
University of Huddersfield Repository

Klaib, Ahmad

Exact string matching algorithms for searching DNA and protein sequences and searching chemical
databases

Original Citation

Klaib, Ahmad (2014) Exact string matching algorithms for searching DNA and protein sequences
and searching chemical databases. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/24266/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

 EXACT STRING MATCHING ALGORITHMS FOR

SEARCHING DNA AND PROTEIN SEQUENCES AND

SEARCHING CHEMICAL DATABASES

AHMAD F. KLAIB

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

The University of Huddersfield

September 2014

2

COPYRIGHT STATEMENT

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns any copyright in it (the “Copyright”) and s/he has given The University of

Huddersfield the right to use such copyright for any administrative, promotional,

educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and all other intellectual

property rights except for the Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property Rights and Reproductions cannot

and must not be made available for use without the prior written permission of the

owner(s) of the relevant Intellectual Property Rights and/or Reproductions

3

LIST OF PUBLICATIONS AND CONFERENCES

1 - Klaib, A. and Osborne, H. Searching Protein Sequence Databases Using BRBMH

Matching Algorithm. International Journal of Computer Science and Network Security

(IJCSNS). ISSN: 1738-7906, Vol. 8, No. 12, pp. 410-414, December, 2008.

2 - Klaib, A. and Osborne, H. BRQS Matching Algorithm for searching Protein Sequence

Databases. International Conference of Future Computer and Communication (ICFCC 2009),

Kuala Lumpur, Malaysia, 3-5 April 2009, pp. 223-227.

3 - Klaib, A. and Osborne, H. Exact String Matching Algorithms for Searching Biological

Sequence Databases. Poster in the 3rd Saudi International Conference (SIC-2009), Surrey

University, Guildford, United Kingdom, 4-6 June 2009.

4 - Klaib, A. and Osborne, H. OE Matching Algorithm for Searching Biological Sequences.

International Conference on Bioinformatics, Computational Biology, Genomics and

Chemoinformatics (BCBGC-09), Orlando, Florida, USA, 13-16 July 2009, pp. 36-42.

5 - Attended the 20th Annual Symposium on Combinatorial Pattern Matching Published by

springer, in Lille, France, on June 22 - 24, 2009.

4

6 - Klaib, A. and Osborne, H. A New String Matching Algorithm for Searching Biological

Sequences. In 2009 Conference Proc. International Conference on Information and

Communication Systems (ICICS 2009), Amman, Jordan.

7 - Klaib, A. and Osborne, H. RSMA Matching Algorithm for Searching Biological

Sequences. In 2009 IEEE Proc. 6th International Conference on Innovations in Information

Technology (IIT '09), pp.195-199, 15-17 Dec. 2009, Alain, UAE.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5413769&isnumber=54133

54.

5

DEDICATIONS

To almighty Allah:

who gave me strength and good health while doing this research

To my main supervisor, Dr. Hugh Osborne:

who guided me throughout different stages of this research

To my co-supervisor, Dr. Andrew Crampton:

 who helped in writing up this thesis

To my great parents, brothers and sisters:

 who supported me until this point

To my parents-in-law, my lovely wife, daughter and new born son:

who stood next to me

To my relatives and friends:

 who always encouraging me

May Allah keep all of you safe, happy and grant you a good health

With my love

6

ACKNOWLEDGMENT

First of all, I am grateful for the almighty Allah for his blessing and giving me the strength to

write up this thesis. There are many people without whom this thesis might not have been written, and to

whom I am greatly indebted.

I wish to express my sincere thanks to my supervisor, Dr. Hugh Osborne, for his guide, countless

hours of reflecting, reading, his continuous support and most of all patience throughout different stages of

this research.

Also I would like to thank my co-supervisor, Dr. Andrew Crampton for his cooperation and

guidance while doing my research.

I would like to acknowledge and thank Dr. Christopher Newman for his support solving different

problems I faced at the University of Huddersfield.

Special Thanks go to University of Huddersfield, who gave me this opportunity to complete my

degree. Continuous thanks for every member of this university especially staff at the research and

enterprise office, Computing and Engineering School and technician team for their continued support and

cooperation.

Uncountable thanks to my parents, brothers, sisters, who spent their lives supporting and

encouraging me, praying and dreaming of seeing this work completed. I wish I can return a very small

part of their favors.

My warm appreciations go to my parents-in-law, my lovely wife (Alaa), my gorgeous daughter

(Rama) and my newborn baby (Yamen) for being so patient with me and being very understandable for

my situation.

Last, but not the least, great thanks to my relatives, friends especially Arshad who helped in

implementing the parallel experiments, Ala’, Abulrahman, Dr. Mahmoud, Dr. Baydaa, Dr. Ra’ad and all

who had been helped and encouraged me in the past few years. Thank you very much for all of you.

7

Abstract

The enormous quantities of biological and chemical files and databases are likely to grow year

on year, consequently giving rise to the need to develop string-matching algorithms capable of

minimizing the searching response time. Being aware of this need, this thesis aims to develop string

matching algorithms to search biological sequences and chemical structures by studying exact string

matching algorithms in detail. As a result, this research developed a new classification of string matching

algorithms containing eight categories according to the pre-processing function of algorithms and

proposed five new string matching algorithms; BRBMH, BRQS, Odd and Even algorithm (OE), Random

String Matching algorithm (RSMA) and Skip Shift New algorithm (SSN).

The main purpose behind the proposed algorithms is to reduce the searching response time and

the total number of comparisons. They are tested by comparing them with four well- known standard

algorithms, Boyer Moore Horspool (BMH), Quick Search (QS), TVSBS and BRFS.

This research applied all of the algorithms to sample data files by implementing three types of

tests. The number of comparison tests showed a substantial difference in the number of comparisons our

algorithms use compared to the non-hybrid algorithms such as QS and BMH. In addition, the tests

showed considerable difference between our algorithms and other hybrid algorithm such as TVSBS and

BRFS. For instance, the average elapsed search time tests showed that our algorithms presented better

average elapsed search time than the BRFS, TVSBS, QS and BMH algorithms, while the average number

of tests showed better number of attempts compared to BMH, QS, TVSBS and BRFS algorithms.

A new contribution has been added by this research by using the fastest proposed algorithm, the

SSN algorithm, to develop a chemical structure searching toolkit to search chemical structures in our

local database. The new algorithms were paralleled using OpenMP and MPI parallel models and tested

at the University of Science Malaysia (USM) on a Stealth Cluster with different number of threads and

processors to improve the speed of searching pattern in the given text which, as we believe, is another

contribution.

8

Table of Contents

COPYRIGHT STATEMENT ... 2

LIST OF PUBLICATIONS AND CONFERENCES ... 3

DEDICATIONS .. 5

ACKNOWLEDGMENT ... 6

Abstract ... 7

Table of Contents .. 8

List of Figures ... 13

List of Tables .. 15

List of Abbreviations .. 18

CHAPTER 1: INTRODUCTION ... 21

1.1 Introduction ... 21

1.2 Background ... 22

1.2.1 Biological Data ... 22

1.2.1.1 DNA ... 23

1.2.1.2 Proteins ... 25

1.2.2 Chemical Data Representation .. 26

1.2.2.1 Antimicrobial Structures ... 27

1.2.3 Sequence Databases .. 27

1.2.3.1 Biological Databases .. 28

1.2.3.2 Chemical Databases .. 29

1.2.4 String Matching Algorithms.. 29

1.3 Research Motivation .. 30

1.4 Research Hypothesis and General Research Methodology ... 30

1.5 Research Questions ... 32

1.6 Research Objectives .. 33

1.7 Main Contribution ... 33

1.8 Overview of the Thesis .. 34

CHAPTER 2: A CURRENT STATE OF THE ART .. 37

2.1 Conventions ... 37

2.2 The First Category: Shift the Pattern a Single Position ... 37

2.2.1 The Brute Force Algorithm (BF) .. 38

2.3 The Second Category: Using Two Preprocessing Functions ... 41

2.3.1 The Boyer Moore Algorithm (BM) ... 42

2.3.2 The Zhu Takaoka Algorithm (ZT) .. 46

2.3.3 The Fast Search Algorithm (FS) ... 48

2.4 The Third Category: Depending on the Rightmost Character ... 50

2.4.1 The Boyer Moore Horspool Algorithm (BMH) .. 50

9

2.5 The Fourth Category: Depending on the Next Character to the Rightmost Character 54

2.5.1 The Quick-Search Algorithm (QS) ... 54

2.6 The Fifth Category: Depending on Two Characters Next to the Rightmost Character 56

2.6.1 The Berry–Ravindran Algorithm (BR) ... 56

2.7 The Sixth Category: Using a Hashing Function .. 59

2.7.1 The Karp-Rabin Algorithm (KR) .. 59

2.8 The Seventh Category: Computing Buckets for All Characters of the Alphabet 64

2.8.1 The Skip Shift Algorithm (SS) .. 64

2.8.2 The Alpha Skip Shift Algorithm (ASS) .. 67

2.9 The Eighth Category: Using Hybrid Algorithms ... 70

2.9.1 The SSABS Algorithm .. 70

2.9.2 The FJS Algorithm .. 72

2.9.3 The TVSBS Algorithm ... 73

2.9.4 The ZTBMH Algorithm .. 75

2.9.5 The BRFS Algorithm .. 76

2.9.6 The BM-KMB Algorithm ... 78

2.9.7 The BRSS Algorithm .. 79

2.9.8 The ASSBR Algorithm ... 81

2.9.9 The MRCA Algorithm .. 84

2.9.10 The KRBMH Algorithm ... 84

2.9.11 The Quick-Skip Search Algorithm (QSS) ... 84

2.9.12 The AKRAM Algorithm ... 85

2.10 Summary of String Matching Algorithms ... 85

2.11 SMILES Format .. 92

2.12 Parallel Computing .. 98

2.12.1 Flynn’s Taxonomy .. 99

2.12.2 Parallel Computing Speedup: .. 101

2.12.3 Parallel Programing Models: ... 102

2.12.3.1 The Shared Memory Model: ... 102

2.12.3.2 The Distributed Memory Model: .. 104

2.12.3.3 The Hybrid Memory Model: ... 106

2.13 Summary ... 107

CHAPTER 3: METHODOLOGY AND DESIGN ... 108

3.1 Framework of Research Methodology .. 108

3.2 Chemical Structures Toolkit Design .. 110

3.2.1 The First Stage: Downloading and Mining Structures .. 112

3.2.2 The Second Stage: Building the Local Database .. 112

3.2.3 The Third Stage: Using the JME Editor, SMILES and the SSN Algorithm 114

3.2.4 The Fourth Stage: Measuring Similarity Using the Proportion of Matching Characters 115

10

3.3 Parallel Algorithm Design ... 116

3.3.1 Parallel Algorithm Design for Shared Memory Model ... 116

3.3.2 Parallel Algorithm Design for Distributed Memory Model .. 117

3.4 Summary ... 118

CHAPTER 4: DEVELOPING NEW ALGORITHMS ... 119

4.1 The BRBMH Algorithm .. 119

4.1.1 The Preprocessing Phase of the BRBMH Algorithm: ... 119

4.1.2 The Searching Phase of the BRBMH Algorithm: ... 123

4.1.3 The BRBMH: Working Example .. 124

4.1.3.1 Input Sample ... 124

4.1.3.2 The BRBMH Example’s Preprocessing Phase ... 124

4.1.3.3 The BRBMH Example’s Searching Phase.. 124

4.2 The BRQS Algorithm .. 128

4.2.1 The Preprocessing Phase of the BRQS Algorithm: ... 128

4.2.2 The Searching Phase of the BRQS Algorithm: ... 128

4.2.3 The BRQS: Working Example .. 129

4.2.3.1 Input Sample ... 130

4.2.3.2 The BRQS Example’s Preprocessing Phase ... 130

4.2.3.3 The BRQS Example’s Searching Phase ... 130

4.3 The Odd and Even Algorithm (OE) .. 134

4.3.1 The Preprocessing Phase of the OE Algorithm: .. 134

4.3.2 The Searching Phase of the OE Algorithm: .. 134

4.3.3 The OE: Working Example ... 135

4.3.3.1 Input Sample ... 136

4.3.3.2 The OE Example’s Preprocessing Phase .. 136

4.3.3.3 The OE Example’s Searching Phase ... 136

4.4 The Randon String Matching Algorithm (RSMA) .. 140

4.4.1 The Pre-processing Phase of the RSMA Algorithm: .. 140

4.4.2 The Searching Phase of the RSMA Algorithm ... 140

4.4.3 The RSMA: Working Example ... 143

4.4.3.1 Input Sample ... 143

4.4.3.2 The RSMA Example’s Preprocessing Phase .. 143

4.4.3.3 The RSMA Example’s Searching Phase ... 144

4.5 The Skip Shift New (SSN) Algorithm ... 147

4.5.1 The Preprocessing Phase of the SSN Algorithm: .. 148

4.5.2 The Searching Phase of the SSN Algorithm: .. 148

4.5.3 The SSN: Working Example ... 150

4.5.3.1 Input Sample ... 150

4.5.3.2 The SSN Example’s Preprocessing Phase .. 150

11

4.5.3.3 The SSN Example’s Searching Phase ... 151

4.6 Summary ... 154

CHAPTER 5: IMPLEMENTATION .. 155

5.1 System Specification ... 155

5.2 Chemical Structures Toolkit Implementation .. 155

5.2.1 Downloading and Mining Structures .. 155

5.2.2 Building the Local Database ... 156

5.2.2.1 Local Database Design ... 156

5.2.2.2 Table Format and Description .. 156

5.2.3 Using JME Editor, SMILES and the SSN Algorithm ... 158

5.2.4 Implementation of Similarity Measuring .. 158

5.3 Parallel Algorithm Implementation ... 159

5.3.1 OpenMP Model Implementation ... 159

5.3.2 MPI Model Implementation .. 161

5.4 Summary ... 162

CHAPTER 6: RESULTS AND DISCUSSION .. 163

6.1 Testing Algorithms Using a Short DNA Pattern ... 164

6.1.1 The Number of Comparisons Using a Short DNA Pattern ... 164

6.1.2 The Number of Attempts Using a Short DNA Pattern .. 165

6.1.3 The Average Elapsed Search Time Using a Short DNA Pattern... 167

6.2 Testing Algorithms Using a Long DNA Pattern ... 169

6.2.1 The Number of Comparisons Using a Long DNA Pattern .. 169

6.2.2 The Number of Attempts Using a Long DNA Pattern .. 170

6.2.3 The Average Searching Elapsed Time Using a Long DNA Pattern .. 171

6.3 Testing Algorithms Using a Short Protein Pattern .. 173

6.3.1 The Number of Comparisons Using a Short Protein Pattern ... 173

6.3.2 The Number of Attempts Using a Short Protein Pattern ... 174

6.3.3 The Average Elapsed Search Time Using a Short Protein Pattern .. 175

6.4 Testing Algorithms Using a Long Protein Pattern ... 176

6.4.1 The Number of Comparisons Using a Long Protein Pattern ... 177

6.4.2 The Number of Attempts Using a Long Protein Pattern ... 178

6.4.3 The Average Elapsed Search Time Using a Long Protein Pattern .. 178

6.5 Testing Parallel Algorithms ... 181

6.5.1 Testing the OpenMP Model on DNA Sequences File ... 181

6.5.2 Testing the OpenMP Model on Protein Sequences File .. 182

6.5.3 Testing the MPI Model on DNA Sequences File .. 182

6.5.4 Testing the MPI Model on Protein Sequences File ... 183

6.6 Testing the Chemical Searching Toolkit Using the SSN Algorithm ... 184

6.7 Discussion ... 187

12

6.7.1 The Number of Comparisons Test Discussion .. 189

6.7.2 The Average Elapsed Search Time Test Discussion ... 190

6.7.3 The Number of Attempts Test Discussion .. 192

6.7.4 The Parallel Algorithm Tests Discussion .. 194

CHAPTER 7: CONCLUSION AND FUTURE WORK .. 198

7.1 Conclusion ... 198

7.2 Future Work .. 201

REFERENCES ... 202

APPENDIX A: STRING MATCHING ALGORITHMS CODE ... 215

APPENDIX B: SMILES EBNF .. 239

APPENDIX C: TOOLKIT AND PARALLEL MODELS IMPLEMNTATION ... 241

APPENDIX D: LOCAL DATABASE TABLES FORMAT AND DESCRIPTION ... 249

13

List of Figures

FIGURE 1- 1: PRIMARY, SECONDARY, TERTIARY AND QUATERNARY STRUCTURES (BAILEY, 2006) 23

FIGURE 1- 2: DNA BASE PAIRS .. 24

FIGURE 1- 3: DNA DOUBLE HELIX (SETUBAL ET AL., 1997; AGUSTINA, 2012) ... 25

FIGURE 1- 4: GROWTH OF PROTEIN SEQUENCE ENTRIES IN THE SWISS-PROT DATABASE SINCE 28

FIGURE 1- 5: SYSTEM DEVELOPMENT METHODOLOGY (MORRISON & GEORGE, 1995) .. 32

FIGURE 2- 1: THE BRUTE FORCE ALGORITHM EXAMPLE .. 41

FIGURE 2- 2: THE BOYER-MOORE ALGORITHM EXAMPLE .. 45

FIGURE 2- 3: ZHU TAKAOKA ZTBC EQUATION ... 46

FIGURE 2- 4: THE ZHU-TAKAOKA ALGORITHM EXAMPLE .. 48

FIGURE 2- 5: THE FAST SEARCH ALGORITHM EXAMPLE ... 49

FIGURE 2- 6: THE HORSPOOL ALGORITHM EXAMPLE ... 53

FIGURE 2- 7: THE QUICK SEARCH ALGORITHM EXAMPLE .. 55

FIGURE 2- 8: THE BERRY-RAVINDRAN ALGORITHM EXAMPLE ... 58

FIGURE 2- 9: FIRST EXAMPLE OF THE KARP-RABIN ALGORITHM ... 60

FIGURE 2- 10: SECOND EXAMPLE OF THE KARP-RABIN ALGORITHM ... 63

FIGURE 2- 11: THE SKIP SEARCH ALGORITHM EXAMPLE.. 66

FIGURE 2- 12: AN EXAMPLE FOR TREE T(X) OF ALL SUBSTRINGS WITH L=3 .. 67

FIGURE 2- 13: THE ALPHA SKIP SEARCH ALGORITHM EXAMPLE .. 69

FIGURE 2- 14: THE SSABS ALGORITHM EXAMPLE .. 72

FIGURE 2- 15: THE TVSBS ALGORITHM EXAMPLE .. 74

FIGURE 2- 16: THE ZTBMH ALGORITHM EXAMPLE ... 76

FIGURE 2- 17: THE BRFS ALGORITHM EXAMPLE ... 78

FIGURE 2- 18: THE BRSS ALGORITHM EXAMPLE ... 81

FIGURE 2- 19: THE ASSBR ALGORITHM EXAMPLE ... 83

FIGURE 2- 20: AN EXAMPLE FOR THE SEQUENTIAL PROGRAM TASKS EXECUTION .. 98

FIGURE 2-21: AN EXAMPLE FOR THE PARALLEL PROGRAM TASKS EXECUTION .. 99

FIGURE 2- 22: FLYNN’S TAXONOMY (FLYNN, 1972) .. 100

FIGURE 2- 23: PARALLEL COMPUTING SPEEDUP EQUATION .. 101

FIGURE 2- 24: DIFFERENT TYPE OF SPEEDUP USING DIFFERENT NUMBER OF PROCESSORS.. 101

FIGURE 2-25: THE RELATIONSHIP BETWEEN THE COMMON SPEEDUP AND NUMBER OF PROCESSORS 102

FIGURE 2- 26: THE SHARED MEMORY MODEL .. 103

FIGURE 2-27: THE THREADS MODEL .. 103

FIGURE 2- 28: THE FORK AND JOIN MODEL .. 104

FIGURE 2-29: THE DISTRIBUTED MEMORY MODEL ... 105

FIGURE 2- 30: THE MPI MODEL STRUCTURE ... 106

FIGURE 2- 31: THE HYBRID MEMORY MODEL ... 107

14

FIGURE 3- 1: RESEARCH OBJECTIVE FRAMEWORK ... 109

FIGURE 3- 2: CHEMICAL TOOLKIT DESIGN .. 111

FIGURE 3- 3: MINING AND DOWNLOADING STRUCTURES FROM NMRSHIFTDB ... 112

FIGURE 3- 4: THE LOCAL DATABASE ER DIAGRAM .. 113

FIGURE 3- 5: DRAWING A STRUCTURE USING JME TOOL ... 114

FIGURE 3- 6: RESULTS OF APPLYING SMILES RULES ON FIGURE 3-5 EXAMPLE .. 115

FIGURE 3- 7: SEARCH STRUCTURE IN THE LOCAL DATABASE USING THE SSN ALGORITHM .. 115

FIGURE 3- 8: AN EXAMPLE OF PARALLELIZING THE “FOR LOOP” USING THE OPENMP MODEL 117

FIGURE 3- 9: PARALLEL ALGORITHM DESIGN USING THE MPI MODEL ... 118

FIGURE 4- 1: THE FIRST SHIFT CASE OF THE BRBMH ALGORITHM .. 121

FIGURE 4- 2: THE SECOND SHIFT CASE OF THE BRBMH ALGORITHM .. 121

FIGURE 4- 3: THE THIRD SHIFT CASE OF THE BRBMH ALGORITHM ... 122

FIGURE 4- 4: THE FOURTH SHIFT CASE OF THE BRBMH ALGORITHM .. 122

FIGURE 4- 5: THE BRBMH ALGORITHM CODE ... 123

FIGURE 4- 6: THE BRQS ALGORITHM CODE ... 129

FIGURE 4-7: THE OE ALGORITHM CODE .. 135

FIGURE 4- 8: THE RSMA ALGORITHM SEARCHING PHASE EQUATIONS .. 141

FIGURE 4- 9: THE RSMA ALGORITHM CODE .. 142

FIGURE 4- 10: THE SSN ALGORITHM PREPROCESSING PHASE EQUATION ... 148

FIGURE 4- 11: THE SSN ALGORITHM CODE .. 149

FIGURE 6- 1: BRQS AND BRBMH SEARCHING TIME USING A SHORT DNA PATTERN .. 167

FIGURE 6- 2: SSN, RSMA AND OE SEARCHING TIME USING A SHORT DNA PATTERN ... 168

FIGURE 6- 3: THE AVERAGE SEARCHING ELAPSED TIME FOR A LONG DNA (32-256) ... 171

FIGURE 6- 4: THE BRQS, BRBMH, QS AND BMH SEARCHING TIME FOR A LONG DNA (384-1024) 172

FIGURE 6- 5: THE SSN, RSMA AND OE SEARCHING TIME FOR A LONG DNA (384-1024) ... 172

FIGURE 6- 6: THE AVERAGE SEARCHING ELAPSED TIME FOR A SHORT PROTEIN PATTERN (4 - 31) 176

FIGURE 6- 7: BRBMH AND BRQS SEARCHING TIME USING A LONG PROTEIN PATTERN... 179

FIGURE 6- 8: RSMA AND OE SEARCHING TIME USING A LONG PROTEIN PATTERN ... 179

FIGURE 6- 9: THE SSN SEARCHING TIME USING A LONG PROTEIN PATTERN ... 180

FIGURE 6- 10: OPENMP MODEL: THE AVERAGE ELAPSED SEARCH TIME ON DNA SEQUENCES FILE 181

FIGURE 6- 11: OPENMP MODEL: THE AVERAGE ELAPSED SEARCH TIME ON PROTEIN SEQUENCES FILE 182

FIGURE 6- 12: MPI MODEL: THE AVERAGE ELAPSED SEARCH TIME ON DNA SEQUENCES FILE................................... 183

FIGURE 6- 13: MPI MODEL: THE AVERAGE ELAPSED SEARCH TIME ON PROTEIN SEQUENCES FILE 183

FIGURE 6- 14: INPUT A PATTERN CHEMICAL STRUCTURE ... 184

FIGURE 6- 15: VERIFY THE SMILES INPUT STRUCTURE .. 185

FIGURE 6- 16: SEARCH AND LIST SIMILAR STRUCTURES WITH SIMILARITY PERCENTAGE ... 186

FIGURE 6- 17: DETAILS OF SELECTED CHEMICAL STRUCTURE .. 186

15

List of Tables

TABLE 1- 1: TWENTY AMINO ACID ABBREVIATIONS (WATERMAN, 1995) .. 26

TABLE 2- 1: BAD-CHARACTER SHIFT IN BOYER-MOORE ALGORITHM EXAMPLE .. 42

TABLE 2- 2: THE BEST CASE EXAMPLE OF THE BOYER-MOORE ALGORITHM .. 43

TABLE 2- 3: THE BOYER-MOORE BMBC TABLE ... 44

TABLE 2- 4: BOYER-MOORE BMGS TABLE ... 44

TABLE 2- 5: THE ZHU-TAKAOKA ZTBC TABLE .. 47

TABLE 2- 6: AN EXAMPLE OF THE BMBC FUNCTION ... 50

TABLE 2- 7: AN EXAMPLE OF HRBC FUNCTION .. 51

TABLE 2- 8: HORSPOOL HSBC TABLE ... 51

TABLE 2- 9: QUICK SEARCH QSBC TABLE .. 54

TABLE 2- 10: THE BERRY-RAVINDRAN BRBC TABLE ... 56

TABLE 2- 11: HASH VALUE FOR THE SEARCHED PATTERN .. 60

TABLE 2- 12: SKIP SEARCH TABLE USED BY SS ALGORITHM ... 64

TABLE 2- 13: ALPHA SKIP SEARCH TABLE USED BY ASS ALGORITHM ... 68

TABLE 2- 14: THE QSBC TABLE USED BY SSABS ALGORITHM ... 71

TABLE 2- 15: THE BRBC TABLE USED BY TVSBS .. 73

TABLE 2- 16: THE ZTBC TABLE USED BY ZTBMH ... 75

TABLE 2- 17: THE BRBC TABLE USED BY THE BRFS ALGORITHM .. 77

TABLE 2- 18: THE BRBC TABLE USED BY THE BRSS ALGORITHM .. 80

TABLE 2- 19: SKIP SEARCH TABLE USED BY BRSS ALGORITHM .. 80

TABLE 2- 20: THE BRBC TABLE USED BY THE ASSBR ALGORITHM ... 82

TABLE 2- 21: ALPHA SKIP SEARCH TABLE USED BY ASSBR ALGORITHM. .. 82

TABLE 2- 22: SUMMARY OF ALGORITHMS BEEN USED IN THIS RESEARCH .. 91

TABLE 2-23: STRUCTURES IN SMILES FORMAT EXAMPLES .. 93

TABLE 2-24: THE SMILES ATOM RULE OF STRUCTURES WITH ORGANIC SUBSET ELEMENTS 94

TABLE 2-25: THE SMILES ATOM RULE OF NON-ORGANIC ELEMENTS ... 94

TABLE 2- 26: EXAMPLES OF POSITIVE AND NEGATIVE CHARGES REPRESENTED BY NUMBERS 94

TABLE 2-27: EXAMPLES OF POSITIVE AND NEGATIVE CHARGES REPRESENTED BY SIGNS ... 95

TABLE 2-28: EXAMPLES OF SMILES BONDS ... 95

TABLE 2-29: EXAMPLES OF SMILES BRANCHES RULE .. 96

TABLE 2-30: EXAMPLE OF SMILES CYCLIC STRUCTURE RULE .. 96

TABLE 2-31: EXAMPLE OF SMILES DISCONNECTED RULE .. 97

TABLE 2-32: EXAMPLE OF SMILES AROMATICITY RULE .. 97

TABLE 4- 1: THE BRBMH INPUT SAMPLE .. 124

TABLE 4-2: THE ENHANCED BRBC TABLE OF THE BRBMH ALGORITHM ... 124

TABLE 4-3: THE BRBMH ALGORITHM SEARCHING ORDER.. 125

16

TABLE 4-4: THE FIRST ATTEMPT OF THE BRBMH ALGORITHM ... 125

TABLE 4-5: THE SECOND ATTEMPT OF BRBMH ... 126

TABLE 4-6: THE THIRD ATTEMPT OF BRBMH .. 126

TABLE 4-7: THE FOURTH ATTEMPT OF BRBMH ... 127

TABLE 4-8: BRQS INPUT SAMPLE .. 130

TABLE 4- 9: THE BRQS ENHANCED BRBC PREPROCESSING TABLE .. 130

TABLE 4- 10: THE BRQS ALGORITHM SEARCHING ORDER ... 130

TABLE 4-11: THE BRQS ALGORITHM: THE FIRST ATTEMPT IN THE SEARCHING PHASE .. 131

TABLE 4-12: THE BRQS ALGORITHM: THE SECOND ATTEMPT IN THE SEARCHING PHASE .. 131

TABLE 4-13: THE BRQS ALGORITHM: THE THIRD ATTEMPT IN THE SEARCHING PHASE ... 132

TABLE 4-14: THE BRQS ALGORITHM: THE FOURTH ATTEMPT IN THE SEARCHING PHASE .. 133

TABLE 4- 15: OE INPUT SAMPLE .. 136

TABLE 4- 16: THE OE ALGORITHM SEARCHING ORDER .. 137

TABLE 4- 17: THE OE ALGORITHM: THE FIRST ATTEMPT IN THE SEARCHING PHASE .. 137

TABLE 4-18: THE OE ALGORITHM: THE SECOND ATTEMPT IN THE SEARCHING PHASE ... 138

TABLE 4-19: THE OE ALGORITHM: THE THIRD ATTEMPT IN THE SEARCHING PHASE .. 138

TABLE 4-20: THE RSMA ALGORITHM: THE SECOND ATTEMPT IN THE SEARCHING PHASE ... 145

TABLE 4-21: THE RSMA ALGORITHM: THE THIRD ATTEMPT IN THE SEARCHING PHASE .. 145

TABLE 4-22: THE RSMA ALGORITHM: THE FOURTH ATTEMPT IN THE SEARCHING PHASE ... 146

TABLE 4-23: THE SSN ALGORITHM: THE FIRST ATTEMPT IN THE SEARCHING PHASE ... 152

TABLE 4-24 (A): THE SSN ALGORITHM: THE SECOND ATTEMPT IN THE SEARCHING PHASE 152

TABLE 4-25(B): THE ASS_NEW ALGORITHM: THE SECOND ATTEMPT IN THE SEARCHING PHASE 153

TABLE 4-26: THE ASS_NEW ALGORITHM: THE THIRD ATTEMPT IN THE SEARCHING PHASE 153

TABLE 5- 1: MOLECULE TABLE DESIGN AND EXAMPLE .. 156

TABLE 5- 2: KEYWORD TABLE DESIGN AND EXAMPLE ... 157

TABLE 5- 3: MOLECULE_KEYWORD TABLE DESIGN AND EXAMPLE ... 158

TABLE 5- 4: FINDING THE TEXT AND PATTERN LENGTH FOR SIMILARITY MEASURING.. 159

TABLE 5- 5: THE MAIN OPENMP FUNCTIONS WHICH USED TO PARALLELIZE THE SSN ALGORITHM 160

TABLE 5- 6: THE MAIN SEVEN FUNCTIONS OF MPI WHICH USED TO PARALLELIZE THE SSN ALGORITHM 161

TABLE 6- 1: THE NUMBER OF COMPARISONS FOR A SHORT DNA PATTERN .. 164

TABLE 6- 2: THE NUMBER OF ATTEMPTS FOR A SHORT DNA PATTERN ... 166

TABLE 6- 3: THE NUMBER OF COMPARISONS FOR A LONG DNA PATTERN ... 169

TABLE 6- 4: THE NUMBER OF ATTEMPTS FOR A LONG DNA PATTERN .. 170

TABLE 6- 5: THE NUMBER OF COMPARISONS FOR A SHORT PROTEIN PATTERN ... 174

TABLE 6- 6: THE NUMBER OF ATTEMPTS FOR A SHORT PROTEIN PATTERN ... 175

TABLE 6- 7: THE NUMBER OF COMPARISONS FOR A LONG PROTEIN PATTERN ... 177

TABLE 6- 8: NUMBER OF ATTEMPTS FOR LONG PROTEIN PATTERN ... 178

TABLE 6- 9: MPI VS. OPENMP: AVERAGE ELAPSED SEARCH TIME FOR SEARCHING DNA .. 195

TABLE 6- 10: MPI VS. OPENMP: AVERAGE ELAPSED SEARCH TIME FOR SEARCHING PROTEIN 196

17

TABLE 6- 11: THE SPEEDUP OF MPI AND OPENMP MODELS FOR DNA PATTERNS ... 197

TABLE 6- 12: THE SPEEDUP OF MPI AND OPENMP MODELS FOR PROTEIN PATTERNS .. 197

18

List of Abbreviations

AKRAM Akram Algorithm

APD Antimicrobial Peptide Database

ASS Alpha Skip Shift Algorithm

ASSBR Alpha Skip Shift and Berry–Ravindran Algorithm

ATT Algorithms Searching Attempt

BF Brute Force Algorithm

BM Boyer Moore Algorithm

bmBc Boyer Moore Bad Character Function

bmGs Boyer Moore Good Suffix

BMH Boyer Moore Horspool Algorithm

BM-KMB Boyer Moore and Knuth Morris Pratt Algorithm

BR Berry–Ravindran Algorithm

brBc Berry–Ravindran Bad Character Function

BRBMH Berry–Ravindran and Boyer Moore Horspool Algorithm

BRFS Berry–Ravindran and Fast Search Algorithm

BRQS Berry–Ravindran and Quick-Search Algorithm

BRSS Berry–Ravindran and Skip Shift Algorithm

DNA Deoxyribonucleic Acids

E-R Entity–relationship model

FJS Frank, Jennings, and Smyth Algorithm

FS Fast Search Algorithm

fsBc Fast Search Bad Character Function

fsGs Fast Search Good Suffix

HPC High Performance Computing

hsBc Boyer Moore Horspool Bad Character Function

JME Java Molecular Editor

KMP Knuth Morris Pratt Algorithm

19

KR Karp-Rabin Algorithm

KRBMH Karp-Rabin and Boyer Moore Horspool Algorithm

MIMD Multiple Instructions, Multiple Data System

MISD Multiple Instruction, Single Data System

MOD Modulus Operation in Maths

MPI Message Passing Interface Model

MRCA Multiple Reference Character Algorithm

NCBI National Centre of Biotechnology Information

ncRNAs non-coding RNAs

NMRShiftDB Nuclear Magnetic Resonance Shift Database

OE Odd and Even Algorithm

OpenMP Open Multi Processing Model

PDB Protein Data Bank

Protein Amino Acids

QS Quick-Search Algorithm

qsBc Quick-Search Bad Character Function

QSS Quick-Search and Skip Shift Algorithm

RNA Ribonucleic Acids

RSMA Random String Matching Algorithm

SDM System Development Methodology

SIMD Single Instruction, Multiple Data System

SISD Single Instruction, Single Data System

SMILES Simplified Molecular Input Line Entry System

SS Skip Shift Algorithm

SSABS Sheik, Sumit, Anindya, Balakrishnan and Sekar Algorithm

SSN Shift Skip New Algorithm

TVSBS Thathoo, Virmani, Sai, Balakrishnan, and Sekar Algorithm

ZT Zhu Takaoka Algorithm

ztBc Zhu Takaoka Bad Character Function

20

ZTMBH Zhu Takaoka and Boyer Moore Horspool Algorithm

21

CHAPTER 1: INTRODUCTION

1.1 Introduction

Bioinformatics is an important research area for scientific research, involving enormous

