the quantity of information needed to handle the

exceptions relating to these set of rules (Witten and Frank, 2000).

Another modification in IREP algorithm is the procedure that optimizes and reduces the

number of rules discovered by pruning the discovered rule set. It means that this process is

applied after the first pruning phase, so known as post-pruning. So the classifier produced by

37

IREP is again processed through an optimization phase, to further simplify the rule set

characteristics.

The RIPPER integrates the IREP and optimization procedures. The working is as

follows: A pruned rule ipr is selected from the rule set and two alternative rules such as

replacement and revision of ipr are built. To create the replacement of ipr , an empty rule


ipr is

constructed and pruned to decrease the error rate of the rule set including


ipr

on the pruning

data set. And the revision of ipr

is built in the same fashion but the rule is constructed

heuristically and one condition is added at one time to the actual ipr

instead of the empty rule.

The rule with the minimum error rate is selected from these three rules when analysed on the

pruning data.

A comparative study is conducted on 36 benchmark data sets (Merz and Murphy, 1996)

to estimate prediction accuracy of C4.5, IREP and RIPPER algorithms. The results have revealed

that C4.5 has shown less error rates on 15 data sets while RIPPER has demonstrated better

values than C4.5 on 20 data sets. On the other hand RIPPER has achieved better results when

compared with IREP on 28 data sets.

2.3.7 Prism

Prism is categorized as a covering algorithm to generate classification rules and was proposed by

(Cendrowska, 1987). This approach considers one class from the training data and finds a

method to cover all the records to that class and the data instances which do not belong to that

class are excluded. To achieve the maximum accuracy of the created rules, this approach

appends one attribute value to the current rule. At each step, the algorithm selects the condition

that increases the probability of the desired classification. The process of rule construction

continues until the stopping condition is met. Once a rule is constructed, the algorithm stops

building the rules for the current class when all the data associated with the current selected class

is covered. After this process another class is selected and so on.

The rules generated by prism are nearly perfect (0% error rate). The main advantage of

Prism is that it can add a rule in the generated rule set with no impact on the current rules, when

compared with decision tree. On the contrary in a decision tree when a rule or a path to the tree

38

has to be added, it requires changing of the complete tree structure (Witten and Frank, 2000).

When an instance has to be classified, decision tree uses rules from the tree directly unlike in

Prism due to independence of rules, problems may occur when an instance is linked with more

than one rule having different classes.

A study was conducted to investigate the e-learning systems while using classification

algorithms to produce set of predicting rules for courseware authors in (Romero, et al., 2005).

The findings from 50 log files for students have shown that Prism has successfully extracted

more accurate rules when compared with ID3.

2.3.8 Hybrid Approach (PART)

PART is a hybrid approach introduced by (Frank and Witten, 1998). Unlike RIPPER and C4.5

approaches that work in two phases, PART produces rules all in one go while avoiding extensive

pruning. PART joins both the approaches of divide-and-conquer as in C4.5 and separate-and-

conquer as in RIPPER to explore and generate the rules. It constructs a partial decision tree by

using divide-and-conquer approach, from the rules generated by separate-and-conquer approach.

The PART algorithm avoids building a full decision tree but instead it constructs and prunes a

partial decision tree like C4.5. While handling of missing values and pruning approaches remain

same as C4.5. PART is different from RIPPER in the pattern of generate rules; each rule in

PART refers to the leaf that has the largest coverage in the partial decision tree. On the contrary

RIPPER constructs the rule in a greedy fashion, beginning from an empty rule and appends

conditions until the rule does not show any error.

The results are gathered from the experimental studied conducted on PART, RIPPER and

C4.5 using data sets from (Merz and Murphy, 1996) and have been written in (Frank and Witten,

1998). The results have shown that simplicity of PART has not affected its performance. The set

of rules generated are more accurate than RIPPER though they are lengthy, and are also more

accurate than C4.5.

When the comparative study was conducted between PART and C5 (Quinlan, 1998)

using missing persons profiling data (Henderson, et al., 2000). The experimental analyses have

indicated the resemblance in features and accuracy of the rules generated by PART and C5 using

Weka software system (Weka, 2000).

39

2.4 Issues in Classification

2.4.1 Over fitting

There are many issues in classification and over fitting is one of them; as the training segment

goes on too lengthy with the aim of reducing the error rate to zero, then the general performance

of the outcome classifier on test data objects may depreciate. That is called general explanation

of the over fitting problem, which can happen due to many reasons like restricted number of

training data objects or noise among the training objects (Jensen and Cohen, 2000; Freitas,

2000). In decision tree algorithms for example, it is always possible to create a highly precise

decision tree for the training data, but, during the construction of the tree it is generally helpful to

stop the building process near the beginning in order to simplify the performance of the result on

test data objects. For that reason, pruning approaches like pre-pruning and post-pruning

(Breiman, et al., 1984; Quinlan, 1993) have been extensively used during building decision trees

to keep away from fitting the training data very well and to give precise performance on test

data.

There are many methods exercised to stay away from the problem of overfitting in the

classification literature, which includes cross validation (Witten and Frank, 2000) and MDL

principle (Rissanen, 1985). Cross validation is a well-recognized evaluation approach in data

mining. Cross validation is generally employed when the amount of data for mining is small. In

cross validation, the training data set is separated at random into n blocks, every block is held out

once, and the classifier is trained on the remaining n-1 blocks; after that its error rate is

calculated on the holdout block. Therefore, the learning procedure is executed n times on to

some extent different training data sets. When there is enough data, for user then user simply

divide the data into two sets, these are training and test. User can discover the classifier from the

training set and calculate its quality on the test set.

In the end, the MDL principle has been used in decision trees to stop the progress of the

growth of the tree. Overall, over fitting is believed to be one of the reasons why classification

task in data mining is so difficult (Jensen and Cohen, 2000).

40

2.4.2 Inductive Bias

Given a training data set, the classification task may be seen as suggest hypotheses (classification

rules) from the set of accessible training data objects. Inductive bias can be described as a set of

assumptions that lead to the selection of hypothesises (Liu, et al., 2002). With no inductive

biases the classification techniques would not be able to help one rule over other ones. In

addition, all rules when taken collectively will predict that all data objects are evenly likely, and

subsequently cannot supply a basis for prediction.

Classification algorithms are capable to generalise their performance on test data objects

by inductive biases because they have contained assumptions of favouring one rule over another.

For example, a decision tree algorithms like ID3 (Quinlan, 1979) and C5 (Quinlan 1998) have an

obvious bias in their searching for the best attribute decision node, which is, the attribute

selection technique based on information gain. Besides, these algorithms help smaller valuable

sub-trees over difficult ones by using backward pruning. Probabilistic classification algorithms

like Naïve Bayes calculate the probability for every one class in the training data set utilizing

joint probabilities of attribute values for a data object. While inductive bias in Naïve Bayes

algorithm stands for the assumption that the provisional probability of a data object given a class

is independent of the probabilities of other data objects given the same class (Liu, et al., 2002).

At last, because classification algorithms have a bias, the outcomes precision depends a

lot on the training data quality. (Freitas, 2000) Just to point out if someone is saying that

algorithm X is more accurate than algorithm Y, it is only because of the application domain

utilized for the experiment.

2.5 Association Rule Mining

Since 1993 association rule mining introduced by (Agrawal, et al., 1993) is a significant research

domain in the machine learning and data mining community. In data mining Association rule

mining (ARM) is a very important task which tends to find correlation among the attribute

values in a data set. A classic example for association rule mining is a super market basket data,

the business community needs to know the shopping trends of the customers (Agrawal and

Srikant, 1994). In association rule mining approach, one tries to explore the association between

41

the shopping basket items of all the customers. For example, in supermarket transactions, if a

customer buys a mobile then what is the probability that he will buy a mobile cover as well? Or

if a customer buy a ‘crisps’ what are the chances that he will buy a ‘dip sauce’? And if a

customer buys ‘bread’ what is the probability that he will buy a ‘jam’ or ‘butter’? When the

business decision makers have the knowledge of association between the frequent sold items, the

answer of all the above questions would be much easier. In short the life becomes easy for

experts to make strategic decision of buying products, shelving, planning, to launch promotions

and advertising. Besides the supermarket example Association rule mining is also helpful in

exploring the information in telesales and marketing (Mackinnon and Glick, 1999) , mail

ordering (Agrawal and Srikant, 1994) and also in the commerce industry (Pramudiono, et al.,

2002).

In association rule mining the task of finding the rules can be described (Agrawal, 1993) in the

following points:

Let a data set ‘D’ contain the transactions of sales in a super market, and ITEMS = {item1, item2,

item3, item4, item5………,itemn} is the complete set of items present in the data set ‘D’. Any

transaction ‘T’ in ‘D’ that have any number of non-empty items called an itemset, in such a way

that T  ITEMS.

An item support is calculated as the total number of occurrence of that item in ‘D’ to the total

number of transactions in the data set ‘D.

An itemset containing two or more items, support is calculated as the total number of occurrence

of that itemset in ‘D’ to the total number of transactions in the data set ‘D.

An Association rule can be described as 1 ii itemitem
, where 1, ii itemitem

 ITEMS and

 1ii itemitem
.

The association rule confidence can be defined as or calculated as the proportion of the

transactions that contains 1iitem also have iitem , so to find confidence

)(support/)(1 iii itemitemitem  .

In the association rule approach, inputs of support and confidence values known as minimum

support “minsupp” and minimum confidence “minconf” are defined by the users and the problem

is to extract or find all the rules (combination of different number of items) that have the higher

values than the thresholds of minsupp and minconf. As we know that ARM is a unsupervised

42

learning and only itemsets are used to compute the confidence and support values, in contrary to

the AC algorithms which considers the class labels with the itemsets to calculate those values in

question.

2.5.1 Problem Solving Strategy

The generation of association rules from market basket transactional data set can be divided into

two stages as in (Agrawal and Srikant, 1994).

Stage 1: The itemsets that are produced with higher support values than minsupp are known as

frequent itemsets and the rest of the itemsets will be termed as not frequent or infrequent.

Stage 2: All the frequent itemsets from above stage 1 will be passed through a check of minconf

value. Those frequent itemsets that have higher value than minconf are kept as rules. rules.

The first stage of exploring the frequent itemsets, is comparatively more core and tougher

problem than the second stage, and requires exhaustive computation and memory (storage)

(Cheung, et al., 1997; Lin and Dunham, 1998; Zaki, et al., 1997; Lim, et al., 2000). We will

analyse an example from the same sales records data from a supermarket, suppose that data

contains 1050 distinct items; we can image a combination explosion of 2
1050

possible associations

of distinct itemsets, many of them might not be frequent in the next step. We will find only a

little subset of frequent itemsets from this huge set of candidate itemsets. This is an extensive

research area and many scientists have keenly investigated this problem of exploring frequent

itemsets in the past many years. The main aim of the researchers is to improve the efficiency

(Bayardo and Agrawal, 1999; Liu, et al., 1999; Li, et al., 1999; Zaki, 2000; Baralis, et al., 2004)

in the process of generating frequent itemsets.

In the second stage, the rule generation from the set of explored frequent itemsets is

relatively easy process and quiet straight forward, given their support values are already known

(Han, et al., 2000).

The first association rule mining algorithm is proposed by (Agrawal and Srikant, 1994) is

Apriori. The rule discovery process in Apriori is achieved in levels; in the first level the database

is scanned and Apriori calculates each item support count and checks whether the support count

is greater than the minsupp value. All the items that pass the minsupp value are called frequent 1-

items. In the second level the associations or combination of frequent 1-items found in the 1
st

43

level are carried out with the disjoint frequent 1-items. Apriori works by decreasing the number

of candidate items or itemsets at each subsequent level by using a property called as “downward

closure”. It is defined as if an itemset has support value greater than the minsupp threshold, then

all its subsets have support value greater than minsupp threshold. So it infers that the subset of

the frequent itemset will also be frequent and on the contrary the superset of an infrequent

itemset is also infrequent. By the introduction of this “downward-closure” property, the numbers

of potential itemsets are reduced significantly at each level and thus enhancing the efficiency of

the frequent itemset generation process. Many of the algorithms in association rule mining

proposed after Apriori uses this “downward-closure” approach.

Approaches that use Apriori have performed efficiently and accurately where the size of

the data set is small or the candidate itemsets are less (Liu, et al., 1999; Park et al., 1995).

However where the support value is kept low, the number of possible itemsets generated may be

huge. Multiple scans over the data set is needed to calculate the itemsets support values at each

level of the process, and that leads to a significant computational overhead in respect of

execution time and the use of memory. As we all know that the data is being collected on daily

basis, all the organizations aim to improve their services to get good profits. As the data is

growing, to extract and evaluate this data is also becoming computationally expensive. So the

main focal point is to minimize the complexity and our research is aiming for that bit to improve

the efficiency in terms of run time without affecting the performance when the data sets are

large.

To address the shortcomings in Apriori, different ARM techniques have been introduced

like Dynamic Itemset Counting (Brin, et al., 1997), multiple-minimum-support (Liu, et al.,

1999), Frequent Pattern Growth (Li, et al., 2000) etc. Some of the approaches will be reviewed

and discussed that have achieved some significant improvements in the frequent itemset

generation step.

2.5.2 Association Rules Mining Approaches

2.5.2.1 Apriori

Apriori is proposed by (Agrawal and Srikant, 1994), and as was discussed earlier that the

algorithm works in steps and in each iteration it generates frequent itemsets taking into account

44

the prior knowledge of the frequent itemsets generated in the previous step. In the discovery

process of frequent itemsets “downward-closure” property is used by Apriori. In each iteration, a

complete pass over the training data set is done to extract new candidate itemsets from the

frequent itemsets found in the previous step.

Apriori starts by taking an input of training data set and explores all candidate items in

the data set and those who pass the minsupp threshold are stored as frequent 1-items. The

algorithm generates the candidate Cn itemsets from merging the frequent 1-items (Fn-1) with

frequent 1-items (Fn-1). Aripori calculates the support counts of all the itemsets found in the

previous step. Then it checks whether the support counts of the candidate itemsets generated are

greater than the minsupp value. The itemsets that passes this filter will be called frequent 2-

itemsets. The algorithm continues to generate candidate and frequent itemsets, and terminates

when no more frequent itemsets are found. It will combine all the frequent itemsets found in all

the iterations.

2.5.2.2 Dynamic Itemset Counting

Researches always desire for the speedy generation of frequent itemsets, so to increase this

process a new ARM algorithm is proposed known as Dynamic Itemset Counting (DIC) by (Brin,

et al., 1997). The database is split into many partitions by DIC and each partition is marked with

a start point. The support counts of all the itemsets generated so far are determined and addition

of new candidate itemsets is done dynamically as soon as their subsets become frequent. The

major difference between Apriori and DIC is that DIC begins to generate rest of the candidate

items based on the candidate item that have just reached the minsupp value and not waiting for

the scan to complete, unlike Apriori. DIC constructs a prefix-tree to generate the dynamic

candidate itemets. DIC is sensitive to homogenous data and if the data set is highly correlated.

The experimental findings have shown that DIC is 30% faster than Apriori using

synthetic data while keeping minsupp to 0.5% and synthetic data. And on the census data DIC

performed with excellence than Apriori by 36%. The itemsets generated in census data sets are

very large, and needs long training time when the support threshold is lowered for both DIC and

Apriori.

45

2.5.2.3 Frequent Pattern Growth

It is an Apriori like technique and needs a high execution time and space in main memory to

discover all the frequent itemsets. A new ARM technique known as FP-growth (Han, et al.,

2000) is introduced that constructs a very condense tree for transactional database known as

frequent pattern tree (FP-tree). One path in the tree corresponds to one transaction in the database

and the size of the path is the total number of frequent items in the record (transaction).The FP-

tree can be seen as a useful structure as there is a lot of sharing between the frequent itemsets and

the FP-tree includes all the frequent itemsets present in each transaction of database, thus the FP-

tree is smaller in volume than the main database. The construction of FP-tree is done in the

second scan after the frequent itemsets are produced with their support values in the first scan.

Unlike Apriori there is no candidate rule generated in FP-growth algorithm during the

mining process. The major drawback in FP-method is seen when the FP-tree constructed is

dimensionally large and not able to fit in the main memory.

The comparisons between Apriori and FP-growth regarding performance on two data sets

having 10000 records have shown that FP-growth is faster than Apriori as the candidate sets that

Apriori must maintain becomes very huge. The searching process to update candidate support

counts is also very costly for Apriori at all levels.

2.5.2.4 Partitioning

This ARM approach reduces the I/O time by decreasing the frequency of database scan to two is

been introduced by (Savasere, et al., 1995). The algorithm splits the database into small portions

such that each portion can be accommodated in main memory so that the frequent item

generation will be local. It uses Apriori during the first scan and constructs a tid-list for all

itemsets in the current portion. The algorithm conducts a union process in the second pass on

frequent itemsets discovered locally in each portion to generate frequent itemsets for all data set.

The main disadvantage of this approach is that it divides the data uniformly into equal partitions,

if the occurrence of an itemset is evenly distributed in each partition then this approach will

produce majority of frequent itemets in the second scan, but in case when the distribution of

itemsets are not evenly distributed in all the portions or partitions then in the second pass

46

majority of the itemsets produced are infrequent and thus causing a significant overhead for I/O

(Lin and Dunham, 2000). For the large data sets when the number of partitions is more in

number, the size of local frequent itemsets also increases leading to redundant generation and

more time needed for the computation, especially when frequent items are present in more than

one partitions (Zaki, et al., 1997).

The performance analysis between partitioning algorithm and Apriori has shown that

processing time for both increases when the support count value is decreased for 6 market basket

data sets (Agrawal and Srikant, 1994). When different sizes of partitions are used for 6

benchmark data sets the decrease in execution time is seen for low number of partitions.

2.5.2.5 Direct Hashing and Pruning

Generally, the execution time of the ARM is mainly dependent on the speed of producing the

frequent itemsets in the early stages of rule discovery phase, i.e., in first and second

iterations.frequent-1 and frequent-2 itemsets. The findings of (Agrawal and Srikant, 1994) have

revealed that the time taken to generate candidate itemsets in the initial stages has the major

chunk towards computational cost. It is obvious that if the frequent itemsets are large in 1
st

iteration, the number of candidate itemsets in 2
nd

 iteration will also be large. So the main focus is

to decrease the number of the candidate itemsets at initial scans that may lead to substantial

reduction of execution time and use of memory. Direct Hashing and Pruning (DHP), was

introduced by (Park, et al., 1995) that is based on hash-based technique to decrease the number

of candidate itemsets at the intial stages.

The working of DHP is described as follow: It builds a hash tree, H1 to discover frequent

1-itemsets during database scan. If an item is present in the hash table and found during the scan

then its count is incremented else the item is assigned count 1 in the hash table. After all the 1-

itemsets are calculated for the database, a new hash table H2 is constructed that contains the all 2-

itemsets. We can get candidate 2-itemsets from hash table H2 after the database scan.

The process of pruning involves the removal and reduction of some of the transactions

from the data base. In DHP support is set to prune the itemsets, e.g., in H1 candiate-1 items, t =

ACDEF with occurances count of 3, 2,1,4,3. If the support is set to ‘3’, the frequent 1-itemset

will only contain the three items in t = {A, E, F}, having values greater than minsupp are kept

while {C, D} items will be removed from t.

47

Experiment results have shown that DHP minimizes CPU time in the 2
nd

 iteration, but it

also has shown reduction in execution time in the later cycles (Park, et al., 1995). The processing

time of DHP in the second iteration to discover candidate 2-itemsets is less than of Apriori. But

the CPU time is higher than Apriori in the first iteration as DHP needs time to build the hash

table.

2.5.2.6 Multiple Support Apriori

The number of rules produced is controlled by a constraint of support (Zaki, 2000; Bayardo and

Agrawal, 1999; Agrawal, et al., 1993). Most of the ARM algorithms consider single support

value. Setting the support value to a low value generates large amount of useless rules (Liu, et

al., 1999, Li, et al., 1999) and changing the support value to high leads to non-selection of some

important rules.

To tackle the problems as mentioned above, an Apriori like algorithm is build known as

MSapriori, which takes into account different support values for every item in the data set. This

has given users the flexibility to express themselves and has given option to select support

according to different nature of data. The support value of a specific rule in MSapriori is the

lowest minsupp value between the items in that rule. The generate function of MSapriori is same

as Apriori’s.

A study against the real data from (Agrawal and Srikant, 1994) has shown that MSapriori

produced less number of candidate itemsets as compared to Apriori, however the processing time

for both algorithms are the almost the same.

2.5.2.7 Confidence-Based Approach

Another approach proposed by (Li et al., 1999) that does make use of the support threshold and

only mines the rules with high confidence. For a dataset, the user sets an itemset target, and this

shows the consequent of the desired outcome. All association rules are found keeping in view of

the target that is consequent. The process of exploring high confidence rules is divided into two

parts. In step 1, database is split into two halves, first half contains all the records with the target

itemset T1, and the other half contains the remaining transactions, T2. Then the technique

48

removes all the transactions in T1 and T2 with the target item. The remaining set of items left in

the original database D , are reduced to D = D – target (item).

The discovery of all the itemsets, X, is carried out in step 2 of those which are present in

T1 but are not present in T2, and rules like tgX  are generated. These kinds of itemsets that

have support value of zero in T2 but contains some support in T1 are called Jumping Emerging

Patterns (JEP). For the discovery of JEP like items authors of (Li, et al., 1999) inherited two

border methods from (Dong, 1999). The method of first border explores the data set and

discovers itemsets with some support value, called horizontal borders. The second border

method will take two horizontal borders as an input and produce all itemsets with support zero

and non-zero for one and the other.

The studies have shown that the high confidence rules extracted by this approach cannot

be found by traditional approaches of association rules. But the itemsets generated are much

higher than the actual data set.

2.5.2.8 Tid-list Intersection

One of the efforts made to reduce the execution time is by (Zaki, et al., 1997), an Eclat algorithm

is build that uses a vertical layout to keep data scans to one. The question is addressed whether it

is possible to generate all the frequent itemsets in a single pass over the data; Eclat used a tid-

lists intersection approach instead of a complex data structure.

An extension in Eclat algorithm is proposed by (Zaki and Gouda, 2003) known as dEclat.

It introduced a new approach of diffset that reduced the memory needed to store the transactions

identifiers (tids). A vertical layout is used to keep the differnces in tids of a candidate itemset

from its generating frequent itemsets. The new diffset approach does not keep the complete tids

of each itemset instead it keeps the differences among class and its member itemsets.

Results are generated on synthetic and real world data (Zaki and Gouda, 2003) and have

shown that vertical approaches like dEclat and Eclat performed better than horizontal approached

like Apriori and FP-growth in reference to memory use and execution time. On dense data, Eclat

is outperformed by dEclat, and on sparse databases the volume of the data stored in dEclat grows

at a faster rate as compared to Eclat. The conclusion of the author is to begin with tidlist and then

49

change to diffset for sparse databases and to start with diffset in case of dense data sets for better

results.

2.6 Associative Classification Mining

As learned from the review in the first part of the this chapter that classification and Association

rule mining are playing a significant role in problem solving and decision making in the real

world. The difference between these two tasks classification and ARM is that former tends to

predict class labels in a database and later finds the correlation between the attributes of the

database. In 90’s (Ali et al., 1997) and (Liu et al., 1998) combined these two tasks to build

classifiers with very encouraging results. This new phenomenon is known as Associative

classification (AC). The findings of the several researches AREM (Jiang and Karyris, 2012),

Fuzzy AC (Lucas et al, 2012), (Niu et al., 2009; Li et al., 2008; Thabtah, et al., 2005; Yin and

Han, 2003; Liu et al., 1998, 2001) have concluded that AC approaches build more accurate

classifiers than the previously known classification methods as rule induction (Cohen, 1995,

Quinlan and Cameron-Jones, 1993;), decision trees (Quinlan, 1998; Quinlan, 1993), and

probabilistic (Duda and Hart, 1973) approaches.

Rule induction approaches like ++IREP (Oliver et al., 2003), RIPPER (Cohen, 1995) and

IREP (Furnkranz and Widmer, 1994) produce local and human readable set of frequent rules in a

greedy way. In the discovery process of the locally derived rule, all the instances related to the

rule in the training data are eliminated and this process continues until the error rate is

unacceptable. In the rule induction techniques rules are derived from the chunks or partitions of

the training database instead of considering full training dataset. A statistical FOIL gain metric

measure is used in the above rule induction algorithms, the rule having highest foil-gain metric

measure is selected and rules with the highest value are placed at the top of the classifier. A good

example is the IREP rule induction algorithm that selects the rule on the basis of Foil-gain value

(Quinlan and Cameron-Jones, 1993) and then the rule is inserted at the top of the classifier. In

comparison to rule induction approaches, associative classification aims to extract a more global

classifier while using full set of training data. Generally, when a classifier is built using AC, a

set of frequent ruleitems called Class Association Rules (CARs) are discovered from a training

database and based on some methods, a small subset is selected from these large number of

CARs to produce a classifier. The production of the classifier is accomplished by different

50

approaches in number of ways, such as in CAAR (Xu, et al., 2004), L
3
 (Baralis and Torino,

2000) and CBA (Liu, et al., 1998) algorithms, selection of these set of rules is carried out by

examining and evaluation the full set of CARs on the training database and only those rules are

considered that cover at least one training database object. On the contrary, CPAR algorithm

chooses a classifier in a greedy manner. The predictive accuracy of the classifier produced is

evaluated on test data object to predict the class label.

Several AC algorithms are been introduced in the past decade, such as ARM (Jiang and

Karyris, 2012), Fuzzy AC (Lucas et al., 2012), PST (Lakshmi, 2012) and use of AC techniques

in applications like heart disease prediction (Jabbar et al., 2012), hepatitis-C treatment response (

Enas et al, 2012), in artificial immune system (Samir , 2012), CBAR (Niu et al., 2009), ACCF

(Li et al., 2008), BCAR (Yoon and Lee, 2008), ACN (Kundu et al., 2008), MCAR (Thabtah et

al., 2005), CACA (Tang and Liao, 2007), 2-PS (Qian et al.,2005), MMAC (Thabtah et al., 2004),

CAAR (Xu, et al., 2004), L
3
 (Baralis et al., 2004), Negative-Rules (Antonie and Zaïane, 2004),

CPAR (Yin and Han, 2003), ARC-AC (Antonie and Zaïane, 2002), CMAR (Li et al., 2001) and

CBA (Liu et al., 1998), and The above mentioned algorithms use different techniques to find,

rank, store, prune and predict rules and predict the outcome of a new test case.

The discussion in the chapter will be organized as, a demonstration of AC general

working in Section 2.6.1. The AC problem and detailed review of related work published will be

surveyed in Section 2.6.2. Different pruning methods will be explored in Section 2.6.3, the

current prediction approaches used in AC will be compared in Section 2.6.4. And finally, the

chapter summary is given in Section 2.6.6.

2.6.1 Working of Associative Classification

AC is a supervised learning method where the outcome or the prediction of a set of attribute

values in a dataset is ‘classes’. AC is the combination of two main data mining tasks; association

and classification. First step in AC rule mining is the extraction of set of rules by using any of

association rule mining algorithm. These set of rules do satisfy user defined input thresholds for

minimum support and confidence (minconf). The rules generated are very large in quantity and

many of them are either redundant or noisy. In the second phase of the AC mining task, pruning

methods are applied to reduce the amount of rules by eliminating the noisy and redundant rules

51

from a set of frequent ruleitems. The remaining sets of rules are called classifier and are used in

predicting the outcome of the new data.

2.6.1.1 Main Steps in Associative Classification

The procedure of constructing a classifier involves many steps in AC as demonstrated in Figure

2.1 and can be summarized as follows:

i) The Candidate ruleitems discovery process.

ii) Extraction of all Frequent ruleitems from the Candidate ruleitems that passes the

minimum support threshold value.

iii) The rules with values higher than minimum confidence threshold value are

selected.

iv) Ranking and pruning methods are applied on all generated frequent ruleitems in

order to finalize a set of rules called a classifier.

v) The final step in AC is to evaluate the goodness (accuracy) of the classifier, by

applying prediction approaches on the test data.

Figure 2.2 Main Steps of an associative classification algorithm

Training

dataset

Candidate

ruleitems

Frequent

ruleitems

Rules

 Test

dataset

Classifier

Discover

Candidate

Discover

FrequentRuleItem

s (based on

MinSupp)

Generation of CARs

(based on MinConf)

Rule Ranking

& Pruning

 Prediction

52

2.6.2 Associative Classification Problem

AC is a special case of association rule mining in which only the class attribute is considered in

the rule’s consequent (Liu et al., 1998), for example in a rule such as YX  , Y must be a class

attribute. The AC problem is summarized from (Thabtah, et al., 2004) as follows: A training

dataset T has m distinct attributes A1, A2, … , Am and C is a list of class labels. The number of

rows in T is denoted |T|. Attributes could be categorical (meaning they take a value from a finite

set of possible values) or continuous (where they are real or integer). In the case of categorical

attributes, all possible values are mapped to a set of positive integers. For continuous attributes, a

discretization method is first used to transform these attributes into categorical ones.

Definition 1: A row or a training object in T can be described as a combination of attribute

names Ai and values aij, plus a class denoted by cj.

Definition 2: An item can be described as an attribute name Ai and a value ai, denoted < (Ai,

ai)>.

Definition 3: An itemset can be described as a set of disjoint attribute values contained in a

training object, denoted < (Ai1, ai1)… (Aik, aik)>.

Definition 4: A ruleitem r is of the form <itemset, c>, where cεC is the class.

Definition 5: The actual occurrence (actoccr) of a ruleitem r in T is the number of rows in T that

match the itemset of r.

Definition 6: The support count (suppcount) of ruleitem r is the number of rows in T that match

r’s itemsets, and belong to the class c of r.

Definition 7: The occurrence of an itemset i (occitm) in T is the number of rows in T that match

i.

Definition 8: An itemset i passes the minsupp threshold if (occitm(i)/|T|) ≥ minsupp.

Definition 9: A ruleitem r passes the minsupp threshold if (suppcount(r)/|T|) ≥ minsupp.

Definition 10: A ruleitem r passes the minconf threshold if (suppcount(r)/actoccr(r)) ≥ minconf.

Definition 11: Any itemset i that passes the minsupp threshold is said to be a frequent itemset.

Definition 12: Any ruleitem r that passes the minsupp threshold is said to be a frequent ruleitem.

53

Definition 13: A class association rule (CAR) is represented in the for (Ail,ail) ^…..^ (Ail,ail) →

c , where the left-hand-side (antecedent) of the rule is an itemset and the consequent is a class.

2.6.3 AC and ARM Main Differences

The best survey found regarding the difference in AC and ARM is well presented in (Thabtah,

2006), and before going further in the discussion of AC it is necessary to point out the

differences in both the approaches and we will summarize them as follows:

 ARM is termed as unsupervised learning as no class outcome is involved,

whereas AC is a supervised learning approach and the outcome is always some

value from the set of class labels.

 In ARM over fitting is not an issue but in AC approaches, when they aim to

decrease the error rate to the lowest while exploring the training data set, the

training phase might take too long. This will deteriorate the efficiency of the

classifier. (Witten and Frank, 2005) and hence results in overfitting.

 In the consequent of ARM there may be different and more than 1 attribute, but in

AC the consequent is only class attribute value.

 The main purpose of AC is prediction of a class label while exploring the

correlation among, whereas, ARM tends to discover the associations between the

itemsets contained in the transactional data.

 Basically, in association rule mining, the algorithm goes through a number of iterations

until no more frequent items are left in the dataset. In the first iteration the single item or

attribute is said to be frequent in the dataset that satisfies a user defined minimum support value,

are extracted. The frequent items are called frequent 1-itemset. In Table 2.3, a training data

contains three attribute values (attribute1, attribute2 and attribute3) and two classes (class1,

class2). Minimum support value of 20% is used to extract the frequent attributes in the training

dataset.