amounts of data (Degrave et al., 2002). It covers several fields including biology applications

and management of bioinformatics infrastructure using computer science’s software (Searls &

Hogeweg, 2011). It involves computer science as a discipline giving tools for storing,

manipulating, analysis, searching and integration data and for developing applications.

Chemoinformatics is the application of computer software and technology in the field of

Chemistry and Pharmacy research to deal with chemical structures and drugs (Xu, 2002).

Moreover, string matching algorithms play a vital role in different applications such as

bioinformatics and chemoinformatics (SaiKrishna et al., 2012).

Files contain enormous quantities of biological and chemical data presented in a linear string

format such as amino acids (proteins), Deoxyribonucleic acids (DNA) and the chemical

structures (Horton, 2004).

Great numbers of biological and chemical files are likely to be produced every year, and that

is why effective string-matching algorithms are used to reduce the searching response time and

the total number of comparisons.

Chapter number one is divided as following: section 1.2 includes the research background,

section 1.3 demonstrates research motivation, section 1.4 includes the research hypothesis and

the general research methodology, section 1.5 comprises research questions, section 1.6 lists

research objectives, section 1.7 includes the main contribution of this research and finally section

22

1.8 gives an overview of the thesis.

1.2 Background

 In this section, we provide a brief explanation of the biological data, DNA, proteins,

chemical data representation, antimicrobial structures, sequence databases, biological databases,

chemical databases, and string-matching algorithms.

1.2.1 Biological Data

Biological experiments produce various types of data are divided into three main sequences

such as DNA, Ribonucleic acid (RNA) and protein. Protein has four different types of structures;

primary, secondary, tertiary and quaternary as shown in Figure 1-1 (Bailey, 2006). In this

research, DNA and primary protein structures are being focused because they are presented as

sequences of string and the quantities of their data files are likely to increase year on year. The

next sub-section 1.2.1.1 presents the first and basic biological data DNA followed by sub-section

1.2.1.2 which represents protein sequences.

23

Figure 1- 1: Primary, secondary, tertiary and quaternary structures (Bailey, 2006)

1.2.1.1 DNA

Deoxyribonucleic acid (DNA) is the molecule that stores genetic information. Moreover,

James Watson and Francis Crick were the first scientists who proposed the basic structure of

DNA in 1953 (Crick, 1974).

DNA is a nucleic acid, made up of a double chain of small molecules called nucleotides.

Four different kinds of nucleotides make up a DNA and four bases distinguish these nucleotides.

DNA sequences are strings over the alphabet ∑DNA = {Adenine (A), Cytosine (C), Guanine

24

(G), and Thymine(T)} (Kim et al., 2007). According to the U.S. National Library of Medicine,

2013 “There are two DNA bases chained to a phosphate group and a sugar molecule together,

and make a base pair like C binds with G and A binds with T” as shown in Figure 1-2.

Figure 1- 2: DNA base pairs

Nucleotide is a combination of phosphate group and ribose sugar and they can be arranged in

two long strands shaping the double helix where they look like a twisted ladder as shown in

Figure 1-3 (Setubal et al., 1997; Agustina, 2012)

25

Figure 1- 3: DNA double helix (Setubal et al., 1997; Agustina, 2012)

1.2.1.2 Proteins

The most important contents of the biological databases are proteins. In addition, they are

considered as a compound comprising twenty amino acids in string chain linked by peptide

bonds (Berg JM, 2002). However, the secondary structure of protein presents the shape of

hydrogen bonding built primarily from the primary structure of protein. The tertiary and

quaternary structures are globular in shape. The tertiary shows the atomic position in three

dimensional space and the quaternary structures are made up of more than one polypeptide

chains (Horton, 2004). Furthermore, there are three letter codes and a single letter code of

protein as presented in Table 1-1 (Waterman, 1995).

26

Table 1- 1: Twenty amino acid abbreviations (Waterman, 1995)

1.2.2 Chemical Data Representation

A fundamental issue in chemoinformatics is the representation of chemical structures on

computer systems. The Simplified Molecular Input Line Entry System (SMILES) presents

chemical structures in digital databases as a linear string notation (Weininger et al., 1989;

Weininger, 1988), rather than the traditional two dimensional structure formula.

27

1.2.2.1 Antimicrobial Structures

Antimicrobial structures are important substances functioning as self-defense against

infection by various harmful pathogens (Fujimura et al., 2003; G Wang, 2010). They exist in all

life categories and they found to kill viruses, bacteria and fungi (DeGray et al., 2001;Frecer et

al., 2004). They can be searched in databases using the antimicrobial structure keywords such as

the antibiotics, anticancer, antiviral activity, antifungal activity and antibacterial activity (Wang

& Wang, 2009).

1.2.3 Sequence Databases

Biologists and chemists have produced a large number of protein sequences, DNA, RNA,

and chemical structures. In addition, the number of sequences uploaded to these databases

increases every year. For example, as shown in Figure 1-4 in UniprotKB/Swiss-Prot database

(Expasy Bioinformatics Resource Portal, 2013), in 1997 there were fifty thousand entries and in

2005 there were more than one hundred and fifty thousand entries, the size of the database grew

three times in ten years. In 2007, more than fifty thousand entries were added in the database

within a year. In 2013 there were more than five hundred and thirty thousand entries in the

database.

28

Figure 1- 4: Growth of protein sequence entries in the Swiss-Prot database since

 1985 to July 2013 (Expasy Bioinformatics Resource Portal, 2013)

The following sub-sections 1.2.3.1 and 1.2.3.2 lists some of the databases that are used to

store the biological and chemical data.

1.2.3.1 Biological Databases

There are a lot of distributed public databases with different aims and contents which are

designed to integrate data. The GenBank database is endorsed by the help of the U.S. National

Center of Biotechnology Information (NCBI). It comprises millions of DNA sequences (NCBI,

2013). In addition, the SWISS-PROT database contains protein sequences which provide a high

percentage of integration, annotation, and the slightest level of repetition comparing to other

databases (Bairoch A, 2000) . The Antimicrobial Peptide Database (APD) which maintained by

the Department of Pathology and Microbiology at the University of Nebraska USA, contains

detailed information for 2426 peptides. In addition, this database combines peptide inquiry,

29

forecasts, structure and data for a specific group of the peptides (Wang & Wang, 2009). The

Protein Data Bank (PDB) database is a globular warehouse of proteins tertiary structures

(Berman et al., 2000; Nakamura, 2003; Bourne et al., 2004). The RNAdb is an inclusive non-

coding RNAs (ncRNAs) database of warm-blooded animals. Furthermore, it contains more than

800 unique different practically studied non-coding RNAs(Pang et al., 2007).

1.2.3.2 Chemical Databases

A chemical database is developed to store chemical structures’ data such as the

NMRShiftDB which stores organic structures and their core details.(Kuhn, 2010).

1.2.4 String Matching Algorithms

String matching algorithms take part in solving many computer problems and research issues

such as text processing, image processing, signal processing, network security, information

retrieval, and speech recognition (Baeza-Yates, 1992; Navarro & Raffinot, 2002; Y. Wang &

Kobayashi, 2006; Raju & Babu, 2007; Wang & Li, 2011; SaiKrishna et al., 2012; Bhandari

2014). In addition, they were used widely in computational biology and computational chemistry

such as proteins, DNA and RNA searching (Thathoo et al., 2006, Huang et al., 2008; Almazroi,

2011; Naser et al., 2012; Bhandari & Kumar, 2014).

String-matching algorithms target to find a pattern “sequence of characters” with length m

p[p1 p2…m] in a given text with length n T[t1 t2 … n] by matching the text window characters

with the pattern characters (Lecroq, 1998; Deusdado & Carvalho, 2009; Sleit et al., 2009) and if

30

a whole match or a mismatch encountered, the pattern is shifted to the right. An example is to

search a pattern “matching” in a text “string matching algorithms”. Text (T) is depicted as T1 …

Tn and pattern (P) as P1 …Pm (Navarro & Raffinot, 2000; Fredriksson & Grabowski, 2005;

Lecroq, 2007; Lokman & Zain, 2010).

Most algorithms consist of preprocessing and searching phases. The process which controls

the pattern shift is called preprocessing phase and it analyses pattern characters to determine the

shift value. The process of comparing pattern and text characters is called the searching phase

(Chai et al, 2009; Radhakrishna et al., 2010).

Efficient string algorithms aim to maximize the pattern shifting value and therefore enhance

the searching time (Chen, 2007). This research proposes new string matching algorithms to

search protein sequences, DNA sequences and chemical structures.

1.3 Research Motivation

One of the main research issues in biology and chemistry is searching proteins, DNA, RNA

and chemical structures from public databases such as UniProt, SWISS-PROT, APD, PDB,

RNAdb and NMRShiftDB databases (EMBL-EBI, 2002). This gives the computer researcher a

new research field to help researchers in biological and chemical sciences to use computer

technologies, methodologies and capabilities for searching sequences and structures.

1.4 Research Hypothesis and General Research Methodology

Our research is based on the following hypothesis:

1- The existing string matching algorithms can be classified in a new way.

31

2- The new classification can be used to understand the mechanism of each searching

algorithm.

3- The understanding of algorithm mechanism and features can help to enhance current

algorithms or developing a new algorithm.

4- The enhanced algorithms or developed one(s) can be used to search biological sequences

and chemical structures.

These hypotheses are implemented by using the System Development Methodology (SDM)

(Nunamaker Jr & Chen, 1990; Morrison & George, 1995; Hevner, 2004). The SDM is used by

information system analysts and software developers in order to implement their hypothesis

(Abdelaziz et al., 2008; Baydaa, 2011). Figure 1-5 below shows the three main levels of SDM:

1- Identifying research problems: problems involve difficulties, conditions or questions

where researchers wish to solve these problems, improve conditions or seek to answer

questions. In our thesis, the research questions built up depends on classifying string

matching algorithms, enhancing one or more of searching algorithms and then applying

the one(s) developed to searching biological sequences and chemical structures.

2- Prototype and evaluation: in this level the System Development Methodology aims to

prototype and implement the suggested work. It starts with designing the model, then

identifying model requirements, implementing the model and finally evaluating the

model by testing and analyzing results. In this thesis, the designing process and

methodology framework are explained in CHAPTER 3. The model developing is

presented in CHAPTER 4, the model implementation is presented in CHAPTER 5 and

the testing evaluation and analysis part is presented in CHAPTER 6.

32

3- Conceptual and practical contributions: This level defines the main contribution to the

knowledge. According to the results gained from the evaluation, the discussion is

presented in section 6.7 and finally, the conclusion and the future work are presented in

CHAPTER 7.

Figure 1- 5: System development methodology (Morrison & George, 1995)

1.5 Research Questions

1 - Which of the existing string pattern matching algorithm(s) is/are the most suitable for

searching biological sequences and chemical structures?

2 - Can we enhance one or more of the proposed algorithms in 1, or develop (a) new

algorithm(s) for string-matching?

33

3 - How we can measure the success of the newly developed algorithm(s) compared to the

best algorithm in 1?

4 - Can we develop a classification of string matching algorithms which will help with

achieving our aims?

1.6 Research Objectives

In this section, we explain the main parameters and factors that we intend to include in our

study. Thus our study includes the following objectives:

• To study the existing string-matching algorithms in order to develop a taxonomy of such

algorithms.

• To apply insights gained in the previous phase to enhance one or more of the existing

algorithms, or to develop (a) new algorithm(s) to search biological sequences and

chemical structures.

• To measure the success of the newly developed algorithm(s) compared to currently

existing algorithms.

1.7 Main Contribution

The main contributions for this research are:

1. Classifying the main string matching algorithms into a new classification containing eight

categories according to the preprocessing function in the algorithm.

2. Enhancing and developing five new string matching algorithms which improve the

34

searching response time by decreasing the number of comparisons in the searching stage

and enhancing the preprocessing stage by maximizing the shifting value.

3. Applying enhanced and developed algorithms to search DNA and protein sequences.

4. Implementing a local database containing relational tables to store downloaded chemical

structures from NMRShiftDB.

5. Using the fastest algorithm to develop a searching toolkit aims to search chemical

structures in a local database.

6. Speeding up the fastest algorithm using parallel models.

1.8 Overview of the Thesis

This chapter (CHAPTER 1: INTRODUCTION) gives an overview of the background to the

study which includes biological data such as DNA and proteins, chemical data representation

such as antimicrobial structures, biological sequence databases, chemical databases and string

matching algorithms. Then it deals with the research motivation, the research hypothesis, general

research methodology, the research questions and ends with the research objectives and expected

the outcomes of this study.

CHAPTER 2: A CURRENT STATE OF THE ART gives a survey, a new classification and

summary of string matching algorithms. In addition, chapter 2 describes Simplified Molecular

Input Line Entry System format (SMILES) with the syntax rules and finally it presents a

discussion of parallel computing.

35

CHAPTER 3: METHODOLOGY AND DESIGN. This chapter gives an overview of the

proposed work in this study which includes the research methodology framework. In addition, it

includes the chemical structure toolkit design and the parallel algorithm design. The research

methodology framework includes six main methodology stages which aim to achieve our

research objectives. The chemical toolkit design includes four stages which aim to develop the

toolkit in order to search chemical structures in our local database. Finally the parallel algorithm

design includes two phases of parallelizing the SSN algorithm; the first phase parallelizes the

SSN algorithm using the OpenMP model and the second phase uses the MPI model.

CHAPTER 4: DEVELOPING NEW ALGORITHMS. In this chapter, after classifying the

main string matching algorithms in CHAPTER 2 into eight categories according to the

preprocessing function in each algorithm, five new algorithms are developed which aim to

maximize the pattern shifting value and therefore enhance the searching time.

CHAPTER 5: IMPLEMENTATION. In this chapter, the chemical structure toolkit has been

implemented. This includes four stages. The first stage includes downloading and mining

structures from NMRShiftDB. The second stage builds a local database to host structures. The

third stage connects the toolkit to the local database and searches structures using Java Molecule

Editor (JME), SMILES and the SSN algorithm. Finally, the proportion of matching characters is

used in the fourth stage to measure the similarity between structures.

CHAPTER 6: RESULTS AND DISCUSSION. In this chapter all developed algorithms and

some of the standard algorithms are implemented and tested. The chemical searching toolkit has

36

been tested in this chapter as well. A parallel version of the SSN algorithm is implemented and

tested using OpenMP and MPI models. Finally, the discussion section analyses the results of

three types of tests are implemented on the developed algorithms and other standard algorithms.

CHAPTER 7: CONCLUSION AND FUTURE WORK. This chapter gives a summary of

research contribution and results. It also suggests some future work that can be used to expand

the current research.

37

CHAPTER 2: A CURRENT STATE OF THE ART

In this chapter the main string matching algorithms are classified into eight categories

according to the preprocessing function in the algorithm (Klaib & Osborne, 2009a).The first

category shifts the pattern only one position at each attempt (section 2.2). The second category

uses two preprocessing functions to shift the pattern (section 2.3). The third category uses one

preprocessing function based on the rightmost character in the current window (section 2.4). The

fourth category uses one preprocessing function based on the next character to the current

window (section 2.5). The fifth category uses one preprocessing function based on the two

characters next to the current window (section 2.6). The sixth category uses a preprocessing

hashing function (section 2.7). The seventh category uses a single preprocessing function

depends on computing buckets for all characters of the alphabet (section 2.8). The final category

uses hybrid algorithms (section 2.9).

A summary describing and comparing all previous classification of algorithms is presented in

section 2.10. Section 2.11 describes the SMILES format for chemical structures and finally

section 2.12 contains a brief discussion of parallel computing concept.

2.1 Conventions

In this discussion, (T) is the text, (P) is the pattern, (m) is the pattern’s length, (n) is the text’s

length, and the size of the alphabet used in T is σ.

2.2 The First Category: Shift the Pattern a Single Position

In this group, the pattern is shifted a single position whether there is a whole match or a

38

mismatch. The Brute Force algorithm (BF) is an example of this classification (Navarro &

Raffinot, 2002).

2.2.1 The Brute Force Algorithm (BF)

The BF is the basic algorithm of searching algorithms and there is no preprocessing phase is

used to shift the pattern. The searching order starts from the leftmost character moving forward

to the rightmost character of both the text window and pattern characters, and if there is a whole

match or a mismatch it shifts the pattern only a single position.

The disadvantage of this algorithm is the low efficiency by going through all characters of

the string (Charras & Lecroq, 2004). This algorithm can work well with small strings, but not

with large strings such as those in biological and chemical data (Stephen, 1994; Levitin, 2008).

Figure 2-1 below shows an example which illustrates the main principles of the Brute Force

algorithm where in each attempt the first line presents the text characters, the second line

presents the search order and the third line shows the search pattern characters. This convention

will be used for all examples.

Figure 2-1: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

1 2 3 4

C O 2 C 2 C 2 C

In the first attempt, the fisrt three characters have found a match. The fourth comparison

produces a mismatch which causes a shift to the right by one position and starts the search again

from position two as shown in the second attempt and so on.

39

Figure 2-1: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Sixth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1 2 3 4 5 6 7 8

 C O 2 C 2 C 2 C

Figure 2-1: Seventh attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

40

Figure 2-1: Eighth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Ninth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1 2

 C O 2 C 2 C 2 C

Figure 2-1: Tenth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Eleventh attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1 2

 C O 2 C 2 C 2 C

Figure 2-1: Twelfth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Thirteenth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1 2

 C O 2 C 2 C 2 C

41

Figure 2-1: Fourteenth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Fifteenth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Sixteenth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2-1: Seventeenth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2- 1: The Brute Force algorithm example

In the previous example, the Brute Force algorithm performs seventeen attempts and thirty

character comparisons to find the pattern in the text. Figure A-1 shows the Brute Force algorithm

code (Charras & Lecroq, 1997).

2.3 The Second Category: Using Two Preprocessing Functions

In this group, whether there is a whole match or a mismatch, the pattern is shifted using two

preprocessing functions. Examples of this group are the Boyer-Moore algorithm (BM) (Boyer &

Moore, 1977), the Zhu Takaoka algorithm (ZT) (Feng & Takaoka, 1988) and the Fast Search

42

Algorithm (FS) (Cantone & Faro, 2003).

2.3.1 The Boyer Moore Algorithm (BM)

The BM algorithm was developed by R.S. Boyer and J.S. Moore in 1977(Boyer & Moore,

1977; J. Lee, 2004). It searches the pattern from the rightmost character to the leftmost character

in each attempt. If there is a whole match or a mismatch, two preprocessing functions are used

to shift the pattern by n positions. The first preprocessing function is named the bad-character

function (bmBc) and the second one the good-suffix function (bmGs) (Wu & Manber, 1994;

Fredriksson & Grabowski, 2005; Danvy & Rohde, 2006).

A bmBc is applied when the mismatch is caused by a text character that exists in different

position in the pattern. And in this case, it shifts the pattern to align similar characters and start a

new attempt. Table 2-1 shows an example for the bad-character case (Charras & Lecroq, 2004):

0 1 2 3 4 5 6 7 8 9 10 11

H U D D E R S F I E L D

F I E L D

 F I E L D

Table 2- 1: Bad-character shift in Boyer-Moore algorithm example

A mismatch found between characters E and D at position 4. The text character E can be

found in pattern characters at position 2. The bad-character function shifts the pattern to the right

to align the text character E with the same character in the pattern which exists at position 4.

The bmGs function is used if the mismatch text character is not the first character and the

43

matched substring “suffix” exists in pattern characters, it shifts the pattern to align similar

characters between the suffix and pattern characters (Charras & Lecroq, 2004).

The best case for the BM algorithm occurs if the first compared text character does not exist

in the pattern characters, so in this case the algorithm needs only O(n/m) comparisons. Table 2-2

below shows an example for this situation(Charras & Lecroq, 2004):

0 1 2 3 4 5 6 7 8 9 10 11

H U D D X R S F I E L D

F I E L D

 F I E L D

Table 2- 2: The best case example of the Boyer-Moore algorithm

A mismatch is found between characters X and D at position 4 and X does not exist in the

pattern. Therefore, it shifts the pattern to start from the next position to X at position number 5.

 The worst case for the BM searching algorithm is O(mn) and this happens if the text consists

solely of a number of repetitions of the search pattern (Tsai, 2006). If the text alphabet is small,

then the BM bad-character shift is not very efficient (Crochemore et al., 1994; Lecroq, 1995).

The time complexity of the bmBc function is O(m+σ), the bmGs is O(m
2
) and of the average

searching phase is O(mn) (Charras & Lecroq, 2004). Figure 2-2 below shows an example

illustrating the main principles of the Boyer-Moore algorithm, Table 2-3 shows the bmBc table

and Table 2-4 shows the bmGs table:

44

Character C 2 O H

bmBc[character] 2 1 6 8

Table 2- 3: The Boyer-Moore bmBc table

The bmBc table in Table 2-3 shows the rightmost occurrence of each character in the pattern,

while the bmGs table in Table 2-4 shows the maximum shift distance from the structure of the

pattern that can be used in good suffix cases to shift the pattern to the right. In Table 2-3, the

rightmost occurrence of character ‘C’ is 2, character ‘2’ is 1, character ‘O’ is 6 and character ‘H’

is 8. The occurrence of character ‘H’ is the same length of the pattern which should be shifted 8

positions to the right if character ‘H’ is causing the mismatch. In Table 2-4, the suffix “2C” starts

at positions 2, 4, and 6. The suffix “C2C” starts at positions 3 and 5. If the mismatch occurs at

position 5, then pattern is shifted 4 positions. If the mismatch occurs at position 3, then the

pattern is shifted 2 positions. If the mismatch occurs at position 4, then the pattern is shifted 3

positions, otherwise the suffix does not exist in the text window and the shift value is 7.

Pattern Array Index 0 1 2 3 4 5 6 7

Pattern Array [Index] C O 2 C 2 C 2 C

bmGs[i] 7 7 7 2 3 4 7 1

Table 2- 4: Boyer-Moore bmGs table

Figure 2-2: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

C O 2 C 2 C 2 C

Total Shift Value = 1 (bmBc[2])

In the first attempt, the first comparison produces a mismatch which causes a shift to the

45

right by one position depends on the rightmost occurrence of character ‘2’ in the text window.

The second attempt, the first two characters have found a match. The third comparison produces

a mismatch which causes a shift to the right using the rightmost occurrence of character ‘O’ in

the text window. It aligns similar characters and starts new comparisons.

Figure 2-2: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 4 (bmBc[O])

Figure 2-2: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 8 7 6 5 4 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 7 (bmGs[0])

Figure 2-2: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 4 (bmBc[O])

Figure 2-2: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Figure 2- 2: The Boyer-Moore algorithm example

46

In this example the Boyer Moore algorithm performs five attempts and seventeen character

comparisons to find the pattern in the text. Figure A-2 shows the Boyer-Moore algorithm code

(Charras & Lecroq, 1997).

2.3.2 The Zhu Takaoka Algorithm (ZT)

Another example of this classification is the ZT algorithm which was developed by R. F. Zhu

and T. Takaoka in 1988 ((Zhu & Takaoka, 1987). It uses the same rules as the bmGs

preprocessing function and improves only the bmBc function by shifting the pattern using the

last two characters of each text window (a, b) rather than using a single character same as the

bmBc function (Kalsi, et al., 2008). This is done by constructing the Zhu-Takaoka bad character

table (ztBc) table.

The ztBc table counts the shifting value of each pair of characters (a, b) as following Figure

2-3 (Zhu & Takaoka, 1987).

)1.....(..

Figure 2- 3: Zhu Takaoka ztBc equation

The ZT searching phase searches the pattern from the rightmost to the leftmost character in

each attempt. The time complexity of the ztBc is O(m+σ
2
), the bmGs is O(m

2
) and of the

searching phase is O(mn) (Zhu & Takaoka, 1987). Figure 2-4 below shows an example

illustrating the main principles of the Zhu Takaoka algorithm, Table 2-5 shows the ztBc and

47

Table 2-6 shows the bmGs table:

 Character 2 O C H

2 8 8 2 8

O 5 8 7 8

C 1 6 7 8

H 8 8 7 8

Table 2- 5: The Zhu-Takaoka ztBc table

The ZT algorithm uses the bmGs table of the BM algorithm as shown in Table 2-4 and

enhanced the bmBc table by using the rightmost occurrence of each pair of characters as shown

in Table 2-5. In this example the rightmost occurrence of each pair of characters [C2] is 1, [2C]

is 2, [O2] is 5 and [CO] is 6. The shift value for any pair ends with character ‘C’ is 7 because it is

the first character in the pattern while other pairs will be shifted 8 positions because they do not

exist in the pattern.

Figure 2-4: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

C O 2 C 2 C 2 C

Total Shift Value = 5 (ztBc[O][2])

Figure 2-4: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 8 7 6 5 4 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 7 (bmGs[0])

48

Figure 2-4: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 7 (bmGs[6])

Figure 2- 4: The Zhu-Takaoka algorithm example

In the previous example the Zhu-Takaoka algorithm performs three attempts and thirteen

character comparisons to find the pattern in the text. Figure A-3 shows the Zhu-Takaoka

algorithm code (Charras & Lecroq, 1997).

2.3.3 The Fast Search Algorithm (FS)

Another example in this classification is the FS algorithm which was developed by D.

Cantone and S. Faro in 2003 (Cantone & Faro, 2003). It searches the pattern from the rightmost

character to the leftmost character (Cantone & Faro, 2003). It always uses the good-suffix

preprocessing function of BM algorithm to shift the pattern (Table 2-4), but if there is a whole

match or a mismatch at the rightmost character, the bmBc table (Table 2-3) is used. The time

complexity of the preprocessing phase is O(m+σ
2
) and of the searching phase is O(mn) (Charras

& Lecroq, 2004). Figure 2-5 below shows an example illustrating the main principles of Fast

Search algorithm.

Figure 2-5: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

C O 2 C 2 C 2 C

Total Shift Value = 1 (fsBc[2])

49

Figure 2-5: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 4 (fsGs[5])

Figure 2-5: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 8 7 6 5 4 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 7 (fsGs[0])

Figure 2-5: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 4 (fsGs[5])

Figure 2-5: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Figure 2- 5: The Fast Search algorithm example

In this example the Fast Search algorithm performs five attempts and seventeen character

comparisons to find the pattern in the text. Figure A-4 shows the Fast Search algorithm code

(Cantone & Faro, 2003).

50

2.4 The Third Category: Depending on the Rightmost Character

In this group, the pattern is shifted using a single preprocessing function depending on the

last character. The Boyer Moore Horspool algorithm (BMH) is an example (Horspool, 1980).

2.4.1 The Boyer Moore Horspool Algorithm (BMH)

The BMH algorithm was developed by N. Horspool in 1980. It is a modification of the BM

algorithm (Tarhio & Peltola, 1997). It is faster than the BM algorithm and the preprocessing

function computes the shifts using only one heuristic function depending on the last character

comparing to the BM algorithm (Crochemore & Rytter, 1994). The searching phase of the BMH

algorithm starts from the rightmost character, then starts from the leftmost character and then

moves forward up to the penultimate character (Raita, 1992).

Table 2-6 below shows an example for the Boyer-More algorithm and compares it with

Horspool algorithm in Table 2-7 (Charras & Lecroq, 2004):

0 1 2 3 4 5 6 7 8 9 10 11

H U D D E R S F I E L D

H D D D E

 H D D D E

Table 2- 6: An example of the bmBc function

51

0 1 2 3 4 5 6 7 8 9 10 11

H U D D E R S F I E L D

H D D D E

 H U D D E

Table 2- 7: An example of hrBc function

In this example, the current text window starts from position 0 to position 4. The BM

algorithm in Table 2-6 starts the comparison from the rightmost character to the leftmost

character. The fourth comparison produces a mismatch at position 1. The bmBc function of the

BM algorithm uses the letter D at position 1 to shift the pattern to the right and align character D

with the same character which exists at position 2. The BMH algorithm in Table 2-7 starts from

the rightmost character, then starts from the leftmost character and then moves forward up to the

penultimate character. The third comparison produces a mismatch at position 1. The hrBc

function of the BMH algorithm shifts the pattern to position number 5 depending on the last

character of the current text window ‘E’ which does not exist in the pattern in this example.

“The average time complexity of the preprocessing phase is O(m+σ) and of the searching

phase is O(mn)” (Regnier & Szpankowski, 1998). Figure 2-6 below shows an example

illustrating the main principles of the Horspool algorithm and Table 2-8 shows the Horspool

algorithm bad character table (hsBc):

Character C 2 O H

hsBc[character] 2 1 6 8

Table 2- 8: Horspool hsBc table

52

The hsBc table in Table 2-8 follows the same way as the bmBc table which shows the

rightmost occurrence of each character in the pattern.

Figure 2-6: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

C O 2 C 2 C 2 C

Total Shift Value = 1 (hsBc[2])

In the first attempt, the first character comparison produces a mismatch which causes a shift

to the right by one position depends on the last character of current text window ‘2’.

Figure 2-6: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (hsBc[C])

In the second attempt, the first comparison (rightmost character) has found a match. The

second comparison (leftmost character) produces a mismatch which causes a shift to the right by

two positions depends on the last character of current text window ‘C’. It starts the search again

in other attempts following the same procedure.

Figure 2-6: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (hsBc[C])

53

Figure 2-6: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 3 4 5 6 7 8 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (hsBc[C])

Figure 2-6: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 1 (hsBc[2])

Figure 2-6: Sixth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 8 (hsBc[H])

Figure 2-6: Seventh attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Figure 2- 6: The Horspool algorithm example

In this example the Horspool algorithm performs seven attempts and seventeen character

comparisons to find the pattern in the text. Figure A-5 shows the Horspool algorithm code

(Charras & Lecroq, 1997).

54

2.5 The Fourth Category: Depending on the Next Character to the Rightmost Character

In this group, the pattern is shifted using a single preprocessing function depending on the

next character to the rightmost character. An example is the Quick Search algorithm (QS)

(Sunday, 1990).

2.5.1 The Quick-Search Algorithm (QS)

The QS algorithm was developed by D. M. Sunday in 1990. The preprocessing phase of QS

(qsBc) shifts the pattern by m+1 if the next character to the rightmost character does not exist in

the pattern. The searching phase searches the pattern from leftmost character to the rightmost

character (Sunday, 1990; Lecroq, 1998). “The time complexity of the preprocessing phase is

O(m+σ) and of the searching phase is O(mn)” (Charras & Lecroq, 2004). Figure 2-7 below

shows an example illustrating the main principles of Quick-Search algorithm and Table 2-9

shows the preprocessing qsBc table:

 Character C 2 O H

qsBc[character] 1 2 7 9

Table 2- 9: Quick Search qsBc table

The qsBc table in Table 2-8 follows the same way as the bmBc table which shows the

rightmost occurrence of each character in the pattern.

Figure 2-7: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

1 2 3 4

C O 2 C 2 C 2 C

Total Shift Value = 1 (qsBc[C])

55

In the first attempt, the first three comparisons (leftmost characters) have found a match. The

fourth comparison produces a mismatch which causes a shift to the right by one position depends

on the next character to the current text window ‘C’. It starts the search again in other attempts

following the same procedure.

Figure 2-7: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (qsBc[2])

Figure 2-7: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (qsBc[2])

Figure 2-7: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1 2 3 4 5 6 7 8

 C O 2 C 2 C 2 C

Total Shift Value = 9 (qsBc[H])

Figure 2-7: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 7 (qsBc[O])

Figure 2- 7: The Quick Search algorithm example

56

Applying the Quick Search algorithm on the above example performs five attempts and

fifteen character comparisons to find the pattern in the text. Figure A-6 shows the Quick-Search

algorithm code (Charras & Lecroq, 1997).

2.6 The Fifth Category: Depending on Two Characters Next to the Rightmost Character

In this group, the pattern is shifted using a single preprocessing function depending on two

characters next to the rightmost character. The Berry–Ravindran algorithm (BR) is an

example(Berry & Ravindran, 1999).

2.6.1 The Berry–Ravindran Algorithm (BR)

The BR algorithm was developed by T. Berry and S. Ravindran in 1999. The searching phase

of the BR algorithm searches the pattern from the leftmost to the rightmost character. In addition,

the preprocessing phase uses a two-dimensional array to shift the pattern by m+2 if the next two

characters to the rightmost character do not exist in the pattern (Thathoo et al., 2006).

“The time complexity is O(m+σ
2
) for the preprocessing phase and O(mn) for the searching

phase” (Charras & Lecroq, 2004). Figure 2-8 below shows an example that illustrates the main

principles of Berry-Ravindran algorithm and Table 2-10 shows the Berry Ravindran algorithm

bad character table (brBc):

 Character 2 O C H

2 10 10 2 10

O 7 10 9 10

C 1 1 1 1

H 10 10 9 10

Table 2- 10: The Berry-Ravindran brBc table

57

The brBc table in Table 2-10 calculates the shift value using the next two characters to the

current text window. If the next two characters do not exist in the pattern, then the shift value is

m+2 and in this example is 10 positions. The rightmost occurrence of characters [2C] is 2 and of

characters [O2] is 7. In the following example the pattern starts and ends with character ‘C’, so if

the next character to the current text window is ‘C’, the shift value is 1. Otherwise if the second

character next to the current text window is ‘C’ then the shift value is 9.

Figure 2-8: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

1 2 3 4

C O 2 C 2 C 2 C

Total Shift Value = 1 (brBc[C][2])

In the first attempt, the first three comparisons (leftmost characters) have found a match. The

fourth comparison produces a mismatch which causes a shift to the right by one position depends

on the next two characters to the current text window [C2]. It starts the search again in other

attempts following the same procedure.

Figure 2-8: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (brBc[2][C])

58

Figure 2-8: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (brBc[2][C])

Figure 2-8: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1 2 3 4 5 6 7 8

 C O 2 C 2 C 2 C

Total Shift Value = 10 (brBc[H][2])

Figure 2-8: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 1 (brBc[C][0])

Figure 2-8: Sixth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 10 (brBc[0][0])

Figure 2- 8: The Berry-Ravindran algorithm example

59

Applying the Berry-Ravindran algorithm on the above example performs six attempts

and sixteen character comparisons to find the pattern in the text. Figure A-7 shows the Berry-

Ravindran algorithm code(Charras & Lecroq, 1997).

2.7 The Sixth Category: Using a Hashing Function

The preprocessing phase here is shifting the pattern based on a single preprocessing hashing

function. The Karp-Rabin (KR) algorithm is an example (Karp & Rabin, 1987).

2.7.1 The Karp-Rabin Algorithm (KR)

The KR algorithm was developed by R. M. Karp and M. O. Rabin in 1987 (Karp & Rabin,

1987).. The KR algorithm uses a hashing value to find patterns inside the text. The hashing

function counts a numeric value for the text window and the pattern, if it is a different value then

a definite mismatch is encountered, therefore, it moves the pattern to the right one position each

time (Stephen, 1994). The MOD (modulus) operation is used to reduce the hash value of

substring. There is a big problem using the hashing method called “spurious hits” where different

substring can have the same hashing value. This is why the searching phase of KR searches the

pattern again from leftmost to rightmost character to check if the search pattern and text window

characters are similar. In most cases in a good hashing function, this will not happen, which

keeps the average search time good (Karp & Rabin, 1987; Cormen, et al. 1990).

The time complexity of the preprocessing phase is O(m) and of the searching phase is O(mn)

(Cantone, et al., 2004) . Figure 2-9, Figure 2-10 below show examples which illustrate the main

principles of Karp-Rabin algorithm and Table 2-11 shows the Hash value for the searched

pattern:

60

Figure 2- 9: First Example of the Karp-Rabin algorithm

Figure 2-9 illustrates the KR algorithm preprocessing and searching phases. It starts with

calculating the hash value of the pattern “ABABC”. It searches the text by calculating the hash

value of m length of the text “BCACA”. In this attempt the hash values are different, so it moves

one position to the right and calculates the hash value for each text window until a match is

found in the last attempt.

Character C O 2 C 2 C 2 C

Hash value[substring] 15246

Table 2- 11: Hash value for the searched pattern

Table 2-11 calculates the hashing value of the pattern “CO2C2C2C” using the basic hashing

function of the KR algorithm in Figure A-8. The hashing value of the pattern is 15246. The

searching phase of the KR algorithm in Figure 2-16 starts with calculating the hashing value of

each text window with length m. The first five attempts produce a different hashing value from

the pattern hashing value. The sixth attempt produces the same hashing value of the pattern. The

KR searching phase in the same attempt compares characters from the leftmost character to the

rightmost character to check if the search pattern and text window characters are similar and to

avoid the “spurious hits” problem which explained in section 2.7.1. After the whole match it

moves again one position to the right and performs seventeen attempts to reach to the end of

given text.

61

Figure 2-10: First attempt Hash [0 .. 7] 15468

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

C O 2 C 2 C 2 C

Figure 2-10: Second attempt Hash [1 .. 8] 15182

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Third attempt Hash [2 .. 9] 15628

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Fourth attempt Hash [3 .. 10] 17038

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Fifth attempt Hash [4 .. 11] 14988

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Sixth attempt Hash [5 .. 12] 15246

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1 2 3 4 5 6 7 8

 C O 2 C 2 C 2 C

62

Figure 2-10: Seventh attempt Hash [6 .. 13] 14751

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Eighth attempt Hash [7 .. 14] 14766

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Ninth attempt Hash [8 .. 15] 15327

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Tenth attempt Hash [9 .. 16] 14894

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Eleventh attempt Hash [10 .. 17] 15566

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Twelfth attempt Hash [11 .. 18] 15372

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

63

Figure 2-10: Thirteenth attempt Hash [12 .. 19] 16526

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Fourteenth attempt Hash [13 .. 20] 17311

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Fifteenth attempt Hash [14 .. 21] 15534

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Sixteenth attempt Hash [15 .. 22] 16846

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2-10: Seventeenth attempt Hash [16 .. 23] 14610

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 C O 2 C 2 C 2 C

Figure 2- 10: Second Example of the Karp-Rabin algorithm

Applying the Karp-Rabin algorithm on the above example performs seventeenth attempts

and twenty five character comparisons to find the pattern in the text. Figure A-8 shows the Karp-

Rabin algorithm code (Charras & Lecroq, 1997).

64

2.8 The Seventh Category: Computing Buckets for All Characters of the Alphabet

In this group, the pattern shift depends on a single preprocessing function depending on

computing buckets for all characters of the alphabet. The computing buckets process presents all

the locations of each character in the pattern where if a character occurs k times in the pattern,

there are k corresponding positions in the bucket of the character as explained in sections 2.8.1

and 2.8.2. Examples are the Skip Shift algorithm (SS) (Charras et al., 1998) and the Alpha Skip

Shift algorithm (ASS) (Charras et al., 1998).

2.8.1 The Skip Shift Algorithm (SS)

The SS algorithm was developed by C. Charras, T. Lecroq and J. D. Pehoushek in 1998. The

preprocessing phase of the SS algorithm preprocesses the pattern by computing buckets for all

characters that exist in the text and the pattern. The search phase scans the m-th symbol to define

a possible starting search point and to align identical symbols in the pattern and executes

matching starting from the rightmost character to the leftmost character of remaining characters.

When a whole match or a mismatch is encountered, the pattern is moved to align the next

identical character in the pattern to the one in the text and start matching the other characters in

the same previous order. (Charras & Lecroq, 2004). The time complexity of the preprocessing

phase is O(m+σ) and of the searching phase is O(mn). Figure 2-11 illustrates the main principles

of the SS algorithm and Table 2-12 shows the SS table of the Skip Search algorithm:

 Character Skip table[character]

2 {6,4,2}

O {1}

C {7,5,3,0}

H Φ = 8

Table 2- 12: Skip Search table used by SS algorithm

65

Table 2-12 computes a bucket for each alphabet by presenting the k location(s) for each

character. Character ‘2’ is located in locations 6,4 and 2, character ‘O’ in location 1, character

‘C’ in locations 7, 5, 3 and 0 and character ‘H’ is not in the pattern and will cause a shift to the

right by 8 positions.

Figure 2-11: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 1 2

 C O 2 C 2 C 2 C

Total Shift Value = 3 (Alpha Skip Search [2])

The searching phase of the SS algorithm defines a possible starting point by locating the m
th

character of the text window with the same character of pattern using the bucket. In this attempt

the m
th

character is ‘2’ and it is rightmost location at position 2. It aligns similar characters and

starts comparison from the right to the left. The third comparison produces a mismatch and in

this case it aligns the next location of character ‘2’ from the bucket and in the second attempt is

location 4. It follows the same procedure until a whole match is occurred in the third attempt and

six attempts performed to reach to the end of the given text sample.

Figure 2-11: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 5 1 4 3 2

 C O 2 C 2 C 2 C

Total Shift Value = 2 (Alpha Skip Search [2])

66

Figure 2-11: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 8 7 6 5 4 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 1 whole match occur

Figure 2-11: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 8 (Skip Search [H])

Figure 2-11: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 1 (Skip Search [O])

Figure 2-11: Sixth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 C C

 1

 C O 2 C 2 C 2

Figure 2- 11: The Skip Search algorithm example

Applying the SS algorithm on the above example performs sixth attempts and nineteen

character comparisons to find the pattern in the text. Figure A-9 shows the SS algorithm code

(Charras & Lecroq, 1997).

67

2.8.2 The Alpha Skip Shift Algorithm (ASS)

The ASS algorithm was developed by C. Charras, T. Lecroq and J. D. Pehoushek in 1998. It

is as an improvement of the SS algorithm (Charras, et al., 1998). The SS bucket list uses single

identical characters to move the pattern, while the ASS algorithm uses substrings whose length

may be longer than one character (Cantone et al, 2004). For any sub-text (b) in the text, find a

nearest (b) in the pattern. If such (b) in the pattern exists, then move the pattern to align the two

portions. If does not exist, then maybe consider a new text window. The preprocessing phase of

the ASS algorithm depends on constructing a tree T(x) of all sub-texts of length L. There is then

one bucket for each leaf of T(x) which stores the list of positions of all substrings with length L=

logσ(m) assuming that the size of the alphabet Σ of the text and the pattern is σ. The searching

phase uses the information stored in the bucket to compare text T with pattern P (Cantone et al.,

2005). Figure 2-12 below shows an example for a tree T(x) of all substrings of the pattern

“ababbaba” with length 8. The T(x) length is L= log2 (8) = 3.

Figure 2- 12: An example for tree T(x) of all substrings with L=3

Figure 2-12 structures a tree T(x) for the given pattern “ababbaba” with substrings of length

3 and the location of each substring. For example substring “aba” is located at position [0],

substring “bab” is located at positions [1] and [4], substring “abb” is located at position [2],

68

substring “bba” is located at position [3], and substring “aba” is located at positions [0] and [5].

The time complexity of the preprocessing phase is O(m+σ) and of the searching phase is

O(mn) (Charras, et al., 1998). Figure 2-13 below shows an example that illustrates the main

principles of the ASS algorithm and Table 2-13 shows the Alpha Skip Search algorithm skip

table:

 Character Alpha Skip table[character] = m-position-length

2C2 {4,2} = 1

O2C {1} = 4

C2C {5,3} = 2

CO2 {0} = 5

H Φ = 8

Table 2- 13: Alpha Skip Search table used by ASS algorithm

Table 2-13 computes a bucket in the same way as the preprocessing function of the SS

algorithm. But the ASS algorithm uses substrings whose length may be longer than one character

comparing to the SS algorithm. It presents the k location(s) for each substring. The substring

length in this example is 3. So the substring “2C2” is located in locations 4 and 2, substring

“O2C” in location 1, substring “C2C” in locations 5 and 3, substring “CO2” in location 0 and

character ‘H’ is not in the pattern and will cause a shift to the right by 8 positions.

Figure 2-13: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

C O 2 C 2 C 2 C

Total Shift Value = 5 (Alpha Skip Search [CO2])

69

The first attempt using the last three characters of current text window produces a mismatch.

The SS algorithm defines a possible starting point by locating the text window’s substring with

the same substring of pattern using the bucket. In this attempt the text window’s substring is

“CO2” and it is rightmost location at position 0 of the pattern. It aligns similar characters and

starts comparison from the right to the left as shown in the second attempt. It follows the same

procedure until a whole match is occurred in the second attempt and four attempts performed to

reach to the end of the given text sample.

Figure 2-13: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1 2 3 8 7 6 5 4

 C O 2 C 2 C 2 C

Total Shift Value = 1 whole match occur

Figure 2-13: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 8 (Alpha Skip Search [H])

Figure 2-13: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 8 (Alpha Skip Search [H])

Figure 2- 13: The Alpha Skip Search algorithm example

70

Applying the ASS algorithm on the above example performs four attempts and nineteen

character comparisons to find the pattern in the text. Figure A-10 shows the ASS algorithm code

(Charras & Lecroq, 1997).

2.9 The Eighth Category: Using Hybrid Algorithms

In this classification, to enhance the efficiency of searching algorithms, a combination of

two or more algorithms is used. Examples are the SSABS (Sheik et al., 2004), FJS (Franek, et

al., 2005), TVSBS (Thathoo, et al., 2006), ZTMBH (Huang et. al, 2008), BRFS (Huang et Al.,

2008), BM-KMB (Xian-feng et al., 2010), BRSS (Almazroi & Rashid, 2011), ASSBR

(Almazroi, 2011), MRCA (Mhashi, 2012), KRBMH (Hasan & Rashid, 2012), QSS (Naser, et al.,

2012) and AKRAM (AbdulRazzaq, et al., 2013) algorithms.

2.9.1 The SSABS Algorithm

The SSABS algorithm was developed by S. S. Sheik, S. K. Aggarwal, A. Poddar, N.

Balakrishnan and K. Sekar in 2004 (Sheik, et al., 2004). The SSABS searching phase firstly

compares the rightmost character, then the leftmost character, and finally it starts from position

m-1 moving backward to the second position of the pattern (Kalsi, et al., 2008). The

preprocessing phase of SSABS algorithm uses the same qsBc function of the QS algorithm

(Sheik, et al., 2004).

The time complexity of the preprocessing phase is O(m+σ) and of the searching phase is

O(mn) (Sheik, et al., 2004). Figure 2-14 illustrates the main principles of the SSABS algorithm

71

and Table 2-14 shows the Quick Search algorithm bad character table (qsBc) which is used by

the SSABS algorithm:

Character C 2 O H

qsBc[Character] 1 2 7 9

Table 2- 14: The qsBc table used by SSABS algorithm

Figure 2-14: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

C O 2 C 2 C 2 C

Total Shift Value = 1 (qsBc[C])

Figure 2-14: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (qsBc[2])

Figure 2-14: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (qsBc[2])

Figure 2-14: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 8 7 6 5 4 3 1

 C O 2 C 2 C 2 C

Total Shift Value = 9 (qsBc[H])

72

Figure 2-14: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2- 14: The SSABS algorithm example

Applying the SSABS algorithm on the above example performs five attempts and

fourteen character comparisons to find the pattern in the text. Figure A-11 shows the SSABS

code (Sheik, et al., 2004).

2.9.2 The FJS Algorithm

The FJS algorithm was developed by F. Franek, G. J. Christopher, and F. S. William in

2005. It uses both the Knuth Morris Pratt (KMP) and the Quick Search algorithms (Franek, et al.,

2005).

The FJS searching phase searches the pattern in the same way as the KMP searching

phase where it starts from the leftmost character and moves forward to the rightmost character

(Franek, et al., 2005). In each window if the mismatch occurs in the first position or if a whole

match is encountered it shifts the pattern using the qsBc table of the Quick Search algorithm

which depends on the rightmost character of the current window. Otherwise it uses the KMP

preprocessing phase which uses the matched characters in each window as a sub-pattern (prefix)

for shifting the pattern (Knuth, et al., 1977). The time complexity of the qsBc is O(m+σ), the

KMPBc is O(m
2
) and of the searching phase is O(mn). Figure A-12 below shows the code for the

FJS algorithm.

73

2.9.3 The TVSBS Algorithm

The TVSBS algorithm was developed by R. Thathoo, A. Virmani, S. S. Lakshmi, N.

Balakrishnan and K. Sekar in 2006. In addition, the searching phase of the TVSBS algorithm

searches the pattern in the same way as the SSABS searching phase which compares the

rightmost character, then the leftmost character, and finally it starts from position m-1 moving

backward to the second position of the pattern. If a whole match or a mismatch is encountered,

the brBc function of the BR algorithm is used.

The time complexity of the preprocessing phase is O(m+σ
2
) and of the searching phase is

O(mn) (Thathoo, et al., 2006). Figure 2-15 illustrates the main principles of the TVSBS

algorithm and Table 2-15 shows the brBc table which used by the TVSBS algorithm:

 Character 2 O C H

2 10 10 2 10

O 7 10 9 10

C 1 1 1 1

H 10 10 9 10

Table 2- 15: The brBc table used by TVSBS

Figure 2-15: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

C O 2 C 2 C 2 C

Total Shift Value = 1 (brBc[C][2])

74

Figure 2-15: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (bmBc[2][C])

Figure 2-15: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (bmBc[2][C])

Figure 2-15: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 8 7 6 5 4 3 1

 C O 2 C 2 C 2 C

Total Shift Value = 10 (qsBc[H][2])

Figure 2-15: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

C O 2 C 2 C 2 C

Figure 2- 15: The TVSBS algorithm example

Applying the TVSBS algorithm on the above example performs five attempts and

fourteen character comparisons to find the pattern in the text. Figure A-13 shows the TVSBS

code (Thathoo, et al., 2006; Kalsi, et al., 2008)).

75

2.9.4 The ZTBMH Algorithm

The ZTBMH algorithm combines the ZT and BMH algorithms. The algorithm was

developed in 2008 by Y. Huang, X. Pan, Y. Gao, and G. Cai (Huang et al., 2008a). It searches

the pattern in the same way as the BMH searching phase and it shifts the pattern if there is any

mismatch or a whole match using the ztBc of the ZT algorithm.

The time complexity of the preprocessing phase is O(m+σ
2
) and of the searching phase is

O(mn) (Huang et al., 2008a). Figure 2-16 illustrates the main principles of ZTBMH algorithm

and Table 2-16 shows the Zhu-Takaoka algorithm bad character table (ztBc) which is used by

ZTBMH algorithm:

 Character 2 O C H

2 8 8 2 8

O 5 8 7 8

C 1 6 7 8

H 8 8 7 8

Table 2- 16: The ztBc table used by ZTBMH

Figure 2-16: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

C O 2 C 2 C 2 C

Total Shift Value = 5 (ztBc[O][2])

76

Figure 2-16: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 3 4 5 6 7 8 1

 C O 2 C 2 C 2 C

Total Shift Value = 2 (ztBc[2][C])

Figure 2-16: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 8 (ztBc[H][2])

Figure 2-16: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2- 16: The ZTBMH algorithm example

Applying the ZTBMH algorithm to the above example performs four attempts and eleven

character comparisons to find the pattern in the text. Figure A-14 shows the ZTBMH code

(Huang et al., 2008a).

2.9.5 The BRFS Algorithm

The BRFS algorithm combines the BR and the FS algorithms. The algorithm was developed

in 2008 by Y. Huang, L. Ping, X. Pan, and G. Cai (Huang, Ping et al., 2008). The preprocessing

77

phase of the BRFS algorithm uses two preprocessing functions of the BR and the FS algorithms.

In addition, the searching phase searches the pattern in the same way as the searching phase of

the FS algorithm (Huang et al., 2008b). The preprocessing function of the BRFS always uses the

good-suffix preprocessing function of the FS algorithm to shift the pattern, but if there is a whole

match or a mismatch at the last text character, it uses the BR preprocessing function (Huang,

Ping et al., 2008). The time complexity of the brBc function is O(m+σ
2
), the fsGs is O(m

2
) and

of the searching phase is O(mn) (Huang et al., 2008b). Figure 2-17 illustrates the main principles

of the BRFS algorithm, Table 2-20 shows the Berry-Ravindran algorithm, the bad character table

(brBc) and Table 2-17 shows the Fast Search good suffix (fsGs) table which is used by the BRFS

algorithm:

 Character 2 O C H

2 10 10 2 10

O 7 10 9 10

C 1 1 1 1

H 10 10 9 10

Table 2- 17: The brBc table used by the BRFS algorithm

.

Figure 2-17: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

C O 2 C 2 C 2 C

Total Shift Value = 1 (brBc[C][2])

78

Figure 2-17: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 4 (fsGs[O])

Figure 2-17: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 8 7 6 5 4 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 10 (brBc[H][2])

Figure 2-17: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Figure 2- 17: The BRFS algorithm example

In this example the BRFS searching algorithm performs four attempts and thirteen character

comparisons to find the pattern in the text. Figure A-15 shows the BRFS algorithm code (Huang

et al., 2008b).

2.9.6 The BM-KMB Algorithm

The BM-KMB algorithm was developed by H. Xian-feng, Y. Yu-bao and X. Lu in 2010.

It combines two searching phases of the KMP and the BM algorithms (Xian-feng et al., 2010).

Firstly, it starts from the rightmost character in the same way as the BM algorithm. If there is a

79

mismatch, the BM preprocessing functions are used to shift the pattern. If there is a match it

starts from the leftmost character in the same way as the KMP algorithm and moves forward to

the right. If there is a mismatch while using the KMP searching phase it uses the KMP

preprocessing function to shift the pattern (Xian-feng et al., 2010). The time complexity of the

bmGs function is O(m
2
), the KMP table is O(m

2
) and of the searching phase is O(mn). Figure A-

16 shows the code for the BM-KMB algorithm.

2.9.7 The BRSS Algorithm

The BRSS algorithm was developed by A. Almazroi and N. Rashid in 2011. It combines the

BR and the SS algorithms (Almazroi & Rashid, 2011). It uses a hybrid preprocessing phase by

building two tables: the first one is the bucket list table of the SS algorithm, and the second table

is the brBc(a,b) of the BR bad character function. The bucket list table contains all the location

of the pattern and the text alphabets which will be used to align the next similar character if there

is a mismatch (Almazroi & Rashid, 2011). The searching phase of the BRSS algorithm uses the

SS searching phase to scan text window characters for a possible start point and if a whole match

or a mismatch occurs, the pattern is shifted using the bigger shift value between the brBc and the

bucket list (Almazroi & Rashid, 2011).

The time complexity of the brBc is O(m+σ
2
), the SS table is O(m+σ) and of the searching

phase is O(mn) (Almazroi & Rashid, 2011). Figure 2-18 below shows an example which

illustrates the main principles of the BRSS algorithm, Table 2-18 shows the Berry-Ravindran

bad character table (brBc) and Table 2-19 shows the Skip Search table which are used by the

BRSS algorithm:

80

 Character 2 O C H

2 10 10 2 10

O 7 10 9 10

C 1 1 1 1

H 10 10 9 10

Table 2- 18: The brBc table used by the BRSS algorithm

 Character Skip table[character]

2 {6,4,2} = 2

O {1} = 7

C {7,5,3,0} = 1

H Φ = 8

Table 2- 19: Skip Search table used by BRSS algorithm

Figure 2-18: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 1 2

 C O 2 C 2 C 2 C

Total Shift Value = 3 (Max(brBC [C][2], Skip Search [2])

Figure 2-18: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 5 1 4 3 2

 C O 2 C 2 C 2 C

Total Shift Value = 2 (Max(brBC [2][C], Skip Search [2])

81

Figure 2-18: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 8 7 6 5 4 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 1 whole match occur

Figure 2-18: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 1

 C O 2 C 2 C 2 C

Total Shift Value = 10 (Max(brBC [2][H], Skip Search [H])

Figure 2-18: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 2 1

 C O 2 C 2 C 2 C

Figure 2- 18: The BRSS algorithm example

In this example the BRSS searching algorithm performs five attempts and nineteen character

comparisons to find the pattern in the text. Figure A-17 shows the BRSS algorithm code

(Charras & Lecroq, 1997).

2.9.8 The ASSBR Algorithm

The ASSBR algorithm was developed by A. Almazroi in 2011. It combines the ASS and the

BR algorithms (Almazroi, 2011). The searching phase of the ASS algorithm searches the pattern

using the ASS searching phase and if a whole match or a mismatch occurs it shifts the pattern

using the brBc(a,b) function of Berry-Ravindran algorithm (Almazroi, 2011).

82

The time complexity of the brBc is O(m+σ
2
), the ASS table is O(m+σ) and of the searching

phase is O(mn) (Almazroi, 2011). Figure 2-19 illustrates the main principles of the BRSS

algorithm, Table 2-20 shows the Berry-Ravindran algorithm bad character table (brBc) and the

Table 2-21 shows the ASS table which used by the ASSBR algorithm:

 Character 2 O C H

2 10 10 2 10

O 7 10 9 10

C 1 1 1 1

H 10 10 9 10

Table 2- 20: The brBc table used by the ASSBR algorithm

 Character Alpha Skip table[character] = m-position-length

2C2 {4,2} = 1

O2C {1} = 4

C2C {5,3} = 2

CO2 {0} = 5

H Φ = 8

Table 2- 21: Alpha Skip Search table used by ASSBR algorithm.