For example, keeping the minsupp to 20%, the frequent 1-itemset in training Table 2.3 are <

(Attribute1, X1)>, <(Attribute1, X2)>, <(Attribute1, X3)>, <(Attribute2, Y1)>, <(Attribute2,

Y2)>, <(Attribute2, Y3)>, <(Attribute3, Z1)>, <(Attribute3, Z2)>, <(Attribute3, Z3)> and

<(Attribute3, Z4)>. A combination of itemsets and a class is called ruleitem in the form att(1),

54

Table 2.3: Training data

 Attribute 1 Attribute 2 Attribute 3 Class

1 X1 Y2 Z1 class1

2 X1 Y3 Z2 class2

3 X1 Y2 Z1 class2

4 X1 Y1 Z2 class1

5 X2 Y1 Z1 class2

6 X2 Y3 Z3 class1

7 X2 Y1 Z3 class2

8 X1 Y1 Z3 class1

9 X3 Y2 Z4 class1

10 X3 Y3 Z1 class1

att(2),…..att(m) →C where att(i) is the set of itemsets and ‘C’ as class. If a ruleitem satisfies a

user defined minsupp they are called frequent ruleitems.

Associative Classification algorithms scan the training database or datasets more than once to

produce frequent ruleitems. Firstly they produce frequent 1 ruleitems and in the first scan, they

find the support of 1- ruleitems, and then in each subsequent scan, they start with ruleitems found

to be frequent in the previous scan in order to produce new possible frequent ruleitems involving

more attribute values. In other words, frequent 1- ruleitems is used for the discovery of frequent

2- ruleitems, and frequent 2- ruleitems is the input for the discovery of frequent 3- ruleitems and

so forth. When frequent ruleitems have been discovered, classification based on association rules

algorithms extract a complete set of class-association-rules (CAR) from those frequent ruleitems

that pass the minconf threshold.

One of the first algorithms to merge classification with association rules was proposed in

(Liu et al., 1998). It consists of two main phases: Phase one implements the Apriori algorithm

(Agrawal and Srikant, 1994) in order to discover frequent ruleitems, and phase two involves

building the classifier. Experimental results indicate that the approach developed in (Liu et al.,

1998) produced rules which are competitive to popular learning methods like decision trees

(Quinlan, 1988). In the next section, data layouts used in AC will be reviewed.

55

Table 2.5: Horizontal data layout

Transaction # Purchased Items

1 bread milk juice

2 bread cola milk

3 milk eggs bread juice

4 bread basket milk

5 cola juice bread milk

Table 2.4: Vertical data layout tid-list

basket cola bread eggs juice milk

4

3 1 3 1 1

5 2

2 2

3 5 3

4

 5

5

2.6.4 Association Classification Data Layouts

 The term data layout means the manner in which data is kept or represented during the

execution of the algorithm. Selection of appropriate data layout is very useful for reducing

execution times. The reason for data layout discussion in this section is to demonstrate the

advantages and effectiveness in the associative classification algorithms. Generally, two forms of

representations will be discussed below; they are the vertical layouts (Shenoy et al., 2000; Zaki

et al., 1997; Holsheimer et al., 1995) and horizontal layout (Agrawal and Srikant, 1994). In a

horizontal layout, the data table comprises of hundreds of thousands of transactions with each

transaction having a unique identification and contains different set of items.

Table 2.5 presents the horizontal layout for a data base that contains the records of daily

transactions. In the vertical layout as shown in Table 2.4 constructed in such a way that it

contains all the items in a transactions data base followed by an array of their tid-list (transaction

id list) (Savasere et al., 1995). The array of tid-list, stores the location of all row numbers of each

item that are present in the transactional data set. Unlike the horizontal layout that has high

computational costs for support counting; in vertical layout the support counts for frequent items

are calculated by simply intersecting the tids. For example, we can calculate the support counts

of candidate itemsets of size k easily, only by finding the intersections between tid-lists of (k-1)

subset. The tid-lists are easy to handle and their data structure is relatively simple, and can store

all the needed information of all item relating to the database. The execution time to get the

support count of any new candidate itemset is relatively less as in the tid-list approach, the

database is not scanned again and again. (Zaki and Gouda 2003; Zaki et al., 1997).

56

2.7 Associative Classification Algorithms

By combining the classification and association rule mining accurate classifiers with efficiency

are produced (Liu et al., 1998). Studies followed by (Baralis et al. 2008; Vyas et al., 2008; Li et

al., 2008; Kundu et al., 2008; Thabtah, et al., 2004; Thabtah et al., 2005; Liu et al., 1998)

revealed that AC techniques construct mostly accurate systems that can predict classes better

than the traditional approaches. AC has the capability to produce rules that are much easier to

understand or interpret and modified by the end-user as comparison to the models produced by

probabilistic approaches and neural networks, which generate models that are difficult to

manipulate and interpret. In the following section different AC algorithms will be explained in

detail.

2.7.1 Classification Based on Associations (CBA 2)

Some of the classification data sets show uneven distribution of the of class labels. This may

cause the production of fewer rules for minority class and more number of rules for the majority

class. CBA (2) is introduced to solve the problem and uses multiple support values (Liu et al.,

1999). The major enhancements in CBA (2) when compared with CBA are:

 The minimum support is assigned to each class depending on its frequency distribution in

the data table.

Minimum Support = total (minimum support) x Class (frequency Distribution)

 For those data sets which are highly correlated, it would be computationally very

expensive and sometimes very difficult for original CBA, due to the possibility of

combinational explosion to produce long rules containing many conditions. These long

rules may be significant in classification hence classifiers may suffer. Here the CBA (2)

is merged with decision tree method to extract lengthy rules (Quinlan, 1992). The

procedure is to first segment the data by one classifier and the best classifier is chosen for

the classification of each segment. Experiment findings show that CBA and C4.5 are

outperformed by CBA (2) in regards to accuracy (Liu, et al. 1999).

57

2.7.2 Classification Based on Multiple Association Rules (CMAR)

This algorithm is proposed by (Han et al., 2000) and adopts an ARM algorithm of FP-growth, to

discover and construct an FP-tree and mines the large training datasets with efficiency (Li et al.,

2001). It comprises of rule generation and classification phases.

i) Rule Generation:

 FP-growth algorithm is adopted, to scan the training dataset and explore the full rule

set that passes a certain confidence and support thresholds.

 F-list is a sorted list in descending order which comprises of frequent items explored

in the first scan. The training data is scanned again and FP-tree is constructed. The

attribute values of each tuple that appears in the F-list are produced and then sorted as

per F-list.

 The complexity of exploring specific frequent item in the complete training data set is

minimized to find frequent items in an item-projected dataset.

 The generated rules are sorted in a prefix tree structure known as CR-tree.

 Rules are selected from large amount of generated rules by using pruning techniques

like database coverage. This in turn helps to make classification more effective and

efficient.

ii) Classification

 To classify a new instance, CMAR starts by matching the pruned rules with any new

instance. If the same class label is found, it is assigned by CMAR to the test instance.

 CMAR checks the consistency in the class labels, if the answer is no then the algorithm

divides the rules into different class label groups. Each group has a unique label and the

rules contained in the group are linked to the same label. The strength of the group is

measured by the combined effect of the rules. The group is said to be strong if it contains

rules in the group that have high positive correlation and shows high support value. The

CMAR uses a weighted Chi-square to measure the strength of each group in order to

decide which group class to assign to the test instance.

Experimental results on 26 datasets in UCI database repository have demonstrated that the

algorithm CMAR performed efficiently and more accurately as compared to CBA, and is more

scalable and efficient than C4.5 and CBA. One drawback documented in CMAR is that it utilizes

a large amount of memory resources in the training phase.

58

2.7.3 Classification Based on Predictive Association Rules (CPAR)

The algorithm of CPAR (Yin and Han, 2003) works in a greedy manner and adopts the main idea

of FOIL (Cohen, 1995) in rule production and integrates rule generation step with AC features.

CPAR main steps can be summarised as follows:

 Uses FOIL greedy strategy for generating the best rules for each class that cover the

training data instances. It deletes all the instances that are positive and are matched by the

best rule until all the positive instances in the database are covered.

 It avoids generating redundant rules and therefore, it produces a smaller set of predictive

rules.

 It uses a group of rules for the prediction of test data instances class labels.

 It selects the best rule for every class and then the average of expected accuracy is

compared for all individual classes and the class with a high expected accuracy is chosen.

 Repeated calculations are avoided by using dynamic programming

 Close-to-the-best literals are selected to avoid rule missing

When compared with C4.5, Ripper, CBA and CMAR in terms of accuracy CPAR achieves high

accuracy and efficiency when experiments were performed on datasets from UCI machine

learning repository.

2.7.4 Gain Based Association Rule Mining (GARC)

GARC is an approach in AC that uses an extended association rule mining method to construct a

classifier. The key idea in GARC lies in the domain of ARM but it is different from the

benchmark technique of CBA which apply the Apriori candidate generation mining methods.

The key features of the technique are explained in three steps. First to discover candidate

itemsets it applies an information gain measure and includes and generates the itemsets that have

best-split attribute value. This step also helps in the reduction of candidate itemsets. Secondly

combining the rule generation and frequent item generation processes and uses the information

kept for rule itemsets and for the itemsets that are excluded. Thirdly to produce a resultant

compact set in the process of mining that is more condense and easily understandable. The

GARC algorithm gets rid of many candidate itemsets in the training phase and the resultant

59

numbers of rules are much less than CBA.The GARC gain based association rule classification

algorithm works as follows:

Any one transaction in a training data set contains ‘n’ number of items and generates 2
nd

candidate itemsets. GARC uses an information gain measure to decrease the count of candidate

itemsets. In the first scan of the data set, all 1-itemsets that contains the best split-value are

generated and stored in a variable.

The performance of GARC when compared with other algorithms, on 30 data sets from

UCI including continuous and discrete, has revealed interesting results. GARC has not shown

any significant difference in accuracy when compared with two extensions of C4.5, one is C4.5

Tree and other is C4.5 pruning tree. But GARC produced a classifier with explicit rules when

compared with NN and SVM. . The pruning strategies applied in GARC has demonstrated that

GARC when used with the pruning strategies produced better results in terms of efficiency,

accuracy and understandability. The effects of changing the minconf value on the results are, as

the minconf value increases, there is seen an increase in accuracy first and then a decrease. It

happens because when the minconf is low many useless rules are generated and when its high

some significant rules are not discovered leading to a decrease in accuracy. It is concluded that

the best accuracy is achieved where a=0.01 and b=0.7. When information gain measures are

incorporated in GARC the results regarding the number of rule generated and execution time are

extremely good. The average number of rules with gain is 39% of GARC with no information

gain measure. The run time with gain is 3.2% with no information gain. But the accuracy

measures are fairly similar when results are formulated for both with and without information

gain measures in place. The experimental results have shown when GARC is compared with

CBA, that GARC produced very few rules by a ratio of 4.3% of that of CBA.

2.7.5 Multi-Class Classification Based on Association rule (MCAR)

 MCAR employs an effective technique to produce frequent ruleitems and uses a method to rank

rules that keeps the rules with high confidence values for prediction. MCAR works in two steps:

generation of rules and classifier building. The first stage starts by searching the training data and

extract frequent-1 rule itemsets, and these ruleitems are combined together to generate candidate-

2 ruleitems using other attributes. The ruleitems that passes a certain set values of minimum

support and minimum confidence is treated as a frequent rule. In the second stage, effectiveness

60

Input:, minconf ,minsupp thresholds and Training data (D),

Output: A Rule Set

Preprocessing phase

If D having integer/real attributes

 Discretise continuous columns using a Multi-interval discretisation method.

Shuffle the training objects locations randomly

The Algorithm

Scan D for the set of frequent one-ruleitems

while

{

}

Rank R according to the method shown in fig 3.7.

Evaluate R on D

Remove all rules from R where there is some rule of a higher rank and .

Figure 2.3 MCAR algorithm

of the rules on the training datasets is measured to build a classifier. The rules that cover or can

classify a certain number of training data instances are placed in the classifier. The MCAR

algorithm is presented in Figure 2.4 Figure 2.3 shows the rule discovery procedure used by

MCAR, In Figure 2.4, the Multi-interval discretisation technique of (Fayyad and Irani, 1993) is

applied in MCAR for real and integer type of data. MCAR scan the training dataset calculates

the frequencies of the itemsets. The itemsets along with their classes, which have support count

more than the minsupp value, are stored in vertical format in an array. Rest of the itemsets are

discarded. Produce function as described in the Figure 2.3 is used to discover ruleitems of size k

by combining the different column itemsets of size k-1 and then their rowIds are intersected. The

outcome of intersection between two itemsets rowIds is a set that holds the rowIds of both the

itemsets occurrence in the training data. The above set and the array containing the frequencies

of the class labels were generated in the first scan. The values are used to formulate the

confidence and support of new combinations of ruleitems.

.

61

Input: set of created rules (R),a array (Tr), class array C

 A rule r in R has the following properties: Items, class, rowIds(tid-list)

 The class array, C, contains the occurrences of class labels in the training data

Output: classifier (Cl)

 R’ = sort(R);

 insert r1.rowIds into Tr

 for each rule r  R’ in sequence do

 if r classifies at least a single case

 begin

 insert r at the end of Cl;

 insert r.rowIds into Tr

 end if

 end

 If Tr.size > 0 then

 select the majority class as a default class from (C-Tr)

 else

 select the majority class as a default class from the current Cl and add it to Cl

 end if

 for each rule () Cl in sequence do

 if there is a lower ranked rule where

 prune

 end if

 end

Figure 2.4 MCAR classifier builder algorithm

 Function produce

 Input: A set of ruleitems S

 Output: set of produced ruleitems

Do

 For each pair of disjoint items I1, I2 in S Do

 If (<I1  I2>, c) passes the minsupp threshold

 if (<I1  I2>, c) passes the minconf threshold

 end if

 end if

 end

end

Return

Figure 2.5 Rule discovery algorithm of MCAR

 The function in Figure 2.5 is called in each iteration of the algorithm and produces a frequent

ruleitems at iteration K in order to discover frequent itemsets at K+1 iteration. As documented

that the number of rules generated by the AC algorithms are large (Baralis et al., 2004; Li et al.,

62

2001). MCAR ranks and then prunes the redundant rules to form a set of classifier that have less

number of rules, which are eventually easy to understand and handle. Rule ordering procedure of

MCAR is shown in Figure: 2.5.

MCAR uses a different approach in ranking the rules. Instead of using the confidence,

support and cardinality measures, it ranks by taking into consideration the class frequencies

distribution in the main data and rules are prioritized which are linked with classes that are

dominant. If two rules have the same confidence, support value and length of item, MCAR

selects a rule that is associated with the dominant class. Rules with the same class frequencies

are selected randomly.

Figure 2.5 shows the build classifier algorithm. After the classifier is built it is used to

classify the test case data. MCAR uses a method, which implies that in the ranked rules, the first

rule that matches the portion of the test instance classifies it. The default class is assigned to the

test instance where no rule match is found for the test instance condition.

 MCAR is found very competitive in terms of predictive accuracy when analysed with the

traditional approaches like C4.5 and RIPPER, on 20 data sets from collected from UCI data

repository. MCAR has shown good scalability when comparison is drawn between well-known

AC technique CBA (Liu et al., 1998) with regards to prediction capacity, efficiency and rule

features. MCAR has shown 2-5% higher accuracy than CBA and C4.5.

2.7.6 Multi-class, Multi-label Associative Classification (MMAC)

The first multi-label algorithm documented in AC is MMAC algorithm (Thabtah et al., 2004).

All the steps in finding the classifier are the same as the algorithms described in the above

sections. But the unique feature of MMAC is the capacity to produce rules with multiple classes.

The idea behind the research was to keep the rules that are discarded by the existing AC

approaches. For example an item ‘x’ with class ‘c1’ has a support count of 40% and same item

‘x’ with class ‘c2’ has support count of 20%. In other approaches of AC rule itemset (x, c1) is

selected over (x,c2) is discarded but in MMAC both are kept. The information kept is very useful

for the decision makers. In the first step MMAC generates rules; it scans all the training data to

form all the possible set of CARs. The training cases associated with the discovered CARs are

removed from the data. In the second stage MMAC finds more rules depending on some

criterion set by user of minsupp and minconf from the left unclassified data, until no more rules

63

are left to be found. Finally, a global classifier is built by merging all the frequent rule itemsets

generated in each iteration.

Experiments conducted on 28 unique data sets (Merz and Murphy, 1996) have shown that

the MMAC is an effective and accurate classification approach. It has shown high

competitiveness and found scalable when compared with traditional and other AC approaches

like RIPPER, PART and CBA.

2.7.7 Class Based Associative Classification

 In (Tang and Liao, 2007), a new AC technique based on class is proposed called CACA. The

algorithm aims at reducing the search space in the generation of rules by introducing some

innovations: 1, combine the rule generation and classifier building stages; 2, using the class

based criterion to reduce the number of frequent patterns generated; 3, implement an Ordered

Rule Tree (OR-Tree) structure to store and then in the iteration update the rules and the

information; 4, compact set is redefined to make it unique and non-sensitive to reduction in rules.

It scans the training data and keeps the items in a vertical format. Then it calculates the

frequency of all the attributes and sorts them in descending order. The rules that pass a user

defined criterion of minsupp are kept while remaining rules are deleted. For the rest of the

attribute values in the first step, intersection between the attributes is carried out based on the

class strategic to reduce the searching space to produce frequent pattern. The attributes values in

a class group that pass the minconf threshold, are added in Ordered Rule Tree (OR-Tree) starting

from the root node and the last node in the every path of the rule contains the information of the

support and confidence. Like CBA, CACA also has the capacity to classify unseen data.

Experiments performed on 15 UCI datasets have shown that CACA and MCAR have better

accuracy than CBA. When compared with MCAR, CACA has shown slightly better accuracy

while generating less number of candidate rules. The execution time of CACA is also better due

to the reduced search space to generate candidate ruleitems than MCAR.

2.7.8 Associative Classification Based on Closed Frequent Itemsets (ACCF)

ACCF is another AC algorithm that was proposed in (Li et al ,. 2008) and consists of two phases,

rule generation and Classifier construction. ACCF algorithm employs an extended version of

64

CHARM (Zaki et al., 1999) in mining the frequent itemsets that would be used later in extracting

the set of classification rules (CARs). After passing over the training dataset, ACCF discovered

the set of Closed Frequent Items (CFIs) along with their. tidsets as well as the class labels i.e. the

rows numbers where each item occurred though CHARM approach (Zaki and Hsiao, 1999). By

getting tidsets for both the items and their class labels, the support and confidence for each rule is

then computed. Only those rule that survive the predefined thresholds Minsupp and Minconf are

proceeded to the evaluation step where a rule evaluation procedure is invoked to evaluate the set

of CARs produced in the previous step.

The set of CARs are ranked according to their confidence, support, rule length and first

rule generated with no redundancy, Then they are evaluated using Database coverage pruning

procedure adopted from CBA (Liu et al., 1998) where all rule that can’t cover at least one

training case will be discarded. In classifying test case ts, ACCF starts with the first ranked rule,

the first rule applicable to ts classify it. In case where no rule is applicable to ts, the default class

is assigned.

Experiential results against one AC algorithm states that the proposed algorithm has out-

performed CBA with respect to the efficiency and effectiveness, however not enough details are

demonstrated. For instance, details such as the time taken for learning and/or classification were

absent.

2.7.9 Boosting Association Rules (BCAR)

In the boosting association rule (BCAR) approach proposed by (Yoon and Lee, 2008), very large

number of rules are produced in the first step. Then the derived rules are filtered by using a

technique that is equivalent to the deterministic boosting algorithm (Freund and Schapire, 1997).

BCAR can be used in huge scale classification such as TC data. Experiments performed on text

collections showed that the algorithm has achieved prediction better than SVM (Vapnik, 1995)

and Harmony (Li et al., 2007).

2.7.10 Association Classification based on Compactness of Rules (ACCR)

ACCR was proposed by (Niu et al., 2009), which also is an extension of the Apriori algorithm. It

generates rules and builds a classifier. If the value of support is set very low the rule generated

65

are large in number and are redundant and time to generate these rules is also high. If the support

value is set higher then there is always a danger of ignoring good quality rules. In ACCR a new

approach is adopted to keep the high quality rules by developing a metric measure called

"compactness". It stores ruleitems with low support but high value of confidence. The

compactness is calculated as:





m

i

i

m

RLift
IsCompactnes

1

)(
)(

 (2.2)

iii I}){I-(IR  (2.3)

)()(

)(

)(

)(
)(

BSupASup

BASup

BSup

BAConf
BALift







 (2.4)

where the "lift" is the degree of independence between two items (A) and (B) of the measured

rule A→B. If the value of the lift is near 1, the relationship between two items (A) and (B) is

small. ACCR builds similar classifier as CBA. Experimental findings against the UCI datasets

have shown that ACCR algorithm performs better when compared with CBA and CMAR.

2.7.11 Improved Classification Based on Predictive Association Rules

Classification based on predictive association rules was used first in CPAR (Yin X. and Han J.

2003) to generate CARs and build classification model, another algorithm adopt predictive rule .

Traditional AC algorithms are spending more time in generating the set of rule and learning the

classifiers since they have repeated calculations. Alternatively, Classification based on PRM

takes less time due to the fact that it discovers the frequent items and generates rules

simultaneously.

A new AC algorithm that uses PR in building the classifier is that to generate the set of

CARs is proposed in (Hao et al., 2009) which is taking the advantages from AC and traditional

association rules mining. The proposed algorithm has been developed in an attempt to fix some

falls in its predecessor CPAR which lies in rule evaluation and the classification phases.

Hereunder these falls are listed along with the suggested solution by the proposed algorithms:

66

(1) Class imbalancing since each class has imbalanced number of rules in it because CPAR

consider each rule's weight only but not the weight for each class. This may lead to

favoring the class with more rules to class the test case than the one with fewer rules. To

overcome this fall, the proposed algorithm developed a new "Class Weighting

Adjustment" which will help in balancing the power of classification rules by adjusting

the weight criterion at each iteration.

(2) In CPAR, particularly in the classification phase, every class is treated uniformly for

cases. This will increase the wrong classification rate. To overcome this issue, similarity

calculations between the case and the "center vector" of each class is proposed. The

algorithm only fetches the rules of a class whose similarity of center vector to the example

is above the average similarity. Similarity calculation is done using vector space model

(Hao et al., 2009). And (3) CPAR is not applicable for the cases that don't satisfy any rule.

ICPAR proposed a Post-processing using SVM (Vapnik et al., 1995) is employed for

classification because of the ability of SVM to avoid over-fitting as well as the ability of

handling large feature spaces.

Experimental results show that ICPAR has greatly enhanced the efficacy and

effectiveness when compared to CPAR.

2.7.12 Hierarchical Multi-Label AC using Negative Rules (HMAC)

A new Hierarchical Multi-Label AC algorithm has been developed in (Sangsuriyun, et al., 2010)

that uses negative rules in predicting the class labels for test cases. It should be noted here that

“mutli-abel rule” denotes a rule that have more than one class in its consequent such as r:

 , “negative association rule” , given Pa and Pc where pa is the rule antecedent is a

combination of three items, X: positive item-set, N: negative item-set and NP: negation of

positive item-set and Pc is the rule consequent which can be one of three type, C: positive class,

NC: negative class or NPC: negation of the positive class means none simultaneous presence of

classes; a negative rule can be given as .

After generating the complete set of rules (CARs), HMAC invokes the ranking procedure

based on a number of parameters, F-measure, Jaccard, Support, ActOcc and rule length. It

should be noted here that HMAC replaced the confidence parameter by F-measure, Jaccard. In

evaluation the set of rules, the algorithm then fires two pruning procedures (1) Pearson’s

67

correlation coefficient procedure and (2) redundant rule pruning. The classification model is then

constructed using only those rules that are not redundant and positively correlated. Lastly, in

classifying a test case t, HMAC classifier, a test case ts is compared with the set of ordered rules,

if ts matches rule positive class rpci without any rules negative class RNC it classifies it, if failed

to match any rule then HMAC moves to the next rule set, if still didn’t match any rule in all sets

then the default class is assigned. Although it has been reported in this article that algorithms

using Pearson’s test can result in gaining good accuracy results, it is difficult to validate this as

inadequate experimental results are available and much of the information relating to their

generation is absent.

 2.7.13 Probabilistic CBA

Research work on Class imbalancing issue is very rare since very little attention was paid to this

issue; SBA (Liu et al., 2003) raised the issue by introducing a scoring mechanism for training

cases in order to reveal the likelihood that the case belongs to a rare class. Although SBA

employs pessimistic error estimation measure to perform pruning, but still the number of rules is

a bit large and results in complication upon scoring step. Yet, a new AC algorithm called PCBA

that addresses the class imbalancing issue by proposing a new pruning method has been

introduced in (Wen-Chen et al., 2012) called PCBA pruning aiming to improve CBA in accurate

prediction of rare data cases. CBA deals only with Class association rules of the form I ,

where I is the set of items and c is the class that can be either positive or negative; these CARs

are then ranked according to confidence, support and generated first rule. It should be noted here

that CBA ranking procedure is adequate only when classes are evenly/ semi even distributed

(Balanced data). On the other hand if the class distribution is not adequate, notably differ due to

the fact that positive classes are often much smaller than negative ones when dealing with

imbalanced data which may degrade the classification accuracy. Evaluation on six imbalanced

dataset (benchmarking and real_life applications) is conducted; results revealed that the proposed

algorithm performs better than C5.0 and SBA.

68

2.7.14 AREM: A Novel Associative Regression Model Based On EM

Algorithm

AREM algorithm that uses the regression model is proposed by (Jiang and Karyris, 2012). It

algorithm starts with extracting regression rules by applying a pruning technique that is instance

based and the aim is to discover the best rules and then a EM algorithm is applied to train the

probabilistic model. The AREM model consists of two components. First component is the rule

discovery component and regression rules that are frequent are discovered. To find the entire

frequent itemsets FP growth algorithm is used and then the instance based technique is applied to

prune the frequent set of rules found in the first step. The second component, each regression

rule value on the right hand side is updated after learning from a probabilistic model. The EM

algorithm is an iterative technique used for learning and optimization.

 The AREM performance is measured and evaluated on 10 data sets. The six data sets are

downloaded from three websites of CitySearch, BestBuy and Yelp. The other data sets are

downloaded from DataExpo09 and CMU StatLib. For the evaluation purposes mean Squared

Error(MSE) is used as the performance metrics between predicted and actual variables. The

model is trained on the training data sets MSE is calculated for each parameter and average MSE

is calculated.

The results have shown that AREM has performed well as compared to all other AR and

regressions models such as SVR, CART, Boosted Regression, Cubist when MSE is taken as the

performance measure. It is also evaluated that AREM is more suited to sparse and high

dimensional data sets.

2.7.15 Prefix Stream Tree (PST) for Associative Classification.

In data stream mining a PST (Prefix Stream Tree) model is used by (K.P. Lakshmi, 2012) in AC.

It is not possible to store in the primary and the secondary memory during the data streaming.

Extraction of the frequent itemsets from the recent data is a challenge. The efficient updation of

the existing frequent itemsets with a addition or deletion of itemsets will increase the

performance.Firstly a single full scan of data is carried out to build a compact structure of data.

69

The compact constructed structure helps in efficient mining in terms of time and memory. For

the new data stream the compact tree is reconstructed. A memory efficient data structure called

PStree is proposed in this paper.

 A prefix schema is used to construct the PSTree. The tree uses the sliding window to

capture the data and construct a tree, as the window slides batch by batch the tree is updated. The

tree consists of nodes, where first node is known as root node and represented as “null”. Other

nodes are known as ordinary nodes. The end nodes or last nodes in the tree are called leaf nodes

and contains the class label, support and count of batch. A list of all itemsets called I-list is

maintained and contains the support counts. Two phases that are used in the construction of

PSTree are Insertion and Restructuring. Both the phases execute in a dynamic fashion and

restructuring is carried out after insertion. Reconstruction phase is executed either by Branch

Sorting method (Tanbeer et al., 2008) or Path Adjusting method (Koh and Shieh, 2004). The

confidence of the extracted rules is calculated by using the FP-Growth mining algorithm (Han et

al., 2000) and sorting is carried out in the memory. The frequent itemsets in the classifier are

used to predict the class labels of the test dataset.

2.8 Use of AC algorithms in Medical Diagnosis and Recommender System

2.8.1 Use of Associative Classification and Genetic Algorithm in Heart Disease

Prediction

AC classifiers are used in the applications where maximum accuracy is desired. The fact is

explored by (M. A. Jabbar et al, 2012) by applying AC and genetic algorithm in predicting heart

disease. The genetic algorithm is used to explore the prediction rules with high level so the rules

discovered will be comprehensible, with high interestingness and high accuracy.

 The model of the heart disease prediction system uses the APRIORI algorithm to

discover the frequent itemsets that are large in number. To enhance the accuracy of the AC a

hypothesis testing Z-statistics and informative attribute entered rule generation are proposed in

the study. In the algorithm, use of Gini index is introduced as a filter to minimize the number of

70

candidate itemsets and the best attribute is selected. The attributes having Gini index value at the

lowest are selected for rule discovery.

The evaluations are based on the 2 data sets from UCI repository and 6 data sets from

SGI machine learning repository. Tenfold cross validation is used to evaluate the results. The

performance of the proposed model is compared with Naïve Bayes, J48, Neural Network and

GNP. The accuracy is increased by 1% using GNP than Naive Bayes and 4.6% increase in

accuracy in breast cancer data set. An increase of 4% in accuracy is seen in the heart disease data

when evaluated with J48 than NN. The proposed approach has shown 7.5% increase as

compared to GNP for Pima Indian data. The Proposed algorithm has performed well than the

well-known classification algorithms in terms of accuracy.

2.8.2 Artificial Immune System for Associative Classification

The proposed model is introduced by (Samir A. Elsayed, 2012) combines two novel approaches

of AC-CS (Associative Classification with Clonal Selection) and ML-DS (Multi-Level

Deterministic Sampling). The AC-CS while maintaining the running time enhances the accuracy.

The algorithm starts with large sample selected deterministically from the dataset and then it runs

in iterations. The data is divided into equal sizes of disjoint groups that are smaller in size. The

subgroups with larger distance are discarded and the subgroups with less or minimum distance

are kept. This process is iterated until all the rest of the transaction size becomes equal to the

threshold values. The sampling technique implied by AC-CS, starts with a small size of frequent

single ruleitems and then the ruleitems passes the process of cloning, pruning and mutation. The

rules with the higher quality are added in the classifier, and then the rules are used to classify the

test dataset.

The studies have revealed that the approach has generated less number of rules than

benchmark AC algorithms. The execution time is reduced clearly for all datasets and the

accuracy of AC-CS with sampling is almost similar as compared to without sampling. It can be

concluded that the sampling approach used in the model is effective and produced better

representative sample of the original data set.

2.8.3 Using Associative Classification for Treatment Response Prediction

http://link.springer.com/search?facet-author=%22Samir+A.+Mohamed+Elsayed%22

71

In the research, a KDD framework is used to predict the outcome of the treatment with ribavirin

and interferon in the patients with hepatitis C virus by (Enas et al., 2012). The framework

contains main phases of pre-processing and data mining. In the initial phase of pre-processing

the data is cleaned and suitable features are selected from the data of the patients and then

proposed data mining technique is applied.

The data gathered at Cairo University from the data base of Egyptian patients, 200 cases

were selected from the patients of hepatitis C virus genotype 4. The features selected are from

the blood test, patient characteristics and response features. The three features like HAI, ALT

and fibrosis stage are selected along with features of response and all are grouped together in

such a form that data mining approach can be applied. To find the patterns among the selected

features an AC technique of adapted PMA (Enas, 2010) is used to generate CARs and then these

CARs are used to construct the classifier and the classifier is used to predict the possible

response of the patient to treatment.