Figure 2-19: First attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

C O 2 C 2 C 2 C

Total Shift Value =1 (brBC[C][2])

83

Figure 2-19: Second attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value =2 (brBC[2][C])

Figure 2-19: Third attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 4 5 6 7 8 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value = 1 whole match occur

Figure 2-19: Fourth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Total Shift Value =10 (brBC[2][H])

Figure 2-19: Fifth attempt

C O 2 H O C O 2 C 2 C 2 C H 2 H 2 O 2 C H 2 O C

 3 2 1

 C O 2 C 2 C 2 C

Figure 2- 19: The ASSBR Algorithm Example

In this example the ASSBR searching algorithm performs five attempts and twenty character

comparisons to find the pattern in the text. Figure A-18 shows the ASSBR algorithm code

(Charras & Lecroq, 1997).

84

2.9.9 The MRCA Algorithm

The Multiple Reference Character algorithm (MRCA) was developed by M. Mhashi in

2012. It combines the KMP and QS algorithms (Mhashi, 2012).

The preprocessing phase of the MRCA algorithm depends on a “multiple references” role to

shift the pattern. It stores the last character of the text window in (ref1). Furthermore, it stores the

last character of the next text window (2 * pattern length) in (ref2) and whenever the letter does

exist in the pattern it allocates the pattern and starts the comparisons from the leftmost character

to the rightmost character (Mhashi, 2012). The time complexity of the preprocessing function is

O(m+σ) and of the searching phase is O(mn). Figure A-19 shows the MRCA algorithm code.

2.9.10 The KRBMH Algorithm

The KRBMH algorithm was developed by A. Hasan and N. Abdul Rashid in 2012. It

combines the KR and BMH algorithms (Hasan & Rashid, 2012).

The searching phase of the KRBMH algorithm searches the pattern using the hashing

value of the Karp Rabin algorithm, if a whole match or a mismatch is founded, the hrBc table of

the BMH algorithm is used to shift the pattern (Hasan & Rashid, 2012). The time complexity of

the hrBc is O(m+σ), the KR hashing table is O(m) and of the searching phase is O(mn). Figure

A-20 shows the KRBMH algorithm code.

2.9.11 The Quick-Skip Search Algorithm (QSS)

The QSS algorithm was developed by M. Naser, N. Abdul Rashid and M. Aboalmaaly in

2012. It combines the Skip Search and Quick Search algorithms (Naser, et al., 2012).

85

The searching phase of the QSS algorithm uses the SS searching phase. In addition, the

preprocessing phases of the SS and QS algorithms are used where if a whole match or a

mismatch is found, the pattern is shifted by choosing the bigger shifting value from either the

qsBc or the Skip Search tables. The time complexity of the qsBc is O(m+σ), the SS table is

O(m+σ) and of the searching phase is O(mn). Figure A-21 shows the QSS algorithm code.

2.9.12 The AKRAM Algorithm

The AKRAM algorithm was developed by A. A. AbdulRazzaq, N. Abdul Rashid and M.

F. Aboalmaaly in 2013. It combines the Two-way, QS and KR algorithms (AbdulRazzaq, et al.,

2013).

The preprocessing phase of the AKRAM algorithm divides the pattern into two blocks

(prefix and suffix). In addition, the preprocessing phase of KR which depends on hashing value

is used for both blocks (AbdulRazzaq, et al., 2013).

The searching phase of the AKRAM algorithm starts with the prefix block. If the hashing

value of the prefix does match, then it starts comparing all prefix characters from the leftmost

character to the rightmost character. If a whole match in the prefix part is found, it follows the

same procedure with the suffix part. If there is a whole match in both blocks and a mismatch

either in the prefix or suffix, the pattern is shifted using the qsBc function of the QS algorithm

(AbdulRazzaq, et al., 2013). The time complexity of the qsBc is O(m+σ), the KR hashing table is

O(m) and of the searching phase is O(mn). Figure A-22 shows the AKRAM algorithm code.

2.10 Summary of String Matching Algorithms

This chapter gives a survey and a new classification of main string matching algorithms

86

which includes the Brute Force algorithm (BF), the Boyer-Moore algorithm (BM), the Zhu

Takaoka algorithm (ZT), the Fast Search algorithm (FS), the Boyer Moore Horspool algorithm

(BMH), the Quick Search algorithm (QS), the Berry–Ravindran algorithm (BR), the Karp-Rabin

algorithm (KR), the Skip Shift (SS), the Alpha Skip Shift (ASS), the SSABS, FJS, TVSBS,

ZTBMH, BRFS, BM-KMP, BRSS, ASSBR, MRCA, KRBMH, QSS and AKRAM algorithms.

Table 2-22 summarizes and compares the algorithms that used in this research:

Algorithm

Name
Year

Compar

ison

Order

Preprocessing Time Searching

First

Function

Second

Function

Searching

Time

Shifting

Value

Main

Characteristics

The First Category: Shift the Pattern a Single Position

Brute

Force

Algorithm

(BF)

Very

Old

From left

to right
N/A N/A O(mn) 1

Shifts the pattern

only a single

position each

attempt. It does not

use the information

that could be gained

from the last

comparison made

The Second Category: Using Two Preprocessing Functions

Boyer-

Moore

Algorithm

(BM)

1977

Form

right to

left

O(m+σ)

bmBc

O(m
2
)

bmGs
O(mn) m

Uses two pre-

processing

functions; the bad-

character shift and

the good-suffix shift

87

Zhu-

Takaoka

Algorithm

(ZT)

1987

From

right to

left

O(m+σ
2
)

ztBc

O(m
2
)

bmGs
O(mn) m

It is a variant of the

BM algorithm by

improving only the

bmBc function. It

uses the last two text

characters to

compute the bad

character shift

instead of only one

character being used

in the BM

algorithm. The good

suffix rules are still

used to compute

shifts

Fast

Search

Algorithm

(FS)

2003

From

right to

left

O(m+σ)

fsBc

O(m
2
)

fsGs
O(mn) m

Uses the bad-

character function

only if the character

is causing the

mismatch is the last

character of the

pattern or a whole

match occurs,

otherwise the good-

suffix function is to

be used.

The Third Category: Depending on the Rightmost Character

Boyer-

Moore

Horspool

Algorithm

(BMH)

1980

Right-

most

character

then left-

most

character

then

moves

forward

O(m+σ)

hrBc
N/A O(mn) m

Uses the Horspool

bad-character pre-

processing function

based on the

rightmost character

in the current

window.

88

The Fourth Category: Depending on the Next Character to the Rightmost Character

Quick-

Search

Algorithm

(QS)

1990
From left

to right

O(m+σ)

qsBc
N/A O(mn) m+1

Uses the Quick-

Search bad-

character

preprocessing

function based on

the next character to

the current window.

The Fifth Category: Depending on Two Characters Next to the Rightmost Character

Berry–

Ravindran

Algorithm

(BR)

1999
From left

to right

O(m+σ
2
)

brBc
N/A O(mn) m+2

Uses the Berry-

Ravindran pre-

processing function

based on the next

two characters after

the current window

in order to increase

the shifting value of

the pattern

The Sixth Category: Using a Hashing Function

Karp-

Rabin

Algorithm

(KR)

1987
From left

to right

O(m)

KMP

Hashing

Function

N/A O(mn) 1

Uses the Karp-

Rabin pre-

processing hashing

function.

89

The Seventh Category: Computing Buckets for All Characters of the Alphabet

Skip Shift

(SS)
1998

Form

right to

left

O(m+σ)

SS Table
N/A O(mn) 1

Computes a bucket

for pattern and text

alphabets, with start

positions of each

alphabet in the

pattern to be used

for a possible shift

Alpha

Skip Shift

(ASS)

1998

Form

right to

left

O(m+σ)

ASS Table
N/A O(mn) 1

Computes a bucket

for substrings with

length L= logσ(m),

 with start positions

of each substring in

the pattern to be

used for a possible

shift

The Eighth Category: Using Hybrid Algorithms

SSABS

Algorithm
2004

Right-

most

character

then left-

most

character

then

starts

from m-2

moving

backword

O(m+σ)

qsBc
N/A O(mn) m+1

A Combination of

the Quick-Search

bad-character pre-

processing functions

with a new

searching order.

FJS

Algorithm
2005

From left

to right

O(m+σ)

qsBc

O(m
2
)

KMP

Table

O(mn) m+1

Uses the Karp-

Rabin pre-

processing hashing

function and shifts

the pattern using the

preprocessing

function of the QS

algorithm

90

TVSBS

Algorithm
2006

Same

way as

the

SSABS

O(m+σ
2
)

brBc
N/A O(mn) m+2

A combination of

the Berry Ravindran

pre-processing

function and the

searching phase of

the SSABS

algorithm.

ZTBMH

Algorithm
2008

Same

way as

the BMH

O(m+σ
2
)

ztBc
N/A O(mn) M

A combination of

the Zhu Takaoka

preprocessing

function and the

searching phase of

the Boyer Moore

Horspool algorithm.

BRFS

Algorithm
2008

Using

the

searchin

g phase

of the

Fast

Search

algorith

m

O(m+σ
2
)

brBc

O(m+σ
2
)

fsGs
O(mn) m+2

A combination of

the Berry Ravindran

preprocessing

function and the

searching phase of

the Fast Search

algorithm.

BM-KMP

Algorithm
2010

Same

way as

the BMH

O(m+σ
2
)

bmGs

O(m
2
)

KMP

Table

O(mn) M

If last chracter is

casuing the

mismatch, the bmBc

is used. Otherwise

the KMP table is

used to shift the

pattern

BRSS

Algorithm
2011

Same

way as

the

SSABS

O(m+σ
2
)

brBc

O(m+σ)

SS Table
O(mn) m+2

It shifts the pattern

using the bigger

shift value between

the SS Table and the

brBc function

91

ASSBR

Algorithm
2011

Form

right to

left

O(m+σ
2
)

brBc

O(m+σ)

ASS Table
O(mn) m+2

Uses the same

searching phase as

the ASS table and

shifts the pattern

using the brBc

function

MRCA

Algorithm
2012

From left

to right

O(m+σ)

MRCA

Table

N/A O(mn) m

Uses the “multiple

references” role to

shift the pattern. It

stores the position of

the last character of

current window and

next windows in

references and move

pattern accordingly.

KRBMH

Algorithm
2012

From left

to right

O(m+σ)

hrBc

O(m)

KR

Hashing

 Function

O(mn) m

Uses the KR pre-

processing hashing

function. If same

value then searches

from left to right. It

and shifts the pattern

using the qsBc

function

QSS

Algorithm
2012

From left

to right

O(m+σ)

qsBc

O(m+σ)

SS Table
O(mn) m+1

Uses the same

searching phase as

the SS algorithm. It

shifts the pattern

using the SS table

and the qsBc

function

AKRAM

Algorithm
2013

From left

to right

O(m+σ)

qsBc

O(m)

KR

Hashing

 Function

O(mn) m+1

Divide the text

window and the

pattern to prefix and

suffix. Use the same

searching phase as

the KRBMH for

prefix part first then

suffix part. If there

is a whole match,

the qsBc is used

Table 2- 22: Summary of algorithms been used in this research

92

2.11 SMILES Format

SMILES is a chemical language that is commonly used amongst chemists which presents

chemical structures in digital databases as a linear string notation (Weininger et al., 1989;

Weininger, 1988). In addition, the linear string notation can be easily used and implemented

using computer programs rather than using graphical structures (Rowley et al., 2001).

 It was originally developed in the 1980’s by David Weininger, and has since been modified

by Daylight Chemical Information Systems Incooperation.

The SMILES system was designed in order to achieve three main objectives – (1) the

representation of the chemical structure can be uniquely designed to include structure

components such as atoms and bonds. (2) Unique notations are to be interpreted and generated

through a machine friendly and machine independent system, (3) A structure specification

should be provided in order to provide ease for the user (Weininger, 1988).

SMILES can be used as a text to represent a chemical structure. It is a language paradigm

rather than a data structure, and this is why it is more valuable and important. “It takes 50% to

70% less space than an equivalent connection table. For example, a database of 23,137

structures, with an average of 20 atoms per structure, uses only 1.6 bytes per atom when they

represented with SMILES format” (Daylight Chemical Information Systems, 2008).

SMILES is a formal language with a well-defined grammar over an alphabet of symbols,

atoms and bonds with certain grammar rules. SMILES’s format strength lies in the unique

generated format for each molecule which makes it easy to search the molecule structure

(Weininger et al., 1989; Neglur et al., 2005). Table 2-23 below shows some examples of

structures in SMILES format:

93

Table 2-23: Structures in SMILES format examples

SMILES consists of 6 syntax rules that can be applied to any chemical structure which allow

two-dimensional chemical structures to be represented in SMILES as follows (Rowley et al.,

2001; De Raedt & Kramer, 2003 ; Daylight Chemical Information Systems, 2008; U.S.

Environmental Protection Agency EVA, 2009):

1) SMILES Atoms: there are two types of SMILES atoms rule. The first one presents

compounds of elements not in the organic subset “S, O, C, I, B, F, N, P, Cl and Br” which are

represented in SMILES using their atomic symbol enfolded between square brackets. The second

type presents compounds of the “organic subset” elements which are represented in SMILES

using their atomic symbol (a letter) without hydrogen atom symbols and without the square

brackets. Some of the organic subset needs to be enfolded between square brackets if they have

atoms with valences “unusual number of bonds an atom forms”. For both types of atoms the

second letter of a two character symbol is represented in a lower case. Below Table 2-24 and

Table 2-25 are examples of how atoms are represented in SMILES for botth types.

94

Structure Structure Name SMILES Atoms Rule

(CH4) Methane C

(PH3) Phosphine P

(NH3) Ammonia N

(H2S) Hydrogen sulphide S

(H2O) Water O

(HCl) Hydrochloric acid Cl

Table 2-24: The SMILES atom rule of structures with organic subset elements

Element Structure Name SMILES Non-Hydrogen Atoms Rule

S Sulfur [S]

Au Gold [Au]

Table 2-25: The SMILES atom rule of non-organic elements

Hydrogens and charges attached to elements in brackets must always be stated. Ions that

have one or more electrical charges are represented in SMILES by either a + for a positively

charged or – for a negative charge then followed by the number which indicates the number of

charges, all of which is enclosed in brackets, below Table 2-26 is an example. An alternative

method in which a charge can be represented in SMILES is by having the sign for the number of

ions that are to be represented, below Table 2-27 is an example.

Structure Name SMILES

Iron (II) Cation [Fe+2]

Sulphides [S-2]

Table 2- 26: Examples of positive and negative charges represented by numbers

95

Structure Name SMILES

Iron (II) Cation [Fe++]

Sulphides [S--]

Table 2-27: Examples of positive and negative charges represented by signs

2) Bonds: a single bond can either be ignored or be represented by the symbol “-“, double

bond are presented by the symbol “=”, a triple bond is represented by the symbol “#” and an

aromatic bond is represented by “:” (Daylight Chemical Information Systems, 2008). In the

instance of SMILES, adjacent atoms are to consider to be either connected via single or aromatic

bonds. A typical example of how SMILES represent bonds is as follows in Table 2-28:

Structure Structure Name Bond SMILES

(CH3CH3) Ethane Single C-C

(CH3CH3) Ethane Single CC

(CH2O) Formaldehyde Double C=O

(CH2=CH2) Ethene Double C=C

(HCN) Hydrogen cyanide Triple C#N

c1ccccc1 Benzene Aromatic c1:c:c:c:c:c1

Table 2-28: Examples of SMILES bonds

3) Branches: A branch is represented in SMILES by placing the symbol between round

brackets. The string in bracket is always placed after the symbol of the atom from which

branches. If there is a double or triple bond then bond symbol follows the left hand side of the

bracket (U.S. Environmental Protection Agency EVA, 2009) as shown in Table 2-29.

96

Isobutyric acid Triethylamine 3-propyl-4-isopropyl-1-heptene

CC(C)C(=O)O CCN(CC)CC C=CC(CCC)C(C(C)C)CCC

Table 2-29: Examples of SMILES branches rule

4) Cyclic Structures: or cyclic bonds can be defined by referencing the carbon atoms with

numbers. For example, C1CCCCC1 (cyclohexane) is a string of six carbon atoms where the first

and sixth atoms are bonded together as defined with the number 1. In the instance where there

may be a multiple bond more numbers can be used to denote where multiple bonds exist. Below

Table 2-30 is an example:

Cyclohexane Structure

Table 2-30: Example of SMILES cyclic structure rule

5) Disconnected Structures – In order to represent disconnected compounds, which do not

have a covalent bond to join the two structure together, these are constructed by writing

individual structures which are separated by a “.” as below in Table 2-31.

97

 Sodium Phenoxide

Table 2-31: Example of SMILES disconnected rule

6) Aromaticity – Aromaticity is a chemical property that defines unsaturated bonds, empty

orbitals or lone pairs of a conjugated ring (Daylight Chemical Information Systems, 2008).

Aromaticity rule presents S, O, N and C atoms in SMILES as lower-case (s, o, n and c). Table 2-

32 below shows some examples:

 Structure Name SMILES

Benzene c1ccccc1

Pyridine n1ccccc1

Furan o1cccc1

Table 2-32: Example of SMILES aromaticity rule

The complete EBNF (Extended Backus-Naur Form) of SMILES language is listed in

Appendix B.

98

2.12 Parallel Computing

In this section, a brief explanation of the parallel computing concept, Flynn’s Taxonomy, and

parallel programing models are provided.

In a sequential program, tasks (t1,t2 … tn) will run on a single CPU and one task will be

executed at any moment as shown in Figure 2-20 (Barney, 2010).

Figure 2- 20: An example for the sequential program tasks execution

The simplest definition of parallel computing is a simultaneous use of more than one CPU to

run a computational problem as shown in Figure 2-21 (Barney, 2010). The multi CPU computing

resources could be a single computer with multiple CPUs or a number of computers connected

by a network, or a combination of both. The computational problem should be able to be broken

down into tasks that can be solved simultaneously, executing multiple tasks at any time and be

solved in less time with multiple CPUs.

99

Figure 2-21: An example for the parallel program tasks execution

Parallel computing has been used in many areas of engineering and sciences such as

molecular sciences, biotechnology, medical imaging and diagnosis, bioscience, pharmaceutical

design, computer science, networked video and multi-media technologies, mathematics,

atmosphere, etc. (Barney, 2010; Rajasekaran & Reif, 2007).

2.12.1 Flynn’s Taxonomy

The best known way of classifying parallel computing is called Flynn’s Taxonomy,

introduced in 1966, and depends on two independent types the instruction stream and data stream

(Flynn, 1966). These types can have only one state, either single or multiple (Tucker, 2004) . The

following Figure 2-22 shows the classifications of Flynn’s taxonomy (Flynn, 1972).

100

Figure 2- 22: Flynn’s taxonomy (Flynn, 1972)

1. Single Instruction, Single Data (SISD): There is no parallelism in data or instruction

streams.

2. Single Instruction, Multiple Data (SIMD): Running same instruction stream on

parallelized data sets such as running the same algorithm on different blocks of text.

3. Multiple Instruction, Single Data (MISD): Operating multiple instruction streams on

the same data such as running different algorithms on the same block of text.

4. Multiple Instructions, Multiple Data (MIMD): Operating multiple instruction streams

independently on multiple data streams.

In this research, the SSN algorithm is paralleled using the MISD type to implement the

OpenMP model and the SIMD type to implement the MPI model as explained in section 3.3.

101

2.12.2 Parallel Computing Speedup:

The parallel computing speedup calculates the increase of running time after finding the

sequential and parallel execution time of an algorithm as Equation(2) in Figure 2-23 (Akl, 1997;

Wilkinson & Allen, 2005):

)2.....(..
pT

sT
 pS =

Figure 2- 23: Parallel computing speedup equation

where Sp is the speed up, Ts is the sequential execution time on a single processor and Tp is

the parallel execution time with p processors. The following Figure 2-24 (Willmore, 2012)

presents the different types of speedup using different number of processors and Figure 2-25

(Barney, 2010) presents the relationship between the common speedup (sub-linear) and the

number of processors used based on the fraction of code that can be parallelized.

Figure 2- 24: Different type of speedup using different number of processors

102

Figure 2-25: The relationship between the common speedup and number of processors

2.12.3 Parallel Programing Models:

There are several parallel programming models can be used to program data and instructions

on processors such as the shared memory model, distributed memory model or a hybrid model

combining more than one model (Kontoghiorghes, 2010). Note that there is no “best” model. It

depends on the machines available and on the nature of the problem being addressed.

2.12.3.1 The Shared Memory Model:

In the shared memory model, jobs share a common memory address to write and read from

as shown in Figure 2-26 (Barney, 2010).

103

Figure 2- 26: The shared memory model

The threads model is a type of shared memory model, but a single big job can be divided into

small ones and implemented with simultaneous execution paths as shown in Figure 2-27:

Figure 2-27: The threads model

“The Open Multi Processing (OpenMP) model was released in 1997 as a standard

104

Application Programming Interface (API) for writing shared memory parallel applications in C,

C++ and FORTRAN” (Kiessling, 2009). It is easy to implement and widely used with multicore

architecture to parallelize serial code.

OpenMP model use the Fork and Join Model. They start sequentially as a single thread,

called the “master thread”, until they reach a parallel section where they fork into multiple

“worker threads” as shown in Figure 2-28 (Kiessling, 2009; Barney, 2010). At the end of a

parallel section, the threads re-join to become a master thread again. It is possible to run more

than one thread on a single processor but it is common and safer to run a single thread per

processor (Kiessling, 2009).

Figure 2- 28: The Fork and Join model

2.12.3.2 The Distributed Memory Model:

In the distributed memory model, jobs use their own memory and can exist either on their

own physical machine or they can be transferred between a number of machines over a network

using sending and receiving procedures as shown in Figure 2-29 (Barney, 2010).

105

Figure 2-29: The distributed memory model

The Message Passing Interface (MPI) was released in 1991 as a programming interface for

writing distributed memory applications, which include one or more communicators to send and

receive messages through available nodes by calling library procedures to other processors. It is

widely used on High Performance Computing (HPC) platforms. Figure 2-30 shows the MPI

model structure (Barney, 2013).

106

Figure 2- 30: The MPI Model structure

2.12.3.3 The Hybrid Memory Model:

The shared and distributed memory models are combined in the hybrid memory model as

shown in Figure 2-31. In this model both the OpenMP and MPI models can be used. In this

research, the hybrid model is not used and it is suggested as a future work.

107

Figure 2- 31: The hybrid memory model

2.13 Summary

This chapter provided a survey of string matching algorithms where a new classification

containing eight categories was developed depending on the preprocessing phase of searching

algorithms.

The first category shifts the pattern only one position at each attempt. The second category

uses two preprocessing functions. The third category uses one preprocessing function based on

the rightmost character in the current window. The fourth category uses one preprocessing

function based on the next character to the current window. The fifth category uses one

preprocessing function based on the two characters next to the current window. The sixth

category uses a preprocessing hashing function. The final category uses hybrid algorithms. A

summary of all algorithms used in this research was listed in Table 2-26.

The SMILES chemical language with the syntax rules which can be used to convert two-

dimensional chemical structure to a sequence was presented in section 2.11 and finally the

parallel computing, Flynn’s taxonomy and parallel programming models were presented in

section 2.12.

108

CHAPTER 3: METHODOLOGY AND DESIGN

In this chapter, we present the research methodology framework, chemical toolkit design and

parallel algorithm design. The research methodology framework achieves our initial research

objectives. The new toolkit design shows the stages of developing a chemical structure searching

toolkit using the developed SSN searching algorithm. Furthermore, the parallel algorithm design

shows the phases of parallelizing the developed SSN algorithm using the OpenMP and the MPI

models.

3.1 Framework of Research Methodology

The framework of the research methodology achieves the research objectives and consists of

six stages as shown in Figure 3-1. The first stage studies the current existing algorithms. In

addition, the second stage implements the algorithms studied in the first stage. Moreover, the

third stage identifies (the) suitable algorithm(s) to be applied for searching biological sequence

and chemical structure databases. The fourth stage is to enhance one or more of the existing

algorithms or to develop (a) new algorithm(s). The fifth stage is to apply the new algorithm(s) to

search biological sequence and chemical structure databases. The final stage is to measure the

success of the new developed algorithm(s) compared to the currently existing algorithms.

109

3

UniProt

ProTeus

ProDom

SWISS-PROT

NMRShiftDB

…

Study current

algorithms

1

Implement current

algorithms

2

Enhance one or more of the existing

algorithms or to develop (a) new

algorithm(s)

4

Apply (the) new algorithm(s) to search

chemical structures and biological

sequences in files and database

5

Measure the success of the new developed

algorithm(s) compared to currently existing

algorithms

6

 Identify (the) suitable algorithm(s) to be

applied for searching chemical structures and

biological sequences in files and database

3

Figure 3- 1: Research objective framework

110

3.2 Chemical Structures Toolkit Design

The chemical structures toolkit design consists of four stages as shown in figure 3-2. The

first stage downloads a sample data set from the NMRShiftDB (Kuhn, 2010). The second stage

stores the downloaded data in a local database. The third stage uses Java Molecular Editor

(JME), which was developed by Peter Ertl in 2000, to convert structures to SMILES format

(Ertl, 2006, 2010 in press). Then our SSN matching algorithm searches a structure query in the

local database as shown in section 5.2.3. The final stage uses the proportion of matching

characters to measure the similarity between matched structures. Each stage will be discussed in

detail in the following sections.

111

NMRShiftDB

Build a local

database

Compare a

structure query in

SMILES format

with the local

database using

our SSN

algorithm

Figure 3- 2: Chemical toolkit design

List similar structures from

the local database

Convert the

structure into

SMILES format

Structure query

using JME editor

3(a)

Use the proportion

of matching

characters to

calculate similarity

between structure

query and listed

structures

Download a sample

structures from

NMRShiftDB

3(b)

3(c)

1

2

4

112

Download and mine

structures from

NMRShiftDB

Extract structures using

keyword/category search

Local

database

Figure 3- 3: Mining and downloading structures from NMRShiftDB

3.2.1 The First Stage: Downloading and Mining Structures

We used the NMRShiftDB (Kuhn, 2010) database to download and mine chemical structures

using keyword/category search such as “Antimicrobial”, “Antibacterial”, “Antifungal” and

“Antiviral” from NMRShiftDB. Figure 3-3 below shows the mining process flowchart:

3.2.2 The Second Stage: Building the Local Database

Downloaded structures from the previous stage are stored in the local database. The local

database includes relational tables to connect chemical molecules and their corresponding

information. Figure 3-4 below shows the schema for the local database (Kuhn, 2010):

D
o
c

u
m

e
n

t n
a

m
e
:
E
R
−

D
ia

g
ra

m
_
fo

r
_
N

M
R

S
h
if

tD
B

.g
d

D
o
c

u
m

e
n

t
ty

p
e

:
G

e
n
e
ri

c
 D

ia
g

ra
m

A

u
th

o
r:

 s
h

k
3
F

ig
u

re
 3

-
4

:
T

h
e

lo
ca

l
d

at
ab

as
e

E
R

 d
ia

g
ra

m
 (

K
u

h
n

,
2

0
1

0
)

P
ri

n
te

d
 b

y
:

s
h

k
3

P

ri
n
te

d
 o

n
:

s
h

k
3

in

d
ir

e
c
tl
y

h
a
s

 (0
,*

)
 (0

,*
)

D
im

e
n

s
io

n
a
li
ty

 S

p
e
c
tr

u
m

T
y
p

e

W
is

h
lis

t

D
a
te

 R
e

v
ie

w
g

ro
u

p
N

a
m

e

(0

,*
)

 (0
,*

)

 U
s

e
rI

D

 W
e
b

p
a
g

e

 (0
,*

)

 Z
IP

 c
o
d

e

A

ff
ili

a
ti
o
n

C

it
y

 B
ro

k
e

n
s
u

b
m

it

A

d
d

re
s
s

 T
u

rb
in

e
 A

tt
ri

b
u

te
s
 (0

,*
)

 T
u

rb
in

e
 s

e
c
u

ri
ty

s
c
h

e
m

a

 s
e

a
rc

h
h

is
to

ry

 S
e
s
s
io

n
s

c
re

a
te

s

 S
e
s
s
io

n
s
_

a
ll

S

e
s
s
io

n
s

 L
o

w
e
s
tL

o
a

d
S

e
rv

e
r

 L
a

b
g

ro
u

p
ID

 (1
,1

)

N

a
m

e

 S
p

e
c
tr

u
m

T
y
p

e
ID

 A
x
is

 (1
,*

)

h

a
s

 (1
,1

)

R
e

v
ie

w
G

ro
u

p

is
 m

e
m

b
e
r

L

a
s
tD

o
w

n
lo

a
d

D
a
te

 (0
,*

)

N
m

rs
h

if
td

b
U

s
e
r

(0
,*

)
 (0

,*
)

s
tr

u
c
tu

re
s
h

is
to

ry

 le
a
d

s

(1
,1

)
 (0

,*
)

L
a

b
g

ro
u

p

N
a

m
e

 R
a

w
F

il
e

R
a

w
F

il
e
Id

 E

le
m

e
n

tS
y
m

b
o
l

 A
to

m
ic

M
a
s
s

Is
o
to

p
e

R
e

v
ie

w
g

ro
u

p
ID

D

a
te

G

u
e
s
tb

o
o
k

 (0
,1

)

 w
ri

te
s

 (0
,*

)

 (0
,*

)

 (0
,*

)

S
ta

te

 H

a
ll
O

fF
a

m
e

 (0
,*

)

 (0
,*

)

 (0
,*

)

 (0
,*

)

 (0
,*

)

T
it
le

C
o
u

n
tr

y

 (1
,1

)

is
?

m
e

m
b

e
r

 C
o

m
m

e
n

t

 M
a
rk

 (0
,1

)

U
R

L

 (0
,*

)
 S

u
b

ti
tl
e

 U
rl

T

it
le

S
u

b
ti
tl
e
S

o
u

n
d

e
x

D

O
I

(1

*)

 (0
,*

)

 G
u

e
s
tb

o
o
k
ID

 T
e

x
t

 c
o
n

tr
ib

u
te

s

 b
o

o
k
m

a
rk

s

O

th
e
rN

u
c
le

i

 S
a

m
p

le
ID

 c
re

a
te

s

 (1
,1

)

D

a
te

 U
s

e
rs

Id

(0

,*
)

m

e
a
s
u

re
s

 C
o
n

d
it
io

n
T

y
p

e

 D
a
ta

T
y
p

e

 C
o
n

d
it
io

n

T
y
p

e

 c
re

a
te

s

R

e
v
ie

w
D

a
te

A

s
s
ig

n
m

e
n

tD
a
te

(1
,1

)

 re
v
ie

w
s

 e
d

it
s

 E
d

it
D

a
te

 c
o
n

tr
ib

u
te

s

M
a
rk

D
a
te

m

a
rk

s

 is
F

ro
m

T

it
le

 L
it
e
ra

tu
re

ID

T

it
le

to
ta

l

 L
it
e
ra

tu
re

 E
tA

l

M

o
le

c
u

le
ID

(1

,1
)

 (0
,*

)

 D
a
te

W

is
h

e
d

S
p

e
c
tr

u
m

 C
A

S
N

u
m

b
e
r

 (0
,1

)

 S
a

m
p

le

(2

,2
)

 S
p

e
c
ia

lC
a
re

C
o
n

d
it
io

n
N

a
m

e

 C
o
n

d
it
io

n
T

y
p

e
ID

h

a
s

F

in
is

h
e
d

(0
,*

)

h

a
s

 (0
,*

(

 C
o
n

d
it
io

n
ID

V

a
lu

e
 (1

,1
)

 C
o
n

d
it
io

n

(0

,*
)

 (1
,*

)

 (
0

,*
)

 (1
,1

)

 (1
,*

)

(1

,1
)

 (0
,1

)

h
a
s

 w
ri

te
s

 (1
,*

)

A

u
th

o
rO

rd
e
r

 (1
,*

)

d

 Is
s
u

e
N

u
m

b
e
r

 P
a

g
e
s
F

ro
m

fp
0

 .
..

 1
5

N

M
R

S
h

if
tD

B
N

o

(0
,*

)

p
ro

b
a

b
le

S
tr

u
c
tu

re

 S
M

IL
E

S
S

tr
in

g

 M
o
le

c
u

la
rW

e
ig

h
t

S

M
IL

E
S

S
tr

in
g

C
h

ir
a
l

(0
,*

)

 H
y
p

e
rl

in
k

 D
e
s
c
rp

ti
o
n

 S
p

e
c
tr

u
m

H
y
p

e
rl

in
k
s

is

 (1
,1

)

 h
a
s

 (1
,1

)

h
a
s

 (0
,*

)

 (4
/7

)

 L
it
e
ra

tu
re

 (0
,*

)

A

u
th

o
rI

D

 N
a

m
e

 A
u

th
o
r

is

p
u

b
lis

h
e
d

in

(1

,*
)

 N
a

m
e
T

o
ta

l

B

o
o

k

 (1
,*

)

 (0
,*

)

is

c
o
n

ta
in

e
d

in

P

a
g

e
s
T

o

 (0
,1

)

 A
rt

ic
le

 (0
,1

)

is

 (0
,*

)
M

o
le

c
u

le

(0

,*
)

 (0
,*

)

 h
a
s

 (0
,*

)

(1

,1
)

(0
,*

)

 (2
,*

)

 h
a
s

 (1
,1

)

h

a
s

 M
o
le

c
u

le

 (0
,*

)

K

e
y
w

o
rd

 K
e

y
w

o
rd

a
s
s
ig

n
e
d

to

(0
,*

)

 K
e

y
w

o
rd

Id

 h
a
s

(0
,*

)

 S
p

e
c
tr

u
m

ID

 S
p

e
c
F

il
e

 D
a
te

 (0
,*

)

S
p

e
c
tr

u
m

(1
,*

)

 N
M

R
S

h
if
tD

B
N

o

C
o

m
m

e
n

t

 R
e

v
ie

w
F

la
g

N
a

m
e
S

u
rn

a
m

e
S

o
u

n
d

e
s

S

u
rn

a
m

e

P

la
c

e

 P
u

b
lis

h
e
rI

D

 p
u

b
lis

h
e
s

 (1
,*

)

 P
u

b
lis

h
e
r

 Y
e

a
r

Y

e
a
r

V

o
lu

m
e

 J
o
u

rn
a
lV

o
lu

m
e
ID

c
o
n

ta
in

e
d

in

(1

,*
)

 J
o
u

rn
a
lV

o
lu

m
e

 (1
,1

)

h

a
s
 n

a
m

e

(0

,*
)

N

a
m

e

N

a
m

e
S

o
u

n
d

e
x

 C
a
n

o
n

ic
a
lN

a
m

e
T

y
p

e

 C
h

e
m

ic
a
l

N
a

m
e

 N
a

m
e

 S
o

u
n

d
e

x

H
y
p

e
rl

in
k
s

c
o
n

s
is

ts
 o

f

 Is
A

ro
m

a
ti
c

D

e
s
c
ri

p
ti
o
n

 H
y
p

e
rl

in
k

(1

,1
)

Is

A
ro

m
a
ti
c

 C
o
n

s
ta

n
t

c
o
u

p
le

s
 w

it
h

 (0
,*

)

 (

0
,*

)

 R
e

v
ie

w
K

e
y

 H
O

S
E

C
o
d

e

F
in

g
e
rp

ri
n
t

A

to
m

ID

is

a
s
s
ig

n
e
d

 h
a
s

 In

te
n

s
it
y

(1

,*
)

 (1
,1

)

S

ig
n

a
lI
D

 S
ig

n
a
l

 (1
,*

)

 h
a
s

 N
a

m
e

(1

,1
)

 S
h

if
t

 J
o
u

rn
a
lI
D

S

u
b

ti
tl
e

T

it
le

is

v
o
lu

m
e

o
f

 (1
,*

)

 J
o
u

rn
a
l

C

a
n

o
n

ic
a
l

N
a

m
e
T

y
p

e

 B
o
n

d
ID

 D
e
g

re
e

 B
o

n
d

 (2
,3

)

a
re

c
o
n

n
e
c
te

d

w
it
h

(1

,6
)

 A
to

m
ic

M
a
s
s

 A
to

m

 (1
,*

)

(0
,*

)
to

 C
o

o
rd

ia
n

te
S

e
t2

/3
D

 Z
C

o
o
rd

in
a
te

M
u

lt
ip

lic
it
y

 (0
,*

)
 (0

,*
)

A
x
is

V

a
lu

e

D

e
s
c
ri

p
ti
o
n

C
o

o
rd

in
a
te

S
e
tT

y
p

e

IT
A

 h

a
s
 a

n

in
 a

C
a
n

o
n

ic
a
lN

a
m

e
T

y
p

e
ID

is

C
o
n

fi
g

u
ra

ti
o

n
S

p
e
c
if
ie

d

S
te

re
o

O

rd
e
rN

u
m

b
e
r

S
y
m

b
o
l

F
o
rm

a
lC

h
a
rg

e

Is
V

is
ib

le

Y
C

o
o
rd

in
a
te

X

C
o

o
rd

in
a
te

C

o
o
rd

in
a
te

S
e
tT

y
p

e
Id

Id

e
n

ti
fi

e
r

114

3.2.3 The Third Stage: Using the JME Editor, SMILES and the SSN Algorithm

The JME allows users to draw chemical structure and then converts the drawn structure into

SMILES format (Ertl, 2006, 2010 in press). Figures 3-5 and 3-6 illustrate the structure drawing

and conversion using the JME tool. The SSN algorithm is used to search the local database as

described in section 4.5. Figure 3-7 below shows the structure matching flowchart using the SSN

algorithm.

Figure 3- 5: Drawing a structure using JME tool

115

Figure 3- 6: Results of applying SMILES rules on Figure 3-5 example

3.2.4 The Fourth Stage: Measuring Similarity Using the Proportion of Matching

Characters

Similarity is a quantity function that reflects the strength of relationship between two objects

or two features with the idea that a higher value indicates greater similarity. In this stage the

similarity is presented using the proportion of matching characters as the similarity measure, and

that this is acceptable as a Jaccord’s coefficient (Teknomo, 2006; Schulz, 2008).

Search structure in the local

database using the SSN algorithm

Local

database

Figure 3- 7: Search structure in the local database using the SSN algorithm

The input structure as a pattern

Pattern found

Yes

List similar structures

116

3.3 Parallel Algorithm Design

Parallel computing can be used where tasks, calculation and problems can be divided into

smaller ones that can be worked on simultaneously. Our parallel algorithm design includes a

new contribution where the SSN algorithm will be parallelized using the OpenMP and the MPI

models to improve the speed of searching a pattern in the given text. In this framework we are

dividing the parallel algorithms on two levels.

3.3.1 Parallel Algorithm Design for Shared Memory Model

In this level the DNA text file is stored in a shared memory address and the SSN algorithm is

parallelized using the OpenMP model. In the SSN algorithm, independent “for loops” and “if

conditions” are defined in parallel regions. This gives a MISD system where, in the parallel

regions, separate threads run on the same data. Figure 3-8 shows an example of the “for loop”

parallelized using the OpenMP model.

117

Figure 3- 8: An example of parallelizing the “for loop” using the OpenMP model

3.3.2 Parallel Algorithm Design for Distributed Memory Model

Here a SIMD system is created using the MPI model. The DNA text file is divided by the

master node (first processor) into subtexts. The number of subtexts is based on the number of

available nodes.

The master sends the subtext and query pattern to each available node. Each node starts

comparing the pattern with the text using the SSN algorithm and sends the result back to the

master. Finally, the master combines the results together and prints out the final result. Figure 3-

9 shows the parallel algorithm design using the MPI model.

118

M

a

s

t

e

r

3.4 Summary

This chapter provided an overview of the proposed work in this thesis. It also includes the

research methodology framework, chemical toolkit design and parallel algorithm design. The

research methodology framework achieved our research objectives through six stages as

explained in section 3.1. The new toolkit design developed a chemical structure searching toolkit

using the SSN algorithm through four stages as explained in section 3.2. The parallel algorithm

design presented the OpenMP model of the SSN algorithm in sub-section 3.3.1 and the MPI

model in sub-section 3.3.2.

Figure 3- 9: Parallel algorithm design using the MPI Model

Every node sends the results to the master

Master combines results and print out

the final result

 1 2

Subtext 2 Subtext 1

 n

Subtext n

…….

……

Node 2 Node 1 Node n ……

Compare subtext 1

with pattern using

the SSN algorithm

Compare subtext 2

with pattern using

the SSN algorithm

Compare subtext n

with pattern using

the SSN algorithm

……

N

o

d

e

M

a

s

t

e

r

119

CHAPTER 4: DEVELOPING NEW ALGORITHMS

As mentioned earlier, efficient string algorithms aim to maximize the pattern shifting value

and therefore enhance searching time. In this research the main string matching algorithms were

therefore classified in chapter two into eight categories according to the preprocessing function

of the algorithm (Klaib & Osborne, 2009a). In addition, we propose five new algorithms which

aim to maximize the pattern shifting value and therefore enhance searching time.

The BRBMH (Klaib & Osborne, 2008) algorithm is explained in section 4.1, the BRQS

(Klaib & Osborne, 2009a) is explained in section 4.2, the OE algorithm (Klaib & Osborne,

2009b) is explained in section 4.3, the RSMA (Klaib & Osborne, 2009c) algorithm is explained

in section 4.4 and the SSN algorithm is explained in section 4.5.

4.1 The BRBMH Algorithm

The BRBMH algorithm uses the same searching process as the BMH algorithm and if there

is a whole match or a mismatch, the enhanced brBc table is used as described in section 4.1.1

(Klaib & Osborne, 2008).

4.1.1 The Preprocessing Phase of the BRBMH Algorithm:

The preprocessing function of the BMH algorithm computes the shifts using only one

heuristic function based on the last character in the current text window (Crochemore, et al.,

1994). In addition, the preprocessing phase of the BR algorithm scans all text characters and uses

120

a two-dimensional array to shift the pattern to m+2 if the two characters located after the current

window do not exist in the pattern.

In order to maximize the pattern shifting value and therefore enhancing the searching time,

firstly the BR preprocessing function (brBc) was enhanced and then it was used instead of the

BMH preprocessing function (hsBc).

The enhancement of the brBc preprocessing function includes creating a one dimensional

array to store the pattern characters rather than using a two dimensional array to store the text

characters. Therefore, using the enhanced brBc over the hsBc results in two benefits: the first one

is the brBc table shifts the pattern to the right by m+2 compared to the hsBc which shifts pattern

only m positions if there is a whole match or a mismatch encountered. Furthermore, the second

benefit is reducing the preprocessing time by scanning only the pattern characters rather than

scanning the text characters as in the original brBc.

There are four shift cases in the BRBMH preprocessing phase as shown in Figure 4-1, Figure

4-2, Figure 4-3 and Figure 4-4 where:

• (a) and (b) are the first and the second characters next to the current text window and

any of them or both of them can be exist in pattern characters at location (i).

• (g) and (t) are the first and the second characters next to the current text window and

they do not exist at all in pattern characters.

• (k) is the size of the previous compared text portion which starts from t0 to the

beginning of current text window.

121

Case 1: when the pattern [m-1] = text [m+k], then the pattern will be shifted only one

position.

Figure 4- 1: The first shift case of the BRBMH algorithm

Case 2: when the pattern [i] = text [m+k] and pattern [i+1] = text [m+k+1], then the pattern

will be shifted m-i+1.

Figure 4- 2: The second shift case of the BRBMH algorithm

122

Case 3: when the pattern [0] = text [m+k+1], then the pattern will be shifted m+1.

Figure 4- 3: The third shift case of the BRBMH algorithm

Case 4: when the pattern [i] and pattern [i+1] do not exist in the text window, then the

pattern will be shifted m+2.

If characters (g) and (t) are not in the pattern, then shift = m+2

Figure 4- 4: The fourth shift case of the BRBMH algorithm

123

4.1.2 The Searching Phase of the BRBMH Algorithm:

The searching phase of the BRBMH algorithm starts from the rightmost character in the

current window, and then starts from the leftmost character and moves to the right until the

penultimate character. Figure 4-5 shows the BRBMH algorithm code for the preprocessing and

searching phases.

void preprocessing_enhancedBrBc(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {

 int iCounter, jCounter;

 char *enhancedBrBcCharacters;

 for (iCounter = 0; iCounter < patternLength; ++iCounter){

 enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,2);

 }

 for (jCounter = 0; jCounter <= patternLength-2; ++jCounter){

 enhancedBrBc[jCounter] = patternLength - jCounter;

 }

}

void BRBMH(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, enhancedBrBc[patternLength-1];

 char nextTwoCharacters;

 /* Preprocessing */

 preprocessing_enhancedBrBc(pattern, patternLength, enhancedBrBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength - 1;

 jCounter = iCounter + patternLength - 1;

 lastCharacter = iCounter + patternLength - 1;

 if (pattern[jCounter] == text[lastCharacter]){

 patternCounter = 0;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter; ++patternCounter;

 }

 if (jCounter < iCounter) {

 OUTPUT(iCounter);

 }

 }

 nextTwoCharacters=text[patternLength+iCounter] + text[patternLength+1+iCounter];

 iCounter += enhancedBrBc[nextTwoCharacters];

 }

}

Figure 4- 5: The BRBMH algorithm code

124

4.1.3 The BRBMH: Working Example

The input sample, the preprocessing phase and searching phase in sub-sections 4.1.3.1,

4.1.3.2 and 4.1.3.3 respectively, provide an example of the BRBMH algorithm.

4.1.3.1 Input Sample

Text

Length (n) = 64

LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) = 12

LAVKLATAIVLA

Table 4- 1: The BRBMH input sample

4.1.3.2 The BRBMH Example’s Preprocessing Phase

Figure 4-1 calculates the enhanced brBc table for input sample, as shown in the Table 4-2:

Table 4-2: The enhanced brBc table of the BRBMH algorithm

4.1.3.3 The BRBMH Example’s Searching Phase

As explained in sub-section 4.1.2, the searching order of the BRBMH algorithm is shown in

Table 4-3.

125

Table 4-3: The BRBMH algorithm searching order

1. In the first attempt: the current text window starts from position 0 to position 11 as

shown in Table 4-4.

Table 4-4: The first attempt of the BRBMH algorithm

• The BRBMH Algorithm: the first comparison between t11 and p11 causes a match. The

searching phase in sub-section 4.1.3.3 starts from the leftmost character t0 with p0 which

matched. Furthermore, the algorithm moves forward to the next character t1 with p1

which produces a mismatch.

• The preprocessing phase in sub-section 4.1.3.2 uses the brBc table for t12 and t13 (MG).

However, (MG) does not exist in Table 4-2, so the shifting value of (MG) is m+2 and in

this case is 14 positions.

2. In the second attempt: the current text window starts from position 14 to position 25 as

shown in Table 4-5.

126

Table 4-5: The second attempt of BRBMH

• The BRBMH Algorithm: the first comparison in the second attempt is between t25 and p11

which produces a match. The searching phase in sub-section 4.1.3.3 starts from leftmost

character t14 with p0 which matched. The algorithm moves forward to the next character

and follows the same procedure until the comparison between t18 with p4 produces a

mismatch.

• The preprocessing phase in sub-section 4.1.3.2 uses the brBc table for t26 and t27 (VK).

The shifting value of (VK) from Table 4-2 is 10 positions.

3. In the third attempt: the current text window starts from position 24 to position 35 as

shown in Table 4-6.

 Table 4-6: The third attempt of BRBMH

• The BRBMH Algorithm: the first comparison in the third attempt is between t35 and p11

which creates a match. The searching phase in sub-section 4.1.3.3 starts from leftmost

127

character t24 with p0 which matched. The algorithm moves forward to the next character

and follows the same procedure until a whole match of the pattern is found in the text.

• After a whole match is found in the current attempt, the preprocessing phase in sub-

section 4.1.3.2 uses the brBc table for t36 and t37 (TH). However, (TH) does not exist in

Table 4-2, so the shifting value of (TH) is m+2 and in this case is 14 positions.

4. In the fourth attempt: the current text window starts from position 38 to position 49 as

shown in Table 4-7.

Table 4-7: The fourth attempt of BRBMH

• In BRBMH, the first comparison in the fourth attempt is between t49 and p11 which

generates a mismatch.

• The preprocessing phase in sub-section 4.1.3.2 uses the brBc table for t50 and t51 (KP).

However, (KP) does not exist in Table 4-2, so the shifting value of (KP) is m+2 and in

this case is 14 positions.

• The BRBMH algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of the BRBMH algorithm are presented and discussed in chapter 6.

128

4.2 The BRQS Algorithm

The BRQS algorithm (Klaib & Osborne, 2009a) uses the same searching process as the QS

algorithm and if there is a whole match or a mismatch, the enhanced brBc table is used as

described in sub-section 4.1.1.

4.2.1 The Preprocessing Phase of the BRQS Algorithm:

The BRQS algorithm uses the same enhanced pre-processing phase as the BRBMH

algorithm as shown in sub-section 4.1.1.

4.2.2 The Searching Phase of the BRQS Algorithm:

The searching phase of BRQS algorithm starts from the leftmost character then it moves

forward single position each occasion up to the rightmost character. Figure 4-6 shows the BRQS

algorithm code for the preprocessing and searching phases.

129

void preprocessing_enhancedBrBc(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {

 int iCounter, jCounter;

 char *enhancedBrBcCharacters;

 for (iCounter = 0; iCounter < patternLength; ++iCounter){

 enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,2);

 }

 for (jCounter = 0; jCounter <= patternLength-2; ++jCounter){

 enhancedBrBc[jCounter] = patternLength - jCounter;

 }

}

void BRQS(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, enhancedBrBc[patternLength-1];

 char nextTwoCharacters;

 /* Preprocessing */

 preprocessing_enhancedBrBc(pattern, patternLength, enhancedBrBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = 0;

 jCounter = iCounter + patternLength - 1;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 if (jCounter < iCounter){

 OUTPUT(iCounter);

 }

 nextTwoCharacters=text[patternLength+iCounter] + text[patternLength+1+iCounter];

 iCounter += enhancedBrBc[nextTwoCharacters];

 }

}

Figure 4- 6: The BRQS algorithm code

4.2.3 The BRQS: Working Example

The input sample, the preprocessing phase and searching phase in sub-sections 4.2.3.1,

4.2.3.2 and 4.2.3.3 respectively, provide an example of the BRQS algorithm.

130

4.2.3.1 Input Sample

Text

Length (n) = 64

LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) = 12

LAVKLATAIVLA

Table 4-8: BRQS input sample

4.2.3.2 The BRQS Example’s Preprocessing Phase

Figure 4-6 calculates the enhanced brBc table for the input sample, as shown in Table 4-9:

Table 4- 9: The BRQS enhanced brBc preprocessing table

4.2.3.3 The BRQS Example’s Searching Phase

As explained in sub-section 4.2.2, the searching order of the BRQS algorithm is shown in the

Table 4-10.

Table 4- 10: The BRQS algorithm searching order

131

1. In the first attempt: the current text window starts from position 0 to position 11 as

shown in Table 4-11.

Table 4-11: The BRQS algorithm: the first attempt in the searching phase

• The BRQS Algorithm: the first comparison between t0 and p0 causes a match. The

searching phase in sub-section 4.2.3.3 moves to the next position t1 with p1 which

produces a mismatch.

• The preprocessing phase in sub-section 4.2.3.2 uses the brBc table for t12 and t13 (MG).

However, (MG) does not exist in Table 4-9, so the shifting value of (MG) is m+2 and in

this case is 14 positions.

2. In the second attempt: the current text window starts from position 14 to position 25 as

shown in Table 4-12.

Table 4-12: The BRQS algorithm: the second attempt in the searching phase

132

• The BRQS Algorithm: the first comparison in the second attempt is between t14 and p0

which creates a match. The searching phase in sub-section 4.2.3.3 moves forward and

compares the next positions until the comparison between t18 with p4 produces a

mismatch.

• The preprocessing phase in sub-section 4.2.3.2 uses the brBc table for t26 and t27 (VK).

The shifting value of (VK) from Table 4-9 is 10 positions.

3. In the third attempt: the current text window starts from position 24 to position 35 as

shown in Table 4-13.

Table 4-13: The BRQS algorithm: the third attempt in the searching phase

• The BRQS Algorithm: the first comparison in the third attempt is between t24 and p0

which creates a match. The searching phase in sub-section 4.2.3.3 starts from next

position t25 with p1 which matched. The algorithm moves forward to the next characters

and follows the same procedure until a whole match of the pattern is found in the text.

• After a whole match is found in the current attempt, the preprocessing phase in sub-

section 4.2.3.2 uses the brBc table for t36 and t37 (TH). However, (TH) does not exist in

Table 4-9, so the shifting value of (TH) is m+2 and in this case is 14 positions.

133

4. In the fourth attempt: the current text window starts from position 38 to position 49 as

shown in Table 4-14.

Table 4-14: The BRQS algorithm: the fourth attempt in the searching phase

• In BRQS, the first comparison in the fourth attempt is between t38 and p0 which generates

a mismatch.

• The preprocessing phase in sub-section 4.2.3.2 uses the brBc table for t50 and t51 (KP).

The shifting value of (KP) from Table 4-2 is 10 positions. However, (KP) does not exist

in Table 4-9, so the shifting value of (KP) is m+2 and in this case is 14 positions.

• The BRQS algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

 The results of the BRQS algorithm are presented and discussed in chapter 6.

134

4.3 The Odd and Even Algorithm (OE)

The OE algorithm searches the pattern in the text using a new searching order and if there is

a whole match or a mismatch, the enhanced brBc table is used as described in sub-section 4.1.1

(Klaib & Osborne, 2009b).

4.3.1 The Preprocessing Phase of the OE Algorithm:

The OE algorithm uses the same enhanced pre-processing phase as the BRBMH

algorithm as shown in sub-section 4.1.1.

4.3.2 The Searching Phase of the OE Algorithm:

The OE algorithm searches the pattern in the text using a new searching order. It starts with

the rightmost position, and then it moves toward the rear to compare the odd index positions of

pattern and text window characters. If all these characters match, it starts from right and

compares the whole even index pattern and text window characters. Figure 4-7 shows the OE

algorithm code for the preprocessing and searching phases.

135

void preprocessing_enhancedBrBc(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {

 int iCounter, jCounter;

 char *enhancedBrBcCharacters;

 for (iCounter = 0; iCounter < patternLength; ++iCounter){

 enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,2);

 }

 for (jCounter = 0; jCounter <= patternLength-2; ++jCounter){

 enhancedBrBc[jCounter] = patternLength - jCounter;

 }

}

void OddAndEven(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, enhancedBrBc[patternLength-1];

 char nextTwoCharacters;

 bool Odd=false;

 /* Preprocessing */

 preprocessing_enhancedBrBc(pattern, patternLength, enhancedBrBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 if(patternLength % 2 != 0){

 jCounter = patternLength-2;

 Odd=true;

 }

 else{

 jCounter = patternLength - 1;

 }

 while (jCounter >= 0 && pattern[jCounter] == text[iCounter + jCounter]){

 jCounter -= 2;

 if(jCounter == 1 && Odd == true)

 {

 jCounter = patternLength-1;

 }

 else{

 jCounter = patternLength-2;

 }

 }

 if (jCounter < 0){

 OUTPUT(iCounter);

 }

 nextTwoCharacters=text[patternLength+iCounter] + text[patternLength+1+iCounter];

 iCounter += enhancedBrBc[nextTwoCharacters];

 }

}

Figure 4-7: The OE algorithm code

4.3.3 The OE: Working Example

The input sample, the preprocessing phase and searching phase in sub-sections 4.3.3.1,

136

4.3.3.2 and 4.3.3.3 respectively, provide an example of the BRBMH algorithm.

4.3.3.1 Input Sample

Text

Length (n) = 64

LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) = 12

LAVKLATAIVLA

Table 4- 15: OE input sample

4.3.3.2 The OE Example’s Preprocessing Phase

Figure 4-7 calculates the enhanced brBc table for input sample, as shown in Table 4-15:

Table 4-15: The OE enhanced brBc preprocessing table

4.3.3.3 The OE Example’s Searching Phase

As explained in sub-section 4.3.2, the searching order of the OE algorithm is shown in Table

4-16.

137

Table 4- 16: The OE algorithm searching order

1. In the first attempt: the current text window starts from position 0 to position 11 as

shown in Table 4-17.

Table 4- 17: The OE algorithm: the first attempt in the searching phase

• The OE Algorithm: the first comparison between t11 and p11 causes a match. The

searching phase in sub-section 4.3.3.3 compares the next odd position t9 with p9 which

produces a mismatch.

• The preprocessing phase in sub-section 4.3.3.2 uses the brBc table for t12 and t13 (MG).

However, (MG) does not exist in Table 4-15, so the shifting value of (MG) is m+2 and in

this case is 14 positions.

2. In the second attempt: the current text window starts from position 14 to position 25 as

shown in Table 4-18.

138

Table 4-18: The OE algorithm: the second attempt in the searching phase

• The OE Algorithm: the first comparison in the second attempt is between t25 and p11

which creates a match. The searching phase in sub-section 4.3.3.3 moves forward and

compares the next odd index positions until the comparison between t21 with p7 produces

a mismatch.

• The preprocessing phase in sub-section 4.3.3.2 uses the brBc table for t26 and t27 (VK).

The shifting value of (VK) from Table 4-15 is 10 positions.

3. In the third attempt: the current text window starts from position 24 to position 35 as

shown in Table 4-19.

Table 4-19: The OE algorithm: the third attempt in the searching phase

• The OE Algorithm: the first comparison in the third attempt is between t35 and p11 which

creates a match. The searching phase in sub-section 4.3.3.3 moves forward and compares

139

the next odd index positions until the comparison between t25 with p1 produces a match.

It then returns and compares t34 with p10 and follows the same procedure for all even

indices until a whole match of the pattern is found in the text.

• After a whole match is found in the current attempt, the preprocessing phase in sub-

section 4.3.3.2 uses the brBc table for t36 and t37 (TH). However, (TH) does not exist in

Table 4-15, so the shifting value of (TH) is m+2 and in this case is 14 positions.

4. In the fourth attempt: the current text window starts from position 38 to position 49 as

shown in Table 4-20.

Table 4-20: The OE algorithm: the fourth attempt in the searching phase

• In OE, the first comparison in the fourth attempt is between t49 and p11 which generates a

mismatch.

• The preprocessing phase in sub-section 4.3.3.2 uses the brBc table for t50 and t51 (KP).

However, (KP) does not exist in Table 4-15, so the shifting value of (KP) is m+2 and in

this case is 14 positions.

• The OE algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of OE algorithm are presented and discussed in chapter 6.

140

4.4 The Randon String Matching Algorithm (RSMA)

The RSMA searches the pattern in the text using a new searching order and if there is a

whole match or a mismatch, the enhanced brBc table is used as described in sub-section 4.1.1

(Klaib & Osborne, 2009c).

4.4.1 The Pre-processing Phase of the RSMA Algorithm:

This RSMA algorithm uses the same enhanced pre-processing phase as the BRBMH

algorithm as shown in section 4.1.1.

4.4.2 The Searching Phase of the RSMA Algorithm

The RSMA algorithm starts with the rightmost character, and then it searches the pattern in

the text using a new searching order using a random value (Klaib & Osborne, 2009c).

A random step size S is generated, with 3 ≤ S < m, where m is the pattern length. The search

will then move along the pattern visiting every i
th

 character until reaching or passing the end of

the pattern, to return to the start, and repeat the process one character further down the pattern.

This is shown in Equation (2) and Equation (3) where Pi,j is the position visited on the j
th

step of

the i
th

 pass. Figure 4-8 shows the RSMA searching phase equations and Figure 4-9 shows the

RSMA algorithm code for the preprocessing and searching phases.

141

)........(3.. 1-i - m 0, =iP

 (4)..............................

Otherwise 1,0iP

S, ji,P if S - ji,P

 1,

+

≥

=+jiP

Figure 4- 8: The RSMA algorithm searching phase equations

142

void preprocessing_enhancedBrBc(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {

 int iCounter, jCounter;

 char *enhancedBrBcCharacters;

 for (iCounter = 0; iCounter < patternLength; ++iCounter){

 enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,2);

 }

 for (jCounter = 0; jCounter <= patternLength-2; ++jCounter){

 enhancedBrBc[jCounter] = patternLength - jCounter;

 }

}

void RSMA(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, nCounter, patternCounter, lastCharacter, enhancedBrBc[patternLength-1];

 char nextTwoCharacters;

 /* Preprocessing */

 preprocessing_enhancedBrBc(pattern, patternLength, enhancedBrBc);

 /* Searching */

 int aCounter = 1, bCounter = 0, randomValue, *newOrder;

 randomValue = rand() % patternLength +1;

 newOrder[0]=patternLength-1;

 for (iCounter=1; iCounter<= randomValue; i++){

 while(newOrder[aCounter]- randomValue >=0 && bCounter<patternLength)

 {

 newOrder[bCounter]=newOrder[aCounter]- randomValue;

 ++aCounter;

 ++bCounter;

 }

 if (bCounter < patternLength)

 {

 newOrder[bCounter]=newOrder[0]-randomValue;

 aCounter=bCounter;

 ++bCounter;

 }

 }

 iCounter = 0, jCounter=0, nCounter=0;

 while (iCounter <= textLength - patternLength) {

 jCounter = patternLength-1;

 while (jCounter >= 0 && pattern[newOrder[nCounter]] == text[iCounter + newOrder[nCounter]]){

 --jCounter;

 ++nCounter;

 }

 if (jCounter < 0){

 OUTPUT(iCounter);

 }

 nextTwoCharacters=text[patternLength+iCounter] + text[patternLength+1+iCounter];

 iCounter += enhancedBrBc[nextTwoCharacters];

 }

}

Figure 4- 9: The RSMA algorithm code

143

4.4.3 The RSMA: Working Example

The input sample in sub-section 4.4.3.1, the preprocessing phase in sub-section 4.4.3.2

and the searching phase in sub-section 4.4.3.3 provide an example of the RSMA algorithm.