 It is concluded in the paper that an AC algorithm is used to predict the response of the

patients to the treatment with hepatitis C virus (HCV). The algorithm is trained on only 200

tuples and so the sample size is not very high and a much larger sample size is desired for future

training of the algorithm. The accuracy achieved is 90% with adapted PMA.

2.8.4 Fuzzy Associative Classification Approach for Recommender Systems

A hybrid methodology is proposed for recommender systems by (J. P Lucas et al., 2012) which

make use of the content based and filtering approaches. Fuzzy logic is also applied to improve

the quality of recommendations. A fuzzy associative classifier called CBA-Fuzzy is developed,

which has basics from CBA algorithm.

 The CBA algorithm is obtained from the LUCS-KDD repository in the University of

Liverpool and a portable CBA-fuzzy algorithm is built in Java using Java2 SDK. The approach

consists of rule generator and classifier builder components. A hybrid methodology was build

that can generate a set of CARs which are used for the classification. Three components of the

proposed methodology are, building of group of users, generation of rule sets and

recommendations. The two components that are built online and used to induce the estimated

model, also includes the CARs produced by CBA –Fuzzy. At the runtime, the third component

provides the user with recommendations and also responsible for classifying.

72

 A case study was conducted for evaluation of proposed framework. One of the two

experiments is performed to compare the accuracy of the classifier and the second for the

comparative analysis of quantity of false positives. The experiments also take in to consideration

the main reason for using AC classifier in recommender system, analyze the effects on

associative classifiers performance due to sparsity and general classification based on association

compared with fuzzy logic and false positive rate is compared with learning classifiers and

proposed CBA-fuzzy algorithm. The performance of the algorithm is analyzed using five

datasets, one extracted from MovieLens that contains rating of the movies by users in 200 and

others from BookCrossing databases. To estimate the accuracy of the algorithm tenfold cross

validation method is used and experiments are conducted using WEKA tool for data

preprocessing and transformation.

In the study C4.5, FURIA, BayesNet, CPAR, CBA and CMAR are analyzed. WEKA tool

is used to run C4.5, FURIA and BayesNet and rest of the three are taken from LUCS-KDD

repository. The purpose of the experiments is to compare the accuracy of the algorithms. And

before experiments, the sparsity of the data sets is measured. The sparse datasets are BCrossing

World and BCrossing USA and less sparse data sets are BCrossing USA10 and BCrossing

World10 and MovieLens is dense data set.

The results have shown higher or similar accuracy of AC algorithms on Book Crossing

data except CMAR when compared with classification algorithms. The CBA achieved the

highest accuracy on two datasets of BookCrossing. CMAR achieved the highest accuracy on

MovieLens data. It is concluded from the experiments that AC methods can be effective in

recommender systems than classification techniques. It is also concluded from FURIA results

that fuzzy rules have produced better results in recommender systems and hence can be used in

development of Fuzzy AC systems.

2.9 Current Pruning Methods

As we know now that in the process of rule generation the rule are generated in AC algorithms

by a factor of 2
(n)

-1, where ‘n’ is the number of frequent attribute values. If the value of ‘n’ is

large the number of rules generated is obviously large. Handling of these huge numbers of rules

in large

data sets consumes storage and needs longer execution times. In the real world the data is

growing on daily basis, so we need some optimization techniques that can reduce the size of the

73

rules without affecting the predictive capability of the rules generated. Many pruning methods

are adopted to shrink the size of the classifier in Associative classification. There are two specific

points documented where pruning methods are applied; 1, during the process of classifier

building such as pessimistic estimation (Quinlan, 1987) used in decision trees and from statistics

like Chi-square testing (χ2) (Snedecor and Cochran, 1989). At this point the ruleitems that have

less support value than minsupp are eliminated and frequent ruleitems are produced. Pruning

technique like chi-square testing is used during the rule generation stage.2, Post classifier builder

pruning methods such as database coverage (Liu et al., 1998) are used when all the rules are

generated. In the following section pruning method in AC are explained.

2.9.1 Database Coverage

The main focus in our research is on Database coverage technique as it is used by CBA and is

also used by our proposed algorithm for the sake of comparison. Database coverage approach is

a post pruning technique and used in AC (Liu et al., 1998) when all the rules have been

discovered. This technique starts by picking each rule with highest ranked rule, all training cases

that fully covered by the rule and the class is matched are marked for deletion from the training

dataset and the rule gets inputted into the classifier. In cases where a rule cannot cover a training

case (the rule body does not fully match any training case) then the rule is discarded. The

database coverage method ends when either the training dataset gets is totally covered and

becomes empty or there are no more rules to be evaluated. In the case when no more rules are

left without evaluation, the remaining uncovered training cases are used to generate the default

class rule which represents the largest frequency class (majority class) in the remaining

unclassified cases.

It should be noted that the default class rule is used during the prediction step in cases

when no rule covers that instance of the test data. When all the rules are inserted then cut-off rule

is identified, it is defined as a rule with minimum number of errors. The rules after the cut-off

point are removed from the classifier as they will only show errors and will affect the accuracy.

Database coverage method has been criticized by (Baralis, et al., 2004) since in some cases it

discards some useful knowledge. Alternatively, they urge that rich classifiers often provide

useful and rich knowledge during the classification step.

74

2.9.2 Redundant Rule Pruning

Rule generated in AC algorithms are placed in classifier when they satisfy some conditions. All

rules have rule condition that contains combination of different attribute values of the training

data. The combination of attribute values in one rule condition can be same in another rule

condition. It means that we can have rules in the classifier that are redundant. If the rule

contained in the classifier is extremely large, many redundant rules exist. Redundancy of rules is

unnecessary in classifier and is a serious issue. The process of removing redundant rules from the

classifier is carried out by redundant rule pruning.

Redundant rule pruning removes some particular rules containing low confidence value

than remaining other rules was introduced in (Li et al., 2001). The algorithm works as described

below: when the rules generation and ranking phase finishes, then these rules are pruned by an

evaluation step like CI  from the generated rule set, where general rules cI  of a high

confidence are present and II  . This redundant pruning approach decreases the size of the

final classifier and reduces the rule redundancy (Li et al., 2001).

Algorithms like CACA (Tang and Liao, 2007), ACN (Gourab Kundu et al., 2008), ARC-

BC (Antonie and Zaïane, 2003) and CMAR (Li et al., 2001), have used currently discussed

technique of redundant rule pruning. The rule is firstly added in the CR-Tree, the algorithm

checks the redundancy in the compact data structure, either it removes another already existing

rule from the CR-Tree or it does not insert the current rule in hand.

2.9.3 Pessimistic Error Estimation

Two pruning techniques of pre pruning and post pruning (Witten and Frank, 2000) are worth

mentioning here used in decision trees. The latter approach is more popular and it uses backward

pruning. Backward pruning is adopted by most decision tree methods such as C5 and C4.5

(Quinlan, 1998, 1993). Pessimistic error estimation is mainly used in data mining within decision

trees (Quinlan, 1993) in order to decide whether to replace a sub-tree with a leaf node or to keep

the sub-tree unchanged. The sub-tree replacement is the phenomenon of a leaf node substitution

by the sub-tree. On the basis of training data, error is measured by pessimistic error estimation

measure.

75

The pessimistic error estimation has been exploited successfully in decision tree

algorithms including C4.5 and C5.0. In AC mining, the first algorithm which has employed

pessimistic error pruning is CBA. For a rule R, CBA removes one of the attribute value in its

antecedent to make a new rule R’, then it compares the estimated error of R’ with that of R.

When the estimated error value of R’ calculated as smaller as compared to R, then the original

rule R gets changed with the new rule R’.

It should be mentioned here that CBA employs two pruning methods, pessimistic error

and database coverage. Some studies reported that employing several pruning procedures may

affect the accuracy rate (Baralis, et al., 2004) (Abumansour et al., 2010) (Thabtah et al., 2011).

2.9.4 Lazy Pruning

Few of the AC techniques hold a strong argument when they say that pruning process should be

restricted to “negative” rules only (Baralis et al. 2008 ; 2004) and (Baralis and Torino, 2000),

because negative rules lead to inaccurate classification. They also argue that database coverage

pruning removes some rules that contain very useful knowledge. Alternatively, Lazy based

associative algorithms store those rules discarded by database like methods in a compact-set

aiming to use them during the prediction step especially when no primary rules cover a test case.

Lazy pruning is initiated when the rules are extracted and stored, it starts by taking each training

instance one by one and the instance is checked by the first rule in the ranked rules set. If the rule

correctly classifies the training instance, it will be inputted into the primary rule set, and all of its

corresponding cases will be deleted from the training dataset. Whereas, if a higher ranked rule

covers correctly the selected rule training case(s), the selected rule will be inserted into the

secondary rule set (Spare rule-set). Lastly, if the selected rule does not cover correctly any

training case, it will be removed. The process is repeated until all discovered rules are tested or

the training data set becomes empty. At that time, the output of this lazy pruning will be two

rules sets, a primary set which holds all rules that cover correctly a training case, and a

secondary set which contains rules that never been used during the pruning since some higher

ranked rules have covered their training cases.

The distinguishing feature between the database coverage and lazy pruning is that the

secondary rules set which is held in the main memory by the lazy method is completely removed

during building the classifier by the database coverage. In other words, the classifier resulting

76

from CBA based algorithms which employ the database coverage pruning does not contain the

secondary rules set of the lazy pruning, and thus it is often smaller in size than that of lazy based

algorithms. This is indeed an advantage especially in applications that necessitate a concise set of

rules that the end-user can control and maintain.

Experimental findings based on 26 different datasets from (Merz and Murphy, 1996)

outlined in (Baralis et al. 2008; 2004) and (Baralis and Torino, 2000) have shown that

approaches that uses lazy pruning like L
3
G and L

3
, depict higher accuracy than other approaches

that incorporate database coverage pruning method (Li et al., 2001) and (Liu et al. 1998) on

average by 1.63%. The main disadvantage is that lazy pruning may produce a large classifier,

which adds up the difficulty level for a human to interpret and understand. The experiments have

indicated that AC techniques which uses lazy pruning methods utilizes more memory space in

comparison to other AC methods because they generate and keep the rules in main memory and

there is always a fear of failure of this approach when the support values are kept at a low value.

2.9.5 Laplace Accuracy

Laplace accuracy by (Clark and Boswell, 1991) is used in classification and AC problems to

calculate the accuracy of derived rules. The formula to calculate the accuracy of a rule, r, is:

Laplace (r) =
))((

)1)((

mrp

rp

tot

c





 (2.6)

where totp (r) refers to the no. of instances covering r antecedent, m refers to the no. of classes

that occurs in the training data and cp (r) refers to number of instances matched by r .

CPAR (Yin and Han; 2003), uses this approach to prune the rules and calculates the

expected accuracy of each rule before it classifies test data. This is to ensure that only those rules

with best expected accuracy are participating in the classification phase. One disadvantage in the

proposed algorithm is that the rules are of a lower quality than those generated through other AC

algorithm. The reason is that CPAR is using greedy algorithm (FOIL) and rule r is generated for

the remaining cases in training dataset instead of the whole dataset.

77

Experimental findings on 26 data sets (Merz and Murphy, 1996) have demonstrated that

CPAR performed more accurately by an average of +0.48% and +1.83% than CBA and C4.5

algorithms, respectively.

2.9.6 Boosting Weak Association Rules

The Boosting Weak Association Rules algorithm (Yoon and Lee, 2008) uses the principle of

boosting and is a modified version of database coverage pruning. The algorithm selects a rule

and checks on all the training data .The value of the cover count Vi is incremented when the rule

correctly predicts an instance in the training data. This process of updating the cover count Vi

continues till it exceeds a coverage threshold. All the instances covered by the rule are deleted

from the training dataset.

2.9.7 I-Prune

Item prune is a recent proposed method in (Baralise and Garza, 2012), I-Prune is a pre-pruning

method and tends to mark uninteresting items based on interestingness measure (correlation

measures e.g “Chi Square”, “Lift”, “Odd ration”) and remove them and use only interesting

items to build a high quality rules which will be used in building the classification model.

Consequently, such early pruning step will reduce the number of generated rule as well the tame

taken for learning the classifier.

Several AC algorithms such as CBA, CPAR, CMAR, and MCAR consider an item

interesting according to the support count. Alternatively, I-prune selects only those that are

frequent and correlated, Given an item i that is correlated to class c, an interestingness measure is

given as follows: if interestegness-measuer (i,c)> predefined-threshold then i is selected else

items are discarded as soon as detected. Assume I is a subset of frequent and correlated items

with respect to class c, set of rules R is generated for c.; only the rules that contains interesting

items are generated. On the other hand, I-prune may inadvertently discard some items that might

produce useful classification rules. Among the set of all measures used to measure, experimental

results shows that Chi Square is the best correlation measure with respect to effectiveness.

Lastly, I-Prune can be easily and effectively integrated with a number of AC algorithms

especially those are Apriority based algorithms such as CBA.

78

2.9.8 PCBA Based Pruning

Class imbalancing problem has not received big attention in the context of information retrieval

and data mining approaches. Classifiers with Imbalance class examples may increase the

misclassification ratio (Liu et al., 2003) (Wen-C et al,. 2012).

A new pruning method that consider class imbalancing has been introduced in (wen-C et

al,. 2012), PCBA pruning method was proposed in an attempt to deal with imbalanced class

when the associative classification is applied. Conventional AC algorithms used one fixed

minsupp and minconf which might be working properly when dealing with balanced data but not

for imbalanced one. Alternatively, the algorithm uses different minsupp and minconf values,

these are defined based on the rule distribution each class through “under-sampling” concept.

PCBA is proposed aiming to adjust CBA algorithm by proposing a new pruning method that

filters the set of deemed CARs to be suitable to SBA algorithm which will lead to better

accuracy in cases where classes are imbalanced. PCBA has improved three aspects in the

original CBA, which are: adopting sampling method which usually used to adjust the confidence

of the minority classes that lead to enhancement on the ranking effectiveness and decrease the

level of class imbalancing that consequently makes minority classes more common. There are

two sampling approaches, “under-sampling” and “over-samples”, due to the fact that over-

sampling might cause over-fitting problems; PCBA adopts under-sampling approach in adjusting

the confidence of the rare CARs. When under sampling is used during the ranking procedure it

controls the amount of positive rules by decreasing the amount of negative rules.

Second issue addressed in this work is setting multiple minsupps and minconfs

thresholds, setting single value is not appropriate when dealing with imbalanced data since two

problems might occur; when setting the support to high value, it becomes impossible to locate

those rule from the minority classes and on the other hand, setting the support to a low value in

order to locate the rule from minority class will lead to a huge number of rules which need high

computational cost and might degrade. As for setting the confidence threshold to low value

results in having a meaningless rules on the other hand high confidence value will eliminate the

possibility of having classes form minority classes.

79

2.10 Current Prediction Methods in Associative Classification

Prediction measures are used to judge the accuracy of the classifier built at the end of all the rule

generation and pruning phases. It is performed on the test data whose class label of each instance

is unknown. The test data is actually the training data with hidden class values. The prediction

approaches apply the rules generated to predict the class labels of the test data and computes the

prediction accuracy percentage at the end of this process. In AC predicting class labels are

divided into two main groups, one is single Accurate Rule Prediction and second is Group of

Rules Prediction. In the former approach prediction is based on single rule that has highest

precedence and is applied to the test data. The latter measures the prediction on the basis of

multiple rules. Both the approaches are discussed in the section below.

2.10.1 Single Accurate Rule Prediction

Consider a set of classified rules R and a test data instance test(i), where i ={1,…..testdata.

length}, single rule prediction approaches considers the top ranked rule with high confidence

value in R and matches the test(i) attribute values or the body of test instance. Where there is no

rule in R that can predict any instance of the test(i) then the instance is allocated the value of the

default class. The majority class in the training data that is not covered during pruning process is

called the default class.

The AC algorithms that use the single rule comparison approach for prediction are (Liu et

al., 1998; Baralis and Torino, 2000; Wang et al., 2000; Tang and Liao, 2007; Baralis, et al.,

2004; Li et al., 2008; Niu et al., 2009; Kundu et al., 2008). It is simple, useful and effective

approach for classification. Rules with the high confidence values are used for prediction and

these contribute mainly in test instances classification. When the confidence value is high,

likelihood of the test instance to be measured correctly is also high and so is the probability

measure to predict the test instances correctly (Liu et al., 2003). However this approach can show

some drawbacks when data sets have uneven class distribution (Liu et al., 2003; Li et al., 2001)

and there could be more than one rule with same confidence in ‘R’ that can match the test

instance. The above shortcoming led to a discovery of more appropriate technique which groups

a small subset of the rules having same confidence value but different class labels. Grouping of

80

rules in a subset have shown better results. The next section will explain different ways in which

this approach is used.

2.10.2 Group of Rules Prediction

The process to predict the test instance and the decision to allocate a class value, multiple rules

having nearly same confidence values are applied to match the conditions of a test instance. In

(Vyas et al., 2008; Yin and Han, 2003; Antonie and Zaïane, 2002; and Li et al., 2001) it is argued

that making decision on one rule has shown poor results. Some techniques in AC are reviewed in

the next section that incorporated multiple rules in the prediction step.

2.10.2.1 Score based Prediction Methods

A new score based prediction method is proposed in CMAR algorithm (Li et al., 2001) that

selects all the rules with high confidences that can be applied to a test instance and calculates the

associations between the selected rules. The correlation is measured to estimate the bonding

between the rules, which is calculated by considering the support and frequency of the class by a

method called weighted chi-square (Li, 2001).

CMAR finds a group of rules ‘Ck’ from a discovered classifier in ‘C’ those cover the test

instance test(i). If the same class is predicted by all the rules in subset ‘Ck’ then this class is

obviously assigned to the test instance test(i). But if the rules in ‘Ck’ points to different classes,

the algorithm CMAR divides the classes into groups and then the strength of each group is

measured and compared. The strength of the group is determined by the support and correlation

among the rules. The class of the group showing the highest value of strength is selected and

allocated to the test(i). Weighted (χ
2
) analysis (Li, 2001) tries to find the positively of the rules in

the group which in turn helps to evaluate the correlation within each group.

A related prediction method is introduced by (Dong, et al., 1999), final decision to select

a class label for a test instance is based on all emerging patterns (ep) of a class that have the test

instance. Suppose a test database (test), all the classes that are present are assigned an estimated

score. The score is formulated from the emerging patterns (ep’s) that covers test(i) for the related

class, and the test instance is linked with class containing highest score value.

81

Experimental results have shown that (Dong et al., 1999) and (Vyas et al., 2008)

classification methods that have used correlation in a group of rules to predict the class label of a

test instance increased the prediction accuracy slightly when comparison is drawn with single

rule methods.

2.10.2.2 Laplace based Prediction Method

It is also a prediction method implemented by CPAR (Yin and Han; 2003) and uses multiple

rules for prediction. The groups are compared by using the Laplace expected error estimates

(Clark and Boswell, 1991) and here to classify a test instance, expected accuracy of all rules is

calculated in advance. The process to classify a test instance in CPAR works as follows: 1) it

selects all the rules from the classifier ‘C’ whose attributes values satisfies the test instance. 2)

Selection of the best rule is determined for each class from the step 1. 3) Comparison of average

expected accuracy is done among the best rule for each class and the one rule is selected with the

highest expected accuracy to predict the test instance.

2.11 Phishing in Websites and Emails

Communication through email and addiction to internet has become an effective way of people

contacting each other in today’s fast-paced world. People access different social, educational,

informative and other kind of websites, exchange a huge quantity of email messages daily to

share texts, files, photos and video links. Phishing is one of the active social engineering

practices used to gain advantage of website users unaware of phishing traps (Toolan and Carthy,

2010).

Shortcoming in email and web security technologies also allows abusers to take

advantage of the unaware web/email users. In computing, "phishing" is termed as an activity that

uses social engineering techniques to try to get confidential information from the email/web user,

such as identity, usernames/passwords, pin codes, bank account details and credit card

information, by pretending to be someone else and hiding their real identity (Ma et al.,2009).

Due to the number of the users using the internet are increasing rapidly, the numbers of

phishing attacks are also increasing. The increase of 59% in phishing attack volumes is reported

in 2012 than 2011 and globally the losses due to phishing are estimated at $1.5 billion in 2012 an

http://www.allspammedup.com/2009/06/phishing-down-under/

82

increase of 22% than 2011(RSA’s Report, 2013). The countries that are mostly affected by

attacks are UK, USA, Canada, South Africa, Germany, France, Colombia and Brazil. The

phishers attack mostly the financial activities and because of better economic growth of Canada

the phishing attacks increased to 400% in 2012.

In 2012, cyber criminals have used the simple hosting method tactics and targeted the

hijacked websites to launch the phishing attack. The web shells, smarter web analytical tools and

automated toolkits are used to hack huge number of websites (RSA Report, 2013). The RSA

analysts have noted that the combined attack schemes are in use to phish users and redirecting

them to infection points.

In 2013, the launch of 4-G channels in mobile communication and the growth in the use

of the mobile usage in the personal and office life, and the increasing pivotal need of the

application in mobiles. It is forecasted in 2013 that the phishing attacks expected to be more

directed at the mobile and smart phone users. The expected attacks would be by voice (vishing),

Mobile applications, SMS (smishing) and spammed emails that the user will open on their

mobiles. The use of social networking, shopping and gaming applications is very common. Only

from the Google and Apple stores 25 billion app are downloaded in 2012 and by 2015, the

number may grow up to 185 billion (RSA’s Report, 2013).

2.11.1 What is Phishing

The idea behind phishing is that bait is thrown out in the web by abusers with the hope that a less

aware user will grab it and bite into it just like the fish. In most cases, bait is floated either

through an e-mail or disguised web page that requires user to input data that are hosted by a

phishing website. The popular methods usually used by fishermen to camouflage are to be a

well-known bank, Online tradesman, credit card company, people who say their deceased

parents have left huge sums of money and they want help to get the money by offering a part out

of the sum, and emails congratulating that a lottery is won by you and require some personal

information to redeem the cash. Victims of phishing websites may lose their identity, pin codes,

passwords, bank account and credit card details to the phishing email senders.

Phishing is sometimes confused with spam and conventionally spam blocking techniques

were tried to block it, but were not as effective due to the structural variance and close

resemblance of phishing websites to legitimate websites. The main difference between SPAM

83

and phishing is that SPAM is used for mass advertisement to sell a product whereas phishing is

employed to collect information that can be further used for some illegal activity (Irani et al.,

2008).

As the world is becoming a global village, quick access to useful and actionable

information has become very vital for accurate decision making and to survive in this very

competitive market. Although, phishers are now employing several techniques in creating

phishing websites to fool and allure users, they all use a set of mutual features to create phishing

websites. Since, without those features they lose the advantage of deception (Sophie et al., 2011).

This helps us to differentiate between legitimate and phishy websites based on the features

extracted from the visited website.

Overall, two approaches are employed in identifying phishing websites. The first is based

on blacklist (Sanglerdsinlapachai and Rungsawang, 2010), in which the requested URL is

compared with those in that list. The downside of this approach is that the blacklist usually

cannot cover all phishing websites since, within seconds, a new fraudulent website is expected to

be launched. The second approach is known as heuristic-based methods (Sophie et al., 2011),

where several features are collected from the website to classify it as either phishing or

legitimate. In contrast to the blacklist method, a heuristics-based solution can recognize freshly

created phishing websites in real-time (Miyamoto et al., 2008). The efficiency of the heuristic-

based method, sometimes called features-based method, depends on picking a set of

discriminative features that could help distinguish phishing websites from legitimate one's

(Guang et al., 2011). The way in which the features are processed also play an extensive role in

classifying websites accurately.

Data mining is a process of extracting meaningful information from a large data bank

(Fayyad et al., 1998). Data mining and knowledge discovery techniques have been employed in

different capacities including financial analysis, market forecasting, retail industry and decision

support systems (Toolan and Carthy, 2010). The two important data mining techniques which are

discussed in Chapter 3 are association rule mining and classification rule mining. Classification

and association rule are alike unless classification rule mining exercises prediction of one

attribute, for instance, the class, on the other hand, association rule discovery can describe the

relationships among attributes in the data set (Thabtah et al., 2010).

As mentioned in this chapter, AC integrates association rule mining with classification to

find additional knowledge missed by traditional classification techniques (Furnkranz, 1999).

84

Many experimental studies, e.g. (Hao et al., 2009), (Sangsuriyun et al., 2010) and (W-C et al.,

2012) showed that AC is a high conceivable technique that developed more predictive and

accurate classification systems than traditional classification methods like decision trees (Abu-

nimeh et al., 2009). This is axiomatic while AC finds hidden correlations among the different

features. Moreover, many of the rules found by AC methods cannot be found by traditional

classification techniques such as decision trees, PART (Frank and Witten, 1998), RIPPER

(Cohen, 1995), Prism (Cendrowska, 1987) since the AC algorithm discovers all relationship

between the class attribute and the other attributes in the training data set.

Through this part of the chapter, the intention is to discuss the intelligent data mining

techniques to solve the complex problem of detecting phishing. This will surely show the

usability of the developed AC algorithm in practical applications. The detailed review of

common approaches in machine learning and data mining that are currently used to detect

phishing will be demonstrated and the detailed description of the methods used to extract the

features from the website will be discussed in later chapter 5.

2.12 Common Approaches to Detect Phishing

The Internet community in general has a reasonable understanding of the spam problem.

Phishing, on the other hand, is a relatively newer and more insidious threat (Irani et al., 2008).

While spam and phishing are similar on the surface, phishing attacks are comparatively

sophisticated and logistically different from spam in a number of ways. Understanding these

differences is important when designing a framework for the protection of users from these

attacks. Here we examine some more important differences between spam and phishing.

The messages and techniques used in phishing attacks are complex and often amended

than the techniques used in spamming. Messages that phishers send out are usually carefully

constructed to impersonate familiar and reliable financial institutions or organizations. Many

anti-spam filtering systems are unable to distinguish phish websites or emails from legitimate

websites from these organizations due to such close resemblance to the real communication

(Toolan and Carthy, 2010). Phishers also systematically exploit software vulnerabilities in web

browsers, web servers, and local operating systems in order to trick both filtering software and

users, and steal as much information as possible (Ma et al., 2009).

85

Unlike spam, phishing messages are directed to a more targeted user base in which

spammers often send messages in bulk without any specific target in mind in an attempt to

increase their response rate. Phishers normally target carefully selected email addresses lists and

individual entities by which they try to evade less sophisticated data collection and filtration

systems which might alert authorities of their scam.

A major difference between spam and phishing is that spam is dumped on the internet in

large batches whereas phishing on the other hand is targeted and has a short life span on the

internet to avoid getting too many hits that it eventually becomes noticeable in the community

and is detectable by various filtering solutions. Moreover, spammers advertise a specific range of

product brand mostly have a static source of emergence whereas phishers who tend to attack

specific targets do not have a fixed source of emergence simply to avoid or obfuscate the real

source of attack. Phishers dynamically install web server software through Worms and Trojans

onto vulnerable or compromised hosts to launch their attacks. Also the phishers keep switching

between multiple hosts to avoid detection of source, and mostly the switching is automated.

Hereunder common approaches related to phishing are reviewed.

2.12.1 Pilfer Approach

Pilfer is a machine learning and adaptive method that extracts the features in the websites and

analyses them to predict an outcome or classify the website as phishing or good also called as

‘ham’. For instance, the authors of (Fette et al., 2007) have selected ten features like IP-based

URLs, Age of linked-to domain names, HTML emails, number of domains and number of dots

etc., from a large set of features, which have significance in detecting phishing in websites. The

authors have acknowledged that these features can be used to detect the website phishing attacks

in the browser environment. The phishing websites usually lasts for two days or so, making it

difficult to extract information from aged emails. WHOIS (i.e., DNS) query is often performed to

establish the date when the domain of a phishing website is registered. The success rate of

WHOIS query to establish correct registration dates is 505 out of 870 different domain names.

Experiments (Fette et al., 2007) were performed using the ten-fold cross validation

method and comparative evaluation was conducted on PILFER and SpamAssassin (Apache

Software Foundation, 2006). The open source data sets used in the evaluation are ham corpora

(Apache Software Foundation, 2006) containing non phishing 6950 and phishing corpus having

86

860 websites data. PHILFER showed 96% accurate classification of phishing websites with

0.0013% wrong classification of genuine websites (false positive) and 0.035% mis-classification

of phishing websites (false negative). The results have revealed that spam and phishing filter

combination proves to be an excellent solution, as the accuracy is improved when the decision of

a spam filter is taken as a seed to PILFER, as compared to their performances alone. The authors

concluded with thoughts on the future for such techniques to specifically identify deception,

specifically with respect to the evolutionary nature of the attacks and information available.

2.12.2 Machine Learning Approaches to Detect Phishing

The predictive accuracy of phishing emails were detected by different Machine Learning

approaches like CART (Breiman et al, 1984), SVM (Joachims, 1999), BART (Fette et al., 2007),

RF (Breiman, 2001), and Neural Networks (NN) (Marques 2001) in a comparative study of

(Abu-nimeh et al., 2007). The comparative study of the above classifiers used 43 features from

the phishing email data for training and testing. The phishing data set that represents newer

trends in phishing emails was constructed from 1171 phishing, 1718 legitimate emails and

contains 2889 emails in total. In the comparison, the authors used a number of evaluation metrics

but here the focus is only on two evaluation measures of false positive and false negative. False

positives have more significance as users dislike when their important messages are deleted due

to misclassification. On the other hand false negative are the email messages that are malicious

(phishy) and classified as genuine.

The results of the experiments on number of simulation runs have shown that LR

algorithm produced the lowest false positive (FP) rate of 04.89% followed by BART algorithm

with FP value of 05.82%. The highest FP value is generated by LR algorithm and it was 08.29%.

Though, the RF algorithm has the lowest false negative (FN) value of 11.12% and NN has the

highest FN value of 21.72%.

2.12.3 Bayesian Additive Regression Trees (BART)

Due to the increase in the use of mobile devices to browse the internet recently, the likelihood of

SMishing and Vishing attacks (Abu-nimeh, et al., 2009) have increased, as they are weak in their

protective mechanisms. The features of phishing email are changing on a regular basis and the

87

use of the entire variables in training phase may lead to over fitting and poor prediction results.

(Abu-nimeh et al., 2009) introduced a client-server model to detect phishing emails by using

automatic selection of variables in Bayesian Additive Regression Trees (BART). The model

used by the authors in the classification process is called CBART. The CBART selects the

variables in the training phase automatically from a huge set of input features and discovers the

relationship among features and response. As variable selection is a tedious and computationally

complex process, methods like Bayesian Networks and Naive Bayes (Duda and Hart, 1973)

perform this process separately hence classifier performance is poor as compared to CBART

technique.

A phishing dataset containing 178 financial and 4974 other legitimate emails, and 1409

phishing emails, in total containing 6561 records with 71 features were used in the experiments.

CBART selects frequent variables in Markov chain Monte Carlo (MCMC) simulations. The

experiments are performed using 60 features that appear frequently in the phishing emails and

TF/IDF (term frequency/inverse document frequency) is calculated by multiplying the number of

occurrences of a word in a document to a function that computes the inverse of the total number

of documents where that word appeared. The remaining 10 features are extracted from the

structural behaviour of phishing emails, and the effectiveness is compared with Kruskal-Wallis

(KW) test (Howard and Lee, 2006).

CBART has been compared with common classification data mining techniques such as

Support Vector Machines (SVM) (Joachims, 1999), Classification and Regression Trees (CART)

(Breiman et al, 1984), NN (Marques 2001), Random Forests (RF) (Breiman, 2001) and Logistic

Regression (LR). The results depicted that an AUC (area under the ORC curve) value is lowered

for all the classifiers except for the LR algorithm. While when variable selection is done through

CBART, false negative rate, false positive rate and error rate showed a decrease in all

approaches except SVM. When the CBART is applied the classifier’s false positive values are

-0.24%,-1.65%, +3.36%, 3.15%, 2.39% for CART, RF, SVM, LR and inNNet respectively.