4.4.3.1 Input Sample

Text

Length (n) = 64

LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) = 12

LAVKLATAIVLA

Random Division

Value (RD) =

3 (Random Value)

Table 4-21: RSMA Input Sample

4.4.3.2 The RSMA Example’s Preprocessing Phase

Figure 4-1 calculates the enhanced brBc table for input sample, as shown in Table 4-22:

Table 4-22: The RSMA enhanced brBc preprocessing table

144

4.4.3.3 The RSMA Example’s Searching Phase

As explained in section 4.4.2, in this example the random value size (S) is equal to three. The

RSMA algorithm uses Equations (2) and (3) in Figure 4-8 to calculate the new searching order as

shown in Table 4-23.

Table 4-23: The RSMA algorithm searching order

1. In the first attempt: the current text window starts from position 0 to position 11 as

shown in Table 4-24.

Table 4-24: The RSMA algorithm: the first attempt in the searching phase

• The RSMA Algorithm: the first comparison between t11 and p11 causes a match. The

searching phase in sub-section 4.4.3.3 compares the next position t8 with p8 which

produces a mismatch.

• The preprocessing phase in sub-section 4.4.3.2 uses the brBc table for t12 and t13 (MG).

However, (MG) does not exist in Table 4-22, so the shifting value of (MG) is m+2 and in

this case is 14 positions.

145

2. In the second attempt: the current text window starts from position 14 to position 25 as

shown in Table 4-25.

Table 4-20: The RSMA algorithm: the second attempt in the searching phase

• The RSMA Algorithm: the first comparison in the second attempt is between t25 and p11

which creates a match. The searching phase in sub-section 4.4.3.3 moves forward and

compares the next positions until the comparison between t19 with p5 produces a

mismatch.

• The preprocessing phase in sub-section 4.4.3.2 uses the brBc table for t26 and t27 (VK).

The shifting value of (VK) from Table 4-22 is 10 positions.

3. In the third attempt: the current text window starts from position 24 to position 35 as

shown in Table 4-26.

Table 4-21: The RSMA algorithm: the third attempt in the searching phase

146

• The RSMA Algorithm: the first comparison in the third attempt is between t35 and p11

which creates a match. The searching phase in sub-section 4.4.3.3 moves forward and

follows the same procedure for all indices until a whole match of the pattern is found in

the text.

• After a whole match is found in the current attempt, the preprocessing phase in sub-

section 4.4.3.2 uses the brBc table for t36 and t37 (TH). However, (TH) does not exist in

Table 4-22, so the shifting value of (TH) is m+2 and in this case is 14 positions.

4. In the fourth attempt: the current text window starts from position 38 to position 49 as

shown in Table 4-27.

Table 4-22: The RSMA algorithm: the fourth attempt in the searching phase

• In RSMA, the first comparison in the fourth attempt is between t49 and p11 which

generates a mismatch.

• The preprocessing phase in sub-section 4.4.3.2 uses the brBc table for t50 and t51 (KP).

However, (KP) does not exist in Table 4-22, so the shifting value of (KP) is m+2 and in

this case is 14 positions.

• The RSMA algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of RSMA algorithm are presented and discussed in chapter 6.

147

4.5 The Skip Shift New (SSN) Algorithm

The searching phase of our algorithms RSMA, OE, BRQS and BMH starts from the first m

positions to compare pattern and text characters and if a whole match or a mismatch it uses the

enhanced brBc table to shift the pattern depending on the next two characters to the rightmost

character as described in section 4.1.1. Starting from the first m positions may cause m

comparisons before the pattern is shifted to the right.

The preprocessing function of the SS and the ASS algorithms aim to find a possible starting

point before comparing the pattern with the text which reduces the number of comparisons.

However, the disadvantages of using the searching phase of the SS algorithm is the use of all text

and pattern alphabets to create the bucket for shifting the pattern as explained in sub-section

2.8.1 (Almazroi & Rashid, 2011) and then moves the pattern only a single position if the last

character does not exist in the pattern.. The disadvantages of using the searching phase of the

ASS algorithm is the use of all substrings positions with length L=logσ(m) for each leaf of T(x)

to shift the pattern as explained in sub-section 2.8.2 and then moves the pattern only a single

position if the T(x) does not exist in the pattern (Charras, et al., 1998)

An enhancement of the ASS algorithm was presented in 2011 through the ASSBR algorithm

(section 2.27) which uses the brBc table to shift the pattern using the next two characters to the

rightmost character which causes a bigger shifting value comparing to the original ASS

algorithm. However, the disadvantage of the ASSBR algorithm is the use of two preprocessing

function to determine the starting point and then to shift the pattern (Almazroi, 2011).

In our SSN algorithm, if there is a whole match or a mismatch the ASS table is used to define

a possible starting point to compare the text and the pattern characters. In addition, the ASS table

is used as a new preprocessing phase to shift the pattern as described in section 4.5.1.

148

4.5.1 The Preprocessing Phase of the SSN Algorithm:

The preprocessing phase of the SSN algorithm uses the ASS table only in contrast to the

ASSBR algorithm. It determines the starting position of each three character sequence in the

pattern as presented in the given example in sub-section 4.5.3.2. The shifting value of the three

letters depends on the following Equation (5) as shown in Figure 4-10:

)........(5....................position - m =alueShifitingV

Figure 4- 10: The SSN algorithm preprocessing phase equation

4.5.2 The Searching Phase of the SSN Algorithm:

In the searching phase, the algorithm first checks for a possible starting point by checking the

last three characters in the text window, if they exist in the pattern it aligns the pattern with the

text and then compares the remaining characters from the leftmost character to the rightmost

character. If a whole match or a mismatch is found it compares the next three characters to the

rightmost character with the ASS table instead of two characters in the same way as the

enhanced brBc table. If the next three characters exist in the pattern, then they are aligned again,

otherwise the pattern is shifted m+3 positions. An example is presented in sub-section 4.5.3.3.

Figure 4-11 shows the SSN algorithm code for the preprocessing and searching phases.

149

void preprocessing_enhancedASS(char *pattern, int patternLength, int enhancedBrBc[patternLength -1]) {

 int iCounter, jCounter;

 char *enhancedBrBcCharacters;

 for (iCounter = 0; iCounter < patternLength; ++iCounter){

 enhancedBrBcCharacters[iCounter]=pattern.substr(iCounter,3);

 }

 for (jCounter = 0; jCounter <= patternLength-3; ++jCounter){

 enhancedBrBc[jCounter] = patternLength - jCounter;

 }

}

void SSN(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, patternCounter, enhancedASS[patternLength-1];

 /* Preprocessing */

 preprocessing_enhancedASS(pattern, patternLength, enhancedASS);

 /* Searching */

 int wStart = 0, wEnd = patternLength -1;

 char currentThree, nextThree;

 while (wEnd <= textLength) {

 currentThree = text[wEnd-2] + text[wEnd-1] + text[wEnd];

 if ((wEnd +3) < textLength){

 nextThree = text[wEnd+1] + text[wEnd+2] + text[wEnd+3];

 }

 for(iCounter=0; iCounter<= patternLength-3; iCounter++) {

 if(currentThree == enhancedASS[iCounter])

 {

 wStart = wStart+enhancedASS[iCounter]-3;

 wEnd = wStart + (patternLength - 1);

 }

 else if(nextThree == enhancedASS[iCounter])

 {

 wStart = wStart+enhancedASS[iCounter];

 wEnd = wStart + (patternLength - 1);

 }

 else

 {

 wStart = wStart+ patternLength + 3;

 wEnd = wStart + (patternLength - 1);

 }

 }

 patternCounter = 0;

 while (wEnd >= wStart && pattern[patternCounter] == text[wStart]) {

 --wEnd;

 ++patternCounter;

 }

 if (wEnd < wStart){

 OUTPUT(iCounter);

 }

 wStart = wEnd+1;

 wEnd = wStart + (patternLength - 1);

 }

}

Figure 4- 11: The SSN algorithm code

150

4.5.3 The SSN: Working Example

The input sample, the preprocessing phase and searching phase in sub-sections 4.5.3.1,

4.5.3.2 and 4.5.3.3 respectively, provide an example of the SSN algorithm.

4.5.3.1 Input Sample

Text

Length (n) = 64

LRFDSLYKQILAMGLAVKANQHIVLAVKLATA

IVLATHTSPVVPVTTPGTKPDLNASFVSANAE

Pattern

Length (m) = 12

LAVKLATAIVLA

Table 4- 21: The SSN input sample

4.5.3.2 The SSN Example’s Preprocessing Phase

The preprocessing phase calculates the ASS table for input sample using three characters, as

shown in Table 4-22:

151

Character Alpha Skip table[character] = m-position

LAV {0} = 12

AVK {1} = 11

VKL {2} = 10

KLA {3} = 9

LAT {4} = 8

ATA {5} = 7

TAI {6} = 6

AIV {7} = 5

IVL {8} = 4

VLA {9} = 3

Table 4-22: The ASS table of the SSN algorithm

4.5.3.3 The SSN Example’s Searching Phase

As explained in sub-section 4.5.2, the searching phase checks for a possible starting point

by checking the last three characters in the text window. If it exists in the pattern it aligns the

pattern with the text and then compares the remaining characters from the leftmost character to

the rightmost character, otherwise it shifts pattern to the right depending on the next three

characters to the rightmost character.

1. In the first attempt: the last three characters in the current text window starts

from position 9 to position 11 as shown in Table 4-23.

152

Table 4-23: The SSN algorithm: the first attempt in the searching phase

• The SSN Algorithm: the (ILA) portion in positions t9, t10 and t11 does not exist in the ASS

table in Table 4-22.

• The new preprocessing phase uses the ASS table for t12, t13 and t14 (MGL). However,

(MGL) does not exist in Table 4-22, so the shifting value of (MGL) is m+3 and in this

case is 15 positions.

2. In the second attempt: the last three characters in the current text window starts from

position 24 to position 26 as shown in Table 4-24 (a).

Table 4-24 (a): The SSN algorithm: the second attempt in the searching phase

• The SSN Algorithm: the (LAV) portion in positions t9, t10 and t11 exists in the ASS table.

• The searching phase in this attempt aligns the pattern to match the similar portions as

shown in Table 4-24 (b).

153

Table 4-25(b): The ASS_NEW algorithm: the second attempt in the searching phase

• The searching phase compares the remaining characters from the leftmost character to the

rightmost character starting from a comparison between t27 with P3 and moving forward

until a comparison between t35 with P11 which causes a whole match.

• After a whole match is found in the current attempt, the new preprocessing phase uses the

ASS table for t36, t37 and t38 (THT). However, (THT) does not exist in Table 4-22, so the

shifting value of (THT) is m+3 and in this case is 15 positions.

3. In the third attempt: the last three characters in the current text window starts from

position 48 to position 50 as shown in Table 4-25.

Table 4-26: The ASS_NEW algorithm: the third attempt in the searching phase

• The SSN Algorithm: the (GTK) portion in positions t48, t49 and t50 does not exist in the

ASS table.

• The new preprocessing phase uses the ASS table for t51, t52 and t53 (PDL). However,

154

(PDL) does not exist in Table 4-22, so the shifting value of (PDL) is m+3 and in this case

is 15 positions.

• The SSN algorithm ignores the pattern shifting since the pattern is longer than the

remaining text.

The results of SSN algorithm are presented and discussed in chapter 6.

4.6 Summary

This chapter illustrated five new string matching algorithms: The BRBMH, BRQS, OE,

RSMA and the SSN algorithms.

The BRBMH algorithm uses a searching process in the same way as the BMH searching

phase and if there is a whole match or a mismatch it uses the enhanced brBc table of the Berry-

Ravindran algorithm. The BRQS algorithm uses a searching process in the same way as the QS

searching phase and if there is a whole match or a mismatch it uses the pre-processing phase of

the BRBMH algorithm. The OE algorithm searches the pattern in the text using a new searching

order by comparing the odd indices first and then even indices and if there is a whole match or a

mismatch it uses the pre-processing phase of the BRBMH algorithm. The RSMA algorithm

starts with the rightmost character, and then it searches the pattern in the text using a new

searching order using a random value with size S to visit all pattern character positions and if

there is a whole match or a mismatch it uses the pre-processing phase of the BRBMH algorithm.

Finally, the SSN algorithm uses the ASS table to define a possible starting point to compare the

text and the pattern characters. If the last three characters in the current text window or the next

three characters exists in the ASS table, the pattern is aligned and compared otherwise the ASS

table is used again to shift the pattern.

155

CHAPTER 5: IMPLEMENTATION

5.1 System Specification

In this project, sequential algorithms have been implemented and tested on our PC (Windows

7 64-bit, RAM is 4.00GB and CPU is Intel Core i3 2.40 GHz). The chemical toolkit is developed

using Dreamweaver CS6 using HTML/JavaScript, MySQL and PHP code.

The parallel algorithm part was implemented and tested at the University of Science

Malaysia (USM) on two units of the Stealth Cluster. Each unit is Sun Fire V210 which contains

2 x UltraSPARC IIIi 1002 Mhz processors, 1MB L2 Cache 2GB of RAM. They use the

following software: Solaris9 (SunOS 2.9) as an operating system.

5.2 Chemical Structures Toolkit Implementation

The toolkit implementation is presented in four stages as explained in sub-sections 5.2.1,

5.2.2, 5.2.3 and 5.2.4.

5.2.1 Downloading and Mining Structures

The NMRShiftDB database contains more than forty thousand records representing different

molecular structures (Kuhn, 2010).

The extraction process of structures, as mentioned in chapter 3 (section 3.3), is done via

search by Keyword/Category such as antiviral activity, antifungal activity and antibacterial

activity. Figure C-1 shows a sample of extracted structures.

156

5.2.2 Building the Local Database

Downloaded structures from the previous stage are stored in the local database. The local

database includes 78 relational tables to connect chemical molecules and their corresponding

information.

5.2.2.1 Local Database Design

Our Local Database schema is shown in Figures C-2, C-3, C-4 and C-5.

5.2.2.2 Table Format and Description

In this section we provide descriptions for three tables as examples while the remaining

tables are shown in Appendix D. These main tables are related to each other as they store the

details of the chemical structure such as keyword_id, keyword, molecule_id, molecule_weight,

SMILES_string and so on.

1- Molecule Table

This table contains seven fields storing the main information about a particular molecule. An

example is given in Table 5-1:

Table 5- 1: Molecule table design and example

157

The following is a brief explanation for each field:

• MOLECULE_ID: is a unique number assigned to each molecule in the database.

• Date: is the date and time when the molecule was inserted in the NMRShiftDB.

• MOLECULAR_WEIGHT: is the total weight of all molecular atoms and can be

presented by mass units (u) where u is the mass of 1/12 of Carbon atom (C
12

) (Steven,

2011; NIST, 2013).

• SMILES_STRING: is the chemical structure presentation in sequence format (Daylight

Chemical Information Systems, 2008).

• USER_ID: is a unique number assigned for each user using the NMRShiftDB database.

• SAR: is the Structure Activity Relationships (SAR) which presents relations between the

molecular structure and biological or physicochemical activity of chemicals (Hulzebos et

al., 2001).

• COMMENT: any additional information can be added about the molecule.

 2- Keyword Table

This table stores the keyword information about a particular molecule. It contains 3 fields

as shown in Table 5-2. Note that the entire keyword field in our database should be one of the

antimicrobial keywords mined in section 5.2.

Table 5- 2: Keyword table design and example

158

3- Molecule-Keyword Table

This table presents the relationship between the Keyword and Molecule tables which

includes two primary key fields as shown in Table 5-3:

Table 5- 3: Molecule_Keyword table design and example

5.2.3 Using JME Editor, SMILES and the SSN Algorithm

The implementation of this stage includes the development of the chemical searching toolkit,

which allows users to draw the molecular structure and then converts it into a structure in

SMILES format. Figure C-6 shows the toolkit login page and Figure C-7 shows the searching

toolkit webpage. The SMILES’s format for any chemical structure can either be typed straight

into the specified text field or can be drawn using the JME editor after clicking the “Draw

molecule” button. After the drawn chemical structure is submitted, it is converted to SMILES

format as shown in Figure C-8. The “Check SMILES” button in Figure C-9 allows users to

check whether the entered SMILES sequence is correct or not. Finally, the “Search structure

using the Skip Shift New Algorithm” button searches the structure pattern in the local database

using the SSN algorithm.

5.2.4 Implementation of Similarity Measuring

In this phase the proportion of matching characters is used as a measure of the similarity

percentage between two structures.

159

Table 5-4 shows an example where the pattern structure is “C3CCC4” and the text structure

is “OCCCC1CC(OC)C2OC(CC2(C1))C3CCC4OCOC4(C3)”, then the implementation process

will be done according to the following steps:

1) Find the length of the searched text and the searched pattern:

OCCCC1CC(OC)C2OC(CC2(C1))C3CCC4OCOC4(C3)� Text Length = 40

C3CCC4� Pattern Length = 5

Table 5- 4: Finding the text and pattern length for similarity measuring

2) Calculate the proportion of matching (abS) characters by dividing the pattern length

on the text length as following:

125.0
40

5

LengthText

LengthPattern
 ===abS

The above example shows that the searched pattern is only similar to the compared structure

by 12.5% and different by 87.5%.

5.3 Parallel Algorithm Implementation

The parallel algorithm is designed using the OpenMP model (shared memory model) and the

MPI model (distributed memory model). Both models were implemented and tested at the

University of Science Malaysia (USM) on a Stealth Cluster which consists of four Sun Fire

V210 containing 2 x UltraSPARC IIIi 1002 Mhz processors, 1MB L2 Cache 2GB of RAM. They

use the SunOS 2.9 operating system and Sun Studio 12 as a Compiler.

5.3.1 OpenMP Model Implementation

The OpenMP model is implemented on a single unit of the Sun Fire V210 using four threads.

Microsoft Visual Studio 2013 Express is used to write the C++ code of the OpenMP model. The

160

OpenMP model should be activated on Microsoft Visual Studio before writing the program as

shown in Figure C-10.

The results of the OpenMP model of the SSN algorithm are presented and discussed in

chapter 6. Table 5-5 lists the main OpenMP functions which are used to parallelize the SSN

algorithm:

Function The function’s job

#pragma omp parallel To define an OpenMP parallel region

#pragma omp parallel for The for refers that we are parallelizing the for loop.

#pragma omp parallel for

 shared(patternLength, shiftArray,

iCounter)

num_threads(NUM_THREADS)

Shared will specify the number of shared variables

used by the threads and num_threads specifies the

number of threads to use for the parallel portion.

#pragma omp critical Specifies a region of code that must be executed by

only one thread at a time. If a thread is currently

executing inside a CRITICAL region and another

thread reaches that CRITICAL region and attempts

to execute it, it will block until the first thread exits

that CRITICAL region.

#pragma omp for schedule (static, chunk)

Describes how iterations of the loop are divided

among the threads in the team. The default

schedule is implementation dependent. In our

program we have used the STATIC keyword where

loop iterations are divided into pieces of size chunk

and then statically assigned to threads.

#pragma omp parallel

num_threads(NUM_THREADS)

Specifies the number of threads that should execute

the following block. It is used in the mean

searching phase where if conditions have been

applied.

Table 5- 5: The main OpenMP functions which used to parallelize the SSN algorithm

161

5.3.2 MPI Model Implementation

The MPI model is implemented on two units of the Sun Fire V210 using four processors.

Microsoft Visual Studio 2013 Express is used to write the C++ code of the MPI model. The HPC

package should be installed from the Microsoft website to add the MPI model library to

Microsoft Visual Studio before writing the program as shown in Figure C-11. Table 5-6 shows

the main seven functions used by the MPI model to parallel the SSN algorithm:

Function The function’s job

MPI_Init(); Initializes the MPI program

MPI_Comm_size(MPI_COMM_WORLD,

&nproc);

Uses objects called communicators and groups to

define which collection of processes may

communicate with each other. It determines the

number of processes

MPI_Comm_rank(MPI_COMM_WORLD,

&rank);

Within a communicator, every process has its own

unique, id (label) assigned by the system when the

process initializes.

MPI_Scatter (buffer, count, MPI_CHAR,

recvBuf, scount, MPI_CHAR, 0,

MPI_COMM_WORLD);

Involves data decomposition and division among

the master and slave processes e.g. spreading an

array to all processors.

MPI_SEND(buffer, count, MPI_CHAR,

recvBuf, rank, MPI_COMM_WORLD);

Sends a message to a different process within a

communicator

MPI_RECV(buffer, count, MPI_CHAR,

sendBuf, rank, MPI_COMM_WORLD,

status);

Receives a message from different process within

a communicator

MPI_Finalize (); Terminates the MPI execution environment

Table 5- 6: The main seven functions of MPI which used to parallelize the SSN algorithm

162

5.4 Summary

This chapter showed the implementation of the chemical toolkit and the parallel algorithm.

Four stages were used to implement the toolkit. The first stage included downloading and mining

structures from the NMRShiftDB. The second stage included the local database building process.

The third stage included the implementation of connecting the toolkit to the local database and

searching structures using JME Editor, SMILES and the SSN algorithm. The fourth stage

included the similarity measurement between structures using the proportion of matching

characters. The parallel algorithm was implemented using the OpenMP model (shared memory

model) and the MPI model (distributed memory model).

163

CHAPTER 6: RESULTS AND DISCUSSION

To evaluate our new algorithms, and to compare them to standard algorithms, we

implemented our algorithms and some of the standard algorithms and tested them on DNA and

protein sample files by taking an average of 10 executions for each pattern length.

This is a well-established approach, heavily used by:

• (Sheik et al.) testing the SSABS algorithm in 2004;

• (Thathoo et al.) testing the TVSBS algorithm in 2006;

• (Huang et al.) testing the ZTBMH algorithm in 2008;

• (Huang et al.) testing the BRFS algorithm in 2008;

• (Almazroi and Rashid) testing the BRSS algorithm in 2011;

• (Almazroi) testing the ASSBR algorithm in 2011.

These were all tests of simple sequential implementations. We also implemented and tested the

best algorithm using the OpenMP model on a single Sun Fire unit and using the MPI model on

two Sun Fire units at the University of Science Malaysia (USM). Finally, we used our best

algorithm the SSN algorithm to develop the chemical structure searching toolkit.

This Chapter consists of the following sections: section 6.1 shows the results of testing

sequential algorithms on short DNA pattern sequences; section 6.2 shows the results of testing

sequential algorithms on long DNA pattern sequences; section 6.3 shows the results of testing

sequential algorithms on short protein pattern sequences; section 6.4 shows the results of testing

sequential algorithms on long protein pattern sequences, section 6.5 shows the results of testing

parallel algorithms on short and long DNA and protein pattern sequences on different numbers

164

of processors; section 6.6 shows the results of testing the chemical toolkit using the SSN

algorithm; and finally section 6.7 discusses our research results.

6.1 Testing Algorithms Using a Short DNA Pattern

A sample file of FASTA format DNA sequences was downloaded from the U.S. National

Centre of Biotechnology Information (NCBI, 2012). The total number of characters of all

sequences in the downloaded sample file is 661080 characters. Our algorithms, and some

standard algorithms were applied to this file and three types of tests implemented. The first test

determines the number of comparisons, the second one calculates the number of attempts and the

final one finds the elapsed search time. Sub-sections 6.1.1, 6.1.2 and 6.1.3 show the results and

analysis of these tests on the short DNA pattern.

6.1.1 The Number of Comparisons Using a Short DNA Pattern

The total numbers of comparisons when searching for a DNA pattern using a short pattern

length is shown in Table 6-1:

Pattern

Length
SSN RSMA OE BRQS BRBMH BRFS TVSBS QS BMH

4 195816 274575 263175 240175 275439 276175 278244 305023 341347

7 86538 195102 180369 171790 194777 197790 198852 204529 269826

10 80367 139168 140069 134835 138618 137131 147481 193313 247906

13 72641 104696 101580 103342 106636 105320 115409 179328 237386

16 62120 101014 97257 94281 102481 99815 111263 140112 204237

19 51914 79199 63472 76972 79405 83018 90771 114326 173499

22 48795 67201 65586 66230 68346 73538 80807 109708 146909

25 45444 63881 56913 59509 64315 70794 78363 101637 127133

28 45418 50898 50914 51164 52701 55291 60140 83130 100152

31 41269 50158 48581 50142 50569 52377 59177 76001 93895

Table 6- 1: The number of comparisons for a short DNA pattern

165

From Table 6.1, we can see that our hybrid algorithms show a significant improvement

over the original single algorithms in the number of comparisons. For example, the BMH

algorithm processes the comparison for a DNA pattern with length 4 in the sample DNA file

341347 times, while the hybrid BRBMH algorithm processes the same pattern 275439 times.

Similarity, the QS algorithm processes the same sample 305023 times while the hybrid BRQS

algorithm processes it 240175 times.

Our algorithms are also more efficient than the TVSBS hybrid algorithm, for example,

the odd and even algorithm processes a pattern with length 19 in the DNA sample file with

63472 comparisons while the TVSBS algorithm requires 90771.

Our algorithm also uses fewer comparisons than the BRFS algorithm. For example,

searching a pattern with length 28 using the BRFS algorithm requires 55291 comparisons while

the RSMA algorithm only requires 50898 times.

The best algorithm in this test is the SSN algorithm. It shows a significant improvement

over all algorithms, for example it searches a pattern with length 31 using 41269 comparisons

while the RSMA, OE, BRQS, BRBMH, BRFS, TVSBS, QS and BMH algorithms require

50158, 48581, 50142, 52377, 50569, 59177, 76001 and 93895 comparisons respectively.

6.1.2 The Number of Attempts Using a Short DNA Pattern

Table 6-2 shows the numbers of attempts in the same DNA sample file using a short pattern

length:

166

Pattern

Length
SSN RSMA OE BRQS BRBMH BRFS TVSBS QS BMH

4 94623 161219 161219 161219 161219 161219 161003 231464 243417

7 66368 115993 115993 115993 115993 115993 115795 171707 202675

10 49942 88242 88242 88242 88242 89871 90077 159765 171911

13 39396 67406 67406 67406 67406 71476 71351 139545 155845

16 32257 60969 60969 60969 60969 66861 67164 109967 138584

19 27488 49718 49718 49718 49718 55752 55472 95645 121018

22 23833 42538 42538 42538 42538 49199 49318 91843 107653

25 20958 41291 41291 41291 41291 49136 49134 86276 99130

28 18529 33212 33212 33212 33212 37264 37270 65285 92937

31 16612 29249 29249 29249 29249 35100 35268 59555 84363

Table 6- 2: The number of attempts for a short DNA pattern

Numbers of attempts for all algorithms are counted when there is a whole match or a

mismatch encountered which shifts the pattern and starts a new attempt.

The pre-processing phase makes a significant contribution to the total number of attempts.

Our algorithms: RSMA, OE, BRQS and BRBMH algorithms use the enhanced Berry-Ravindran

pre-processing phase which means they have the same number of attempts for all algorithms on

the same pattern length.

The different number of attempts in our algorithms compared to the BRFS, TVSBS, QS and

BMH algorithm is due to the preprocessing phase used in our algorithms. The SSN algorithm is

the best one in this test as well. As an example our SSN algorithm requires 32257 attempts when

searching a pattern with length 16 while the RSMA, OE, BRQS and BRBMH algorithms require

60969 attempts. The BRFS, TVSBS, QS and BMH algorithms require 60969, 66861, 67164,

109967, 90685 and 138584 attempts respectively using the same pattern length.

167

6.1.3 The Average Elapsed Search Time Using a Short DNA Pattern

Figure 6-1 and Figure 6-2 show the elapsed search time when searching for the search pattern

in the same DNA sample file using a short pattern length:

Figure 6- 1: BRQS and BRBMH searching time using a short DNA pattern

168

Figure 6- 2: SSN, RSMA and OE searching time using a short DNA pattern

Our hybrid algorithms register a lower time. As an example in Figure 6-1, the BMH

algorithm searches the chosen DNA pattern with length 7 in the DNA sample file in 92.283

seconds while the hybrid BRBMH searches the same pattern in 36.617 seconds. The QS

algorithm finds the same sample in 68.907 seconds while the hybrid BRQS algorithm finds it in

34.593 seconds. Our algorithms such as the SSN, RSMA and OE algorithms find the pattern in

less time from the TVSBS and BRFS algorithms. As an example in Figure 6-2, the SSN

algorithm searches pattern with length 4 in the same sample data file in 7.731 seconds while the

RSMA, OE, BRFS and TVSBS algorithms search the same pattern length in 11.843, 12.018,

18.741 and 17.928 seconds respectively.

169

6.2 Testing Algorithms Using a Long DNA Pattern

The same sample file of DNA sequences in FASTA format is used to test the algorithms on a

long DNA pattern length. Sub-sections 6.2.1, 6.2.2 and 6.2.3 show the results and analysis of

tests on a long DNA pattern.

6.2.1 The Number of Comparisons Using a Long DNA Pattern

The following Table 6-3 shows the total number of comparisons when searching for a DNA

pattern using a long pattern length:

Pattern

Length
SSN RSMA OE BRQS BRBMH BRFS TVSBS QS BMH

32 40545 48953 46682 48712 48569 51982 58842 70688 89585

48 28723 30057 29479 28290 30345 46930 57556 63650 76379

64 24096 27982 28936 25618 28964 43329 55898 45989 65854

96 17892 19307 19150 17483 19906 42078 51578 32621 49769

128 13437 14450 14410 12803 14714 32060 38821 24002 38208

192 7024 7500 7568 6998 7607 21774 24114 18839 29614

256 5254 5688 5703 5778 5794 16304 17553 15035 21147

384 3672 3873 3909 3906 3942 11983 13321 10516 18335

512 3412 3670 3468 3305 3588 12103 14957 6774 11063

768 2487 2547 2549 2580 2620 6761 7445 5885 9168

1024 2224 2268 2268 2347 2313 5460 6384 5234 8081

Table 6- 3: The number of comparisons for a long DNA pattern

Our hybrid algorithms show a significant important on the long DNA pattern as well. The

OE algorithm searches the DNA pattern with length 32 in the sample file with 46682

comparisons while the BMH requires 89585 comparisons. The TVSBS algorithm searches the

170

same pattern length using 48305 comparisons. A longer pattern such as the length 512 requires

3305 comparisons by the BRQS while the QS algorithm needs 6774 comparisons.

The SSN algorithm searches a pattern with length 768 using 2487 comparisons while the

RSMA, OE, BRQS, BRBMH, BRFS, TVSBS, QS and BMH algorithms require 2547, 2549,

2580, 2620, 6761, 7445, 5885 and 9168 comparisons respectively.

6.2.2 The Number of Attempts Using a Long DNA Pattern

Table 6-4 shows the numbers of attempts in the same sample file using a long pattern length:

Pattern

Length
SSN RSMA OE BRQS BRBMH BRFS TVSBS QS BMH

32 16191 28939 28939 28939 28939 34765 34726 48044 82118

48 10926 19509 19509 19509 19509 32687 33428 46192 73852

64 7906 17298 17298 17298 17298 31511 31675 34956 58458

96 5177 11718 11718 11718 11718 30239 30028 32259 49882

128 3829 8523 8523 8525 8523 22683 22057 28063 37540

192 2784 4858 4858 4858 4858 15206 15548 24839 26458

256 2086 3541 3541 3541 3541 11002 10948 16810 18917

384 1430 2287 2287 2287 2287 8006 8020 9076 10625

512 1136 1846 1846 1846 1846 8316 8314 8641 9130

768 779 1153 1153 1153 1153 4069 4154 6095 7268

1024 599 837 837 837 837 2977 3297 4304 5361

Table 6- 4: The number of attempts for a long DNA pattern

Again RSMA, OE, BRQS, BRBMH and BRFS shift the pattern using the same pre-

processing phase, and therefore have the same number of attempts for each pattern length. They

also use fewer attempts than the BRQS, TVSBS, QS and BMH algorithms. For example, the

RSMA algorithm searches a pattern with length 48 in 19509 attempts while the BMH algorithm

searches the same pattern in 73852 attempts. The SSN algorithm searches the same pattern in

10926 attempts.

171

6.2.3 The Average Searching Elapsed Time Using a Long DNA Pattern

Figures 6-3, 6-4 and 6-5 show the elapsed search used to search the enquired pattern in the

same DNA sample file using a long pattern length:

Figure 6- 3: The average searching elapsed time for a long DNA (32-256)

172

Figure 6- 4: The BRQS, BRBMH, QS and BMH searching time for a long DNA (384-1024)

Figure 6- 5: The SSN, RSMA and OE searching time for a long DNA (384-1024)

173

The BRQS and the BRBMH search a pattern with length 32 in 10.7666 and 11.495 seconds

respectively while the QS and the BMH search the same pattern in 25.164 and 33.004

respectively.

The SSN algorithm searches the same pattern length in 7.864 seconds while the OE, BRFS

and TVSBS algorithms search the same pattern in 12.863, 17.923 and 17.15 seconds

respectively.

6.3 Testing Algorithms Using a Short Protein Pattern

A sample file of FASTA format protein sequences was downloaded from the SwissProt

Database (UniProt Consortium, 2013). The total number of characters of all sequences in the

downloaded sample file is 1006778 characters. The same algorithms used to search DNA

sequences in section 6.1 and 6.2 were used again to search for amino acids sequences in the

downloaded sample file. Sub-sections 6.3.1, 6.3.2 and 6.3.3 show the results and analysis of tests

on a short protein pattern.

6.3.1 The Number of Comparisons Using a Short Protein Pattern

The following Table 6-5 shows the numbers of comparisons between the chosen patterns

with whole sequences in the protein sample file using a short pattern length:

174

Pattern

Length
SSN RSMA OE BRQS BRBMH BRFS TVSBS QS BMH

4 143877 191073 191078 185328 191053 185328 191071 270395 237848

7 100810 122636 121243 122530 122608 122530 122599 160645 154818

10 77593 99493 99621 94415 99602 94474 99742 116987 117756

13 63555 92390 86677 80828 92101 80862 92207 107765 111769

16 54165 78730 78827 67664 77825 67779 77893 91054 97101

19 47083 59886 59733 56609 59432 56691 59534 83225 87702

22 41724 57629 58245 50904 57440 51294 58464 76229 75425

25 37328 46270 42193 43988 46049 44315 46137 71640 72248

28 33673 43890 44054 40330 43861 40658 44049 59379 65277

31 30811 37931 36807 36030 37819 36294 38319 53115 58126

Table 6- 5: The number of comparisons for a short protein pattern

Our hybrid algorithms achieve better results than the original algorithms as shown in Table

6-5. The BMH algorithm requires 46795 more comparisons than the BRBMH algorithm when

searching for a pattern of length 4. The QS when searching for a pattern of length 13 requires

26937 more comparisons than the BRQS algorithm. When searching for a pattern of length 22

the TVSBS requires 835 more comparisons than the RSMA algorithm. The BRFS algorithm

requires 6985 more comparisons than the RSMA algorithm when searching a pattern with length

28.

6.3.2 The Number of Attempts Using a Short Protein Pattern

Table 6-6 shows the numbers of attempts where attempts are counted when the pattern is

shifted using a short protein pattern length:

175

Pattern

Length
SSN RSMA OE BRQS BRBMH BRFS TVSBS QS BMH

4 143834 175258 175258 175258 175258 175258 175256 258512 213554

7 100672 115674 115674 115674 115674 115674 115674 156107 139026

10 77432 89193 89193 89193 89193 89277 89281 110505 105585

13 62925 76481 76481 76481 76481 76533 76511 97997 100402

16 52941 64029 64029 64029 64029 64114 64095 82208 87126

19 45662 53390 53390 53390 53390 53460 53464 78922 78708

22 40168 48164 48164 48164 48164 48624 48619 73918 67674

25 35805 41558 41558 41558 41558 41791 41791 68052 63437

28 32316 38098 38098 38098 38098 38429 38429 55112 58642

31 29425 34005 34005 34005 34005 34226 34219 50118 52246

Table 6- 6: The number of attempts for a short protein pattern

Table 6-6 shows that the pre-processing phase of RSMA, OE, BRQS and BRBMH

algorithms all have the same number of attempts for each length of short protein pattern lengths,

but they still provide better results than hybrid algorithms in most cases. The SSN algorithm

shows better results than all algorithms. As an example, there is a difference of 331 attempts

between RSMA and TVSBS with pattern length 28 and a difference of 6113 attempts between

the SSN and the BRFS algorithms. Additionally, they perform better than original algorithms

such as QS and BMH. For example, the OE algorithm searches a pattern with length 7 by 38296

attempts less than the BMH algorithm.

6.3.3 The Average Elapsed Search Time Using a Short Protein Pattern

Figures 6-6 shows the average elapsed search time using a short pattern length on protein

sample file:

176

Figure 6- 6: The average searching elapsed time for a short protein pattern (4 - 31)

Figure 6-6 shows the shorter elapsed search time for our SSN algorithm compared to other

well-known ones. The SSN is faster than the RSMA, OE, BRQS, BRBMH, BRFS, TVSBS, QS

and BMH algorithms on patterns with length 7 by 37.7%, 52.9%, 39.6%, 31.5%, 65.2%, 61.1%,

70.4% and 71.4% respectively, and with length 25 by 26.6%, 31.4%, 26.3%, 22.7%, 52.8%,

47.5%, 64.5% and 65.6% respectively.

6.4 Testing Algorithms Using a Long Protein Pattern

The same sample file of protein sequences in FASTA format is used to test the algorithms on

a long protein pattern length. Sub-sections 6.4.1, 6.4.2 and 6.4.3 show the results and analysis of

tests on a long protein pattern.

177

6.4.1 The Number of Comparisons Using a Long Protein Pattern

Table 6-7 shows the numbers of comparisons between the chosen patterns within the protein

sample file using a long pattern length:

Pattern

Length
SSN RSMA OE BRQS BRBMH BRFS TVSBS QS BMH

32 29907 36967 35878 34952 36867 35215 37137 50704 55238

48 20808 27003 26822 24803 26798 25283 27459 44850 51557

64 15940 18733 18702 18104 18677 18318 19047 32501 46737

96 10843 15076 15293 13151 15111 13342 15408 31982 42174

128 8419 10670 10773 9857 10695 10422 11385 30727 40867

192 5999 7442 7493 7296 7453 7683 7847 29458 37073

256 4754 5873 5893 5756 5876 6549 6703 29298 34201

384 3528 4601 4592 4381 4590 5615 6021 24463 32571

512 3048 3931 3928 3568 3955 4728 5364 21846 30772

768 2535 2720 2717 2708 2718 4305 4377 19044 28162

1024 2294 2400 2400 2403 2399 4025 4034 17027 26190

Table 6- 7: The number of comparisons for a long protein pattern

The BMH algorithm requires 24554 more comparisons than the RSMA algorithm to search a

pattern with length 48 in the sample protein file. When searching for a protein pattern with

length 512 in the sample file, the BRQS algorithm requires 3931 comparisons while TVSBS

requires 5364 comparisons. In longer patterns the QS algorithm searches a pattern with a length

768 using 16327 more comparisons than the Odd and Even algorithm.

The BRFS algorithm searches a pattern with a length 1024 using 1731 more comparisons

than the SSN algorithm. Our hybrid algorithms show a significant improvement on the long

protein pattern as well.

178

6.4.2 The Number of Attempts Using a Long Protein Pattern

Table 6-8 shows the numbers of attempts in the sample file using a long pattern length:

Pattern

Length
SSN RSMA OE BRQS BRBMH BRFS TVSBS QS BMH

32 28586 33024 33024 33024 33024 33247 33247 47844 49751

48 19484 23371 23371 23371 23371 23829 23829 41635 46257

64 14770 17073 17073 17073 17073 17283 17283 31078 43008

96 9944 12330 12330 12330 12330 12570 12570 30665 41111

128 7480 9238 9238 9238 9238 9725 9728 29293 39100

192 4974 6726 6726 6726 6726 7105 7105 28211 37267

256 3699 5214 5214 5214 5214 5966 5966 27984 35966

384 2430 3741 3741 3741 3741 4981 5003 19905 33413

512 1778 2866 2866 2866 2866 4015 4012 17788 31958

768 1167 1815 1815 1815 1815 3334 3334 16536 29962

1024 850 1313 1313 1313 1313 2859 2859 15474 26800

Table 6- 8: Number of Attempts for Long Protein Pattern

The BMH algorithm searches the pattern of length 48 in the sample file in 46257 attempts

while the BMBMH algorithm needs 23371. The BRQS algorithm searches a pattern of length

192 in 30541 fewer attempts than the QS algorithm. The SSN algorithm searches a pattern of

length 1024 in 1835 fewer attempts than the BRFS algorithm. Our algorithms require fewer

attempts than the BRFS, TVSBS, BRQS and BMH algorithms due to their pre-processing phase.

6.4.3 The Average Elapsed Search Time Using a Long Protein Pattern

Figure 6-7, Figure 6-8 and Figure 6-9 show the elapsed search time in the protein sample file

using a long pattern length:

179

Figure 6- 7: BRBMH and BRQS searching time using a long protein pattern

Figure 6- 8: RSMA and OE searching time using a long protein pattern

180

Figure 6- 9: The SSN searching time using a long protein pattern

The SSN algorithm shows better average elapsed search time than the RSMA, OE, BRQS,

BRBMH, BRFS, TVSBS, QS and BMH algorithms. The difference is obvious in short patterns,

although the difference in searching time is very small between searching algorithms in long

patterns. As an example, the BMH searches a pattern with length 32 in 26.641 seconds while the

hybrid BRBMH is searching the same pattern in 13.685 seconds. Another example, the QS

algorithm searches the same sample in 25.715 seconds while the hybrid BRQS algorithm

searches in 13.304 seconds. The SSN algorithm is faster than the RSMA, OE, BRQS, BRBMH,

BRFS, TVSBS, QS and BMH algorithms on patterns with length 48 by 21.7%, 20.9%, 19.1%,

20.3%, 46.2%, 41.1%, 61.2% and 63.25% respectively, and with length 1024 by 16.5%, 16.5%,

10.3%, 13.9%, 26.9%, 23.9%, 41.8% and 50.4% respectively. Our algorithms such as the RSMA

algorithm search the pattern in less time from the TVSBS and the BRFS algorithms.

181

6.5 Testing Parallel Algorithms

Four parallel experiments were implemented and tested. Each one represents the average of

ten execution times for parallel pattern searching. The first test in sub-section 6.5.1 shows the

OpenMP model searching DNA sequences file. The second test in sub-section 6.5.2 shows the

OpenMP model searching protein sequences file. The third test in sub-section 6.5.3 shows the

MPI model searching DNA sequences file and finally the fourth test in sub-section 6.5.4 shows

the MPI model searching protein sequences file.

6.5.1 Testing the OpenMP Model on DNA Sequences File

Figure 6-15 shows the average elapsed search time in the DNA sample file using the

OpenMP parallel model:

Figure 6- 10: OpenMP model: the average elapsed search time on DNA sequences file

182

6.5.2 Testing the OpenMP Model on Protein Sequences File

Figure 6-16 shows the average elapsed search time in the protein sample file using the

OpenMP parallel model:

Figure 6- 11: OpenMP model: the average elapsed search time on protein sequences file

6.5.3 Testing the MPI Model on DNA Sequences File

Figure 6-17 shows the average elapsed search time in the DNA sample file using the MPI

parallel model:

183

Figure 6- 12: MPI model: the average elapsed search time on DNA sequences file

6.5.4 Testing the MPI Model on Protein Sequences File

Figure 6-18 shows the average elapsed search time in the protein sample file using the MPI

parallel model:

Figure 6- 13: MPI model: the average elapsed search time on protein sequences file

184

6.6 Testing the Chemical Searching Toolkit Using the SSN Algorithm

The chemical searching toolkit as described in section 5.4 allows user to either input the

chemical structure in SMILES format or draw the structure using the JME editor. Our SMILES

checking tool checks if the entered SMILES is correct or not. The searching button uses the SSN

string matching algorithm to search structures in the local database and list all similar structures

with the similarity percentage using the proportion of matching characters. Finally if one of the

found structures is chosen it shows the structure details. Figures 6-19, 6-20, 6-21 and 6-22 show

an example of searching a chemical structure pattern using the chemical toolkit.

Figure 6- 14: Input a pattern chemical structure

185

Figure 6- 15: Verify the SMILES input structure

186

Figure 6- 16: Search and list similar structures with similarity percentage

Figure 6- 17: Details of selected chemical structure

187

6.7 Discussion

All algorithms except the Brute Force algorithm have a searching phase and a pre-processing

phase (Stephen, 1994; Levitin, 2008).

In this research, exact string matching algorithms were studied in detail and a new

classification based on the pre-processing phase of algorithms has been presented. The new

classification contains eight categories according to the pre-processing function in the algorithm.

After classifying string matching algorithms in this new taxonomy, the aim was to develop or

enhance (a) new string matching algorithm(s) in order to decrease the searching time by

increasing the shifting value of the pattern. This research therefore proposes some new string

matching algorithms for searching protein sequences, DNA sequences and chemical structures.

The first research methodology aimed to study string matching algorithms, classify them,

enhance them or develop new algorithms and then apply them to Protein, DNA sequences and

chemical structures.

The result of this methodology proposed five new string matching algorithms; BRBMH,

BRQS, OE, RSMA and SSN algorithms. These algorithms aimed to maximize the pattern

shifting value, decrease the number of comparisons and therefore enhance searching time.

We chose four well known standard algorithms, BMH, QS, TVSBS and BRFS for

comparisons with our algorithms. The BMH algorithm (Horspool, 1980) was chosen because it

188

is an enhancement of the original BM algorithm (Boyer & Moore, 1977) and is the base

algorithm of our BRBMH algorithm (Klaib & Osborne, 2008). The pre-processing function of

BMH algorithm depends on the rightmost character. Furthermore, the QS algorithm (Sunday,

1990) is the basis of our second algorithm, the BRQS algorithm (Klaib & Osborne, 2009a) and

the pre-processing phase depends on a single character next to the rightmost character. The

TVSBS algorithm was developed in 2006 (Thathoo, et al., 2006) as an enhancement of the

SSABS algorithm (Sheik et al., 2004) and it uses the original pre-processing of the BR algorithm

which depends on two characters next to the rightmost character as well. The BRFS algorithm

was developed in 2008 (Huang et Al., 2008) as an enhancement of the ZTBMH algorithm

(Huang et. al, 2008) and it uses the original brBc function of the BR algorithm which based on

two characters next to the rightmost character.

After implementing the standard algorithms and our enhancements, a sample file of FASTA

format DNA sequences was downloaded from the U.S. National Centre of Biotechnology

Information (NCBI, 2012) and another sample file of FASTA format protein sequences was

downloaded from the SwissProt Database (UniProt Consortium, 2013).

All of the algorithms were applied to these files and three types of tests were implemented.

The first test determines the number of comparisons. The second one calculates the number of

attempts and the final one finds the elapsed search time.

Short DNA and protein patterns with lengths 4 – 31 and long patterns with lengths 32-1024

were searched in sample DNA and protein files by taking an average of 10 executions for each

pattern length.

For short and long protein and DNA experiments in (section 6.1 – section 6.4) our algorithms

showed a lower elapsed search time and required fewer pattern comparisons than all the standard

189

algorithms. Our algorithms RSMA, OE, BRQS and BRBMH need the same number of attempts

because they use the same pre-processing function which used in all of them. Our algorithms

require fewer attempts than BMH, QS, TVSBS and BRFS algorithms.

6.7.1 The Number of Comparisons Test Discussion

This test was implemented as described in sub-sections 6.1.1, 6.2.1, 6.3.1 and 6.4.1 and

applied to both short and long DNA and protein sequences, and shows a big difference in the

number of comparisons our algorithms use, compared to the non-hybrid algorithms and a good

difference between our algorithms and other hybrid algorithm such as the TVSBS and the BRFS

algorithms.

For example, the BRBMH algorithm searches for short DNA patterns with 41.7% fewer

comparisons than the BMH algorithm as shown in Table 6-1, 59.6% fewer when searching for

long DNA patterns as shown in Table 6-3, 23.2 % fewer when searching for short protein

patterns as shown in Table 6-5 and 68.2% fewer when searching for long protein patterns as

shown in Table 6-7.

Table 6-1 shows that the SSN algorithm searches for short DNA patterns with 40.2% fewer

comparisons than the TVSBS algorithm, Table 6-3 shows that the SSN algorithm searches for

long DNA patterns with 57.1% fewer comparisons than the TVSBS algorithm, Table 6-5 shows

that the SSN algorithm searches for short protein patterns with 24 % fewer comparisons than the

TVSBS algorithm and Table 6-7 shows that the SSN algorithm searches for long protein patterns

with 25.3% fewer comparisons than the TVSBS algorithm.

190

To compare the RSMA and BRFS algorithms: searching for a DNA pattern with length 28

using the RSMA algorithm compares 45418 times while the BRFS algorithm compares the same

pattern for 55291 times.

The reason for this difference, as discussed in literature review and implementation chapters,

is that the BMH algorithm depends only on the last character and the QS algorithm depends on a

single character next to the rightmost character, while the pre-processing phase in BRBMH and

BRQS algorithms depends on two characters next to the rightmost character. This difference in

the pre-processing phase in both BRBMH and BRQS algorithms allow an extra shifting value for

the pattern which results in fewer comparisons between the pattern and the DNA and protein

files.

The TVSBS algorithm uses the BR preprocessing function which shifts the pattern depends

on two characters are next to the rightmost character, by at least one character but not more than

m+2 characters. The SSN algorithm finds a possible start point which reduces the number of

comparisons as well as it depends on three characters are next to the rightmost character, which

can shift the pattern by at least one character but not more than m+3.

 This difference in shifting the pattern causes a bigger shift value which results a less comparison

time for our algorithms.

6.7.2 The Average Elapsed Search Time Test Discussion

The average elapsed search time tests, as described in sub-sections 6.1.3, 6.2.3, 6.3.3 and

6.4.3 which were applied to both short and long DNA and protein sequences, showed our

191

algorithms presenting better average elapsed search time than the BRFS, TVSBS, QS and BMH

algorithms.

The BRQS algorithm searches for short DNA patterns in 57.7% less time than the QS

algorithm as shown in Figure 6-1, 57.4% less time when searching for long DNA patterns as

shown in Figure 6-3 and Figure 6-4, 52.1% less time when searching for short protein patterns

and 47.8% less time when searching for long protein patterns as shown in Figure 6-6 and Figure

6-7 respectively.

Figure 6-2 shows that the SSN algorithm searches short DNA patterns with an average of

69.2% less time than the BRFS algorithm, Figure 6-3 and Figure 6-5 show that the SSN

algorithm searches for long DNA patterns with an average of 57.9% less time than the BRFS

algorithm, Figure 6-6 shows that the SSN algorithm searches short protein patterns with 59.9%

less time comparing to the BRFS algorithm and Figure 6-9 shows that the SSN algorithm

searches for long protein patterns with average 32.3% less time than the BRFS algorithm.

The reason that our algorithms RSMA, OE, BRQS, and BRBMH performed the search in

less time comparing to other standard algorithm, that they use the enhanced brBc table which

scans only the pattern characters and depends on the next two characters to the rightmost

character. Additionally, the enhanced pre-processing phase in the RSMA, OE, BRQS, BRBMH

shifts the pattern to the right by m+2 comparing to the TVSBS, BMH and QS algorithms.

The variety of searching order in the searching phase in our algorithms such as the RSMA

and OE algorithm in certain cases will reduce the searching phase by comparing the odd

positions first then the even positions in the OE algorithm. The RSMA algorithm uses a random

192

value with size S to visit all pattern character positions in a new searching order as explained in

sub-section 4.4.2. This gives a chance in certain cases to discover mismatched characters earlier

than other algorithms, which leads to fewer comparison numbers and ends after less search time.

The reason that our SSN algorithm performed the search in less time comparing to other

algorithms, that it searches for a possible starting point which will reduce the comparisons time

and therefore reduces the elapsed search time. In addition, it uses only one preprocessing phase

comparing to the BRFS algorithm. The preprocessing phase of the SSN algorithm shifts the

pattern to the right by m+3 comparing to the RSMA, OE, BRQS, BRFS, TVSBS, BMH and QS

algorithms.

6.7.3 The Number of Attempts Test Discussion

The total number of attempts is counted if there is a whole match or a mismatch is

encountered which shifts the pattern and a new attempt is started. The pre-processing phase plays

a significant role in determining the pattern shifts which affects the total number of attempts.

The average number of attempts tests, in sections 6.1.2, 6.2.2, 6.3.2 and 6.4.2 on both short

and long DNA and protein sequences, showed our algorithms, the SSN, RSMA, OE, BRQS and

BRBMH algorithms, achieve a better number of attempts compared to the BMH, QS, TVSBS

and BRFS algorithms due to the pre-processing phase used in our algorithms. The BRFS

algorithm uses two preprocessing functions, QS depends on a single character next to the

rightmost character and in the BMH algorithm depends on the rightmost character of the current

window.

193

As mentioned earlier, the RSMA, OE, BRQS and BRBMH algorithms use the enhanced

Berry-Ravindran pre-processing phase which results that all algorithms have the same number of

attempts on the same pattern length.

Table 6-2 shows that the SSN algorithm searches for short DNA patterns with 43.5% fewer

attempts than the RSMA, OE, BRQS and BRBMH algorithms, 46.71% fewer attempts than the

BRFS algorithm, 46.7% fewer attempts than the TVSBS algorithm, 67.8% fewer attempts than

the QS algorithm and 72.5% fewer attempts than the BMH algorithm.

Table 6-4 shows that the SSN algorithm searches for long DNA patterns with 47.4% fewer

attempts than the RSMA, OE, BRQS and BRBMH algorithms, 73.8% fewer attempts than the

BRFS algorithm, 73.9% fewer attempts than the TVSBS algorithm, 79.6% fewer attempts than

the QS algorithm and 86.1% fewer attempts than the BMH algorithm.

Table 6-6 shows that the SSN algorithm searches for short protein patterns with 15.6% fewer

attempts than the RSMA, OE, BRQS and BRBMH algorithms, 15.76% fewer attempts than the

BRFS algorithm, 15.75% fewer attempts than the TVSBS algorithm, 39.8% fewer attempts than

the QS algorithm and 35.7% fewer attempts than the BMH algorithm.

Table 6-8 shows that the SSN algorithm searches for long protein patterns with 18.5% fewer

attempts than the RSMA, OE, BRQS and BRBMH algorithms, 23.81% fewer attempts than the

BRFS algorithm, 23.83% fewer attempts than the TVSBS algorithm, 68.9% fewer attempts than

the QS algorithm and 77.1% fewer attempts than the BMH algorithm.

194

6.7.4 The Parallel Algorithm Tests Discussion

Our first algorithm, the BRBMH was parallelized by Prasad and Panicker (2010), and their

results show that our algorithm is the best algorithm compared to other ten well-known searching

algorithms.

Their result compares eleven searching algorithms on a file with size 12 MB running both

sequentially and in parallel on “two Beowulf cluster configurations (Dakshina I & Dakshina II)”.

They ran their experiments ten times for different pattern lengths and the results give the average

of these ten executions for each length. They had five experiments; sequential execution time,

parallel execution time with 5 Nodes on Beowulf cluster Dakshina I, parallel execution time with

5 Nodes on Beowulf cluster Dakshina II, parallel execution time with 10 Nodes on Beowulf

cluster Dakshina I, and finally parallel execution time with 10 Nodes on Beowulf cluster

Dakshina II (Prasad & Panicker, 2010).

In order to speed up the search time of sequential algorithms, the best algorithm SSN

algorithm was implemented and tested using the OpenMP model (shared memory model) and the

MPI model (distributed memory model) using the same sample files of DNA and Protein

sequences that used in the sequential tests. Both models were implemented and tested at the

University of Science Malaysia (USM) on a Stealth Cluster.

The OpenMP model was implemented on a single unit of the Sun Fire V210 using four

threads while the MPI model was implemented on two units of the Sun Fire V210 using four

processors. The average searching elapsed time result of the OpenMP model using the DNA and

protein sequences files was presented in Table 6-9 and Table 6-10 while the result of the MPI

195

models was presented in Table 6-11 and Table 6-12. The following Table 6-9 and Table 6-10

summarize and compare the average searching elapse time for searching the DNA and protein

sequences using the OpenMP and the MPI models:

Pattern

Length

MPI OpenMP MPI OpenMP MPI OpenMP

Two

Processors

Two

Threads

Three

Processors

Three

Threads

Four

Processors

Four

Threads

4 9.693 13.752 3.752 6.038 3.146 5.25

8 7.592 12.375 3.128 5.437 2.947 4.775

16 6.954 8.057 2.905 4.489 2.508 3.918

32 3.755 6.172 2.514 3.713 2.239 3.273

64 3.301 4.435 2.181 2.947 1.924 2.663

128 2.086 3.28 1.793 2.205 1.574 2.008

256 1.599 2.819 1.158 1.869 1.043 1.547

512 1.488 2.067 1.047 1.416 0.947 1.159

1024 1.419 1.849 0.992 1.154 0.86 1.001

Table 6- 9: MPI vs. OpenMP: average elapsed search time for searching DNA

Table 6-9 shows that the MPI model performed the search of DNA patterns in less time

compared to the OpenMP model. As an example, the MPI model searches a pattern with length 4

in 9.693 seconds using two processors, 3.752 seconds using three processors and 3.146 seconds

using four processors while the OpenMP model searched the same pattern length in 13.752

seconds using two threads, 6.038 seconds using three threads and 5.25 seconds using four

threads.

In addition, Table 6-9 shows that the MPI model searched for DNA patterns with an average

of 37.6% less time using two processors compared to the OpenMP using two threads, 33.8% less

time using three processors compared to the OpenMP using three threads and 21.6% less time

using four processors compared to the OpenMP using four threads.

196

Pattern

Length

MPI OpenMP MPI OpenMP MPI OpenMP

Two

Processors

Two

Threads

Three

Processors

Three

Threads

Four

Processors

Four

Threads

4 12.824 19.823 4.072 6.827 3.829 4.691

8 9.282 16.607 3.636 5.73 3.482 4.017

16 8.439 16.832 3.386 4.992 2.954 3.672

32 6.708 8.753 3.041 4.305 2.792 3.304

64 5.211 6.615 2.605 3.741 2.176 2.98

128 3.573 5.385 2.075 3.195 1.544 2.375

256 3.073 4.725 1.801 2.743 1.307 1.927

512 2.153 3.914 1.572 2.248 1.201 1.628

1024 1.997 2.708 1.404 1.871 1.067 1.376

Table 6- 10: MPI vs. OpenMP: average elapsed search time for searching protein

Table 6-10 shows that the MPI model performed the search of protein patterns in less time

compared to the OpenMP model. As an example, the MPI model searched a pattern with length

16 in 8.439 seconds using two processors, 3.386 seconds using three processors and 2.954

seconds using four processors while the OpenMP model searched the same pattern length in

16.832 seconds using two threads, 4.992 seconds using three threads and 3.672 seconds using

four threads.

In addition, Table 6-10 shows that the MPI model searched for protein patterns with an

average of 30.8% less time using two processors compared to the OpenMP model using two

threads, 33.4% less time using three processors compared to the OpenMP model using three

threads and 32.8% less time using four processors compared to the OpenMP model using four

threads.

To evaluate the speedup of using the MPI and OpenMP models over the original SSN

algorithm we used the equation that mentioned in sub-section 2.12.2. Table 6-11 and Table 6-12

shows the speedup of using the MPI and OpenMP models

197

Pattern

Length

MPI OpenMP MPI OpenMP MPI OpenMP

Two

Processors

Two

Threads

Three

Processors

Three

Threads

Four

Processors

Four

Threads

4 1.596 1.125 4.123 2.562 4.917 2.946

8 1.537 1.327 3.680 2.381 4.262 2.728

16 2.094 1.274 3.128 2.118 3.512 2.403

32 1.699 1.265 2.572 1.904 2.916 2.107

64 2.192 1.394 2.550 2.073 2.905 2.277

128 2.445 1.387 3.376 2.091 3.748 2.527

256 2.375 1.710 3.375 2.496 3.732 3.049

512 2.385 1.831 3.412 2.933 3.936 3.382

1024 1.596 1.125 4.123 2.562 4.917 2.946

Table 6- 11: The speedup of MPI and OpenMP models for DNA patterns

Pattern

Length

MPI OpenMP MPI OpenMP MPI OpenMP

Two

Processors

Two

Threads

Three

Processors

Three

Threads

Four

Processors

Four

Threads

4 1.874 1.213 5.903 3.521 6.278 5.124

8 1.583 0.793 3.944 2.675 4.521 3.637

16 1.582 1.213 3.491 2.466 3.802 3.213

32 1.682 1.325 3.365 2.343 4.029 2.942

64 2.188 1.452 3.768 2.447 5.063 3.292

128 2.377 1.546 4.056 2.663 5.589 3.791

256 3.241 1.783 4.438 3.104 5.809 4.286

512 2.967 2.188 4.220 3.167 5.553 4.306

1024 1.874 1.213 5.903 3.521 6.278 5.124

Table 6- 12: The speedup of MPI and OpenMP models for protein patterns

Table 6-11 and Table 6-12 show that the average speedup of searching DNA and protein

sequences using the OpenMP and MPI models is a sub-linear speedup.

198

CHAPTER 7: CONCLUSION AND FUTURE WORK

This thesis introduced a new classification of string matching algorithms, developed five new

string matching algorithms, developed a chemical searching tool kit using the best string

matching algorithm and ends by parallelizing the best algorithm to speed up the searching time.

This chapter includes the main conclusion of the research and suggests some possible future

work.