2.12.4 Multi-tier Classification of Phishing Websites and Emails

Many investigations have used classification algorithms to filter the phishing websites and

emails such as (Zhang et al., 2003) and (Sanglerdsinlapachai and Rungsawang, 2010). An

approach presented in (Islam et al., 2009) first extracted the features from the suspicious

88

websites and then three classification methods named as support vector machine (Joachims,

1999), AdaBoost and Naive Bayes (Duda and Hart, 1973) is applied to detect the correlations

among the features attribute values. The multi-tier filtering of phishing emails system relies on

the spam filtering. The algorithms works by classifying the email messages in a sequence and

sending the output to decision fusion process. The emails are sent to their mailboxes according to

the class label. In case the email is misclassified by classifiers at any tier, the output will be

finalized by the last tier. Different classifier is used at each tier and the results of the experiments

have shown a reduction in the false positive and improvement in efficiency.

2.12.5 Hybrid Features using Information Gain

The phishing websites and emails contain many different features and considering all the

features for the experimental studies can lead to complexity. The approach used by (Ma et al.,

2009) works by generating a classifier while exploring each feature from the phishing data set,

using the evaluation metric of information gain (IG) and then a set of high quality features were

selected. The author defined three types of features: content, orthographic and derived. Out of

these types, 7 features were extracted from each email and were used in the experiments. The

model represents four components: Feature generator, machine learning method selection,

inductor and feature evaluation (Ma et al., 2009). The model starts by generating a matrix of

features from websites or documents by feature selection component. Then few selected machine

learning algorithms such as C4.5 (Quinlan, 1993), RF (Breiman, 2001), and SVM (Joachims,

1999) are applied on the feature matrix and their performance evaluations are done. The main

purpose of this step is to select the best machine learning algorithm for detecting phishing

websites. Then induction step generates IG and lastly feature evaluation step is performed by

calculating the accuracy of a feature before and after its removal from a small vector space. The

last procedure is repeated several times till a best group of features are generated.

The experiments are conducted using a data set of 659,673, consisting of both phishing

and legitimate websites, of which 7% of the websites were phishing. The results demonstrated

that decision tree based algorithms such as C4.5 (Quinlan, 1993) have outperformed other

machine learning algorithm in terms of prediction accuracy. The prediction values of other

algorithms in comparison to C4.5 are, RF (- 0.02%), multi-layer perceptron (-0.72%), and SVM

(-1.92%). The accuracy of the short feature selected data of the training and testing phases when

89

compared with original data came out to be same. So the author concluded that with feature

selection few features are used in the classifier building and prediction without affecting the

accuracy.

2.12.6 BoosTexter

Profiling is very useful to judge or predict the intention or the possible activity of an individual

or a group of phishers (Toolan & Carthy, 2010). The method proposed by (Yearwood et al.,

2010) profiles the phishing emails by considering the structural features of websites that are sent

to different persons and then gathering information about the hyperlinks from the WHOIS

database like APNIC and RIPE NCC. The properties of the structural features are taken as

classes and for experimental purposes, three data sets are extracted from the information of

hyperlinks by applying the boosting algorithm known as AdaBoost and a classification algorithm

based SVM (Joachims, 1999). During the profile building up, the classifier generates the

prediction weights for all classes to show the significance and relevance of each class. The main

aim of the above process is to extract the classes that are more presentable in profiling and

explore useful features.

The results are obtained from 2038 phishing websites that contain hyperlinks using cross

validation. AdaBoost was executed 300 times and profile generation is performed. The

performance analysis is performed by one-error, coverage and average precision with

BoosTexter. The findings of the BoosTexter have shown high values of accuracy with the multi-

label classes if contrasted with the other classification algorithms.

2.12.7 Phishing Evolving Clustering Method (PECM)

A new clustering base learning model called Phishing Evolving Clustering Method (PECM) is

proposed in (Al-Momani et al., 2011), and is a modification of evolving clustering method for

Classification (ECMC) (Song and Kasabov, 2003).The PECM model works in online mode and

its functionality is to extract the similarities within the groups of the phishing dataset of emails.

The method consumes less memory and generates the classifier from only one pass. The model

works in 3 stages, first is the pre-processing of the emails where parsing is done to discover the

features of phishing emails and stemming is performed to remove the test data linked with the

90

phishing email features. In the second stage the ranking and classification of the features is

carried out and the highly effective feature is selected followed by creation of crisp values and

then the features with the similarities are grouped together like body features and URL features.

In the last stage, the ECM (Song and Kasabov, 2003) algorithm is applied on the data pairs (x,y)

where ‘x’ is the group value of the feature and ‘y’ is the output . The learning phase works in a

sequential manner and deals with the input vectors having the knowledge of class label and then

the new input vectors are classified. The new email feature values are entered, and depending on

the distance of the input vectors with the rule nodes, if the input vector values are present in one

of the fields of rule nodes it will belong to the class of that rule node. Otherwise, the input vector

‘x’ will be placed with the closest rule node.

The results have shown that PECM is very effective to classify websites, while it

decreases the false negative and positive values.

2.12.8 Data Mining Classification Methods

A phishing case study is demonstrated and implemented in real world to explain the process of

phishing in e-banking by (Aburrous et al., 2010). The data collected clearly indicated that the

users are very vulnerable to phishing attacks that can steal the customers’ online banking details.

Six classification methods were contrasted and comparative analysis was demonstrated for

accuracy, performance and rules size. The rules produced from the different classification

techniques identifies and characterizes all the correlations between different features in the

phishing data and factors in the archive data of e-banking phishing site. The experiments were

conducted on classification algorithm like C4.5, PART, PRISM and RIPPER , using an open

java source WEKA, and comparative analysis is done between two AC algorithms CBA and

MCAR. The authors have used APWG and Phishtank web access archive (Phishtank.com) and

successfully extracted 27 phishing features and then clustered them into 6 groups.

The results are compared taking into consideration the number of rules formed and

predictive accuracy. Further, the number of test cases used for evaluation is 1006 and prediction

test method is ten-fold cross validation. Among the classification algorithms considered, the

MCAR has shown the lowest error rate of 12.62%. PRISM has produced the highest number of

rules i.e., 155 among the classification approaches, as it does not perform pruning. MCAR

algorithm has performed well and predicted more accurately test data than the rest of the

91

classification approaches. The experiments have found interesting relationships and significant

impact of Domain Identity and URL, and Encryption and Security and non-significant

implication of Content and page style features with the Social factor in Humans to identify

phishing in e-banking website.

2.12.9 Detecting Phishing Websites Using Associative Classification

The automated mining techniques are used to investigate the difficult problem of phishing in

websites using associative classification algorithms by (Al Ajlouni et al., 2013). The data is

collected from 1010 phishing and legitimate banking websites. In total 27 features are selected to

test and train classifiers. Short programming scripts are used to extract the features and stored in

a excel sheet. Depending on the difference in the strategies for learning, four classification and

associative classification approaches used in the experiments are SVM (Vapnic, 1995), NB

(Thabtah et al., 2009), MCAR (Thabtah et al., 2005) and CBA (Liu et al., 1998). MCAR is

implemented using the java and other three approaches are implemented using the WEKA

(www.weka.com). The parameters for experiments are set at 2% minsupp and 40% minconf to

calculate the classification accuracy of all four approaches.

The experiments results have shown that MCAR has achieved 6.1%, 5.4% and 6.8%

better accuracy than CBA, NB and SVM respectively. The other associative classification

algorithm of CBA has also outperformed NB and SVM. It is also demonstrated that associative

classification approaches are better than probabilistic and statistical approaches and are much

feasible to be used for the large data pools to detect phishing in websites.

2.12.10 Phishing Detection Taxonomy for Mobile Device

The recent trends for the detection of phishing for the mobile devices are studied by (Foozy et

al., 2013). The existing applied approaches are analysed and compared and recommendation

were made to make necessary improvements in the phishing techniques in mobile devices.About

5% of the users click on a phishing link on an Andriod device every year and detection of

phishing is handled differently because of the nature of the attacks on mobile and it is

characterized as Voice over IP Phishing or known as vishing, Bluetooth phishing and Short

http://www.weka.com/

92

Message Service (SMS) phishing (Dunham, 2009). The common detection techniques discussed

are Content Based Filtering, blacklist and whitelist (Foozy et al., 2013).

The data are collected from various sources like, SpringerLink, ScienceDirect, Yahoo,

Google Scholar, Google, IEEE Xplore and ACM Digital Library. The analysis is carried out in

two steps, first step is to study the phishing attack on a device category and second step is the

detection and classification of phishing attack. The taxonomy of the phishing attack on mobile

devices is analyzed and categorized as Bluetooth, SMS, Vishing and Mobile Web application.

The comparison between the six detection techniques like Content Based (Peizhou et al., 2008

and Yoon et al., 2010), Blacklist (Singh, 2011) and (Mahmoud and Mahfouz, 2012), Whitelist

(Mahmoud and Mahfouz, 2012), Hotspot and Gaussian Mixture Model (Chang and Lee, 2010)

are studied in the paper.

The whitelist detection technique is used to detect phishing attacks on SMS and Mobile

Web, the technique works by collecting the data from known users and only detects phishing

attack from the already known senders. Wireless defense hotspot tools, can spot any change in

MAC address default gateway and access point, ESSID and signal fluctuations on network and

are used to prevent Phishing attack in Bluetooth. Gaussian mixture model is used to detect

vishing attacks and helps in identifying the true and false statements. The study is helpful in

understanding the other solutions that can be used in the detection of phishing attacks on mobile

devices, one of the modern era technologies.

2.12.11 Anti-Phishing Prevention Technique (APPT)

A novel technique for anti-phishing prevention is introduced by (A. A. Khan, 2013) that uses one

time password and encrypted token to access the website. APPT works in two steps, in the first

step the user enter his/her information in the retrieval site to get a random onetime password. is

generated by the machine when the user go to the one time password retrieval site .This one time

password is sent via SMS or email, then an encrypted token is generated which contains the user

specific data. In the second step an encrypted token is generated by PKIEncrypt function, it

consists of user’s machine IP address and its validity is 15 minutes. The primary website is

authenticated by using both the one time password and the token.

 The attacker will not be able to cause any damage while trying to get the one time

password through forged website, because the site is only used to get the password via email or

93

SMS which is accessed by legitimate user. The prevention against the cookie attack is achieved

by transmitting the token on encrypted channel and will expire in 15 minutes. CAPTCHA is the

program that is used to protect the user from flooding of emails and SMS messages when in case

the phishing attacker is successful in getting the user information via forged website.

It is successfully demonstrated that by using the APPT technique prevention of Phishing

attacks can be reduced. But at the same time it is important to get user aware of the kind of

danger they are in and use of antivirus/malware/spyware are recommended in the study.

2.12.12 Automated Detection of Phishing using Classification Scheme and

Feature Selection

A hybrid approach is proposed by (Hamid et al., 2013) that combines the behaviour and content

based approaches for selection the features in websites and emails. The behavioural features are

identified because of the fact that these cannot be disguised by attackers. The message-ID tag in

the header of the email is studied and if it indicates that the email has come from more than one

domain, it is considered as phishing email.

 The study was conducted using hybrid feature selection from 6923 datasets from Nazario

(www.monkey.org) and SpamAssasin. The results have shown that the approach of hybrid

feature selection achieved an accuracy of 94% and effectively identified and classified phishing

emails.

2.12.13 Rouge DHCP-Enabled LAN Used in Phishing Attacks

A laboratory based research is conducted by (Purkait, 2013) to demonstrate the use of rouge

Dynamic Host Control Protocol (DHCP) server by phishers. The study is conducted in Kharagur

Laboratory and shown how a phisher uses rouge DHCP that bypasses all the security filters and

toolbars and thus compromising the DHCP- enabled LAN.

Tests were carried out using two main web browsers like Internet Explorer and Mozilla,

two security toolbars and Norton Antivrus. All counter measures taken are not able to detect the

phishing attack and the toolbars used have given a clean go for the phishing sites tested.

94

2.13 Summary

In this chapter, a detailed discussion on classification and association rule mining approaches in

data mining is conducted. In the first part of the survey some well-known approaches in

classification like decision trees, statistical ad rule induction were discussed. The aim is to

understand them well enough as they will be used in the comparative study with the proposed

work in experimental chapter. In the later part of the chapter the review of some popular

association mining algorithms is carried on with special emphasis on Apriori algorithm.

Promising AC techniques have been also discussed in this chapter which started with the

first algorithm in AC, CBA and then followed by CPAR, CMAR, MMAC, MCAR, BCAR,

ACCA, GARC, ARM, PST etc. Most of the algorithms in the review have shown two main

phases in AC, one is the generation of rules and second is the classifier building in all the

algorithms. All the work mainly focused on improving the processing time and accuracy of the

generated classifiers and prediction. The methods have demonstrated with success that by

integrating classification and association rule mining shown better results in terms of

effectiveness and built more accurate classifiers when compared with traditional approaches in

classification C4.5 and decision tree. The table presented below is taken from the literature

survey on AC by (Thabtah F., 2006). In Table 2.6 the summary of the all the steps (rules

discovery, rules ranking, rules pruning, and test cases prediction) for nearly all AC algorithm

discussed. After all the literature review on AC, the new approach in AC mining called Looking

at the Class (LC) will be presented in the next Chapter. The results with the traditional

approaches in classification and AC mining are also compared.

Phishing is a serious security issue for the internet users. In the third part of the chapter, a

survey of common approaches related to phishing in the literature like CART (Breiman et al,

1984), SVM (Joachims, 1999), BART (Fette et al., 2007), RF (Breiman, 2001), Neural Networks

(NN) (Marques, 2001), Pilfer approach (Fette et al., 2007), Boostexter(Toolan and Carthy,

2010), PECM (Al- Momani, 2011), Taxonomy for Mobile devices (Foozy et al., 2013), Hybrid

approaches like (Ma et al., 2009 and Hamid et al., 2013) and APPT (A.A Khan., 2013) were

discussed. The implementation of some of the approaches in classification and AC mining would

be carried out in experimental chapter 5 on phishing datasets.

95

Table 2.6: Summary of AC algorithms

Name Data

Layout

Rule

Discovery

Ranking Pruning Prediction

Method

Reference

CBA horizontal Apriori

candidate

generation

Support,

confidence, rules

generated first

Pessimistic error,

database coverage

Maximum

likelihood

(Liu, et al., 1998)

CMAR horizontal FP-growth

approach

Support,

confidence, rules

cardinality

Chi-square,

database coverage,

redundant rule

CMAR

multiple label

(Li, et al., 2001)

CPAR horizontal Foil greedy Support,

confidence, rules

cardinality

Laplace expected

error estimate

CPAR

multiple label

(Yin and Han; 2003)

ARC-BC horizontal Apriori

candidate

generation

Support,

confidence,

cardinality

Redundant rule dominant

factor multiple

label

(Antonie and

Zaïane, 2003)

MMAC Vertical Tid-list

intersections

and

recursive

learning

Support,

confidence,

cardinality, class

distribution

frequency

Database coverage Maximum

likelihood

(Thabtah et al.,

2004)

MCAR Vertical Tid-list

intersections

Support,

confidence,

cardinality, class

distribution

frequency

Database coverage Maximum

likelihood

(Thabtah et al.,

2005)

2-PS horizontal Apriori

candidate

generation

Support,

confidence, rules

cardinality

Database coverage dominant

factor

(Qian et al., 2005)

ACN horizontal Apriori

candidate

generation +

Negative

Rules

Confidence, rules

Correlations,

Support, rules

cardinality ,

Positive Rules

redundant rule ,

pearson’s

correlation

coefficient

Maximum

likelihood

(Gourab Kundu et

al., 2008)

BCAR horizontal Boosting

Association

Rule

Support,

confidence,

cardinality

Boosting Weak

Association Rule

normalized

prediction

score model

(Yongwook and

Gary Lee, 2008)

ACCR horizontal Cluster-based

association

rule

Support,

confidence,

cardinality

Pessimistic error,

database coverage

Maximum

likelihood

(Qiang Niu et al.

,2009)

ACCF Vertical Charm Support,

confidence, rules

generated first

Pessimistic error,

database coverage

Maximum

likelihood

(Li X. et al. , 2008)

CACA Vertical Class-based

associative

classification

Support,

confidence, rules

generated first

Compact set,

redundant rule

Maximum

likelihood

(Tang and Liao,

2007)

96

Chapter 3

Classification Based on Association Rule (CBA)

3.1 Introduction

This chapter is included to explain the steps of rule generation and classifier building in the CBA

algorithm so as to make the comparative analysis between CBA and proposed LC algorithms

easier. The proposed LC algorithm is explained in the next chapter 4. The CBA uses the Apriori

candidate generation function to generate rules in each iteration and LC algorithm is also based

on the Apriori candidate generation function with modifications. The effects of the modification

on the processing time and the number of candidate ruleitems generated at each step will be

discussed in chapter 4. The CBA is the first algorithm in Associative classification and pioneer

work or the new approach of CBA to build classifiers and to predict classes by using the

association rules is presented by (Liu et al., in 1998). It was shown that using association in rule

mining to generate all the rules, whose right hand side are bonded with a class attribute, is much

more effective and accurate than traditional classification system like C4.5. The algorithm

comprises of two main steps, rules generation (CBA-RG) and classifier building (CBA-CB).

Firstly it finds and generates all ruleitems like Apriori algorithm (Agarwal and Srikanth, 1994).

The ruleitems that passes the minsupp value are called frequent ruleitems. In the classifier

building part the frequent ruleitems are used in building the full set of CARs and these generate

the final classifier. The two stages of the algorithm are described in depth in the following

sections. It is important to understand the full concept of CBA in this study as the proposed

algorithm is based on CBA’s working and introduces major improvements in CBA and

demonstrates it with a comparative study.

97

3.2 CBA-RG Basic Concepts

In the main step of CBA-RG, firstly all ruleitems are found that contains the support value

greater than minsupp. The algorithm uses multiple iterations over the dataset to generate frequent

ruleitems. Figures 3.1 shows the rule or candidate generation. In the first iteration support count

of all the items is calculated and then checked whether they are frequent. In the second iteration

these frequent 1-ruleitems are used as seed set for more possible frequent 2-ruleitems. When the

disjoint frequent 1-ruleitems are combined together candidate 2-ruleitems are produced. The

candidate 2-ruleitems that passes the minsupp threshold are called frequent 2-ruleitems. This

process continues till no more frequent ruleitems are left.

F 1 = {large 1-ruleitems};

CAR 1 = genRules (F 1);

prCAR 1 = pruneRules (CAR 1);

 for (k = 2; F k-1 Ø; k++)

{ C k = candidateGen (F k-1);

 for each data case d D

C d = ruleSubset (C k , d);

 for each candidate c C d

 { c.condsupCount++;

 if d.class = c.class then

 c.rulesupCount++;

 }

 F k = {c C k | c.rulesupCount minsup};

 CAR k = genRules(F k);

 prCAR k = pruneRules(CAR k);

}

CARs =  k CAR k ;

prCARs= k prCAR k

Figure 3.1 Frequent itemset generation step in CBA algorithm

98

1 sort(R)

2 For each rule r  R in sequence do

3 temp = Ø;

4 for each case d  D do

5 if d satisfies the conditions of r then

6 store d.id in temp and mark r if it correctly classifies d;

7 if r is marked then

8 insert r at the end of C;

9 delete all the cases with the ids in temp from D;

10 selecting a default class for the current C;

11 compute the total number of errors of C;

12 end

13 end

14 Find the first rule p in C with the lowest total number of errors and drop all the rules after p

in C;

15 Add the default class associated with p to end of C, and return C (our classifier).

Figure 3.2 Building a classifier in CBA algorithm

3.3 CBA-CB Basic Steps

This section will explain how CBA algorithm builds a classifier. When all the itemsets that are

frequent are formed by doing multiple iterations on the dataset, then the main aim is the selection

of subset of frequent ruleitems with the perfect rule sequence and minimum errors. All the

subsets are evaluated on the training dataset and the best subset is called the classifier. It is a

heuristic algorithm and the classifier built performs more accurately than C4.5.

After the CARs are derived the algorithm ranks them according to the procedure

described in Figure 3.3. When the CARs are sorted then a rule qualifies to be placed in the

classifier if it can cover at least one instance in the training dataset. Then all the instances in the

training dataset covered by that rule are deleted from the training dataset. This process will not

stop until all the training instances covered by a set of rules or all the rules are used. If all the

rules are used and still we are left with some part of the training data then the majority class

between all instances will be considered as default class.

99

Consider two rules, rulea and ruleb, rulea precedes ruleb (rulea  ruleb) if:

1. Confidence value of rulea is higher than ruleb.

2. Confidence value of rulea and ruleb are same, but support value of rulea is higher than ruleb.

3. Confidence, support of rulea and ruleb are same, but rulea is produced before ruleb.

Figure 3.3 Rule ranking steps in CBA

 When a new data instance or a document is classified, the first ruleitem that correctly

satisfies the data instance values or the body of the document classifies them. And if no rule can

predict the class label of the document or data instance then it will take the default class (Zaiane

and Antonie 2002; Liu et al. 1998).

Now we will explain by an example the complete process of frequent ruleitem generation

and building a classifier by CBA. Consider the training data shown in Table 3.1, which

represents three attributes Age (senior, youth, junior), income (middle, low, high) and Has_Car

(n,y) and a class (yes, no). User defined input values are set as minimum support = 15% and

minimum confidence = 50%, the frequent ruleitems found are presented in Table 3.2, with their

confidence and support values.

Next step is the formation of a classifier as described in Figure 3.1. Firstly the process of

rule ranking is carried out as seen can be seen in Table 3.3, and then these ranked rules are

applied on the training dataset to get the classifier. The process of rule pruning helps to group or

find the set of rules that predicts the highest number or the full set of training data.

Table 3.1: Training data

Has_Car Income Age Buy_car

n middle senior Yes

y low youth no

y high junior yes

y middle youth yes

n high senior yes

n high junior no

n low senior no

100

Table 3.2: Rule discovery in CBA

Pass

Count

Candidate/Frequent

Itemsets

Rule Itemsets Support Confidence

1stPass Frequent-1 <({Age,senior)},3), ((Buy_car, yes), 4)>

<({(income, middle)}, 2), ((Buy_car, yes), 4)>

 <({(income,low)}, 2), ((Buy_car, no), 3)>

 <({(income,high)}, 3), ((Buy_car, yes), 4)>

<({(Has_car,n)}, 4), ((Buy_car, yes), 4)>

<({(Has_car,n)}, 4), ((Buy_car, no), 3)>

<({(Has_car,yes)}, 3), ((Buy_car, yes), 4)>

2/7

2/7

2/7

2/7

2/7

2/7

2/7

2/4

2/4

2/3

2/4

3/5

2/4

2/3

2ndPass Candidate-2 <{(Age,senior), (income, middle)}, (Buy_car,yes)>

<{(Age,senior), (income, middle)}, (Buy_car,no)>

<{(Age,senior), (income, low)}, (Buy_car,yes)>

<{(Age,senior), (income, low)}, (Buy_car,no)>

<{(Age,senior), (income, high)}, (Buy_car,yes)>

<{(Age,senior), (income, high)}, (Buy_car,no)>

<{(Age,senior), (Has_car,n)}, (Buy_car,yes)>

<{(Age,senior), (Has_car,n)}, (Buy_car,no)>

<{(income,middle), (Has_car,n)}, (Buy_car,yes)>

<{(income,middle), (Has_car,n)}, (Buy_car,no)>

<{(income,middle), (Has_car,y)}, (Buy_car,yes)>

<{(income,middle), (Has_car,y)}, (Buy_car,no)>

<{(income,low), (Has_car,n)}, (Buy_car,yes)>

<{(income,low), (Has_car,y)}, (Buy_car,yes)>

<{(income,low), (Has_car,n)}, (Buy_car,no)>

<{(income,low), (Has_car,y)}, (Buy_car,no)>

<{(income,high), (Has_car,y)}, (Buy_car,yes)>

<{(income,high), (Has_car,n)}, (Buy_car,yes)>

<{(income,high), (Has_car,y)}, (Buy_car,no)>

<{(income,high), (Has_car,n)}, (Buy_car,no)>

1/7

0/7

0

1/7

1/7

0

2/7

1/7

1/7

0

1/7

0

0

0

1/7

1/7

1/7

1/7

0

1/7

2/3

0

0

1/1

1/1

0

2/3

1/3

1/1

0

1/1

0

0

0

1/1

1/1

1/1

1/2

0

1/2

 Frequent-2 <{(Age,senior), (Has_car,n)}, (Buy_car,yes)> 2/7 2/3

 Candidate-3 <{(Age,senior),(income,high),(Has_car,n)},

(Buy_car,yes)>

1/7 1/1

 Frequent -3 None

CAR1 {(Age,senior)} → (Buy_car, yes)

{(income, middle)} → (Buy_car, yes)

{(income,low)} → ((Buy_car, no)

{(income,high)} → ((Buy_car, yes)

{(Has_car,n)} → ((Buy_car, yes)

{(Has_car,n)} → ((Buy_car, no)

{(Has_car,yes)}→ ((Buy_car, yes),

CAR2 {(Age,senior), (Has_car,n)} → (Buy_car,yes)

CARs CAR1 U CAR2

101

Table 3.3 : Ranked rules

Row-id Rules Conf Sup

1 {(Age,senior), (Has_car,n)} → (Buy_car,yes) 2/3 2/7

2 {(income,low)} → ((Buy_car, no) 2/3 2/7

3 {(Has_car,yes)}→ ((Buy_car, yes), 2/3 2/7

4 {(Has_car,n)} → ((Buy_car, yes) 3/5 2/7

5 {(income, middle)} → (Buy_car, yes) 2/4 2/7

6 {(income,high)} → ((Buy_car, yes) 2/4 2/7

7 {(Has_car,n)} → ((Buy_car, no) 2/4 2/7

8 {(Age,senior)} → (Buy_car, yes) 2/4 2/7

Table 3.4: Data for testing

Transaction -id Age Has_Car Income

1 senior n middle

2 youth y low

The final step of the algorithm is to pick a test instance, apply the first top rank rule and

predict the class of the test instance. CBA prediction step matches the test instance body with

the rule and if the body matches it will assign the class of that rule to the test instance. We will

explain this with an example of the test data in Table 3.4, first test instance with the values

{(Age,senior), (Income,middle)) and (Has_car,n) is picked from the Table 3.1, to classify this test

instance CBA algorithm picks the top ranked rule {(Age,senior), (Has_car,n) from Table 3.4. The

body of test instance matches the body of the 1
st

rule selected from the Table 3.3. The class value

of the rule that is ‘yes’ is assigned to the test instance. Then CBA picks the second test instance

{(Age,youth), (Income,low)) and (Has_car,y)} is picked from the Table 3.4 and this test instance

tends to be classified by the ranked rules from Table 3.3. Again the top rank rule {(Age,senior),

(Has_car,n) is selected from the Table 3.3 but this time the rule does not match the body of the

test instance, so the second rule {(income,low)} → ((Buy_car, no)} from Table 3.3 is selected.

The algorithm checks whether this rule matches the test instance value and the answer is yes.

The class label of this rule ((Buy_car, no) will be assigned to the test instance. The above

procedure to classify the test data will continue until all the test instances are classified.

102

3.4 Summary of the Chapter

The chapter explains the working of the first algorithm CBA in the associative classification

domain. The detailed working of CBA’s rule generation and the classifier building steps with an

example is described in section 3.2 and 3.3. In the next chapter the proposed LC algorithm is

presented with its implementation on bench mark datasets and the complete analysis of the

results are discussed in comparison to CBA and other AC algorithms.

103

Chapter 4

Looking at the Class Associative Classification Algorithm

(LC)

4.1 Introduction

As explained in Chapter 2, two data mining tasks, classification and association rule

mining are integrated to form AC algorithms. The AC algorithms build accurate classifiers than

classification approaches in data mining. The classifiers produced by AC algorithms contain

simple yet effective rules that are understandable and are easily interpreted and used by the

domain experts. AC tends to discover rules that cannot be found by other classification

algorithms (Antonie and Zaïane, 2002).

Some of the AC approaches use an exhaustive search technique to find the set of rules by

scanning the database again and again. This time consuming searching method is proposed in

Apriori algorithm (Agrawal and Srikant, 1994) to generate rules and the main drawback is the

high execution CPU time (Liu, et al., 2001; Thabtah, et al., 2010). In terms of rule ranking, most

of the AC algorithms rank rules on the basis of confidence values, support values, the time when

rule is generated and the cardinality of the rule. Another tie breaking criteria is added which is

adopted from (Thabtah, et al., 2004) that takes into account the class distribution frequencies

among rules in the training data set. This can be utilized beside confidence, support and rule

length to discriminate among rules.

Chapter “4” main focus is to investigate and improve the efficiency of the rule generation

phase, to reduce the number of merging at each iteration, to decrease the size of frequent

ruleitems generated, to cut down the size of produced rules in classifier, and investigate and

implement the methods to improve and maintain the prediction accuracy when compared with

other classification and AC algorithms. This is all accomplished in a new AC algorithm that

deals with the problem of large number of itemsets joining in the training phase within the

known CBA algorithm. It tends to find an effective rule generating method that can derive the

rules efficiently without negatively affecting the classification rate. As a consequence, a new AC

algorithm, called Looking at the Class (LC) AC algorithm is proposed. LC also adds new criteria

104

during the process of predicting new test data instance and proposes a new effective prediction

procedure that improves accuracy.

The LC algorithm while dealing with both types of attributes (categorical and continuous)

is an improved version of the CBA algorithm and introduces a novel method of itemset merging

in the training phase of CBA, a new rule ranking procedure that includes the cardinality and class

distribution criterion to rank rules and a proposes a new prediction method that is based on

selecting and assigning the class with highest average of confidence in the group of rules that

correctly matches the conditions of the test instance. The results obtained from the

implementation of the above proposed changes are demonstrated in the experimental section of

this chapter. The comparative analysis of the results with the current well-known AC and

classification algorithms are also discussed.

The summary of main differences between LC and CBA are discussed in section 4.2, the

development of a new proposed algorithm LC is discussed in Section 4.3 with the rule

generation, rule ranking, rule pruning and discusses the new prediction algorithm. Experimental

parameters, datasets and findings are demonstrated in Section 4.4. In the final Section 4.5, the

summary of the chapter is given.

4.2 Main Differences of LC and CBA Algorithms

CBA algorithm is discussed in the previous chapters; in this section the main differences in CBA

and LC algorithm are highlighted, so to get an idea of the modifications made in the CBA

algorithm. The main differences in both the approaches to build a classifier are pointed out in the

Table 4.1 below which analyses the data layout, rule discovery, rule ranking, pruning and

prediction phases of both the approaches.

105

Table 4.1: Main differences between LC and CBA algorithms

Name LC CBA

Data

Layout

Horizontal Horizontal

Rule

Discovery

Apriori Candidate Generation function with

looking at the class labels.

Use Minority rule, in selecting class with the

itemset.

Uses highest frequent class in the dataset with

the ruleitem, if a ruleitem contains more than

single class attribute.

Generation function without looking at the

class labels.

Don’t uses Minority Rule

Keeps all rulesitems with different class

values.

Ranking Confidence, Support, Rule length and Class

Distribution

Support, confidence and selects rule which

generated first

Pruning Database Coverage Database Coverage, Pessimistic error

Estimation

Prediction

Method

Based on Confidence value of Group of Rules Maximum likelihood

4.3 The Development of New AC Algorithm

An experimental work is conducted and a new algorithm and its experimental evaluations are

presented to demonstrate the improvements in the procedure of rule generation in CBA

algorithm. The programming language used for the implementation of the algorithm is Visual C

and Visual C++. It was noted in the training or the rule generation phase of CBA and CBA (2)

(Liu et al., 1998, Liu et al., 1999), that the joining of frequent itemsets of size ‘k’ to generate

candidate itemsets of size ‘k+1’, is carried out without the consideration of their class labels. The

above process of merging is computationally expensive and needs excessive CPU time. At the

same time it produces a large number of candidate itemsets in each iteration due to unnecessary

itemsets joining. Our main focus and aim is to minimize the CPU time during frequent itemsets

generation process of CBA. In the training phase of CBA we will consider the class labels of the

frequent itemsets and only merge the itemsets that have same class labels. So, if ‘item_A’ and

‘item_B’ are two disjoint itemsets that are found at iteration “0”, our proposed training approach

106

in LC considers merging itemset ‘item_A’,‘item_B’ only if ‘item_A’ and ‘item_B’ have the

same class labels. The reduction in the number of itemsets merging in each iteration may

improve the searching process and consequently minimizes the CPU time for dense and large

datasets significantly.

4.3.1 The Proposed Rule Discovery Algorithm

In the rule discovery phase of the CBA algorithm it uses the Apriori candidate itemsets

generation function in which the frequent itemsets are discovered by level wise search. The

CBA starts by counting the support values of items of size 1(1-itemset) in the first level, and

checks whether they are frequent or not. In each of the subsequent level, process of merging the

itemsets that are found frequent in the last level will continue regardless of their class labels, to

extract candidate itemsets at all levels. Our basic idea is to enhance the merging process of

disjoint frequent itemsets in CBA training phase by considering the class labels of the itemsets in

each level. If the selected disjoint itemsets are linked with the common class in the last iteration

then join them, else do not join them. A minority class rule is applied in case when the itemset

has more than one class, the class with the highest support count in the training data set is

selected and the remaining class labels are ignored. If the itemset’s class labels have the same

frequency of support count then the class of the itemset is selected randomly.

 Data used by LC algorithm contains a header that reads relation name, attribute names,

and total number of data instances in the table. The values of all the attributes are comma

separated and the last column of the data file must present the class attribute. The missing values

are considered as other existing values (Witten and Frank, 2000). For categorical attribute, all the

possible values are mapped to a set of integers. For the attributes that are continuous, multi-

interval technique for discretization (Fayyad and Irani, 1993) has been used.

 The process of discretization starts by selecting a continuous attribute from the training

data and sorted in ascending order with the class values of each instance. A break point is placed

where the class value changes and information gain (Quinlan, 1979) measure is calculated for all

break points. The information gain depicts the quantity of information required to specify the

class values. The break point is selected which minimizes the information gain over all other

break points. The process starts again on the lower range of that attribute.

107

Input: Training Data (D), minsupp and minconf values

Output: Frequent set of rules

1. read the table from D;

2. Candidate_Ruleitem_1 = genCandidate_Ruleitem_1(D);

3. Maximum_Class_Frequency = Class_values_Max();// determines class with highest frequency in data table

4. Candidate_Ruleitem_1 = minority_Rule(Candidate_Ruleitem_1); // removal of ruleitems with lowest class

frequencies

5. Frequent_Ruleitem_1 = genFrequent Ruleitem_1 (Candidate_Ruleitem_1, minsupp);

6. ClassAssociationRules_1 = genRules(Frequent_Ruleitem_1, minconf)

7. for (k = 2; Fk-1 Ø; k++)

8. {

9. Candidate_Ruleitems_k = genCandidate_Ruleitems_k (Frequent_Ruleitems_(k-1)); // candidate ruleitems are

generated with their number of occurances in data table (support counts)

10. Candidate_Ruleitem_1 = minority_Rule(Candidate_Ruleitem_1); // removal of ruleitems with lowest class

frequencies

11. Frequent_Ruleitem_1 = (Candidate_Ruleitems_k,, minsup);

12. ClassAssociationRules_k = genRules(Frequent_Ruleitem_1, minconf);

13. }

14. ClassAssociationRule’s = k ClassAssociationRules_k ;

15. Compute total number of merging;

16. Calculate total time needed to generate Ruleitems;

Figure 4.1 Frequent itemset generation step in LC algorithm

The frequent itemsets generation step known as the training phase is explained of the LC

algorithm as shown in Figure 4.1:

Line 1: The algorithm begins by reading the training data table from the selected location and

takes user defined minsupp and minsconf values.

Line 2: The candidate 1-ruleitems are generated with the support values.

Line 3-4: The class with the maximum frequency in the data table is determined first and then

the minority rule is applied, if the ruleitems contains more than single class values in candidate

1-ruleitems, the ruleitems with the highest frequency class are kept and all other are removed

from the list of candidate 1-ruleitems. If the class values are same then the ruleitem is assigned

the highest frequency class that is extracted in line 3.

Line 5: The frequent 1-rueitems are generated from the candidate 1-ruleitems that passes the

minsupp threshold value defined by user.

Line 6: The confidence values of all the frequent 1-rueitems are determined and ruleitems that

108

passes the minconf value are termed as Class Association Rules (CARs).

Line 7-13: This process of candidate ruleitems generation in each iteration or cycle is repeated

until all frequent ruleitems are produced.

Line 14-16: All the CARs are combined together in one file and these rules are then ranked

considering their support, confidence and length of rule metrics. The number of merging at each

iteration, total number of merging, and the time taken to execute the algorithm is calculated.

The Figure 4.2 represents the candidate ruleitems generation at each step including the

support count values of the ruleitems.

Line 1: The function takes as an input the frequent ruleitems from the previous iteration and data

table.

Line 3-5: The itemsets are picked from the frequent ruleitems and their class labels are matched,

if the class labels are identical then the itemsets are combined together otherwise the process of

class label matching continues for all the itemsets in the frequent ruleitems and candidate

itemsets are produced.

Line 6-13: The class labels of the joined itemsets are determined and the support counts of the

candidate ruleitems are calculated. A complete set of candidate ruleitems are returned with their

support counts.

Input: Frequent_Ruleitems_k, data Table ‘D’

Output: Candidate set of rules at each kth iteration, support counts of each ruleset contained in the Candidate set

1. for(i=0; i < frequent_Ruleitem_(k-1).count; i++)

2. {

3. if (c.rulesubset_k-1 == c.Rule_item)

4. {

5. Candidate_Ruleitems_k = rulesubset_k-1  Rule_item // candidate ruleitems are generated

6. for each data instance d D

7. Cd = ruleSubset (Candidate_Ruleitems_k, d);

8. for each candidate c Cd

9. {
10. condsupCount++; //Calculates the support count of each rule subset

11. if d.class = c.class

12. then
13. c.rulesupCount++;

14. }

15. else

16. break;

17. }}}}

18. Return Candidate_Ruleitems_k;

 Figure 4.2 Generate candidate ruleitems function and support count calculation in LC algorithm.

109

 Table 4.3: LC candidate 1-ruleitems

ITEMSET CLASS support

senior yes 2/7

senior no 1/7

youth yes 1/7

youth no 1/7

junior yes 1/7

junior no 1/7

middle yes 2/7

low no 2/7

high yes 2/7

high no 1/7

y yes 2/7

y no 1/7

n yes 2/7

n no 2/7

Table 4.4: LC candidate 1-ruleitems when

minority rule is applied

ITEMSET CLASS support

senior yes 2/7

youth yes 1/7

junior yes 1/7

middle yes 2/7

low no 2/7

high yes 2/7

y yes 2/7

n yes 2/7

4.3.1.1 Example on the New Training Algorithm

To explain our proposed training algorithm, consider for example Table 4.2 (Thabtah, et al.,

2005) which contains three attributes (age, income, has_car) and a class label (buy_car) and

represents whether an individual will buy a new car. Assume that minSupp (support count) is set

to 2. In the first iteration, LC generates candidate 1-ruleitems of size “14” as shown in Table 4.2,

Table 4.2: Training data

Age Has_Car Income Buy_car

senior n middle yes

youth y low no

junior y high yes

youth y middle yes

senior n high yes

junior n high no

senior n low no

110

 Table 4.5: LC candidate-2 ruleitems

ITEMSET ITEMSET CLASS

senior middle yes

senior high yes

senior n yes

middle n yes

middle y yes

high y yes

high n yes

Table 4.6: LC frequent 1-

ruleitems

ITEMSET CLASS support

senior yes 2/7

middle yes 2/7

low no 2/7

high yes 2/7

y yes 2/7

n yes 2/7

it is important here to notice the number of ruleitems generated. The minority rule (Figure 4.1,

line 4), is applied on the candidate 1-ruleitems. In case when a rule item is found that is linked

with more than single class then the minority rule will select the class with the highest frequency

with that ruleitem. If the classes’ frequencies are same for that ruleitem then the class with the

highest support value in the data table is selected with that ruleitem, and if the classes

frequencies are same in the data set then a class is selected randomly. Table 4.4 shows the

candidate 1-ruleitems after the minority rule is applied and we can notice the number of

ruleitems are reduced to “8”. For example in the case of <Age=Senior, yes> and <Age=Senior,

no> ,the frequency of class “yes” is “2” and “1” respectively, the minority rule has selected

<Age=Senior, yes> as seen in Table 4.4. We take another example to explain in more detail, both

ruleitems of <has_car= n, yes> and <has_car= n, no> has same frequencies of “2” in Table 4.3

Our approach has selected the ruleitem <has_car= n, yes> (see Table 4.3) because the support

value of class “yes” is “4” that is higher than the support value of class value “no” i.e., “3’ as in

Table 4.2. After the first iteration, frequent 1- ruleitems can be seen in Table 4.6. In the second

iteration, disjoint frequent ruleitems are merged based on their classes to generate candidate 2-

ruleitems; so in this case, <Age=senior, yes> and <Income=middle, yes> is merged because they

have the same class, i.e., “yes”, “senior” and “high” are merged in the same way, as in Table 4.4.

Our method did not consider joining “senior” with “low” and “middle” with “low” since

they have uncommon class. On the other hand, CBA and other AC algorithms such as CBA (2)

consider joining itemsets without checking their class labels. Table 4.7 illustrates the itemsets

produced by CBA from Table 4.2 using a minSupp of 2 in the first iteration, and Table 4.8

111

Table 4.7: CBA candidate-2 itemsets

ITEMSET

ITEMSET

ITEMSET

ITEMSET

 senior middle junior middle

senior high junior high

senior low junior low

senior y junior y

senior n junior n

youth middle middle y

youth high middle n

youth low low y

youth y low n

youth n high y

 high n

Table 4.8: Frequent 1-itemsets

produced by CBA

ITEMSET support

senior 3/7

junior 2/7

youth 2/7

middle 2/7

low 2/7

high 3/7

y 2/7

n 2/7

displays the possible 2-candidate itemsets obtained after merging frequent 1-itemsets. Now we

will examine the total number of merging in the second iteration of both CBA and our approach

In Table 4.5, the number of frequent itemsets from Table 4.2 column “Age” are 3 (senior,

junior and youth), 3 frequent itemsets (middle, low and high) from “income” column and 2

frequent itemsets from column “has_car”. The total number of possible candidate-2 itemsets can

be calculated by a simple formula (2
n1

+2
n2

 +2
n3

) +1 = (2
3
 +2

3
 +2

2
) +1 = (8+8+4) +1 = 21. As in

comparison the total number of candidate-2 itemsets produced by LC in 2
nd

 iteration is “7”. It is

obvious from Table 4.7 that the number of merges performed by CBA is larger than LC.

The first iteration of CBA has produced “7” frequent-1 ruleitems (See chapter 3) as

compared to LC “6” (see Table 4.9). The second iteration has produced the same number of

Frequent-2 ruleitems for both CBA and LC that is 1, and there are no Frequent-3 ruleitems

generated in third iteration for both algorithms. So it is very clear that the total numbers of

frequent ruleitems generated in both the approaches are not similar for both algorithms, CBA’s

112

“8” and LC’s “7”, and also the number of candidate ruleitems merge of CBA during the training

phase in most iterations is significantly high as compared to LC algorithm. So if the data set is

large or highly correlated it would be obvious that there will be an exhaustive search by any AC

algorithm during the discovery of the frequent ruleitems and the number of candidate ruleitems

join is expected to be massive. Later in the experimental section of this chapter we compare the

Table 4.9: Frequent rule itemsets at each iteration with support and confidence counts

Pass Count Frequent

Itemsets

Rule Itemsets Support Confidence

1st Pass Frequent-1 <({Age,senior)},3), ((Buy_car, yes), 4)>

<({(income, middle)}, 2), ((Buy_car, yes), 4)>

 <({(income,low)}, 2), ((Buy_car, no), 3)>

 <({(income,high)}, 3), ((Buy_car, yes), 4)>

<({(Has_car,n)}, 4), ((Buy_car, yes), 4)>

<({(Has_car,n)}, 4), ((Buy_car, no), 3)>

<({(Has_car,y)}, 3), ((Buy_car, yes), 4)>

2/7

2/7

2/7

2/7

2/7

2/7

2/7

2/4

2/4

2/3

2/4

3/5

2/4

2/3

2nd Pass Frequent-2 <{(Age,senior), (Has_car,n)}, (Buy_car,yes)> 2/7 2/3

3rd Pass Candidate-3 <{(Age,senior),(income,high),(Has_car,n)}, (Buy_car,yes)>

<{(Age,senior),(income,middle),(Has_car,n)}, (Buy_car,yes)>

1/7

1/7

1/1

1/1

3rd Pass Frequent -3 None

CAR1 {(Age,senior)} → (Buy_car, yes)

{(income, middle)} → (Buy_car, yes)

{(income,low)} → ((Buy_car, no)

{(income,high)} → ((Buy_car, yes)

{(Has_car,n)} → ((Buy_car, yes)

{(Has_car,yes)}→ ((Buy_car, yes)

CAR2 {(Age,senior), (Has_car,n)} → (Buy_car,yes)

CARs CAR1 U CAR2

113

results of CBA and LC algorithms in regards to different measures especially training time and

memory resources using medium and large datasets that have various size and number of

columns. We can assume from here that as the number of iterations increases to generate

frequent ruleitems the likelihood is that our approach will significantly reduce the unnecessary

ruleitems merging and this will improve the efficiency in terms of execution time and memory

usage of the algorithm.

4.3.2 Classifier Construction

The second stage of LC algorithm is the construction of a classifier, the main aim of the process

is to extract a number of rules that can be used for the prediction of test data. Rule ranking and

pruning of the rules generated in the training phase of LC algorithm, is performed in this step.

4.3.3 Rule Sorting

The number of rules produced by the AC techniques may be large (Baralis, et al., 2004), and

extraction of reduced number of rule set is very significant. The rule ranking is the first step to

build a classifier in AC and it is mainly utilized to choose the most useful rules for prediction.

LC ranks rules on the basis of different criteria mainly rule’s confidence, support, length and

class distribution in the training data set.

Rule ranking is very helpful in pruning specific rules which have low confidence than

general rules and are also redundant. As in rule evaluation step of ADT algorithm (Wang, et al.,

2000), when the choice has to be made between two rules, the highest ranked rule is selected.

Mostly rule ranking in AC is carried out on parameters such as confidence, support and

rule length (number of items in the rule body (Left Hand Side)). This ordering of parameters was

used in a number of AC approaches such as those in (Thabtah, et al., 2010, Antonie, et al. 2003;

Liu, et al., 2001; Wang, et al., 2000). In the above techniques if the support, confidence and the

cardinality values are same for some rules then these techniques select one of the tied rules

randomly which in many cased may degrade the accuracy performance (Thabtah et al., 2011).

In this section, we will present the rule ranking procedure used in our algorithm. We have

selected the rule ranking criteria used by MCAR to be used in our study. The LC algorithm uses

the general rule ranking procedure that is based on rule’s confidence, support and length while

114

input : Class Association Rules(CARs)

output : Ranked rules based on their confidence, support and rule length counts

1. Ranked_Rules = ClassAssociationRules;

2. for (i=1 ; i= ClassAssociationRules.Count ; i++)

3. {

4. if (confidence_value(i-1) > confidence_value(i)) //comparing confidence value

5. { Swap= Ranked_Rules (i-1) & Ranked_Rules (i);}

6. if (confidence_value(i-1) == confidence_value(i))

7. {if (support_value (i-1) > support_value(i)) // checking support count

8. {Swap= Ranked_Rules (i-1) & Ranked_Rules (i); }

9. elseif (support_value (i-1)== support_value(i))

10. {If(Ranked_Rules (i-1).rowlenght > Ranked_Rules (i).rowlenght)

11. {Swap = Ranked_Rules (i-1) & Ranked_Rules (i);}

12. elseIf(Ranked_Rules (i-1).rowlenght== Ranked_Rules (i).rowlenght)

13. {If(Ranked_Rules(i-1).class_distribution > Ranked_Rules(i).class_distribution)//checking class frequency

14. {Swap = Ranked_Rules (i-1) & Ranked_Rules (i);}

15. elseif (If(Ranked_Rules (i-1).class_distribution == Ranked_Rules(i).class_distribution)

16. {random select a rule }

17. }}}

18. return Ranked_Rules;

Figure 4.3 Rule ranking in LC algorithm

adding another tie breaking parameter that considers the class frequencies in the training data and

when required the rule linked with the highest distributed class is preferred. For example if two

rules, rule1 and rule2 having the same confidence, support and rule length, but rule2 is linked to

the class that have more frequency in the training data than rule1, LC selects rule2 in the process

of rule ranking.

In case when we come across a rule that shows same class frequencies, then we will

select rule on random basis. The procedure used in LC is presented in Figure 4.3.

4.3.4 Pruning of Rules

A significant rule is a rule that is contained in the classifier and will be used in the step of

prediction of accuracy of the test data. In our rule generation and then selection system a rule

will be a part of the classifier if it correctly covers at least one training instance during building

the classifier. After the rule generation step finished, we usually ends up having very huge

number of rules some of which are redundant or contradictory. To minimize the size of the rules

115

Input: Ranked rule set, Training instance ‘T’

Output: A Classifier

1 R = Ranked rule set

2 For each rule r  R

3 do

4 temporary = Ø;

5 for each case t  T

6 do

7 if t satisfies the conditions of r then

8 store t.id in temporary and mark r if it correctly classifies t;

9 if r is marked then

10 insert r at the end of Classifier;

11 delete all the cases with the ids in temporary from T;

12 select a default class for the current Classifier;

13 calculate total number of errors of Classifier;

14 end

15 end

16 Find the first rule p in C with the lowest total number of errors and drop all the rules after p in C;

17 Add the default class associated with p to end of C, and return C (our classifier).

 Figure 4.4 Classifier building in LC algorithm (database coverage pruning method)

in this step pruning unnecessary rules becomes important. In the LC algorithm, we use database

coverage like pruning and its functionality is discussed in Figure 5.4, which can be summarized

as follows.

Step 1 (line 1-13): rules are applied against the training data set from the set of ranked rules R

which were produced after training phase and rule ranking. LC selects a rule such that ,

and then it goes through the training data set T searching for the instances or records covered by

 (meaning those satisfy the body) (line 7). Rule is marked if it covers an instance t (line 8).

In our classifier building step is a potential rule and will be added to our final classifier (line

10). The instances that are correctly classified by will be deleted from the training data T (line

11). If some of the data is not covered by the ranked rules, then we will select a default class

from this data. Default class will be the highest class in the remaining training data (line 12). The

error made by the ranked rules that wrongly classified the classes of the training data T will be

computed and stored along with the default class (line 13). The errors are calculated when there

is no rule left in or when all the training data is covered by the selected rules. This will

conclude the selection process of rules.

All rules that are marked during evaluation get generated as a classifier and all other unmarked

rules are discarded by the LC.

116

The remaining uncovered training instances are utilized to produce a default rule that represents

the largest frequency class among them. LC and CBA require that all items in the candidate rule

to be contained in the training case during evaluation in order to consider the rule significant.

4.3.5 Prediction Method of LC

Prediction is the final and most important step in classification. It helps in determining the

accuracy of the classifiers produced and it uses the classifier’s set of to make the decision of

assigning the class label to the test instance. The basic structure of the new LC prediction method

named as “Group Base Decision Prediction Algorithm” is presented in Figure 4.5. It works by

selecting the rules from the classifier (C) that match the conditions of the test instance (testi).

Then divides these rules into different groups based on class labels and compute the average

group confidence to select the class that belongs to the largest group average confidence. This

class will be assigned to the test instance (testi). The description of the steps in the algorithm is as

under:

Inputs for the algorithm are set of rules (Classifier), test data and default class. The output is a

prediction error rate generated after assigning the new class labels to test instances.

Line 1: Start of the loop for each test data instance.

Line 3: Another loop starts for each rule in the classifier.

Line 4-6: The test data instance TestData(i) conditions are matched with the all the rules in the

classifier and all the rule that matches the test instance conditions is placed in an array

“ArrayRule” rule conditions .

Line 9-12: ArrayRule count is checked and if it is not zero then it means that at least one rule is

found that matched test data instance condition. The confidence of all rules having similar class

is calculated and the group of rules belonging to a specific class with the highest average

confidence is selected. If the ArrayRule is found empty then the default value is assigned to the

test instance. And the value of “assign” variable is set to “true”.

Line 15-16: If the a rule or set of rules are found that matches the test instance, the class with the

highest average value of confidence is assigned to the test instance TestData(i).

Line 20: The total numbers of errors (Pe) are calculated of the instances that are wrongly

classified.

117

Input: Classifier (CRules), default class (dc), test data (TestData), training data

Output: Prediction error rate Pe

1 For (i=0, i<= TestData.count; i++)

2 { Assign=false;

 3 For (j=0 ; j<= CRules.count ; j++)

 4 { verify(TestData(i).conditions , CRules(j).conditions)

 5 If (TestData(i).conditions == CRules(j).conditions)

 6 { ArrayRules.Add(CRules(j));

7 }

8 }

9 if ArrayRules.count ≠ ∅

10 { calculate average_confidence per class;

11 HAC = Select highest average confidence class;}

12 else { TestData(i) == dc;

13 Assign== true;

14 }

15 If (assign==false)

16 { TestData(i)== class.HAC;//assign highest //average_confidence class

17 }

18 ArrayRules=null;

 19 }

 20 Pe= verify (TestData , TrainingData); // error calculation

Figure 4.5 Prediction method in LC

 Normally, in AC prediction methods, to predict the classes of the test data, generally the

techniques work on the principle that, when rule in the classifier C matches the test instance

(Ts) attribute value(s) or is contained in Ts classifies it. So the test case Ts will be assigned the

first rule in the classifier that matches it. This is typically called single rule prediction and it has

been criticized for allowing only very limited of rules to classify test data. Instead we have

developed a multiple rule prediction approach which employs a collection of rules to predict the

outcome of a test instance in LC. Therefore, more than one rule play role in deciding the class

label that should be given to the test case and consequently we minimized the dominancy of a

single rule predicting the class for most test cases.

118

4.4 Experimental Environment Setup

4.4.1 Data Sets Used in Experiments

Experiments are conducted using a number of different data sets from the UCI repository

(Murphy and Merz, 1996). The data sets of balloon, Sick, Cleve, Vote, Weather, Breast-w,

Diabetes are the binary class dataset and multiple class datasets used in the experiments are

Glassd, Iris, Led7, Lymph, Zoo and Contact-lenses. For the authenticity of the experiments the

small, medium and large sized datasets are considered. The descriptions of the datasets used in

the experiments are shown in the table 4.10.

Table 4.10: UCI data sets used in experiments

Data Set Name No of Classes Data set Size

Balloon 2 20

Sick 2 3772

Cleve 2 303

Glassd 7 214

Iris 3 150

Led7 10 3200

Lymph 4 148

Vote 2 435

Zoo 7 101

Contact-lenses 3 24

Weather 2 14

Breast-w 2 699

Diabetes 2 768

119

4.4.2 Experimental Parameters and Setup

The algorithms of LC and CBA are designed using Visual C++ and C# and evaluations are

performed on 1.6 GHz processor machine with 1GB memory. The comparison of LC algorithm

with CBA with reference to the number of merges for both approaches at each iteration in the

training phase or rule generation phase, the number of frequent rules generated, the number of

rules contained in the classifiers of both algorithms, CPU time, memory usage and prediction

accuracy. The pruning and prediction methods for both algorithms are also implemented. The

minSupp in our experiments are set at 5% and minConf to 40%.

One of the main aims of the experiments is to calculate the total number of merging

(joining) of the itemsets in each iteration in both our proposed algorithm LC and CBA. It will

also be investigated whether the reduction in the number of joining during all the iterations has

any impact on the execution time and memory usage (paged memory, physical memory and

virtual memory). It should be noted that the learning of the rules phase (training phase) and the

classifier construction step (building a classifier) as well as the prediction phase are thoroughly

investigated in this section. In other words, the investigation is done experimentally and a

comparative study is carried out with CBA.

4.5 Experimental Results and Discussion

In this section, thorough analysis of the experimental findings will be discussed. Table 4.11

represents a comparison of the rule generation phase for both LC and CBA on different binary

and multi-class classification data sets from UCI repository. Specifically, and for all data sets

considered, the number of times disjoint itemsets are merged in each iteration are computed and

shown in columns 4-9, and the sum of all the itemsets joining (merging) is presented in the last

column of the table. The third column of the Table 4.11 represents the merging of a single item

with the class attribute values, and it can be seen that the values are same for both LC and CBA

for all the data sets. While analysing the results it can be said that a significant change is seen in

the number itemsets merging during each iteration in both algorithms. The number of itemsets

merging is our proposed algorithm LC is reduced to merely 2%, 4.2%, 5.18%, 4.95%, 7.66% and

3.4% of CBA on the “Zoo”, “Breast–w”, “Vote”, “Lymph”, “Glassd” and “Cleaved” data sets

respectively. For the remaining small data sets like “balloon”, “contact” and “weather” and

120

“irisd” the number of merging has also reduced for the LC when contrasted with CBA training

phase by 48.84%, 24%, 41.97% and 58.04% respectively. This means that LC training phase has

improved upon CBA learning by cutting down unnecessary itemsets joining very significantly

during the training phase for small, medium and large data sets.

Furthermore, it is notable from Table 4.11 that the differences in the number of joining

between LC and CBA in the later iterations of large data sets like “Zoo” and “Lymph” is large.

This is because the number of itemsets available before any merging in the later iterations such

as iteration (2) is often larger that of the previous iteration, i.e. iteration (1), excluding the last

iteration. For instance in the “Zoo” data set, the number of itemsets merged using CBA are 1086,

4374, 10220, 15187, 14875, and 6414 for iterations, 2,3,4,5,6 and 7 respectively. In comparison,

the LC algorithm decreases the number of merging for the same iterations significantly to 38,

122, 195, 271, 223 and 0 respectively.

According to Table 4.11 and in general, our new approach has presented a new idea of

avoiding so many unnecessary merging for all the data sets whether they are large or small. The

reduction in the search space of rule generation process in LC may lead us to the reduction in the

execution time because efficiency is always a significant issue when dealing with software

related solutions, and it may lead us to decrease in the memory usage.

The processing time of CBA and LC are calculated and shown in Table 4.12. For

example for “Zoo” data set, the time required to execute the experiment is significantly

decreased from 39515ms in CBA to 6942ms in LC with high margin of 82.43% improvement for

the LC algorithm. It is noticed in the data set of “Led7” that iterations from 3-6 have “zero”

values in Table 4.11. This was due to fact that “Led7” is a multiclass problem and contains many

different classes about ‘10’and as our algorithm considers only those itemsets for merging that

have same class labels, so it explains the zero values in iteration of 3-6, and consequently shown

a large saving in execution time of “Led7” data set.

121

.

Table 4.11: The number of itemsets joining of LC and CBA algorithms

Approach Data set
Iteration

1

Itemsets Merging in each iteration
Total Number

of merging in

all iteration

Iteration

2

Iteration

3

Iteration

4

Iteration

5

Iteration

6

Iteration

7

LC* Balloon 14 14 12 4 0 0 0 44

 CBA** 14 24 32 16 0 0 0 86

LC Contact 23 23 28 0 0 0 0 74

CBA 23 30 44 0 0 0 0 97

LC Iris-Id 27 18 12 3 0 0 0 60

CBA 27 45 52 19 0 0 0 143

LC Vote 60 102 423 775 897 791 0 3048

CBA 60 399 2605 8832 17396 21159 8386 58837

LC Zoo 196 38 122 195 271 223 0 1045

CBA 196 1086 4374 10220 15187 14875 6414 51266

LC Led7 140 21 24 16 6 1 0 208

CBA 140 84 280 560 669 432 62 2227

LC Glassd 90 39 49 26 8 1 0 213

CBA 90 152 525 885 759 325 42 2778

LC Lymph 93 169 631 909 642 212 0 2656

CBA 93 430 2585 8460 16103 18549 7381 53601

LC Sick 45 86 537 1173 1721 1722 0 5284

CBA 45 228 1103 3136 5650 6669 2829 19660

LC Cleaved 50 108 380 697 935 796 3 2969

CBA 50 296 2008 8356 21794 35928 16959 85391

LC Weather 19 23 20 3 0 0 0 65

CBA 19 35 44 14 0 0 0 112

LC Breast-w 59 172 371 371 513 471 285 1871

CBA 59 387 2565 8479 14493 13816 4519 44318

LC
Breast

cancer
82 284 848 993 559 123 0 2889

CBA 82 591 3438 10091 16071 14618 5050 49941

LC Diabetes 30 62 134 130 36 0 0 392

CBA 30 92 290 486 394 0 0 1292

LC*= Looking at labels of the class CBA **= Not looking at labels of the class

122

Table 4.12: Execution time (milliseconds) of LC and CBA algorithms

Data set CBA LC Difference (%)

Balloon 97 82 15.46

Contact 115 96 16.52

Cleved 457129 116346 74.54

glassd 1294 530 59.04

Irisd 109 94 13.76

Led7 22948 2917 87.28

lymph 71432 8954 87.46

Vote 152117 63461 58.28

Sick 242706 276683 -13.99

weather 94 78 17.02

Zoo 39515 6942 82.43

Breast cancer 47081 11825 74.88

Breast-w 59452 23712 60

Diabetes 1092 920 15.75

It is very obvious from the numbers displayed in Table 4.12 that our proposed algorithm needs

less time to execute while generating the rules in the training phase when compared with CBA.

The small data sets of “balloon”, “contact” and “weather” and “irisd” showed the reduction in

execution time by an average of 15.79% as compared to CBA. On the other hand for the medium

and large data sets of “Zoo”, “Breast–w”, “Vote”, “Lymph”, “Glassd” and “Cleaved” , the

average decrease in execution time is 71.1% which shows a very significant decrease as

compared to CBA. This is due to the fact that LC does not perform the unnecessary joining of

itemsets that have different class labels, in n
th

 iteration that follow the previous (n-1)
th

 iteration.

This has eventually reduced the search space and consequently decreased CPU time (execution

time). The execution time findings of our LC approach is better and consistent than CBA on ‘13’

data sets with only one exception the “Sick” data set. When we have analysed the “Sick” data

set, we found out that it is a binary classification problem with only two classes and the class

frequency of the one class is much higher than the frequency of the other class. It was found that

most of the itemsets in “Sick” data set are linked with the dominant “negative” class. In fact, out

of “3772” instances or entries in “Sick” data set “3541” contains “negative” class in their

consequent, so it constitutes about 93.8% of the data set. Hence the large number of itemsets that

passes the minSupp threshold at the initial iterations are associated with the same dominant class

i.e., “negative’. Our approach has took longer time to execute than CBA because our approach

123

Table 4.13: Physical, paged and virtual memory (bytes) used by CBA and LC algorithms

Data set

Physical Memory Paged Memory Virtual Memory

CBA LC CBA LC CBA LC

Balloon 3440640 3432448 6307840 6307840 82763776 82763776

Contact 3432448 2719744 7340032 3846144 82763776 69636096

Iris-Id 3432448 3428352 6307840 6307840 82763776 82763776

Vote 12103680 12066816 14462976 14458880 130703360 130703360

Sick 11382784 12070912 13963264 14450688 126967808 130678784

Cleved 12107776 12075008 14458880 14458880 130678784 131203072

Led7 11354112 11313152 13971456 13946880 126967808 126418944

Zoo 12029952 12013568 14446592 14446592 130703360 130678784

Lymph 12038144 12029952 14450688 14454784 130703360 130703360

Weather 3440640 3432448 7340032 6307840 82763776 82763776

Glassd 11476992 10354688 14254080 13750272 129814528 126078976

looks at the classes before merging and here the class associated with most of the itemsets is

identical. On the other hand CBA do not look at the class labels and saves an extra effort of

checking, this explains the higher CPU time and memory usage in our case for the “Sick” data

set.

Table 4.13 shows the memory usage in terms of physical, paged and virtual for both

approaches during the training phase. The memory usage of LC in terms of physical, paged and

virtual is also less for all the data sets except the “Sick” if compared with CBA because of the

facts described above.

124

We have generated the results of the number of frequent ruleitems and rules produced in

LC and CBA before building the classifier (pruning) and after building the classifier. We have

performed our experiments by keeping the minSupp to 5%, and the minConf value kept at 40%.

The results are computed while generating the frequent ruleitems in all the iterations of the

training phase in the LC and CBA approaches against the 14 UCI datasets considered. The

results depicted in Table 4.14 revealed that the numbers of CARs derived for both LC and CBA

against the 14 data sets without pruning are different 13 datasets and same for only “Sick” data

set. In Table 4.14, column 4 we have also shown the results of the number of rules generated

after performing pruning on both CBA and LC algorithms.

Table 4.14: LC and CBA number of CARS and rules generated after pruning, using minSupp=5% and

minconf =40%

Approach Data set

Total no of CARs

generated (w/o) pruning

minsupp = 5, minconf =40%

Total no of Candidate rules

generated (with pruning)

LC* Balloon 38 3

 CBA** 88 3

LC Contact 51 5

CBA 72 9

LC Irisd 45 11

CBA 64 15

LC Vote 1865 79

CBA 3729 83

LC Zoo 629 7

CBA 1996 8

LC Led7 82 33

CBA 588 206

LC Glassd 129 24

CBA 511 30

LC Lymph 640 44

CBA 2007 50

LC Sick 2406 16

CBA 2406 16

LC Cleaved 2211 73

CBA 5513 78

LC Weather 56 6

CBA 121 6

LC Breast-w 676 59

CBA 1455 61

LC Breast cancer 751 62

CBA 829 74

LC Diabetes 213 52

CBA 315 70

125

The dataset of “Lymph” has produced only “640” frequent ruleitems as compared with

“2007” with CBA. The medium and large data sets of “Zoo”, “Vote”, “Lymph”, “Glassd”,

“Breast–w” and “Cleaved” have produced on an average of 62.97% less number of CARs for LC

when evaluated against CBA. For the smaller data sets of “balloon”, “contact” and “weather”

and “irisd”, LC has shown a considerable decrease in the number of CARs generated i.e.,

42.34% of CBA.

When the comparisons are drawn for the number of candidate rules generated after the

pruning is applied on the CARs the amount of candidate rules generated by our approach LC are

found less than the CBA for “11” data sets except “Balloon”, “Weather” and “Sick”, these three

data sets have shown same number of candidate rules generated of “3’, “6” and “16” respectively

for both LC and CBA approaches. The average number candidate rules generated for all “14”

UCI data sets for CBA is 50.64 as compared to 30.57 for LC, the average decrease of 39.63% of

CBA is calculated when the total number of candidate rules are considered for LC.

It can be concluded after the results evaluation of our experiments for Table 4.14, that the

number of CARs generated for LC are much less than the number of CARs of CBA for the data

sets considered, due to the fact that LC algorithm implies two conditions before and after

merging of itemsets, the first condition is to only merge the disjoint itemsets which have

common class labels and second is the removal of the ruleitems with less frequent class if the

ruleitem is associated with more than single class in the consequent and keeping only the

ruleitems with the frequent class. These two conditions that are not applied in CBA have led to

the significant decrease in the number of frequent ruleitems generated in LC. The decrease in the

number of CARs has a significant impact on the total number of candidate rules generated, and

hence smaller size candidate rules are generated. This may have an impact on the total number of

rules in the final classifier. We will demonstrate in our description below the number of rules

contained in the final classifier and the prediction accuracy of these rules for both AC algorithms

and classification algorithms for better comparisons.

It is noticeable from the results given in Table 4.15 that LC produced smaller size

classifiers than CBA and for most of the data sets used during the experiments. The main reasons

for the less number of rules generated for the LC algorithm is explained in the above section.

126

The most important and the final step now to check the prediction power and accuracy of

our algorithm and compare it with that of CBA, the minsupp is kept at 5% and minconf is set to

40%, the results are shown in the Table 4.16. The results are very promising and our proposed

algorithm LC has outperformed CBA algorithm on the accuracy measure for almost all the data

sets. The results of Table 4.16 revealed that LC algorithm derived an average of 87.45%

prediction accuracy on the classification benchmarks we consider, whereas the average

prediction accuracy of CBA was 86.15%. In general, LC is +1.3 % better than CBA with respect

to classification accuracy on the benchmark problems utilised in this section. We have explored

the reasons why the prediction accuracy is low for “Led7” data set; it contains 7 attributes with

each having two attribute values, and 10 classes. By calculating the class distribution with the

attribute values, it came to our knowledge that these are evenly distributed. Each attribute value

Table 4.15: LC and CBA number of rules generated after
 pruning,using minSupp=5% and minconf =40%

Data Set

Total No. of Rules in Classifier

“C” of LC

minsupp = 5%, minconf =40%

Total No. of Rules in Classifier

“C” of CBA

minsupp = 5%, minconf =40%

Difference

(no of rules)

Balloon 1 3 2

Contact-

lenses
5 6 1

Irisd 5 5 0

Vote 32 34 2

Sick 16 16 0

Cleved 44 70 26

Led7 27 52 25

Zoo 7 7 1

lymph 33 35 2

weather 6 6 0

glassd 19 26 7

Breast-w 51 33 18

Breast

cancer

48 49 1

Diabetes 34 42 8

127

is linked with all the ten classes. In our LC algorithm, the minority rule in the training phase

tends to remove all the ruleitems that are linked with the minority class values. In case of

“Led7”, considering that an attribute value is associated with “10” classes, so “9” of the

ruleitems with same attribute value and different classes will be removed and only one ruleitem

is kept with the majority class. This has led to the removal of significant potential rules in case of

“Led7”data set and may have degraded the prediction accuracy. Our LC is working well for

multiclass problems of “Zoo”, “Glassd”, “Lymph” and “Contact–Lenses” except “led7” data set,

because of the reasons described above. Our algorithm LC has outperformed C4.5 in “8” data

sets, showed same accuracy for “3” data sets and C4.5 have shown better accuracy for “2” data

sets considered in our experiments.

Our next step is to demonstrate the effectiveness of our new prediction approach that

considers group of rules to make the prediction rather than a single rule. For that purpose we

have conducted experiments using the LC algorithm and implementing a method for prediction

Table 4.16: Comparisons between LC, CBA and C4.5 for prediction accuracy

Data Set

Name

No of

Classes

Data set

Size
C4.5 CBA LC

Balloon 2 20 100 100 100

Sick 2 3772 93.87 91.56 93.90

Cleve 2 303 81.54 83.13 89.76

Glassd 7 214 66.82 69.89 71.02

Iris 3 150 96 93.25 95.33

Led7 10 3200 73.56 71.74 58.78

Lymph 4 148 85.13 76.38 87.84

Vote 2 435 89.19 86.91 90.57

Zoo 7 101 93.06 95.96 93.06

Contact-

lenses
3 24 83.33 91.66 91.66

Weather 2 14 100 100 100

Breast-w 2 699 94.56 95.84 98.14

Diabetes 2 768 73.85 75.34 78.13

128

using single rule and another method using multiple rules. In single rule prediction method, the

class value of the first rule that matches the test instance condition will be assigned to that test

case. In the case of the multi rule the decision to assign the class value will be made by a group

of rules. All the rules are selected that matches the condition of the test instance, the average

confidence of all the classes in the group is calculated and the class with the highest value of

confidence is assigned to the test instance. Hereunder is the description of the columns in Table

4.16.

Column 1: Contains the data sets used.

Column 2: Shows the number of records or entries in the data set.

Column 3 and 4: Presents the total number of rules in the classifier that have produced the least

number of errors, and the total minimum number of errors using single rule for prediction.

Column 5: Shows the prediction accuracy percentage for single rule prediction method.

Column 6-7: Presents the number of rules from the classifier that has achieved minimum number

of errors.

Column 8: the prediction accuracy of using group of rules prediction depending on average

confidence for each group

The results in Table 4.17 have shown an improvement in accuracy of four data sets using

group of rules prediction including “Cleve”, “Zoo”, “Lymph” and “Glassd” with prediction

accuracies of 89.76%, 93.06%, 87.83% and 71.02%. On the other hand, single rule prediction

method achieved 86.46%, 91.08%, 85.81% and 69.62% respectively on the same data sets. The

prediction accuracy remained the same for single and multiple rules prediction on six data sets

including “ Balloon”, “Weather”, “Irisd”, “Contact”, “Diabetes” and “Sick”. The prediction

accuracy is decreased by a fraction of 0.14 % for “Breast-w” and 0.39 % for “Led7” data sets

when multiple rules based prediction is applied as compared with single rule prediction.

129

4.6 Summary of Chapter

In this chapter we have discussed in detail the rule generation, rule ranking, rule pruning,

classifier builder steps in the proposed algorithm with the experimental results. The proposed

algorithm enhanced on CBA main steps especially frequent ruleitems discovery by reducing the

candidate ruleitems merging at each iteration and using the minority rule have improved the

performance with reference to memory use and training time. The experimental results, against

UCI data sets from UCI repository, of proposed algorithm LC and CBA have been produced.

The results have shown that the number of merging at each stage of the rule generation has

reduced significantly for the LC algorithm in comparison to CBA and for all the data sets

considered. The experimental findings have clearly shown a positive impact when the number of

Table 4.27: Comparison of single vs group of rule prediction accuracy

Data Set

No of

Records in

Data Sets

Single Rule Prediction

Prediction %

(Single Rule)

Group of Rules

Prediction
Prediction %

(Group of

Rules)
No of

Rules

No of

errors

No of

Rules
No of errors

Balloon 20 1 0 100 1 0 100

Contact 24 5 2 91.66 5 2 91.66

Iris-Id 150 5 7 95.33 5 7 95.33

Vote 435 32 45 89.65 32 41 90.57

Sick 3772 16 230 93.90 16 230 93.90

Cleved 303 44 41 86.46 44 34 89.76

Led7 3200 27 1306 59.18 27 1319 58.78

Zoo 101 10 9 91.08 10 7 93.06

lymph 148 37 21 85.81 37 18 87.83

weather 14 6 0 100 6 0 100

glassd 214 19 65 69.62 19 62 71.02

Breast-w 699 51 12 98.28 51 13 98.14

diabetes 768 34 168 78.13 34 168 78.13

130

candidate ruleitems merging at each iteration is reduced on the execution time and the memory

usage of the LC algorithm for all data sets except “Sick”.

In the experiments of the classifier building step, the number of frequent rules generated

before pruning starts have reduced significantly when different values of support and confidence

are used if contrasted to CBA. The results have also shown that when pruning of those frequent

ruleitems is performed using database coverage method, the numbers of rules generated are less

than the CBA. In the final part of the chapter the most important step of checking the accuracy

of the classifiers build by our proposed prediction algorithm that uses multiple rules to predict

the class labels was shown. The comparative analysis with CBA and C4.5 have shown

significant and better prediction accuracy for almost all the test data sets, using the classifiers

build by LC algorithm and using our prediction algorithm. The results have shown some

improvement in the prediction accuracy when comparisons are presented while using group of

rules as compared to single rule prediction.

In the next Chapter 5 we will discuss an example from the real world relating phishing.

We will demonstrate and discuss in detail the process of data collection from the real data

repositories and findings of our LC approach with comparison to the classification and AC

mining techniques.

131

Chapter 5

Phishing Data Collection Model and Implementation of LC

and other Algorithms

5.1 Introduction

In this chapter one of the main problems in information security will be addressed in detail that is

phishing. The main focus will be to explain the steps to collect the phishing data of websites, to

extract useful or important features from the data and to implement the proposed AC algorithm

LC along with other classification and AC algorithms to demonstrate the use of data mining

techniques in Phishing. The results of all the approaches on phishing data sets are compared and

critical analysis will be discussed in later part of the chapter. The chapter is organized as section

5.2 demonstrates the model for data extraction from phishing and legitimate websites, section 5.3

explains the features selection process and section 5.5 discusses the experiments setup and

results.

5.2 Features Selection for Experiments

To execute the experiments, the task of extracting the features from the phishing and legitimate

emails is very vital. This task is mutually related to the process of accurately predicting phishing.

So it can be said that if the rule used in the feature extracting process from the sample of

phishing emails is accurate then the affects will be reflected in the accuracy percentage of

detecting phishing. In the next sections, we will describe the procedures of extracting a set of

features from a set of phishing, will figure out the features that have significant impact to predict

phishing, and will formulate some rules on the basis of some findings for each feature extracted

to classify them.

132

5.2.1 Phishing Data Sources, How and Why Features are Selected

The websites have large domain or matrix of features that can be considered for experimental

purposes. How and where these website features are selected has an answer that these set of

phishing websites are collected from a free community site of Phishtank archive (Phishtank.com)

where phishing data is shared, can be submitted, verified and tracked. The other source of data

collection is Millersmiles archive (Millersmile.co.uk), which is the prime source of data for

phishing scams and spoof websites. We have collected around 4500 URLs and 250 phishing

URLs sample is selected randomly for our experiments. The data is collected in the AI centre at

University of Huddersfield.

The preparatory step adopted to construct our data sets are as follows:

 The abnormal base features are extracted by a script as we need to connect with the

external website like Who.is (DNS) and results are exported to Excel.

 Data Extractor and HTML extractor tool is used for the extraction of HTML and Java

Script base features.

 A Java script is used to extract the domain base features from Who.is (DNS) and

Alexa.com.

Initially 27 features are selected from the phishing URLs by the steps explained above. To

handle these features and use them together in experiments is not possible and have produced

poor results. To select the best features out of the 27 extracted features, frequency analysis and

Chisquare testing methods are used. Frequency analysis is based on group base decision and

chisquare testing is a mathematical measure used to measure the correlation between the class

and feature value and evaluates each feature value. The features that have exceeded the threshold

of 3.84 are been selected.

 Finally 16 features are selected grouped in four categories. The abnormal base features

selected contain three features, address bar features have six, HTML and Java Script base

features represents four features and Domain base features have three features. What are the

criterion used to extract these features are explained in detail in the following section.

133

5.3 The Model for Extraction and Evaluation of Chosen Features

It is learnt from the literature that websites and mails have large domain or matrix of features and

considering all the features together could be complex and showed poor performance. The model

used extracts features from the phishing page that can take at least one input. The features are

divided here into four main categories depending on the impact factor in predicting phishing and

then are allocated to one of the four categories. The proposed model uses output from higher

WEBSITE DATA FOR PHISHING & LEGITIMATE WEBSITES

Website(1,2,3….n) = {f1,f2,f3,……..fn}

Address bar

based

feature

Abnormal

based

feature

Html

&JavaScript

based feature

Domain

based feature

Address bar

based

CLASSIFIER

Abnormal

based

CLASSIFIER

Html

&JavaScript

CLASSIFIER

Domain based

CLASSIFIER

TEST DATA OF NEW WEBSITES

PHISHING WEBSIES LEGITIMATE WEBSITES

Extracting features by applying

our rules

AC-Algorithm (LC) and other

Classification Algorithms

Figure 5.1 Feature extraction and phishing detection model

134

level as the input to the next lower level, and then different AC mining techniques are applied on

the extracted features to generated rules and detection accuracy. These rules will be used for

future prediction of the websites. In this sub-section, we describe the categories of the features

used.

5.3.1 Abnormal Based Features

5.3.1.1 Request URL

Webpages contains objects that may be externally linked to different domains. Normally in a

genuine website nearly all the objects would be linked to the current domain. In the experiments

the extraction of the <src=> from the http://www.dft.gov.uk/dvla/ website source code and

compared it with the domain <src=> present in the URL, if it is different than the website is

“phishing”.

The rule condition to classify the above feature is produced by calculating the percentage of

URLs that have different domain name in the source code to the entered domain name in the

address bar.

5.3.1.2 URL of Anchor Feature

The website is classified as phishing if the domain of the anchor usually defined by <a> tag is

different than the website or the anchor that do not show any link to a webpage, e.g. <a href= ”#

content”> and . This feature is same as the feature of request URL. When we

analysed our data set, we found 58 URLs of anchor feature and that refers to 23.2% of the total

data set.

5.3.1.3 Feature of Server Form Handler (SFH)

When the domain name in SFH-s is not similar to the domain name of the website then the

website is termed as “suspicious”, and when the SFH have “about:blank” or have empty

string(“”) then its termed as “ phishy” as some action has to be taken. We have found 10 URLs

containing SFH-s and presents only 4% of data pool.

Extractio

n of

135

5.3.2 Address Bar Based Features

5.3.2.1 Use of IP Address in Domain Name

If a user notices an IP address e.g. 196.25.6.101 in place of a normal domain name in the URL,

he should be pretty sure that something is wrong and suspicious. The user may find a

hexadecimal in the IP address like: http://0xDD.0xBE.0x25.0xAA/3/ebay.uk/html. This feature

is very important and selected in the proposed group, because it is used in most of the previous

researches. 22.8% of our collected data has this feature.

5.3.2.2 URL Length

The Phishing emails are often linked with long URLs to cover the suspicious portion of the

address box. The exact length of the phishing URL is not established yet and it is difficult to

differentiate between a legitimate URL and phishing ones. In our study we calculated a mean of

the URL length of the phishing URL collected from the Phishtank archive. The outcome of the

calculation is, if the URL length is >= 54, then URL is marked as Phishing. When the datasets

are checked 122 URLs of size 54 are found and greater and this makes 48.8% of our data. This

feature is classified in our study into three types; ‘Low’, ‘Moderate’ and ‘High’, when length of

URL is <54, >= 54 and <=75, and >75 respectively.

5.3.2.3 URL having @ Symbol

The Phishers uses "@"symbol in the URL because the browser may overlook the actual address

following the "@" symbol. This "@" symbol is used to dodge the system that URL is genuine.

We have found 9 URLs with @symbol in our data set which represents 3.6%.

5.3.2.4 Prefix or Suffix in the Domain Part

Phishers try to hide information in the domain part of the URL as a suffix or a prefix separated

by dash (-). Dash is used in the genuine URL but very rarely. Users have no idea whether they

are dealing with the phishing website or with legitimate website. In our study 66 URLs are found

containing (-) symbol in our data set which comprises about 26.4% of total URLs.

136

5.3.2.5 URL having Sub Domain

A domain name comprises of mainly two levels: top level domain (TLD) and a second level

domain (SLD). We analyse a link like http://www.dft.gov.uk/dvla/, where .uk is TLD, .gov is an

abbreviation for government, joined “.gov.uk” is known as SLD and “dft” is main domain name.

Thus it can be noted that a genuine URL contains two dots when ignoring the dot with ‘www’.

The collected data set having 111 URLs that contains >= 3 dots in the domain section represents

44.4% of the data set.

5.3.2.6 SSL (Secure Sockets Layer) Final State

Due to growth in online transactions large quantities of personal and important information are

transferred. The websites provide security by using domain names that are secure, and protocols

uses SSL to ensure a safe transfer of sensitive data by generating certificates. Presence of HTTPs

gives genuineness to the website, but as Netcraft’s community have extracted 450 phishing

URLs that uses HTTPs since 2005 [6], this fact is not valid any more. Authorities like GoDaddy,

Verisign and GeoTrust that generate certificates are trust worthy.

In the pool of data 92.8% of the data found contains 232 URLs not supporting HTTPs or

used a fake https. In the past studies, researchers have not considered fake https but the extracted

feature does take up these fake providers.

5.3.3 HTML and JavaScript Based Features

5.3.3.1 OnMouseOverfeature

A fake URL is displayed in the status bar when the OnMouseOver function changes the status

bar. The extracted dataset have counted 50 URLs and these comprise 20% of whole data pool.

5.3.3.2 Redirect Feature

The phishers are looking for the sites that offer open redirects; these are exploited and phishers

create links to phishing sites, this gives an impression of a genuine website. Only one click leads

137

the unaware user to the phishing site. 10% of the data sets collected contain the redirect page

features.

5.3.3.3 PopUp Window Feature

The genuine websites normally do not ask the user to enter their login information via a popup. It

is found that 9.2% of the users entering their personal information in the popup window (PW).

5.3.3.4 RightClick Disabled Feature

Right click is disabled by phishers when they use JavaScript in the phishing website, thus

preventing the user from viewing source code. In the collected data only 4 URLs of such nature

were found.

5.3.4 Domain Based Features

5.3.4.1 Domain’s Age Feature

Some of the features from the WHOIS database are extracted and used in our study. Domain’s

age feature used in our dataset is assigned “Low” value if the age of the domain is more than 1

year. If the domain’s age is less than 1 year then it is assigned “High” value. In the data set it is

found that 239 URLs, where the domains were originated for less than 1 year and this constitute

95.6% of the data set.

5.3.4.2 Record from DNS Feature

This feature is also collected from the WHOIS repository. The identity of the phishing website

domain name cannot be found in the DNS database. In the data set build up, if the hostname’s

record cannot be found in the DNS entries or the identity of the website is not matched by

WHOIS then the website is marked as “phishing” and assigned “high”, otherwise the website is

genuine and assign it value of “low”.

138

5.3.4.2 Website Traffic

The analysis of the website traffic feature is very significant in recognizing the legitimacy of the

websites. When no traffic is recorded in Alexa database, then the website is marked as

“phishing”. The trusted websites are included in the top 10,000 ranked entries. This feature is the

popularity measure of the URL. If the URL ranked inside the top 10,000 then the website is

“legitimate and trusted”, else “suspicious”.

5.4 Experimental Setup and Data Sets Used

The experiments are conducted and evaluations are demonstrated on the phishing data sets of

AddressBarBaseFeatures, HTMLandJavaScriptBasedFeatures, AbnormalBasedFeatures and

ALEXA data set also named as DomainBaseFeatures , extracted by the procedures described in

section 5.3., for number of merging at each iteration of LC and CBA, the number of rules

generated and accuracy of the classification and AC algorithms. All the data sets constructed

represent binary classification problem and contains two possible values for the class attribute:

“Legitimate” or “Phishing”. We will use different classification data mining algorithms including

PART (Frank and Witten, 1998), C4.5 (Quinlan, 1993) and Naïve Bayes (Duda and Hart, 1973),

and an AC algorithm of CBA (Liu et al., 1998) and proposed LC algorithm in the experiments.

 We have performed experiments using WEKA tool (weka.com), an open source Java

application, for PART, C4.5 and Naïve Bayes classification algorithms. On the other hand, the

experiments are conducted for LC and CBA using the implemented version in Visual C#. The

training database used is composed of 564 phishing instances and 450 legitimate ones and has

been gathered from Yahoo at the University of Huddersfield.

5.5 Experimental Results and Discussion

A comparative analysis will be conducted for all the above mentioned algorithms in the

following sequence.

 Finding the number of disjoint itemsets merging at each iteration for the proposed

algorithm LC and CBA.

 Finding the number of CARs and number of candidate rules for rules for the final

classifier.

139

 Finding the number of rules in the final classifier for all classification algorithms

including PART, C4.5, CBA, LC and Naïve Bayes

 Deriving the accuracy figures for all classification algorithms to demonstrate the most

predictive algorithm that is able to detect phishing accurately.

Table 5.1 and Figure 5.2; demonstrate the number of times itemsets have been merged during

each iteration for LC and CBA using minSupp and minConf of 5%, 40% respectively. The

generated values in have revealed that the number of itemsets merging at each cycle in LC and

for all the data sets have decreased significantly as compared to CBA. For example, since the

AddressBarBaseFeatures data set contains more number of features than the other phishing data

sets it has shown larger number of merging in the iterations during the rule generation phase, the

Table 5.1: Comparison of number of merging for the security data sets using minsupp =5% and minconf = 40%

Website Data set Algorithm
(single item with

class) Cycle 1

Cycle

2

Cycle

3

Cycle

4

Cycle

5

Cycle

6

Total of All

Cycles Merging

Abnormal Base

Feature Data Set

LC* 21 11 5 - - - 37

CBA* 21 35 24 - - - 80

Address Bar

Feature Data Set

LC 30 52 89 75 26 2 274

CBA 30 92 236 296 177 40 871

Domain Base Data

Set

LC 18 11 5 - - - 34

CBA 18 23 14 - - - 55

HTML Base

Data Set

LC 22 25 27 9 - - 83

CBA 22 50 64 25 - - 161

140

0

100

200

300

400

500

600

700

800

900

1000

Abnormal Base

Feature Data Set

LC*

CBA*

Address bar

feature data

Domain

base feature

HTML & Java

script data set

total number of itemsets merging in LC and CBA are ‘274’ and ‘871’ respectively. Meaning the

number of itemsets merging during the training phase has been reduced in LC to 52, 89, 75, 26

and 2 as compared to CBA 96, 236, 296, 177 and 40 in the 2
nd

, 3
rd

, 4
th

, 5
th

 and 6
th

 iterations, as

 Figure 5.2 No. of merging for all iterations of address bar feature data set of LC and CBA

Figure 5.3 Total number of itemsets merging of phishing data sets

141

shown in Figure 5.3. These results are consistent with the UCI results discussed in Chapter 4

which means LC training phase has improved the performance and efficiency of CBA’s current

training method in particular the training time and memory usage.

Figures 5.2 and 5.3 depict the difference in the number of itemsets merging at each cycle

of the AddressBarFeature and total number of candidate itemsets merging for all phishing data

sets for LC and CBA algorithms. It can be concluded from Figures 5.2 and 5.3 that the CBA

algorithm generates larger number of candidate itemsets than LC algorithm on the

AddressBarFeature and HTMLBaseFeature data and for most iterations.

Experiments are also conducted to find the total number of CARs and total number of

candidate rules after pruning in the security data sets. Table 5.2 displays the results for the

frequent ruleitems and candidate rules for the final classifier for LC and CBA. The results have

shown that total number of CARs generated for LC is much less than CBA for all the security

data sets. For example the total number of CARs produced for the Address bar feature data set

in LC is “148” i.e., 47.88% less than CBA “284”, the total number of frequent ruleitems for

CBA is “417” in all the “4” security data sets and “244” for LC i.e 58.51% of CBA. This

significant decrease is due to the reasons explained in the experimental section of Chapter 4. For

example, the number of candidate rules generated from the “Address Bar” data set for the LC

algorithm is less than that of CBA. In fact, LC generated ‘18’ rules for minSupp value of 5% and

minconf of 40% whereas CBA produced ‘24’ for the same values of minSupp and minconf .

However, for Abnormal Base feature data set, the number of candidate rules is ‘17’ rules and

‘15’ for CBA and LC algorithm respectively.

The detailed comparative analysis on the number of candidate rules generated by CBA

and LC against the four categories data sets are displayed in Figure 5.4-5.7. It clear from the

below figures that LC often derives smaller classifiers that CBA algorithm. This surely is an

advantage for the decision makers since it increases understand ability and control on behalf of

the end-user. The main reasons for generating less number of rules by LC is due to the fact it

uses a looking at class condition before merging of itemsets in each iteration and uses a minority

rule to remove less frequent associations of ruleitems with different class attribute values.

142

Table 5.2: Comparisons of number of CARs and candidate rules generated for LC and CBA

Website URL’s

Data set

Algorithm

Number of Frequent rules (CARs)

in all iteration (w/o pruning)

Number of Candidate Rules

(with pruning)

minsupp = 5% minconf= 40% minsupp = 5% minconf =40%

Abnormal Base Feature Data Set
LC* 21 15

CBA 32 17

Address Bar Feature Data Set
LC 148 18

CBA 284 24

Domain Base Data Set
LC 18 9

CBA 26 11

HTML Base

Data Set

LC 57 9

CBA 75 12

143

 Figure 5.5 No. of candidate rules generated for LC and CBA for Abnormal base features

Figure 5.4 No. of candidate rules generated for LC and CBA for domain base feature data set

144

The experiments are performed using AC algorithms of LC and CBA and for better

comparative study the evaluated is carried out in the well-known classification algorithms of

C4.5, PART and Naïve Bayes, for the number of rules in the final classifier. The experiments on

classification algorithms are conducted using WEKA tool and for AC algorithms and

implemented versions are used for LC and CBA. The results are demonstrated in the Table 5.3

and the sample of number of rules for classification algorithms of C4.5 and PART are shown in

Figure 5.7 – 5.10.

 Figure 5.6 No. of candidate rules generated for LC and CBA for HTML base feature data set

Table 5.3: Number of rules in classifier of AC and classification algorithms

 ALGORITHM

Website Dataset PART J48(C4.5) CBA LC

Address Bar Based Features 7 9 17 10

Domain Based Features 4 5 7 7

Abnormal Based Features 7 7 13 12

HTML and JavaScript Based Features 4 9 12 8

145

J48 (C4.5) pruned tree

SFH = HIGH: Phishing (543.0/21.0)

SFH = LOW

| URL_of_Anchor = HIGH: Ligitemate

(44.0/16.0)

| URL_of_Anchor = LOW: Ligitemate

(291.0/10.0)

| URL_of_Anchor = MODERATE: Phishing

(14.0)

SFH = MODERATE

| Request_URL = LOW: Ligitemate (0.0)

| Request_URL = HIGH: Phishing (2.0)

| Request_URL = MODERATE: Ligitemate

(120.0)

Number of Leaves: 7

Size of the tree: 10

 Figure 5.7 Sample for no. of rules generated

in C4.5 algorithm for Abnormal base data set

J48 (C4.5) pruned tree

on_mouseover = LOW: Ligitemate (420.0/4.0)

on_mouseover = MODERATE

| Redirect = LOW: Phishing (144.0)

| Redirect = MODERATE

| | RightClick = False: Phishing (79.0/8.0)

| | RightClick = True: Ligitemate (8.0)

| Redirect = HIGH: Phishing (123.0/8.0)

on_mouseover = HIGH

| RightClick = False: Phishing (204.0)

| RightClick = True

| | Redirect = LOW: Ligitemate (8.0)

| | Redirect = MODERATE: Phishing (0.0)

| | Redirect = HIGH: Phishing (24.0)

Number of Leaves: 9

Size of the tree: 14

 Figure 5.10 Sample for no. of rules Generated in C4.5

HTML and Java Script Base Features data set from

WEKA

PART decision list

on_mouseover = LOW: Ligitemate (420.0/4.0)

RightClick = False: Phishing (538.0/16.0)

Redirect = HIGH: Phishing (36.0)

: Ligitemate (16.0)

Number of Rules: 4

 Figure 5.8 Sample for no. of rules Generated in

PART algorithm for HTML and Java Script Base

Features data set

PART decision list

SFH = MODERATE AND

Request_URL = MODERATE: Ligitemate

(120.0)

SFH = HIGH: Phishing (543.0/21.0)

URL_of_Anchor = LOW: Ligitemate

(291.0/10.0)

URL_of_Anchor = HIGH AND

Request_URL = LOW: Ligitemate (28.0/8.0)

URL_of_Anchor = HIGH AND

Request_URL = HIGH: Phishing (16.0/6.0)

URL_of_Anchor = MODERATE: Phishing

(14.0)

: Ligitemate (2.0)

Number of Rules: 7

 Figure 5.9 Sample for no. of rules Generated in

PART for Abnormal Base data set

146

Table 5.3 shows that the classifiers build by AC algorithms of LC and CBA are larger

than classification algorithms of PART and C4.5 (J48) by 65.38%. The total number of rules for

all security data sets are ‘86’ and ‘52’ for AC and classification algorithms respectively. The

rules in the final classifier for our approach of LC are found 24.48% less than CBA. Our LC has

shown the similar results for security data set for generating less number of rules for the

classifier as it has shown on the UCI data sets, due to the factors described in Chapter 4.

Therefore these findings show the strength of the new algorithm to adapt to different data sets.

 Figure 5.11 shows the predictive accuracy of the considered classification data mining

algorithms. The algorithm LC has achieved higher accuracy than classification and AC

approaches of PART, CBA, C4.5 and Naïve Bayes for ‘2’ data sets, domain base feature and

HTML and JavaScript feature. The LC has shown same accuracy percentage for Address bar

feature data of 94.07% with PART, CBA, C4.5 and Naïve Bayes. The LC has achieved 0.34%.

0.43%, 0.42% and 1.7% higher average prediction accuracy for all the ‘4’ security data sets,

when compared with average accuracy of PART, C4.5, CBA and Naïve Bayes algorithms

respectively. Overall the AC approaches of LC and CBA have generated large size classifiers

with better accuracy than classification approaches. The prediction results as shown in the Figure

5.11 have shown that LC has performed better against other approaches for Domain based and

Figure 5.11 Comparison of prediction accuracy in (%) of LC, CBA, PART, C4.5 and Naïve Bayes

algorithms

147

HTML and JavaScript base, and Address bar base feature data sets except Abnormal base feature

data set.

 In Table 5.4, the results of the number of instances correctly classified by all the AC and

classification approaches are demonstrated for better comparative analysis.

5.6 Summary of the Chapter

Phishing is a serious security issue for the internet users. In chapter 2, we surveyed common

approaches related to phishing in the literature like CART (Breiman et al, 1984), SVM

(Joachims, 1999), BART (Fette et al., 2007), RF (Breiman, 2001), Neural Networks (NN)

(Marques, 2001), PECM (Al Momani, 2011), APPT (A.A Khan, 2013), and hybrid approaches

(Hamid et al., 2013). In this chapter, a comparative analysis is conducted to show the

applicability of the proposed LC algorithm on the difficult problem of phishing. Phishing data is

collected and different types of features are extracted like HTML and JavaScript, Abnormal,

Address Bar and domain base. An experimental section using the proposed algorithm and other

known classification techniques like CBA, C4.5, PART and Naïve Bayes against the features

data set has been conducted. The main factors considered in the experimentation are the number

of itemsets merging of LC and CBA, The number of rules in the final classifier produced by

CBA and LC and the prediction accuracy of all considered algorithms. The results revealed that

LC algorithm have very promising results and generated less number of frequent ruleitems and

Table 5.4: Number of correctly classified instances for security data sets for AC and classification

algorithms

ALGORITHM

Website Dataset PART J48(C4.5) CBA LC
Naïve

Bayes

Address Bar Based Features
952 952 952 952 932

Domain Based Features
906 904 898 920 898

Abnormal Based Features
964 962 967 960 953

HTML and JavaScript Based Features
990 990 992 994 974

148

rules in the final classifier when compared with CBA. LC has also outperformed the other

classification approaches (PART, C4.5 and Naïve Bayes) and AC approach of CBA in terms of

accuracy on most data sets considered.

It can be concluded from the results that LC has an execution time faster than the CBA as

it has shown a significant reduction in the number of merging at each iteration and so it also uses

less memory space. The prediction accuracy of the approach has shown significant results with

less number of mis-classification.

149

Chapter 6

Critical Analysis of the Experimental Results

The results obtained by all the experiments using LC, CBA and classification algorithm

on 14 UCI datasets and phishing datasets will be analyzed and discussed critically in this

chapter. The results that are explained are extracted from the experiments conducted on AC

algorithms of LC and CBA by using the implementation version in Visual C, and using a

statistical algorithm of Naïve Bayes, a decision tree algorithm of C4.5 and a hybrid approach

known as PART. The aim is to compare and analyze the results of all the bench mark and well

known approaches in classification rule mining and associative classification rule mining for

better understanding.

6.1 Reduction in the Number of merging of itemsets in LC and its Impact

on the Execution time and Memory Usage

The findings as demonstrated in Table 4.11 and Table 5.1 have clearly indicated that the LC is

able to reduce the research space to find the candidate rule itemsets during each iteration. Many

researcher as mentioned in literature review chapter 2 are trying to handle the complexity in the

training phase of AC where frequent rule itemsets are produced. In this research reduction in the

search space is successfully achieved by reducing the number of candidate itemsets generation at

each iteration. Table 4.11 and Table 5.1 indicates that the number of merging is reduced

significantly for all UCI and phishing data sets used in the experiments because of the

modifications made in LC algorithm.

 The LC algorithm works well for the small data sets like “Balloon”, “Contact”,

“Weather” and “Irisid”, large datasets like “Zoo” and “Lymph” and phishing datasets like

“Abnormal Base Feature Dataset”, “Address Bar Feature Dataset”, “Domain Base Feature

Dataset” and “HTML Base Dataset”, and decreases the total no of CARs generated without

pruning when compared with CBA as in Table 4.14 and Table 5.2.

150

 By digging deep in the results of table 4.11 at each iteration, it is observed that the LC

algorithm for rule generation phase terminates before the iteration 7 for all medium and large

datasets like “Vote”, “Glassd”, “Lymph”, “Zoo”, and “Led7” etc except the “Breast-w” and

“Cleaved” datasets. So the number of mergings at the iteration 7 column in Table 4.11 shows “0”

value for the above mentioned datasets. It is noticeable that for the multi class problems like

“Zoo”, “Led7”, “lymph” and “glassd” with 7, 10, 4 and 7 numbers of classes, the number of

ruleitemsts produced at the end of each iteration is much less than the datasets with binary

classes like “Breast-w” and “Cleaved”. As the LC look at the class lables of itemsets before

merging and uses minority rule after merging, so the number of merging reduces with each

iteration and there are no itemsets left to merge with same class lables after iteration 6.

The “Zoo” dataset has ‘7’ classes and the number of itemset merging at iteration 2, 3, 4, 5

and 6 are 3.49% , 2.78%, 1.9%, 1.78% and 1.49% of CBA respectively which is much less than

the number of itemset joining 44%, 14.46%, 4.37%, 3.53% and 3.4% of CBA in “Breast –w”

dataset with two classes for the same iterations.The difference in ratio in the number of the

itemsets merging at each iteration for multiple class datasets and binary class datasets are

consistent in the experimental results of Table 4.11 and 5.2. This shows that the LC is

performing efficiently for all type of UCI datasets and also for phishing datasets in the rule

generation phase.

Because the number of frequent rule itemsets produced in the rule generation phase is

significantly reduced as explained in chapter 4 and 5. The effects of this reduction is studied on

the memory usage and processing time. Both are found to be reduced as shown in the Table 4.12

and 4.13 for all the datasets used in the experiements except the dataset of “Sick” because the

frequency of the class “negative” constitutes about 93.8% of the dataset and large number of

itemsets are associated with the “negative” class. Hence the approach in LC algorithm has taken

longer time to execute the training phase as its looks at the class lables to join the itemsets as

compared with CBA and so as the physical and page and virtual memory used is also higher as

shown in Table 4.13.

6.2 Total Number of CARs Generated Before and After Pruning

Table 4.14 and table 5.2 shows the total number of CARs produced after and before pruning, it is

noticeable that the number of CARs produced in LC for all the phishing datsets and UCI datsets

151

are considerably reduced as compared to CBA. The reduction percentage is the highest for the

datasets used with the highest number of classes like in “led7” dataset the number of classes are

‘10’ and the decrease in the total number of CARs is 13.94% of CBA. The datsets with ‘7’

classes like “Glassd” and “Zoo” have the reduction percentage in number of CARs is 25.24%

and 31.5% respectively. And the percentage is 40.10% and 46.46% of CBA in datasets of

“Cleaved” and “Breat-w” with 2 classes. So it is concluded that the number of CARs generated

is dependent on the number of classes in the dataset and the number of attributes. The percentage

of reduction in the number of CARs is found to be highest in the datasets with highest number of

classes and a linear relationship is found between the number of CARs and number of classes in

datasets when the numbers of classes are changing in datasets. There is no reduction in the

number of CARs found in “Sick” dataset when compared with CBA in Table 4.14 and 4.15

because of the reason that the “Sick” dataset contains one dominant class which is about 93.8%

of the total data. So the numbers of frequent itemsets generated are same as “2406” and “16”

before and after pruning respectively for both LC and CBA approaches which show that LC

algorithm will generate same number of CARs as CBA algorithm for the datasets with one

dominant class with percentage more than 90%.

 In the phishing datasets as the number of classes is same for all ‘4’ datasets. The number

of CARs generated for LC is found to be dependent on the number of attributes in the phishing

datasets. The decrease in the percentage of number of CARs in “Address Bar Feature Dataset”

with 6 attributes, “Domain Base Data set” with 3 attributes and “Abnormal Base Feature Data

set” with 3 attributes are 52.11%, 69.23% and 65% of CBA respectively.

 Analyzing the results of Table 4.15 and Table 5.3, the number of rules in the final

classifier is found to be less for LC than CBA but are more than the other classification

approaches like PART and C4.5. The reason for the less number of rules produced in C4.5 for

phishing datasets is becasuse the algorithm selects one attribute as the root value by the entropy

measure and then builds the tree around this attribute. In PART the number of rules generated

are found to be minimum in phishing datasets among the other approaches is due to the fact that

its uses the partial decision tree approach of C4.5 and separate and conquer approach of RIPPER.

The rules generated by PART are simple, less in number and accurate. In AC algorithms of CBA

and LC the rules generated are more in number because these approaches tends to explore the

correlations between attributes that cannot be found by classification approaches like PART and

C4.5 and hence increases the understandability of the data.

152

6.3 Analysis of the Prediction Accuracy Measure

The most important performance measure is the prediction accuracy of any algorithm. The

modifications made in the LC algorithm training and prediction phases have achieved

improvements in execution times, memory and also shown better results for prediction accuracy

when compared with well-known classification algorithm of C4.5 and CBA as demonstrated in

table 4.16. The LC algorithm has also shown promising results on the phishing data sets as in

Table 5.4 and Figure 5.11 when compared with CBA, statistical and hybrid approaches.

The main focus and concern is for the results of prediction accuracy of the LC algorithm

as it avoids two many merging and in the process may eliminate some important rules and

consequently may decrease the prediction accuracy. But mostly the results for all the data sets

used for experiements in chapter 4 and 5 are promising except for “led7” dataset where the

prediction accuracy has decreased as shown in Table 4.16. The resaon for this low accuracy for

the “led7” dataset is that it contains 7 attributes and 10 classes. The class distribution is evenly

distributed and each attribute is linked with all 10 classes. When LC algorithm applies the

minority rule in rule generation phase, it removes all the ruleitems that are with the minority

class values. So “9” out of “10” ruleitems are deleted with same attribute value but differenet

classes. This has led to the poor performance in terms of accuracy of LC in case of “led7” dataset

because of the removal of some potential significant rules. The critical analysis has found that

the LC algorithm did not perform well in term of prediction accuracy for multiple class problems

with evenly distributed classes among all the items in the dataset.

The prediction accuracy as shown in Figure 5.11 and Table 5.4 are studied in depth to

critically analyze the reasons behind these results. It is found that as C4.5 algorithm works by

finding the root value, the root value found in case of “HTML and JavaScript Base Dataset” is

the attribute value of “on_mouseover” and all the leaves are constructed by appending other

attribute values and ‘7’ rules are generated. In the PART algorithm the numbers of rules

produced are ‘4’ for the same dataset. Referring to Figures 5.8 and 5.9 and looking at the rules

produced by LC algorithm it was found that LC is able to explore rules that are not found by the

PART and C4.5 like “<RightClick --False and popUpWindow– HIGH = phishing>” and

“ <RightClick—False and Redirect--Low = Phishing>”. These different correlations found in LC

have contributed in the higher prediction accuracy result in the “HTML and JavaScript dataset”.

153

While analyzing the results of the “Abnormal Base Dataset” it is found that the

prediction accuracy is the lowest for the LC algorithm. The in depth exploring of the results in

Figure 5.7 and 5.9 has revealed that both classification approaches of C4.5 and PART has

produced ‘7’ rules each. But only two rules, if <SFH =HIGH then Phishing> and if SFH =

MODERATE and Request_URL= MODERATE then website is Ligitimate are found for both

approaches and rest of the ‘5’ rules are different. The prediction accuracy is 95.44% that is

higher in PART than C4.5’s 95.24%. It means that the rest of the ‘5’ rules that are different in

composition have contributed in the difference found in the results of prediction accuracy. When

the results are analyzed in the LC algorithm, it is noticed that LC algorithm have produced some

rules that have generated more errors hence are responsible for the lower accuracy. The rules that

are not found in PART and C4.5 are < URL_of_Anchor –HIGH, SFH –HIGH  Phishing> and

< URL_of_Anchor –HIGH, SFH –HIGH  Phishing >, have shown ‘4’ errors each and have

contributed to the lower prediction accuracy result in “Abnormal Base Dataset” for LC

algorithm.

The new novel prediction method of LC that uses group of rules prediction method has

also contributed to the better results in UCI datsets as indicated in Table 4.17. So it is concluded

that in the future application of the algorithm it is advised to use the group of rules prediction

method for higher prediction accuracy.

The reduction in the number of frequently generated ruleitems in phishing datasets used

is due to the factors of looking at the class labels while merging of itemsets at each iteration and

use of minority rule in training phase of LC algorithm. This also reduces the time needed to

generate all CARs and it is demonstrated in chapter 4. It shows that the proposed LC algorithm

can be used in the datasets that are large and appending and can be effective in the extraction of

rules from the data streams. As the data of phishing websites are growing on daily basis, every

minute or hour there is a new phishing website emerging and the phishing attacks are proving to

be damaging, need for an efficient and effective technique to predict the phishing website is the

need of the day and our proposed LC algorithm will serve the purpose. It is concluded from the

results as in Figure 5.11 that the LC has shown better prediction accuracy than the other bench-

mark algorithms of classification and AC.

154

6.4 Summary of the Chapter

The in depth analysis of the results is carried out in this chapter considering all the findings of

Chapter 4 and 5. The results generated by LC, CBA and other classification approaches are

studied in terms of search space, itemset merging, execution time, memory usage and prediction

accuracy. The reasons behind all the experimental results are explored in depth and analyzed

critically. It was found that the LC approach works well and reduces the search space and

execution time for all datasets used except few exceptions and the application of LC algorithm

has significant results in terms of prediction accuracy when used to detect phishing and

compared with CBA, PART, C4.5 and Naïve Bayes approaches. In the next chapter the

conclusions will be drawn and the future directions will be highlighted.

155

Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this thesis the training, pruning and prediction phases are investigated in AC data mining. The

outcome is two novel methods, one a training method in the rule generation phase and second is

a new prediction method. These methods have been implemented in a novel AC algorithm called

LC. The LC algorithm can be applied to both binary and multi-class benchmark data sets. The

effective use of modified version of CBA algorithm LC is used effectively in data of features

selected from the phishing and legitimate websites. The training phase of the LC algorithm

enhances the efficiency and performance of AC with reference to decrease in number of rules

generated in classifier, training time, and memory usage as demonstrated in Chapter 4.

The rule generation phase of the AC algorithms often do itemsets merging regardless of

class labels while training phase of LC only considers the class labels of the disjoint candidate

ruleitems in each iteration when performing merging operation and uses a minority rule in the

training phase of LC that only selects a ruleitem with the highest frequency class, to reduce the

number of frequent rules and candidate rules. The rule ranking phase of the LC implements the

criteria of confidence, support, cardinality and the frequency of the class to rank rules. The

training, rule ranking and pruning phases of the LC builds the classifier and reduces the number

of generated rules in the final classifier solving one important problem in AC approach which is

the exponential growth of rules. Moreover, new prediction method has been implemented and

evaluated in the LC algorithm that takes the advantage of employing all related rules to the test

case in the class assignment decision. This improves the classification accuracy of the classifiers

over current AC mining algorithms that utilize single rule for prediction as demonstrated in

Chapter 4. Lastly the LC algorithm has been applied to a real world emerging problem called

phishing in which a model is designed to extract related and significant features of legitimate and

phishing websites. Then, LC has been used to mine important knowledge from the features data

sets that can on the fly detect the phishing websites. This has been validated in Chapter 5 where

156

the contrast is demonstrated of the LC algorithm with well know classification and AC

algorithms with respect to accuracy, number of rules produced and training phase efficiency.

In the section below the thesis contributions will be discussed in details.

7.1.1 Issue 1: An Associative Classification Algorithm for Emails and Website

Prediction

Phishing is an issue of serious concern all over the world. Stealing of internet user’s private

information has costed millions of pounds to individuals and banks. Detecting phishing is the

need of the time. Many machine learning and classification techniques are been used to detect

phishing. Our thesis presents the introduction of an AC approach to be applied on phishing data.

Our contribution is not just the application of our LC on phishing data but also the model and

formulation of rules to extract the most significant features in the phishing data pool, our thesis

demonstrates successfully the extraction process of these features based on some rules.

 The problem of automatically categorizing the websites and emails to phishing or

legitimate is successfully demonstrated in the thesis. The development of the proposed algorithm

LC described in chapter 4 have shown to accurately classify the phishing data sets as compared

to other classification approaches like C4.5, PART, Naïve Bayes and AC approaches like CBA.

The LC algorithms have shown better execution time as it has produced less candidate itemsets

and subsequently produced less no of CARs and classifier size is also less than the traditional

and most effective AC algorithm of CBA. The modifications made in the proposed algorithm of

LC in its training and prediction phases have contributed to its effective use in information

security domain of phishing in websites. The experimental results conducted on ‘4’ extracted

data sets from phishing and legitimate websites data pool have demonstrated that our LC new

algorithm outperformed classification algorithms like C4.5, PART and Naïve Bayes on

prediction accuracy on ‘2’ data sets and showed highly competitive results for other ‘2’ data sets

in terms of accuracy measure, as demonstrated in Chapter 5 and at the same time out performed

AC approach of CBA in ‘3’ data sets in %age accuracy (see Chapter 5). It is concluded that LC

algorithm should be used to detect phishing or to predict the category of a website as legitimate

for fake.

157

7.1.2 Issue 2: Efficiency of Training Phase of AC

There are several AC algorithms like CBA (Liu et al., 1998), CMAR (Li et al., 2001), ARC-BC

(Antonie and Zaïane, 2003),2-PS (Qian et al., 2005) and ACN (Gourab Kundu et al., 2008) uses

the Apriori candidate generation property or Frequent Pattern Growth technique to generate

candidate ruleitems in the training or the rule generation phase of the AC. In these approaches

candidates are joined at each iterations irrespective of looking at the class labels of the itemsets.

The rule discovery step consumes majority of the computational time of all the AC algorithms.

We have introduced a new fast and effective method in our thesis that considers the class labels

of the itemsets before merging them at each iteration to generate candidate ruleitems. Our LC

algorithm has implemented a minority rule in each iteration which removes the less frequent

class labels with the ruleitem if a ruleitem is associated with more than one class and selects only

the ruleitem which is associated with the most frequent class.

Our new training method is proposed in LC algorithm, which discovers all the frequent

ruleitems 40.06% faster than the CBA algorithm for ‘14’UCI repository data sets while reducing

the number of merging at each iteration very significantly as demonstrated in Chapter 4 and 5,

when experiments are conducted against CBA for ‘14’ benchmark problems and ‘4’ security data

sets we considered. As our LC algorithm generates less number of candidate ruleitems and

reduced number of rules in final classifier, as evaluated and demonstrated in the results section of

Chapter 4 and 5 and hence experimental results have shown that physical memory used by the

new approach is less as compared to CBA for ‘17’ problems considered.

7.1.3 Issue 3 & 4: Prediction Based on Group of Rules and Rule Ranking

Since most of the AC algorithms like CBA, MMAC, MCAR, ACCF, ACCR, CACA and ACN

use single rule prediction method to predict the accuracy of the resultant classifier on test data.

Our new LC algorithm uses a multi rule approach that considers all rules that matches the test

instance in the decision process of assigning a class label. Our new prediction method calculates

the confidence values of all classes in the group of rules that have correctly classified a test

instance, and selects a class with the highest average confidence value.

The results of our experiments for single rule prediction and our approach that uses multi

rule prediction is investigated for our LC algorithm that showed improvement in the accuracy of

158

relatively large datasets, as described in Chapter 4, that contains more number of rules in their

classifier and demonstrated same results for accuracy for small data sets when 13 UCI datasets

are considered when compared with CBA.

Our algorithm LC have used a much better rule ranking procedure that takes care of all

the possibilities of the counts of support, confidence, cardinality and class frequencies. Hence it

has produced better results for all the data sets of UCI and Phishing data sets.

7.1.4 Issue 5: Experimental Study on UCI and Phishing Data Sets

A thorough investigation of our LC and other classification and AC algorithms are carried out

using the data sets from UCI repository and also on the data generated by our methods relating

phishing in websites. The experiments on both the type of data sets have shown that our LC

approach is adaptable to different types of data, as in Chapter 4 and 5.

7.2 Future Directions

7.2.1 Phishing in Mobile Applications

The taxonomy of the phishing attack on mobile devices is analyzed and categorized as

Bluetooth, SMS, Vishing and Mobile Web application. The mobile application downloads on

smart phones and android phones are in millions. 5% of the Android application users click on

the phishing websites. The people are using mobile to access the financial institutions and the

banks. Due to the vast availability of free application and games download, mobile users are very

susceptible to the phishing attacks. Research work is carried out by (Foozy et al., 2013) has

discussed the taxonomy of mobile phishing attacks. The comparison between the six detection

techniques like Content Based (Peizhou et al., 2008 and Yoon et al., 2010), Blacklist (Singh,

2011) and (Mahmoud and Mahfouz, 2012), Whitelist (Mahmoud and Mahfouz, 2012), Hotspot

and Gaussian Mixture Model (Chang and Lee, 2010) are studied. The mobile user market is

growing and so as the need to develop accurate prediction models to detect phishing in mobile

technology and applications.

159

7.2.2 Distributed Learning in AC

The data is collected in most of the applications on daily basis and so the data sets have grown

enormously. The data operations of addition, deletion and updation are going on for almost all

existing data sets. To extract the desired outcome all the existing AC algorithms scan the

complete training data set at least one time to reflect the changes in the data. The cost of I/O

operations and CPU time, when the database is scanned at the time of any change in the data set

to update the rules generated previously, is very high and the data sets are growing as well.

Incremental AC algorithms that can keep track of last results and only uses the records updated

may prove to be an effective and efficient approach and can lead to enormous saving in

computational times.

It is believed that incremental AC mining is a challenging problem in data mining, which

has not carefully studied. Further, the key success to solve this problem is to determine the

frequent ruleitems that overlap between the original training dataset and the records, which have

been updated regardless whether the operation is insert, delete or edit. Finally, incremental

mining in AC framework is a promising approach, which can be applied to dynamic real world

applications where training datasets are updated frequently.

There has been some research work on incremental association rule mining algorithms,

i.e. (Zhou and Ezeife, 2001; Valtchev, et al., 2002; Valtchev, et al., 2003). These can be

considered as a starting point for incremental AC mining. For example, an incremental

association rule mining algorithm called Maintenance Association Rule with Apriori Property

(MAAP) (Zhou and Ezeife, 2001), has been presented in 2001. This algorithm efficiently

generates incremental rules from an updated database using Apriori candidate generation step

(Agrawal and Srikant, 1994). MAAP computes high level frequent n-itemsets and then starts

producing all lower level n-1, n-2, …, 1 frequent itemsets. This approach decreases the

processing overhead for generating some of the low-level frequent itemsets that have no chance

of being frequent in the updated database. Thus, the key feature of MAAP is the downward

closure property presented in Apriori.

160

7.2.3 Noise in Source Databases

A classifier in data mining is constructed from labelled data records, and later is used to forecast

classes of previously unseen data as accurately as possible. Training data set may contain noise,

including, missing or incorrect values inside records. One has to think carefully about the

importance of missing or incorrect values in training datasets. As a result, only human experts in

the application domains used to generate the datasets can make an implicit assumption about the

significance of missing or invalid values.

 In data mining and machine learning communities, several classification algorithms have

been proposed, where most of them produce classifiers with an acceptable error rate. However,

these algorithms assume that all records in the training or even test data collection are complete

and no missing data are present. When training/test datasets suffer from missing attribute values

or incomplete records, classification algorithms often produce poor classifiers with reference to

prediction accuracy. This is due to that these algorithms tend to tailor the training dataset too

much.

 In real world applications, it is common that a training or test data contains attribute with

missing values. For instance, the “labor” and “hepatid” datasets published in the UCI data

repository contain many missing records. Thus, it is imperative to build classifiers that are able

to predict accurately the classes for test datasets with missing attribute values. These classifiers

are normally called robust classifiers. Unlike traditional classifiers, which assume that the test

data is complete, robust classifiers deal with existing and non-existing values in test data.

 There have been some solutions to avoid noise in the training datasets. Naïve Bayes

algorithm for instance ignores missing values during the computation of probabilities, and thus

missing values have no effect on the prediction since they have been omitted. Although omitting

missing values may be not the ideal solution since these unknown values may provide a good

deal of information. Other classification techniques like CBA assume that the absence of missing

values may be of some importance, and therefore they treat them as other existing known values

in the training data. However, if this is not the case, then missing values should be treated in a

special way rather than just consider them as other possible values that the attribute might take

(Witten and Frank, 2000). Decision tree algorithms such as C4.5 and C5 deal with missing

values using probabilities, which are calculated from the frequencies of the different values for

an attribute at a particular node in the decision tree.

161

The problem of dealing with unknown values inside datasets has not yet been explored

well in traditional classification or AC approach.

162

Appendix A

Class Form.cs

Main form class for the programme from where to control all the input and options and click the

Process button.

Main Methods:

DoMining(double support_min, int support_count, double confidence_min,

ArrayList Table_Data_Main, long start)

Purpose:

Do mining of the main file for processing

Input:

Support value

Support count

Confidence value

Test data

DoPrediction(DataTable dtTrainingData, string fileRuleItemSet)

Purpose:

Do prediction data coverage of the data

163

Input:

Training data

Name of file to do prediction on

DoPruning(string fileRuleItemSet, DataTable trainingData)

Purpose:

Do prunning of the data

Input:

Name of file for prunning

Trainning data

Helper Functions

ArrayList ConvertList2ArrayList(List<List<string>> lsArray)

Purpose:

Helping Function: Convert the list of string to arraylist

Input:

List of strings

Output:

Converted arraylist

164

List<List<string>> ConvertArrayList2List(ArrayList tmpArray)

Purpose:

Helping Function: Convert the array list to list of strings

Input:

Array list to convert

Output:

Converted list of strings

List<T>[] Partition<T>(List<T> list, int totalPartitions)

Purpose:

Dividing the list of data to partitions for 10 Fold cross validation

Input:

List for partition

Number of partitions

Output:

Partitioned data after processing

Class Candidate_Items_Generation.cs

Class to handle operations for item set generation, frequent items, etc.

165

Main Methods:

ArrayList Candidate_itemset_Gen(ArrayList Table_Columns)

Purpose:

This generates the itemset with the input of array list of the data

Input:

The array list of the input data

Output:

Array list of output data

ArrayList Candidate_1_Rule_item_generation(ArrayList Table_Columns)

Purpose:

Function for candidate rule item generation with the array list of data

Input:

Array list of data

Output:

Array list of output data

ArrayList Candidate_1_Rule_Prunning(ArrayList Candidate_1_Rule_itemset_Pruned)

Purpose:

166

Rule prunning of the data input from the array list

Input:

Array list of data to rule prune

Output:

Array list of output data

ArrayList Confidence_support_calculations(ArrayList Prunned_Candidate_1_array, doubl

e conf_percentage, double supp_percentage, int s_count)

Purpose:

Calculate support and confidence of the prunned input data

Input:

Array list of prunned data

Confidence percentage value

Support percentage value

Support count value

Output:

Array list of output data

ArrayList Candidate_1_Rule_Itemset_Rest(ArrayList frequent_Rule_itemset, ArrayList T

able_Columns)

Purpose:

167

Calculate rules itemset rest data

Input:

Array list of rule itemset data

Columns of the data in array list form

Output:

Array list of output data

Class DataCoverageAlgo

Class for data coverage algo and other operations.

Main Methods:

void dataCoverage(DataTable rulesTbl, DataTable trainTbl)

Purpose:

This function implements the data coverage algorithm and also picks one rule from the rule table

 and search all the items verified by it in the training data table and take action acoordingly

Input:

Table for the rules data

Table for trainning data

Boolean verifyTrainingData(Array arrRuleItems, Array arrTrainItems, out bool isLastRo

wChecked)

168

Purpose:

This function compares a rule and data row item by item to check the validity of the rule for the s

pecified data row

Input:

Array of rules data

Array of trainning data

To check last row or not

Output:

True if everthing runs fine, False if there is error for verifying data

Class DataCoverageAlgoPrediction

Main Methods:

DataTable dataCoverage(DataTable rulesTbl, DataTable testTbl, string defaultClass,

Boolean bSingleRule)

Purpose:

This function implements the Prediction Method algorithm. This algo picks one rule

from the rule table and search all the items verified by it in the test data table

and take action accordingly

169

Input:

Rules table data

Test table data

Default class name

Single rule or All rules

Output:

Returns data table after processing the input data

int computeErrors(DataTable testTbl, DataTable trainTbl)

Purpose:

Calculate errors of the test data abd the trainning data

Input:

Test table data

Trainning table data

Total number of errors counted

string verifyTrainingData(Array arrRuleItems, Array arrTestItems)

Purpose:

170

This function compares a rule and data row item by item to check the validity of the rule for the s

pecified data row

Input:

Rules data array

Test data array

Output:

Returns null if failed, else the string of the failed array rule

171

Bibliography

 Abu-nimeh S., Nappa D., Wang X. and Nair S. (2007). A Comparison of Machine Learning [1]

Techniques for Phishing Detection. Neural Networks.

 Abu-nimeh S., Nappa D., Wang X. and Nair S. (2009). Hardening Email Security via [2]

Bayesian Additive Regression Trees. Machine Learning, (February).

 Aburrous M., Hossain M. A., Dahal K. and Thabtah F. (2010). Intelligent phishing detection [3]

system for e-banking using fuzzy data mining. Expert Systems with Applications: An

International Journal, (pp. 7913-7921).

 Aburrous M., Hossain M. A., Dahal K. and Thabtah F. (2010). Predicting Phishing Websites [4]

using Classification Mining Techniques with Experimental Case Studies. In proceedings of

the 7
th

 International Conference on Information Technology. (pp. 176-181). Las Vegas,

Nevada, USA.

 Agrawal R., Amielinski T. and Swami A. (1993). Mining association rule between sets of [5]

items in large databases. Proceedings of the ACM SIGMOD International Conference on

Management of Data, (pp. 207-216). Washington, DC.

 Agrawal R. and Srikant R. (1994). Fast algorithms for mining association rule. Proceedings [6]

of the 20th International Conference on Very Large Data Bases (pp. 487-499), Santiago,

Chile.

 Ajlouni M., Hadi E., and Alwedyan J. (2013). Detecting Phishing Websites Using [7]

Associative Classification. European Journal of Business and Management, 5(15), 36-40.

 Ali K., Manganaris S. and Srikant R. (1997). Partial classification using association rules. In [8]

Proceedings of the Third International Conference on Knowledge Discovery and Data

Mining, (pp. 115-118), Newport Beach, CA.

 Al-Momani A. A. D., Wan T., Al-Saedi K., Altaher A., Ramadass S., Manasrah Ahmad., [9]

Melhiml L. and Mohammad A. (2011). An Online Model on Evolving Phishing E-mail

Detection and Classification Method. Journal of Applied Sciences, 11: 3301-3307.

 Antonie M. and Zaïane O. (2004). An associative classifier based on positive and negative [10]

rules. Proceedings of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining

and Knowledge Discovery (pp. 64 - 69), Paris, France.

 Antonie M., Zaïane O. R. and Coman A. (2003). Associative Classifiers for Medical Images, [11]

Lecture Notes in Artificial Intelligence 2797, Mining Multimedia and Complex Data, (pp.

68-83), Springer-Verlag.

 Antonie M. and Zaiane O. (2002). Text Document Categorization by Term Association, [12]

Proceedings of the IEEE International Conference on Data Mining (ICDM '2002), (pp.19-

26), Maebashi City, Japan, December 9 - 12.

172

 Apache Software Foundation. (2006) Spamassassin public corpus, [13]

http://spamassassin.apache.org/publiccorpus/.

 Breiman L. (2001) Random forests. Mach. Learn., 45(1):5–32. [14]

 Baralis E., Chiusano S. and Garza P. (2008). A Lazy Approach to Associative Classification. [15]

IEEE Trans. Knowl. Data Eng. 20(2): 156-171.

 Baralis E., Chiusano S. and Garza P. (2004). On support thresholds in associative [16]

classification. Proceedings of the 2004 ACM Symposium on Applied Computing, (pp. 553-

558). Nicosia, Cyprus.

 Baralis E. and Torino P. (2000). A lazy approach to pruning classification rules. Proceedings [17]

of the 2002 IEEE ICDM'02, (pp. 35). Maebashi City, Japan.

 Bayardo, R., and Agrawal, R. (1999) Mining the most interesting rules. Proceedings of the [18]

5th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, (pp. 145-154).

August, 1999.

 Blackmore K. and Bossomaier T. (2002) Comparison of C5 and J48.PART algorithms for [19]

missing persons profiling. Proceedings of the ICITA ‘2. Bathurst, NSW, Australia.

 Breiman L., Friedman J., Olshen R., and Stone C. (1984) Classification and regression trees. [20]

Wadsworth International Group, Belmont, CA.

 Brin S., Motwani R., Ullman J. and Tsur S. (1997). Dynamic itemset counting and [21]

implication rules for market basket data. Proceedings of the 1997 ACM SIGMOD

International Conference on Management of Data, (pp. 265-276). Tucson, Arizona, USA.

 Cendrowska J. (1987). PRISM: An algorithm for inducing modular rules. International [22]

Journal of Man-Machine Studies, Vol.27, No.4, (pp. 349-370).

 Chang J. and Lee H. (2010). Voice phishing detection technique based on minimum [23]

classification error method incorporating codec parameters. Signal Processing, IET, vol. 4,

(pp502-509).

 Clark P. and Boswell R. (1991). Rule induction with CN2: Some recent improvements. [24]

Proceedings of the Fifth European Working Session on Learning, (pp. 151-163). Berlin,

Germany.

 Cohen W. (1995). Fast effective rule induction. Proceedings of the 12th International [25]

Conference on Machine Learning, (pp. 115-123). CA, USA.

 Dong G., Zhang X., Wong L. and Li J. (1999). CAEP: Classification by aggregating [26]

emerging patterns. Proceedings of the Second Imitational Conference on Discovery Science,

(pp. 30-42). Tokyo, Japan.

 Duda R. and Hart P. (1973). Pattern classification and scene analysis. John Wiley & son. [27]

http://spamassassin.apache.org/publiccorpus/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chiusano:Silvia.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Garza:Paolo.html
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde20.html#BaralisCG08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Garza:Paolo.html

173

 Elhalees A. (2006). Mining Arabic Association Rules for Text Classification In the [28]

proceedings of the first international conference on Mathematical Sciences. Al-Azhar

University of Gaza, Palestine, (pp.15 -23).

 Elmasri R. and Navathe S. (1999). Fundamentals of database systems, Fourth Edition, [29]

Addison-Wesley.

 Enas M., Houby E., and Marwa S. (2012). Using Associative Classification for Treatment [30]

Response Prediction. Journal of Applied Sciences Research, 8(10): 5089-5095, 2012 ISSN

1819-544X.

 Fayyad U. and Irani K. (1993). Multi-interval discretisation of continues-valued attributes for [31]

classification learning. Proceedings of IJCAI, (pp. 1022-1027). Chambéry, France.

 Fayyad U., Piatetsky-Shapiro G., Smith G. and Uthurusamy R. (1998). Advances in [32]

knowledge discovery and data mining. AAAI Press.

 Fette I. Sadeh and Tomasic A. (2007). Learning to detect phishing emails. In Proceedings of [33]

the 16th International World Wide Web Conference (WWW 2007).

 Foozy, C., Rabiah A., and Mohd F. (2013). Phishing Detection Taxonomy for Mobile [34]

Device. IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3.

 Frank, E., and, Witten, I. (1998) Generating accurate rule sets without global optimisation. [35]

Proceedings of the Fifteenth International Conference on Machine Learning, (pp. 144–151).

Morgan Kaufmann, Madison, Wisconsin.

 Friedman N., Geiger D. and Goldszmidt M. (1997) Bayesian network classifiers. In Machine [36]

Learning 29: (pp. 131—163).

 Freitas A. (2000) Understanding the crucial difference between classification and association [37]

rule discovery. ACM SIGKDD Explorations Newsletter, 2(2000): 65 -69.

 Freund Y. and Schapire R. (1997). A decision-theoretic generalization of on-line learning [38]

and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139.

 Furnkranz J. (1999) Separate-and-conquer rule learning. Artificial Intelligence Review, [39]

13(1):3-54.

 Furnkranz J. and Widmer G. (1994). Incremental reduced error pruning. Proceedings of the [40]

Eleventh International Machine Learning Conference, (pp. 70-75). New Brunswick, NJ.

 Guang X., Jason O., Carolyn R., Lorrie P and C. (2011). CANTINA+: A Feature-rich [41]

Machine Learning Framework for Detecting Phishing Web Sites. ACM Transactions on

Information and System Security, pp. 1-28.

 Hamid I., Abawajy J., and Kim Y. (2013). Using Feature Selection and Classification [42]

Scheme for Automating Phishing Email Detection. Studies in Informatics and Control. ISSN

1220-1766, vol. 22 (1), (pp. 61-70).

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Ramez%20Elmasri/002-1731103-5968842
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Shamkant%20B.%20Navathe/002-1731103-5968842

174

 Han J., Pei J. and Yin Y. (2000). Mining frequent patterns without candidate generation. [43]

Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,

(pp. 1-12). Dallas, Texas.

 Hao J. and Hamiez J. (2001). Solving the sports league scheduling problem with Tabu [44]

search. Lecture Notes in Artificial Intelligence 2148: 24-36. Springer 2001.

 Henderson M., Henderson P., and Keirnan C. (2000). Missing persons: incidence, issues and [45]

impacts. Trends & Issues in Crime and Criminal Justice, vol. 144.

 Holsheimer M., Kersten M., Mannila H. and Toivonen H. (1995). A prospective on databases [46]

and data mining. Proceedings of First International Conference on Knowledge Discovery and

Data Mining (KDD'95), (pp. 150-155). Montreal, Canada.

 Holte R. (1993) Very simple classification rules perform well on most commonly used [47]

datasets. Machine Learning, vol. 3, (pp. 63-91).

 Irani D., Webb S., Giffin J., and Pu C. (2008). Evolutionary Study of Phishing. Security. [48]

 Islam M. R., Abawajy J., and Warren M. (2009). Multi-tier Phishing Email Classification [49]

with an Impact of Classifier Rescheduling. 2009 10th International Symposium on Pervasive

Systems, Algorithms, and Networks, 789-793. IEEE. doi:10.1109/I-SPAN.2009.142.

 Jabbar M., Deekshatulu L., and Chandra P. (2013). Heart Disease Prediction System using [50]

Associative Classification and Genetic Algorithm. arXiv preprint arXiv:1303.5919.

 Jiang Z., and Karypis G. (2013). AREM: A novel associative regression model based on EM [51]

algorithm. In Proceedings of the 17th Pacific-Asia Conference on Advances in Knowledge

Discovery and Data Mining. PAKDD’13, Springer-Verlag.

 Joachims, T. (1998) Text categorisation with support vector machines: Learning with many [52]

relevant features. Proceedings of Tenth European Conference on Machine Learning, (pp.

137-142).

 Kasabov N. and Song Q. (2002). Denfis: Dynamic evolving neural-fuzzy inference system [53]

and its application for time-series prediction. Fuzzy Syst., 10:144-154.

 Khan A. (2013). Preventing Phishing Attacks using One Time Password and User Machine [54]

Identification. International Journal of Computer Applications (0975 – 8887). Volume 68-

No.3.

 Kundu G., Islam M., Munir S. and Bari M. (2008). ACN: An Associative Classifier with [55]

Negative Rules, Computational Science and Engineering, IEEE International Conference on,

vol. 0, no. 0, (pp. 369-375), 2008 11th IEEE International Conference on Computational

Science and Engineering.

 Lakshmi K. and Reddy C. (2012) Compact Tree for Associative Classification of Data [56]

Stream Mining. IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No

2.

175

 Lewis D. (1998b). Naive (Bayes) at Forty: the independence assumption in information [57]

retrieval. Proceedings of the 10th European Conference on Machine Learning, (pp. 4-15).

Chemnitz, Germany.

 Li B., Li H., Wu M. and Li P. (2008). Multi-label Classification based on Association Rules [58]

with Application to Scene Classification, icycs, (pp.36-41), 2008 The 9th International

Conference for Young Computer Scientists.

 Li W. (2001). Classification based on multiple association rules. M.Sc. Thesis. Simon Fraser [59]

University.

 Li W., Han J. and Pei J. (2001). CMAR: Accurate and efficient classification based on [60]

multiple-class association rule. Proceedings of the ICDM’01, (pp. 369-376). San Jose, CA.

 Li J., Zhang X., Dong G., Ramamohanarao K. and Sun Q. (1999). Efficient mining of high [61]

confidence association rules without support thresholds. In Zytkow, J., and Rauch, J. editors,

PKDD99, volume 1704 of LNAI, (pp. 406- 411). Prague, Czech Republic.

 Li X., Qin D. and Yu C. (2008). ACCF: Associative Classification Based on Closed Frequent [62]

Itemsets. FSKD (2) 2008: 380-384.

 Lin J., and Dunham M. (1998). Mining association rules: Anti-Skew algorithms. Proceedings [63]

of the Fourteenth International Conference on Data Engineering, (pp. 486-493).

 Liu B., Hsu W. and Ma Y. (1999). Mining association rules with multiple minimum [64]

supports. Proceedings of the fifth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, (pp.337-341). San Diego, California.

 Liu B., Hsu W. and Ma Y. (1998). Integrating classification and association rule mining. [65]

Proceedings of the KDD, (pp. 80-86). New York, NY.

 Liu B., Ma Y. and Wong C-K. (2001). Classification using association rules: weakness and [66]

enhancements. In Vipin Kumar et al., (eds) Data mining for scientific applications. (2001):

591.

 Liu B., Ma Y. and Wong C-K. (2000). Improving an association rule based classifier. [67]

Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge

Discovery, (pp. 504-509). Lyon, France.

 Liu B., Ma Y., Wong C-K. and Yu. P. (2003). Scoring the data using association rules. [68]

Applied Intelligence, 18(2003): 119-135.

 Liu Y., Yang Y. and Carbonell J. (2002). Boosting to correct inductive bias in text [69]

classification. Proceedings of the Eleventh International Conference on Information and

Knowledge Management, (pp. 348-355). McLean, VA.

 Ma L., Ofoghi B., Watters P., and Brown S. (2009). Detecting Phishing Emails Using Hybrid [70]

Features. Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, 493-

497. IEEE. doi:10.1109/UIC-ATC.2009.103.

http://public.rz.fh-wolfenbuettel.de/~hoeppnef/bib/author/LI-J.html
http://public.rz.fh-wolfenbuettel.de/~hoeppnef/bib/author/ZHANG-X.html
http://public.rz.fh-wolfenbuettel.de/~hoeppnef/bib/author/DONG-G.html
http://public.rz.fh-wolfenbuettel.de/~hoeppnef/bib/author/RAMAMOHANARAO-K.html
http://public.rz.fh-wolfenbuettel.de/~hoeppnef/bib/author/SUN-Q.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/q/Qin:Dongxia.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Cun.html
http://www.informatik.uni-trier.de/~ley/db/conf/fskd/fskd2008-2.html#LiQY08

176

 Mahmoud T., and Mahfouz A.M. (2012). SMS Spam Filtering Technique Based on Artificial [71]

Immune System. IJCSI International Journal of Computer Science Issues, vol. 9, 2012.

 Meretakis D., Fragoudis D., Lu H., and Likothanassis S. (2000) Scalable association-based [72]

text classification. Proceedings of the Ninth International Conference on Information and

Knowledge Management, (pp. 5-11). McLean, Virginia, United States.

 Meretakis D., and Wüthrich B. (1999) Extending naïve Bayes classifiers using long itemsets. [73]

Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, (pp. 165 – 174). San Diego, California.

 Merz C. and Murphy P. (1996). UCI repository of machine learning databases. Irvine, CA, [74]

University of California, Department of Information and Computer Science.

 Mitchell M. (1997). Machine Learning, chapter IV, Artificial Neural Networks, (pp. 81-127). [75]

WCB/McGraw-Hill, New York, New York.

 Miyamoto D., Hazeyama H. and Kadobayashi Y. (2008). “An Evaluation of Machine [76]

Learning-based Methods for Detection of Phishing Sites,” Australian Journal of Intelligent

Information Processing Systems, pp. 54-63.

 Niu Q., Xia S. and Zhang L. (2009). Association Classification Based on Compactness of [77]

Rules, wkdd, (pp.245-247), 2009 Second International Workshop on Knowledge Discovery

and Data Mining.

 Park J., Chen M. and Yu P. (1995). An effective hash-based algorithm for mining association [78]

rules. Proceedings of the ACM SIGMOD, (pp. 175-186). San Jose, CA.

 Purkait S. (2013). DHCP-Enabled LAN Prone to Phishing Attacks. The IUP Journal of [79]

Information Technology, Vol. IX, No. 1, (pp. 24-40).

 Peizhou H. (2008). A Novel Method for Filtering Group Sending Short Message Spam in [80]

Convergence and Hybrid Information Technology. ICHIT '08. International Conference (pp.

60-65).

 Qian T., Wang Y., Long H. and Feng J. (2005). 2-PS based associative text classification, in: [81]

Proceedings of the Seventh International Conference on Data Warehousing and Knowledge

Discovery, (pp. 378-387).

 Quinlan J. (1998). Data mining tools See5 and C5.0. Technical Report, RuleQuest Research. [82]

 Quinlan J. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan [83]

Kaufmann.

 Quinlan J. and Cameron-Jones R. (1993). FOIL: A midterm report. Proceedings of the [84]

European Conference on Machine Learning, (pp. 3-20), Vienna, Austria.

http://portal.acm.org/results.cfm?query=author%3AP28392&querydisp=author%3ABeat%20W%26%23252%3Bthrich&coll=GUIDE&dl=GUIDE&CFID=37120124&CFTOKEN=32033989

177

 Quinlan J. (1988). Decision trees and multi-valued attributes. In Hayes, J., Michie, D., and [85]

Richards J., (eds), Machine Intelligence, 11(1988): 305-318.

 Quinlan J. (1987). Simplifying decision trees. International journal of man-machine studies, [86]

27(1987): 221-248.

 Quinlan J. (1986). Induction of decision trees. Machine Learning, 1(1986): 81 – 106. [87]

 Quinlan J. (1979). Discovering rules from large collections of examples: a case study. In D. [88]

Michie, editor, Expert Systems in the Micro-electronic Age, (pp.168—201). Edinburgh

University Press, Edinburgh.

 Rissanen J. (1985). The minimum description length principle. In: Kotz S., [89]

Johnson N. (Eds.), Encyclopedia of Statistical Sciences. Vol. 5. John Wiley

and sons, New York, pp. (523–527).

 Samir E. (2013). Artificial Immune System for Associative Classification. Doctoral [90]

Dissertations. Paper 22. http://digitalcommons.uconn.edu/dissertations/22.

 Sánchez-Moreno D., Gil B., and Moreno M. (2013). TV-SeriesRec: A Recommender System [91]

Based on Fuzzy Associative Classification and Semantic Information. In Trends in Practical

Applications of Agents and Multiagent Systems (pp. 201-208). Springer International

Publishing.

 Sanglerdsinlapachai N. and Rungsawang A.(2010). “Using Domain Top-page Similarity [92]

Feature in Machine Learning-based Web,” in Third International Conference on Knowledge

Discovery and Data Mining.

 Savasere A., Omiecinski E. and Navathe S. (1995). An efficient algorithm for mining [93]

association rules in large databases. Proceedings of the 21st conference on Very Large

Databases (VLDB ’95), (pp. 432 - 444). Zurich, Switzerland.

 Schapire R., Singer Y. and Singhal A. (1998). Boosting and rocchio applied to text filtering. [94]

In Proc. 21st Annual Intl. ACM SIGIR Conf. on R&D in Information Retrieval.(pp. 215-223)

 Shenoy P., Haritsa J., Sudarshan S., Bhalotia G., Bawa M. and Shah D. (2000). VIPER: A [95]

vertical approach to mining association rules. Proceedings of the ACM SIGMOD

International Conference on Management of Data, (pp 22-33). Dallas, Texas.

 Singh D. (2011). Telephony Fraud Prevention US Patent. [96]

 Snedecor W. and Cochran W. (1989). Statistical Methods, Eighth Edition, Iowa State [97]

University Press.

 Sophie G. P., Gustavo G. and Maryline L. (2011) “Decisive Heuristics to Differentiate [98]

Legitimate from Phishing Sites,” in 2011 Conference on Network and Information Systems

Security

http://digitalcommons.uconn.edu/dissertations/22
http://www.scils.rutgers.edu/~muresan/IR/Docs/Books/Belew_FOA/chapters/0521630282c07.htm#ref7.46

178

 Sparck K. (1972). A statistical interpretation of term specificity and its application in [99]

retrieval," Journal of documentation, Vol.28, No.1, (pp. 11-21).

 Tang Z. and Liao Q. (2007). A New Class Based Associative Classification Algorithm. [100]

IMECS 2007: 685-689.

 Tanbeer S. K., Ahmed C. F., Jeong B. and Lee Y. (2008). CP-tree: a tree structure for single-[101]

pass frequent pattern mining. In Proc. of PAKDD, Lect Notes Artif Int, 1022-1027.

 Thabtah F., Cowling P. and Hamoud S. (2006): Improving Rule Sorting, Predictive Accuracy [102]

and Training Time in Associative Classification. Journal of Expert Systems with

Applications, Volume 31, Issue 2, Pages 414-426. Elsevier.

 Thabtah F., Cowling P. and Peng Y. (2005) MCAR: Multi-class classification based on [103]

association rule approach. Proceeding of the 3rd IEEE International Conference on Computer

Systems and Applications (pp. 1-7).Cairo, Egypt.

 Thabtah F., Cowling P. and Peng Y. (2004) MMAC: A new multi-class, multi-label [104]

associative classification approach. Proceedings of the Fourth IEEE International Conference

on Data Mining (ICDM ’04), (pp. 217-224). Brighton, UK. (Nominated for the Best paper

award).

 Toolan F. and Carthy J. (2010). Feature Selection for Spam and Phishing Detection Group. [105]

 Utgoff P. (1989) Machine Learning. Volume 4, Issue 2, (pp.161- 86). Kluwer Academic [106]

Publishers Hingham, MA, USA.

 Vapnik V. (1995). The Nature of Statistical Learning Theory, chapter 5. Springer-Verlag, [107]

New York.

 Vyas R., Sharma L., Vyas O. and Scheider S. (2008). Associative Classifiers for Predictive [108]

Analytics: Comparative Performance Study, ems, (pp.289-294), 2008 Second UKSIM

European Symposium on Computer Modeling and Simulation, 2008.

 Wang K., Zhou S. and He Y. (2000). Growing decision tree on support-less association rules. [109]

Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, (pp. 265–269). Boston, Massachusetts.

 WEKA (2000): Data Mining Software in Java: http://www.cs.waikato.ac.nz/ml/weka. [110]

 Wen-Chen C., Chiun-Chich H. and Yu-Chun C. (2012). Increasing the effectiveness of [111]

associative classification in terms of class imbalance by using a novel pruning algorithm.

Expert System with Applications, Volume 39, Issue17, (pp 12841-12850).

 Witten I. and Frank E. (2000). Data mining: practical machine learning tools and techniques [112]

with Java implementations. San Francisco: Morgan Kaufmann.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liao:Qin.html
http://www.informatik.uni-trier.de/~ley/db/conf/imecs/imecs2007.html#TangL07
http://www.cs.waikato.ac.nz/ml/weka

179

 Xu X., Han G. and Min H. (2004). A novel algorithm for associative classification of images [113]

blocks. Proceedings of the fourth IEEE International Conference on Computer and

Information Technology, (pp. 46-51). Lian, Shiguo, China.

 Yearwood J., Mammadov M. and Banerjee A. (2010). Profiling Phishing Emails Based on [114]

Hyperlink Information. 2010 International Conference on Advances in Social Networks

Analysis and Mining, 120-127. IEEE. doi:10.1109/ASONAM.2010.56.

 Yin X. and Han J. (2003). CPAR: Classification based on predictive association rule. [115]

Proceedings of the SDM (pp. 369-376). San Francisco, CA.

 Yoon Y. and Lee G. (2008). Text Categorization Based on Boosting Association Rules, icsc, [116]

pp.136-143, 2008 IEEE International Conference on Semantic Computing.

 Yoon J.W. (2010). Hybrid spam filtering for mobile communication. Computers & [117]

Security, Vol. 29, (pp. 446-459).

 Zaïane O. and Antonie A. (2002). Classifying text documents by associating terms with text [118]

categories. Proceedings of the Thirteenth Australasian Database Conference (ADC'02), (pp.

215 - 222), Melbourne, Australia.

 Zaki M. and Hsiao C-J. (1999). Charm: An efficient Algorithm for closed Association Rules [119]

Mining, Technical Report, TR99-10.Computer Science Dept. Rensselaer Polytechnic

Institute.

 Zaki M. and Gouda K. (2003). Fast vertical mining using diffsets. Proceedings of the ninth [120]

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp.

326 – 335). Washington, D.C.

 Zaki M., Parthasarathy S., Ogihara M. and Li W. (1997). New algorithms for fast discovery [121]

of association rules. Proceedings of the 3rd KDD Conference. (pp. 283-286). Menlo Park,

CA.

 Zheng Z., Kohavi R., and Mason L. (2001). Real world performance of association rule [122]

algorithms. Proceedings of the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, (pp. 401 – 406). San Francisco, California.

 “PhishTank,” October 2006. [Online]. Available: http://www.phishtank.com/. [123]

 “Millersmiles,” [Online]. Available: http://www.millersmiles.co.uk/. [124]

 “Yahoo Directory,” [Online]. Available: http://dir.yahoo.com/. [125]

 “Starting Point Directory,” [Online]. Available: http://www.stpt.com/directory/. [126]

 “WhoIS,” [Online]. Available: http://who.is/. [127]

 “Alexa the Web Information Company,” [Online]. Available: http://www.alexa.com/. [128]

http://www.cs.ualberta.ca/~zaiane/postscript/zaianeADC.pdf
http://www.cs.ualberta.ca/~zaiane/postscript/zaianeADC.pdf
http://www.phishtank.com/
http://www.millersmiles.co.uk/
http://dir.yahoo.com/
http://www.stpt.com/directory/
http://who.is/

	Abstract
	List of Figures
	List of Tables
	Dedications and Acknowledgements
	List of abbreviations
	Chapter 1
	Introduction
	1.1 Motivation
	1.2 Main Aim of the Thesis
	1.3 Issues Addressed in the Thesis
	1.3.1 Issue 1: An Associative Classification Algorithm for Emails and Website Prediction
	1.3.2 Issue 2: Efficiency of Rule Discovery Phase
	1.3.3 Issue 3: Enhancing Prediction Procedure of Test Data
	1.3.4 Issue 4: Rule Sorting Criteria
	1.3.5 Experimental Study Comparing Data Mining Approaches on UCI

	1.4 Outline of Thesis

	Chapter 2
	Literature Review
	2.1 Introduction
	2.2 Classification Technique in Data Mining
	2.2.1 The Classification Problem
	2.2.2 Classification Example

	2.3 Common Classification Techniques
	2.3.1 Simple One Rule
	2.3.2 Decision Trees
	2.3.3 ID3 Algorithm
	2.3.4 C4.5 Algorithm
	2.3.5 Statistical Approach (Naïve Bayes)
	2.3.6 Rule Induction and Covering Approaches
	2.3.6.1 Incremental Reduced Error Pruning (IREP)
	2.3.6.2 Repeated Incremental Pruning to Produce Error Reduction

	2.3.7 Prism
	2.3.8 Hybrid Approach (PART)

	2.4 Issues in Classification
	2.4.1 Over fitting
	2.4.2 Inductive Bias

	2.5 Association Rule Mining
	2.5.1 Problem Solving Strategy
	2.5.2 Association Rules Mining Approaches
	2.5.2.1 Apriori
	2.5.2.2 Dynamic Itemset Counting
	2.5.2.3 Frequent Pattern Growth
	2.5.2.4 Partitioning
	2.5.2.5 Direct Hashing and Pruning
	2.5.2.6 Multiple Support Apriori
	2.5.2.7 Confidence-Based Approach
	2.5.2.8 Tid-list Intersection

	2.6 Associative Classification Mining
	2.6.1 Working of Associative Classification
	2.6.1.1 Main Steps in Associative Classification

	2.6.2 Associative Classification Problem
	2.6.3 AC and ARM Main Differences
	2.6.4 Association Classification Data Layouts

	2.7 Associative Classification Algorithms
	2.7.1 Classification Based on Associations (CBA 2)
	2.7.2 Classification Based on Multiple Association Rules (CMAR)
	2.7.3 Classification Based on Predictive Association Rules (CPAR)
	2.7.4 Gain Based Association Rule Mining (GARC)
	2.7.5 Multi-Class Classification Based on Association rule (MCAR)
	2.7.6 Multi-class, Multi-label Associative Classification (MMAC)
	2.7.7 Class Based Associative Classification
	2.7.8 Associative Classification Based on Closed Frequent Itemsets (ACCF)
	2.7.9 Boosting Association Rules (BCAR)
	2.7.10 Association Classification based on Compactness of Rules (ACCR)
	2.7.11 Improved Classification Based on Predictive Association Rules
	2.7.12 Hierarchical Multi-Label AC using Negative Rules (HMAC)
	2.7.13 Probabilistic CBA
	2.7.14 AREM: A Novel Associative Regression Model Based On EM Algorithm
	2.7.15 Prefix Stream Tree (PST) for Associative Classification.

	2.8 Use of AC algorithms in Medical Diagnosis and Recommender System
	2.8.1 Use of Associative Classification and Genetic Algorithm in Heart Disease Prediction
	2.8.2 Artificial Immune System for Associative Classification
	2.8.3 Using Associative Classification for Treatment Response Prediction
	2.8.4 Fuzzy Associative Classification Approach for Recommender Systems

	2.9 Current Pruning Methods
	2.9.1 Database Coverage
	2.9.2 Redundant Rule Pruning
	2.9.3 Pessimistic Error Estimation
	2.9.4 Lazy Pruning
	2.9.5 Laplace Accuracy
	2.9.6 Boosting Weak Association Rules
	2.9.7 I-Prune
	2.9.8 PCBA Based Pruning

	2.10 Current Prediction Methods in Associative Classification
	2.10.1 Single Accurate Rule Prediction
	2.10.2 Group of Rules Prediction
	2.10.2.1 Score based Prediction Methods
	2.10.2.2 Laplace based Prediction Method

	2.11 Phishing in Websites and Emails
	2.11.1 What is Phishing

	2.12 Common Approaches to Detect Phishing
	2.12.1 Pilfer Approach
	2.12.2 Machine Learning Approaches to Detect Phishing
	2.12.3 Bayesian Additive Regression Trees (BART)
	2.12.4 Multi-tier Classification of Phishing Websites and Emails
	2.12.5 Hybrid Features using Information Gain
	2.12.6 BoosTexter
	2.12.7 Phishing Evolving Clustering Method (PECM)
	2.12.8 Data Mining Classification Methods
	2.12.9 Detecting Phishing Websites Using Associative Classification
	2.12.10 Phishing Detection Taxonomy for Mobile Device
	2.12.11 Anti-Phishing Prevention Technique (APPT)
	2.12.12 Automated Detection of Phishing using Classification Scheme and Feature Selection
	2.12.13 Rouge DHCP-Enabled LAN Used in Phishing Attacks

	2.13 Summary

	Chapter 3
	Classification Based on Association Rule (CBA)
	3.1 Introduction
	3.2 CBA-RG Basic Concepts
	3.3 CBA-CB Basic Steps
	3.4 Summary of the Chapter

	Chapter 4
	Looking at the Class Associative Classification Algorithm (LC)
	4.1 Introduction
	4.2 Main Differences of LC and CBA Algorithms
	4.3 The Development of New AC Algorithm
	4.3.1 The Proposed Rule Discovery Algorithm
	4.3.1.1 Example on the New Training Algorithm

	4.3.2 Classifier Construction
	4.3.3 Rule Sorting
	4.3.4 Pruning of Rules
	4.3.5 Prediction Method of LC

	4.4 Experimental Environment Setup
	4.4.1 Data Sets Used in Experiments
	4.4.2 Experimental Parameters and Setup

	4.5 Experimental Results and Discussion
	4.6 Summary of Chapter

	Chapter 5
	Phishing Data Collection Model and Implementation of LC and other Algorithms
	5.1 Introduction
	5.2 Features Selection for Experiments
	5.2.1 Phishing Data Sources, How and Why Features are Selected

	5.3 The Model for Extraction and Evaluation of Chosen Features
	5.3.1 Abnormal Based Features
	5.3.1.1 Request URL
	5.3.1.2 URL of Anchor Feature
	5.3.1.3 Feature of Server Form Handler (SFH)

	5.3.2 Address Bar Based Features
	5.3.2.1 Use of IP Address in Domain Name
	5.3.2.2 URL Length
	5.3.2.3 URL having @ Symbol
	5.3.2.4 Prefix or Suffix in the Domain Part
	5.3.2.5 URL having Sub Domain
	5.3.2.6 SSL (Secure Sockets Layer) Final State

	5.3.3 HTML and JavaScript Based Features
	5.3.3.1 OnMouseOverfeature
	5.3.3.2 Redirect Feature
	5.3.3.3 PopUp Window Feature
	5.3.3.4 RightClick Disabled Feature

	5.3.4 Domain Based Features
	5.3.4.1 Domain’s Age Feature
	5.3.4.2 Record from DNS Feature
	5.3.4.2 Website Traffic

	5.4 Experimental Setup and Data Sets Used
	5.5 Experimental Results and Discussion
	5.6 Summary of the Chapter

	Chapter 6
	Critical Analysis of the Experimental Results
	6.1 Reduction in the Number of merging of itemsets in LC and its Impact on the Execution time and Memory Usage
	6.2 Total Number of CARs Generated Before and After Pruning
	6.3 Analysis of the Prediction Accuracy Measure
	6.4 Summary of the Chapter

	Chapter 7
	Conclusions and Future Directions
	7.1 Conclusions
	7.1.1 Issue 1: An Associative Classification Algorithm for Emails and Website Prediction
	7.1.2 Issue 2: Efficiency of Training Phase of AC
	7.1.3 Issue 3 & 4: Prediction Based on Group of Rules and Rule Ranking
	7.1.4 Issue 5: Experimental Study on UCI and Phishing Data Sets

	7.2 Future Directions
	7.2.1 Phishing in Mobile Applications
	7.2.2 Distributed Learning in AC
	7.2.3 Noise in Source Databases

	Appendix A
	Bibliography