7.1 Conclusion

The massive amount of biological and chemical data which is used daily and stored in files

and databases requires an efficient string matching algorithm to speed up the searching processes

for required sequences and structures. Here is a recap of the research questions for chapter 1. The

answers developed in this thesis are discussed below:

1. Which of the existing string pattern matching algorithm(s) is/are the most suitable for

searching biological sequences and chemical structures?

2. Can we enhance one or more of the proposed algorithms in 1, or develop (a) new

algorithm(s) for string-matching?

3. How we can measure the success of the new developed algorithm(s) compared to the best

algorithm in 1?

4. Can we develop a classification of string matching algorithms which will help with

achieving our aims?

199

The answers to questions one and four are presented by studying the standard string

matching algorithms. Question number four was answered by developing a new classification

containing eight categories based on the pre-processing function of each algorithm. Question

number one was answered by analysing the standard algorithms and choosing the appropriate

ones before we tested them with our algorithms.

The above helped us to answer question number two by studying, in depth, most of standard

algorithms and applying changes to enhance them. Firstly we enhanced the pre-processing phase

of Berry Ravindran algorithm by creating a one dimensional array to store the pattern characters

rather than using a two dimensional array to store the text characters. In addition, the use of the

enhanced brBc over the hsBc and qsBc tables provided two benefits: the first one is the enhanced

brBc table shifts the pattern to the right by m+2 positions comparing to the hsBc which shifts

pattern only m positions as well as the qsBc which shifts pattern only m+1 positions if there is a

whole match or a mismatch encountered. The second benefit is reducing the preprocessing time

by scanning only the pattern characters.

Secondly we developed five new algorithms, the BRBMH, BRQS, OE, RSMA and SSN

algorithms. The BRBMH algorithm used the enhanced preprocessing phase instead of the

preprocessing phase of Horspool algorithm and combined it with the searching phase of

Horspool algorithm. The BRQS algorithm used the enhanced preprocessing phase instead of the

preprocessing phase of Quick Search algorithm and combined it with the searching phase of the

Quick Search algorithm. The OE algorithm combined the enhanced pre-processing phase and

searches the pattern in the text using a new searching order. The RSMA algorithm combined the

enhanced pre-processing phase and reduced the searching phase by comparing the pattern with

text window in a new order depending on a generated random value of size S. The SSN

200

algorithm uses the ASS table to define a possible starting point to compare the text and the

pattern characters. If the last three characters in the current text window or the next three

characters exists in the ASS table, the pattern is aligned and compared otherwise the pattern is

shifted to the right by m+3 positions.

Question three was answered by downloading sample DNA and proteins sequence FASTA

files, applying our algorithms and four well known standard algorithms and then measuring the

success through three types of tests. The number of comparisons tests, showed a big difference in

the number of comparisons our algorithms use, compared to the non-hybrid algorithms and a

good difference between our algorithms and other hybrid algorithm such as TVSBS and BRFS.

The average elapsed search time tests showed our algorithms presenting better average searching

elapsed time than the BRFS, TVSBS, QS and BMH algorithms. The average number of attempts

tests showed our algorithms achieve better number of attempts comparing to the BMH, QS,

TVSBS and BRFS algorithms.

A chemical toolkit was developed to draw chemical structures and convert them to SMILES

format and then use the SSN algorithm to search for structures in the local database.

And finally the parallel algorithm design included a new contribution where the SSN

algorithm was parallelized using the OpenMP and the MPI models.

201

7.2 Future Work

Several research issues can be explored in the future:

- The toolkit can be developed by applying approximate string matching algorithms.

This enhancement will help biologists and chemists in their advanced search

purposes where they can predict missing sequences and structures.

- The toolkit can be expanded by adding more sequences and structures from different

available sources.

- Cooperating with biologists and chemists can lead to the addition of more features to

the toolkit.

- The toolkit can be presented as a portal or searching engine for different users.

- Our SSN algorithm can be implemented alongside up to date string matching

algorithms to test the efficiency of the new algorithm.

- The parallel algorithm design in section 3.3 can be implemented to improve the

searching time using the hybrid memory model which combines both the Open

Multi-Processing (OpenMP) and Message Passing Interface (MPI) parallel models.

- To run the parallel algorithm on all processors of the Stealth Cluster at the University

of Science Malaysia which contains eight processors running on four Sun Fire

machines.

- The parallel algorithm tests and results in section 6.5 can be expanded to test large

files size which will show the efficiency of parallel algorithms and the used cluster.

202

REFERENCES

Abdelaziz, T., Elammari, M., & Branki, C. (2008). MASD: towards a comprehensive multi-

agent system development methodology. Paper presented at the On the Move to

Meaningful Internet Systems: OTM 2008 Workshops.

AbdulRazzaq, A., Rashid, N., & Ali, A. (2013). Fast Hybrid String Matching Algorithm.

International Journal of Digital Content Technology and its Applications, 7(10), 62-71.

Agustina, T. P. (2012). The Double Helix Retrieved July, 2013, from

http://alangaesia.blogspot.co.uk/2012/12/the-double-helix.html

Akl, S. G. (1997). Parallel Computation: Models and Methods. New Jersey: Prentice Hall, Inc.

Almazroi, A. (2011). A Fast Hybrid Algorithm Approach for the Exact String Matching Problem

Via Berry Ravindran and Alpha Skip Search Algorithms. Journal of Computer Science,

7(5), 644-650.

Almazroi, A., & Rashid, N. (2011). A Fast Hybrid Algorithm for the Exact String Matching

Problem. American J. of Engineering and Applied Sciences, 4(1), 102-107.

Atallah, M. J. (2002). Algorithms and theory of computation handbook: CRC press.

Baeza-Yates, R. (1992). String searching algorithms. In Information Retrieval: Algorithms and

Data Structures: Prentice Hall, Englewood Cliffs, N.J.

Bailey, R. (2006). Protein Structure Retrieved July, 2013, from

http://biology.about.com/od/molecularbiology/ss/protein-structure.htm

Bairoch A, A. R. (2000). The SWISS-PROT protein sequence database and its supplement

TrEMBL in 2000. Nucleic acids research, 28(1), 45-48. doi: 10.1093/nar/28.1.45

203

Barney, B. (2010). Introduction to parallel computing. Lawrence Livermore National

Laboratory, 6(13), 10.

Barney, B. (2013). Message Passing Interface (MPI). Retrieved August, 2013, from

https://computing.llnl.gov/tutorials/mpi/

Baydaa, A. (2011). Retrieving Information from Compressed XML Documents According to

Vague Queries. Doctor of Philosophy, University of Huddersfield, Huddersfield, UK.

Berg JM, T. J., Stryer L. (2002). Biochemistry (5 ed.): W. H. Freeman.

Berman, H., Westbrook J., Feng Z., Gilliland G., (2000). The Protein Data Bank. Nucleic Acids

Research. (2000) 28 (1):235-242.doi: 10.1093/nar/28.1.235

Berry, T., & Ravindran, S. (1999). A fast string matching algorithm and experimental results.

Proceedings of the Prague Stringology Club Workshop'99 (Prague: Czech Republic), 16-

26.

Bhandari, J. (2014). Techniques Used in String Matching for Network. International Journal of

Computer, Information, Systems and Control Engineering, 8(5), 805-808

Bhandari, J. & Kumar, A. (2014). A Survey of Fast Hybrids String matching Algorithms.

International Journal of Emerging Sciences, 4(1), 24-37.

Bourne, P. E., Westbrook, J., & Berman, H. M. (2004). The Protein Data Bank and lessons in

data management. Briefings in bioinformatics, 5(1), 23-30. doi: 10.1093/bib/5.1.23

Boyer, R. S., & Moore, J. S. (1977). A fast string searching algorithm. Communications of the

ACM, 20(10), 762-772.

Cantone, D., Cristofaro, S., & Faro, S. (2004). Efficient Algorithms for the delta-Approximate

String Matching Problem in Musical Sequences. Paper presented at the Stringology.

204

Cantone, D., Cristofaro, S., & Faro, S. (2005). An efficient algorithm for δ-approximate

matching with α-bounded gaps in musical sequences Experimental and Efficient

Algorithms (pp. 428-439): Springer.

Cantone, D., & Faro, S. (2003). Fast-Search: A new efficient variant of the Boyer-Moore string

matching algorithm Experimental and Efficient Algorithms (pp. 47-58): Springer.

Chai, T. Y., Juhari, M., Woo, S. S., & Tan, C. S. (2009). Facial features for template matching

based face recognition.

Charras, C., Lecrog, T., & Pehoushek, J. D. (1998). A very fast string matching algorithm for

small alphabets and long patterns. Paper presented at the Combinatorial Pattern

Matching.

Charras, C., & Lecroq, T. (1997). Exact string matching algorithms Animation in Java

Retrieved from http://www-igm.univ-mlv.fr/~lecroq/string/

Charras, C., & Lecroq, T. (2004). Handbook of exact string matching algorithms: King's College

Publications.

Chen, Y. (2007). A new algorithm for subset matching problem. Journal of Computer Science,

3(12), 924.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (1990). In troduction to Algorithms:

MIT Press and McGraw Hill.

Crick, F. (1974). The double helix: a personal view. Nature, 248(5451), 766-769.

Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq, T., Plandowski, W., &

Rytter, W. (1994). Speeding up two string-matching algorithms. Algorithmica, 12(4-5),

247-267.

Crochemore, M., & Rytter, W. (1994). Text algorithms (Vol. 698): World Scientific.

205

Danvy, O., & Rohde, H. K. (2006). On obtaining the boyer–moore string-matching algorithm by

partial evaluation. Information Processing Letters, 99(4), 158-162.

Daylight Chemical Information Systems, I. (2008). SMILES - A Simplified Chemical Language.

Retrieved July, 2012, from

http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

De Raedt, L., & Kramer, S. (2003). Inductive databases for bio-and chemo-informatics. NATO

SCIENCE SERIES SUB SERIES III COMPUTER AND SYSTEMS SCIENCES, 183,

193-207.

Degrave, W., Huynh, C., Roos, D., Oduola, A., & Morel, C. M. (2002). Bioinformatics for

disease endemic countries: opportunities and challenges in science and technology

development for health. IUPAC Journal, 1, 1-7.

DeGray, G., Rajasekaran, K., Smith, F., Sanford, J., & Daniell, H. (2001). Expression of an

antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and

fungi. Plant physiology, 127(3), 852-862. doi: 10.1104/pp.010233

Deusdado, S., & Carvalho, P. (2009). GRASPm: an efficient algorithm for exact pattern-

matching in genomic sequences. International Journal of Bioinformatics Research and

Applications, 5(4), 385-401.

Ertl, P. (2006) JME Molecular Editor. Retrieved October, 2013, from

http://www.molinspiration.com/jme/index.html

Ertl, P. (2010). Molecular structure input on the web. Journal of Cheminformatics, 2(1), 1-9.

EMBL-EBI, European Bioinformatics Institute UniProt. (2002). UniProt keywords. Retrieved

January, 2012, from http://www.uniprot.org/keywords/

European Molecular Biology Laboratory EMBL. (2006). EMBL Nucleotide Sequence Database.

Retrieved December, 2008

206

Expasy Bioinformatics Resource Portal. (2013). UniProtKB/Swiss-Prot protein knowledgebase

release 2013_08 statistics. Retrieved July, 2013, from

http://web.expasy.org/docs/relnotes/relstat.html

Flynn, M. J. (1966). Very high-speed computing systems. Proceedings of the IEEE, 54(12),

1901-1909.

Flynn, M. J. (1972). Some computer organizations and their effectiveness. Computers, IEEE

Transactions on, 100(9), 948-960.

Foster, I. (1995). Designing and building parallel programs (Vol. 95): Addison-Wesley Reading.

Franek, F., Jennings, C., & Smyth, W. (2005). A Simple Fast Hybrid Pattern-Matching

Algorithm. Springer-Verlag CPM2005 (pp. 288-297). Berlin: Springer-Verlag.

Frecer, V., Ho, B., & Ding, J. L. (2004). De Novo design of potent antimicrobial peptides.

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 48(9), 3349-3357. doi:

10.1128/aac.48.9.3349-3357.2004

Fredriksson, K., & Grabowski, S. (2005). Practical and optimal string matching. Paper presented

at the String Processing and Information Retrieval.

Fredriksson, K., & Mozgovoy, M. (2006). Efficient parameterized string matching. Information

Processing Letters, 100(3), 91-96.

Fujimura, M., Minami, Y., Watanabe, K., & Tadera, K. (2003). Purification, characterization,

and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from

seeds of buckwheat (Fagopyrum esculentum Moench.). Bioscience, biotechnology, and

biochemistry, 67(8), 1636-1642. doi: 10.1271/bbb.67.1636

Hasan, A., & Rashid, N. (2012). Hybrid Exact String Matching Algorithm for Intrusion

Detection System. Taibah University International Conference on Computing and

Information Technology (ICCIT2012), (pp. 181-185). Madinah.

207

Hevner, A., March, S., Park, J. & Ram, S. (2004). Design Science in Information Systems

Research. MIS Quarterly, 28, 75-105.

Horspool, R. N. (1980). Practical fast searching in strings. Software: Practice and Experience,

10(6), 501-506.

Horton, R. M. (2004). Bioinformatics Algorithm Demonstrations in Microsoft Excel. Master,

California State University, Sacramento.

Huang, Y., Pan, X., Gao, Y., & Cai, G. (2008a). [ZTBMH]A fast pattern matching algorithm for

biological sequences. Paper presented at the Bioinformatics and Biomedical Engineering,

2008. ICBBE 2008. The 2nd International Conference on.

Huang, Y., Ping, L., Pan, X., & Cai, G. (2008b). [BRFS]A fast exact pattern matching algorithm

for biological sequences. Paper presented at the BioMedical Engineering and Informatics,

2008. BMEI 2008. International Conference on.

Hume, A., & Sunday, D. (1991). Fast string searching. Software: Practice and Experience,

21(11), 1221-1248.

Hulzebos, E., Janssen, P., Maslankiewicz, L., Meijerink, M., Muller, J., Pelgrom, S., . . .

Vermeire, T. (2001). The application of structure-activity relationships in human hazard

assessment: a first approach.

Jaccard P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2), 37-50.

Kalsi, P., Peltola, H., & Tarhio, J. (2008). Comparison of exact string matching algorithms for

biological sequences Bioinformatics Research and Development (pp. 417-426): Springer.

Karp, R. M., & Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms. IBM

Journal of Research and Development, 31(2), 249-260.

Kiessling, A. (2009, April). The Royal Observatory, Edinburgh. Retrieved September 2014,

from An Introduction to Parallel Programming with OPenMP:

http://www.roe.ac.uk/ifa/postgrad/pedagogy/2009_kiessling.pdf

208

Kim, J. W., Kim, E., & Park, K. (2007). Fast matching method for DNA sequences

Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (pp. 271-

281): Springer.

Klaib, A., & Osborne, H. (2008). Searching protein sequence databases using BRBMH matching

algorithm. International Journal of Computer Science and Network Security, 8(12), 410-

414.

Klaib, A., & Osborne, H. (2009a). BRQS matching algorithm for searching protein sequence

databases. Paper presented at the Future Computer and Communication, 2009. ICFCC

2009. IEEE Conference

Klaib, A., & Osborne, H. (2009b). OE Matching Algorithm for Searching Biological Sequences:

ISRST.

Klaib, A., & Osborne, H. (2009c). RSMA matching algorithm for searching biological

sequences. Paper presented at the Innovations in Information Technology, 2009. IIT'09.

IEEE International Conference.

Knuth, D., Morris, J., & Pratt, V. (1977). Fast Pattern Matching in Strings. SIAM Journal on

Computing, 6(2), 323-350.

Kontoghiorghes, E. J. (2010). Handbook of parallel computing and statistics: CRC Press.

Kuhn, S. (2010). NMRShiftDB. Retrieved January, 2013, from http://nmrshiftdb.nmr.uni-

koeln.de/

Lecroq, T. (1995). Experimental results on string matching algorithms. Software: Practice and

Experience, 25(7), 727-765.

Lecroq, T. (1998). Experiments on string matching in memory structures. Software-Practice and

Experience, 28(5), 561-568.

209

Lecroq, T. (2007). Fast exact string matching algorithms. Information Processing Letters, 102(6),

229-235.

Lee, J. (2004). Analysis of Fundamental Exact and Inexact Pattern Matching Algorithms.

Levitin, A. (2008). Introduction To Design And Analysis Of Algorithms, 2/E: Pearson Education

India.

Lokman, A. S., & Zain, J. M. (2010). One-Match and All-Match Categories for Keywords

Matching in Chatbot. American Journal of Applied Sciences, 7(10), 1406.

Medicine, U. S. N. L. o. (2013). What is DNA? Retrieved July, 2013, from

http://ghr.nlm.nih.gov/handbook/basics/dna

Mhashi, M. (2012). An Intelligent and Efficient Matching Algorithm to Finding a DNA Pattern.

International Magazine on Advances in Computer Science and Telecommunications,

3(1), 13-25.

Morley, P. S., Apley, M. D., Besser, T. E., Burney, D. P., Fedorka-Cray, P. J., Papich, M. G., . . .

American College of Veterinary Internal, M. (2005). Antimicrobial drug use in veterinary

medicine. Journal of veterinary internal medicine / American College of Veterinary

Internal Medicine, 19(4), 617-629. doi: 10.1111/j.1939-1676.2005.tb02739.x

Morrison, J., & George, J. F. (1995). Exploring the software engineering component in MIS

research. Communications of the ACM, 38(7), 80-91.

Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Nature Structural Biology,

10(12), 980.

Naser, M., Rashid, N., & Aboalmaaly, M. (2012). Quick-Skip Search Hybrid Algorithm for the

Exact String Matching Problem. International Journal of Computer Theory and

Engineering, 4(2), 259-265.

210

National Center for Biotechnology Information NCBI. (2012). FTP access to GenBank data.

Retrieved July, 2012, from ftp://ftp.ncbi.nih.gov/genbank

NCBI, National Center for Biotechnology Information (2013). GeneBank Database Overview.

Retrieved July, 2013, from http://www.ncbi.nlm.nih.gov/genbank/

NIST, National Institute of Standards and Technology. (2013). Computing molar mass (molar

weight). Retrieved August, 2013, from http://www.webqc.org/mmcalc.php

Navarro, G., & Raffinot, M. (2000). Fast and flexible string matching by combining bit-

parallelism and suffix automata. Journal of Experimental Algorithmics (JEA), 5, 4.

Navarro, G., & Raffinot, M. (2002). Flexible pattern matching in strings: practical on-line search

algorithms for texts and biological sequences: Cambridge University Press.

Neglur, G., Grossman, R. L., & Liu, B. (2005). Assigning unique keys to chemical compounds

for data integration: Some interesting counter examples. Paper presented at the Data

Integration in the Life Sciences.

Nunamaker Jr, J. F., & Chen, M. (1990). Systems development in information systems research.

Paper presented at the System Sciences, 1990., Proceedings of the Twenty-Third Annual

Hawaii International Conference on.

Pang, K. C., Stephen, S., Dinger, M. E., Engstrom, P. G., Lenhard, B., & Mattick, J. S. (2007).

RNAdb 2.0--an expanded database of mammalian non-coding RNAs. Nucleic acids

research, 35(Database), D178-D182. doi: 10.1093/nar/gkl926

Prasad, J., & Panicker, K. (2010). String Searching Algorithm Implementation-Performance

Study with Two Cluster Configuration. International Journal of Computer Science and

Communication, 551-555.

Radhakrishna, V., Phaneendra, B., & Sangeeth Kumar, V. (2010). A two way pattern matching

algorithm using sliding patterns. Paper presented at the Advanced Computer Theory and

Engineering (ICACTE), 2010 3rd International Conference on.

211

Raita, T. (1992). Tuning the boyer moore horspool string searching algorithm. Software: Practice

and Experience, 22(10), 879-884.

Rajasekaran, S., & Reif, J. (2007). Handbook of parallel computing: models, algorithms and

applications: CRC Press.

Raju, S. V., & Babu, A. V. (2007). Parallel algorithms for string matching problem on single and

two dimensional reconfigurable pipelined bus systems. Journal of Computer Science,

3(9), 754.

Regnier, M., & Szpankowski, W. (1998). Complexity of sequential pattern matching algorithms:

Springer.

Rivals, E., Salmela, L., & Tarhio., J. (2011). EXACT SEARCH ALGORITHMS FOR

BIOLOGICAL SEQUENCES. Algorithms in Computational Molecular Biology:

Techniques, Approaches and Applications, 1, 1-22.

Roosta, S. H. (2000). Parallel processing and parallel algorithms: theory and computation:

Springer.

Rowley, R. J., Oscarson, J. L., Rowley, R. L., & Wilding, W. V. (2001). Development of an

automated SMILES pattern matching program to facilitate the prediction of

thermophysical properties by group contribution methods. Journal of Chemical &

Engineering Data, 46(5), 1110-1113.

SaiKrishna, V., Rasool, A., & Khare, N. (2012). String Matching and its Applications in

Diversified Fields. IJCSI International Journal of Computer Science, 9(1), 219-226.

Schulz, J. (2008). Jaccard Similarity. Algorithms - Similarity. Retrieved August 2014, from

http://www.code10.info/index.php%3Foption%3Dcom_content%26view%3Darticle%26i

d%3D60:article_jaccard-similarity%26catid%3D38:cat_coding_algorithms_data-

similarity%26Itemid%3D57

212

Searls, D. B., & Hogeweg, P. (2011). The Roots of Bioinformatics in Theoretical Biology. PLoS

computational biology, 7(3), 1-5. doi: 10.1371/journal.pcbi.1002021

Sedgewick, R. (1988). Algorithms in Java, Parts 1-4 (Vol. 1): Addison-Wesley Publishing

Company.

Setubal, J. C., Meidanis, J., & Setubal-Meidanis. (1997). Introduction to computational

molecular biology: PWS Pub.

Sheik, S., Aggarwal, S. K., Poddar, A., Balakrishnan, N., & Sekar, K. (2004). A FAST pattern

matching algorithm. Journal of chemical information and computer sciences, 44(4),

1251-1256.

Sleit, A., AlMobaideen, W., Qatawneh, M., & Saadeh, H. (2009). Efficient processing for binary

submatrix matching. American Journal of Applied Sciences, 6(1), 78.

Srikantha, A., Bopardikar, A. S., Kaipa, K. K., Venkataraman, P., Lee, K., Ahn, T., &

Narayanan, R. (2010). A fast algorithm for exact sequence search in biological sequences

using polyphase decomposition. bioinformatics, 26(18), i414-i419.

Stephen, G. A. (1994). String searching algorithms: World Scientific.

Steven, H. (2011). Chemistry 14C: Structure of Organic Molecule: Course Thinkbook : Concept

Focus Questions, OWLS Problems, Practice Problems: Plymouth, MI: Hayden-McNeil.

Sunday, D. M. (1990). A very fast substring search algorithm. Communications of the ACM,

33(8), 132-142.

Tarhio, J., & Peltola, H. (1997). String matching in the DNA alphabet. Software-Practice and

Experience, 27(7), 851-861.

Teknomo, K. (2006). Similarity Measurement, from

http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html

213

Thathoo, R., Virmani, A., Sai Lakshmi, S., Balakrishnan, N., & Sekar, K. (2006). TVSBS: A fast

exact pattern matching algorithm for biological sequences. Current Science, 91(1), 47-53.

Tsai, T. H. (2006). Average case analysis of the Boyer‐Moore algorithm. Random Structures &

Algorithms, 28(4), 481-498.

Tucker, A. B. (2004). Computer science handbook: CRC press.

U.S. Environmental Protection Agency EVA. (2009). SMILES Tutorial. Retrieved July, from

http://www.epa.gov/med/Prods_Pubs/smiles.htm

U.S. National Library of Medicine. (2013). What is DNA? Retrieved July, 2013, from

http://ghr.nlm.nih.gov/handbook/basics/dna

UniProt Consortium. (2013). Downloads Protien Fasta Format. Retrieved July, 2013, from

http://www.uniprot.org/downloads

Wang, G. (2010). Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies:

CAB International.

Wang, G., Li, X., & Wang, Z. (2009). APD2: the updated antimicrobial peptide database and its

application in peptide design. Nucleic acids research, 37(Database), D933-D937. doi:

10.1093/nar/gkn823

Wang, P. & Li, Y. (2011). Automaton Based String Matching Algorithm and its application in

Intrusion Detection. International Journal of Advancements in Computing Technology

(IJACT), 3(9), 278-285.

Wang, Y., & Kobayashi, H. (2006). High performance pattern matching algorithm for network

security. IJCSNS, 6(10), 83.

Waterman, M. S. (1995). Introduction to computational biology: maps, sequences and genomes:

Chapman & Hall Ltd.

214

Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to

methodology and encoding rules. Journal of chemical information and computer

sciences, 28(1), 31-36.

Weininger, D., Weininger, A., & Weininger, J. L. (1989). SMILES. 2. Algorithm for generation

of unique SMILES notation. Journal of chemical information and computer sciences,

29(2), 97-101.

Wilkinson B. & Allen M. (2005). Parallel Programming: Techniques and Applications Using

Networked Workstations and Parallel Computers. New Jersey: Prentice Hall Inc.

Willmore, F. (2012, February). Texas Advances Computing Center. Retrieved September 2014,

from Introduction to parallel Computing:

https://www.tacc.utexas.edu/c/document_library/get_file?uuid=e05d457a-0fbf-424b-

87ce-c96fc0077099

Wu, S., & Manber, U. (1994). A fast algorithm for multi-pattern searching: Technical Report

TR-94-17, University of Arizona.

Xian-feng, H., Yu-bao, Y., & Lu, X. (2010). Hybrid pattern-matching algorithm based on BM-

KMP algorithm. 3rd International Conference on Advanced Computer Theory and

Engineering(ICACTE) , (pp. 310-313).

Xu, J. H., A. (2002). Chemoinformatics and Drug Discovery. Molecules Journal, 7(8), 566-600.

doi: 10.3390/70800566

ZHU, R.F. and TAKAOKA, T. (1987). On improving the average case of the Boyer-Moore

string matching algorithm. Journal of Information Processing 10(3), 173-177.

215

APPENDIX A: STRING MATCHING ALGORITHMS CODE

void BruteForce(char *text, int textLength, char *pattern, int patternLength) {

 int iCount = 0, jCount = 0;

 /* Preprocessing */

 // There is no preprocessing phase in the BF algorithm

 /* Searching */

 for (iCount = 0; iCount <= textLength - patternLength; ++iCount) {

 jCount = 0

 for (; jCount < patternLength && pattern [jCount] == text [iCount + jCount]; ++jCount);

 if (jCount = patternLength){

 OUTPUT(iCount);

 }

 }

}

Figure A- 1: The Brute Force algorithm code

216

void preprocessing_bmBc(char *pattern, int patternLength, int bmBc[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 bmBc[iCounter] = -1;

 }

 for (jCounter = 0; jCounter < patternLength; ++jCounter){

 iCounter=pattern[jCounter];

 bmBc[iCounter] = jCounter;

 }

}

void preprocessing_bmGs(char *pattern, int patternLength, int bmGs[XSIZE]) {

 int iCounter= patternLength, jCounter= patternLength + 1;

 bmGs[iCounter] = jCounter;

 while (iCounter > 0) {

 while (jCounter <= patternLength && pattern[iCounter - 1] != pattern[jCounter - 1]){

 if (bmGs [jCounter] == 0) {

 bmGs [jCounter] = jCounter – iCounter;

 }

 jCounter = bmGs[jCounter];

 }

 iCounter--, jCounter--;

 bmGs[iCounter] = jCounter;

 }

}

void BoyerMoore(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, bmBc[ASIZE], bmGs[XSIZE];

 /* Preprocessing */

 preprocessing_bmBc(pattern, patternLength, bmBc);

 preprocessing_bmGs(pattern, patternLength, bmGs);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 jCounter = patternLength - 1;

 while (jCounter >= 0 && pattern[jCounter] == text[iCounter + jCounter]){

 --jCounter;

 }

 if (jCounter < 0){

 OUTPUT(iCounter);

 iCounter += bmGs[0];

 }

 else{

 iCounter += MAX(bmGs[jCounter+1], jCounter - bmBc[text[iCounter + jCounter]);

 }

 }

}

Figure A- 2: The Boyer-Moore algorithm code

217

void preprocessing_ztBc(char *pattern, int patternLength, int ztBc[ASIZE][ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 for (jCounter = 0; jCounter < ASIZE; ++jCounter){

 ztBc[iCounter][jCounter] = patternLength;

 }

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 ztBc[iCounter][pattern[0]] = patternLength - 1;

 }

 for (iCounter = 1; iCounter < patternLength - 1; ++iCounter){

 ztBc[pattern[iCounter - 1]][pattern[iCounter]] = patternLength - 1 - iCounter;

 }

}

void preprocessing_ztGs(char *pattern, int patternLength, int ztGs[XSIZE]) {

 // Same preprocessing code as the bmGs function

}

void ZhuTakaoka(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, ztBc[ASIZE][ASIZE], ztGs[XSIZE];

 /* Preprocessing */

 preprocessing_ztBc(pattern, patternLength, ztBc);

 preprocessing_ztGs(pattern, patternLength, ztGs);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 jCounter = patternLength - 1;

 while (jCounter < patternLength && pattern[jCounter] == text[iCounter + jCounter]){

 --jCounter;

 }

 if (jCounter < 0){

 OUTPUT(iCounter);

 iCounter += ztGs[0];

 }

 else{

 iCounter += MAX(ztGs[jCounter], ztBc[text[iCounter + patternLength - 2]][text[iCounter +

patternLength - 1]]);

 }

 }

}

Figure A- 3: The Zhu-Takaoka algorithm code

218

void preprocessing_fsBc(char *pattern, int patternLength, int fsBc[ASIZE]) {

 // Same preprocessing code as the bmBc function

}

void preprocessing_fsGs(char *pattern, int patternLength, int fsGs[XSIZE]) {

 // Same preprocessing code as the bmGs function

}

void FastSearch(unsigned char *pattern, int patternLength, unsigned char *text, int textLength) {

 int iCounter, jCounter, fsBc[ASIZE], fsGs[XSIZE];

/* Preprocessing */

 preprocessing_fsBc(pattern, patternLength, fsBc);

 preprocessing_fsGs(pattern, patternLength, fsGs);

 /* Searching */

 iCounter = 0;

 while (fsBc[text[iCounter + patternLength -1] > 0){

 iCounter = iCounter + fsBc[text[iCounter + patternLength -1];

 }

 while (iCounter <= textLength - patternLength){

 jCounter = patternLength - 2;

 while (jCounter >= 0 && pattern[jCounter] == text[iCounter + jCounter]){

 jCounter = jCounter - 1;

 }

 if (jCounter < 0){

 OUTPUT(iCounter);

 }

 iCounter += fsGs[jCounter + 1];

 while (fsBc[text[iCounter + patternLength -1] > 0){

 iCounter = iCounter + fsBc[text[iCounter + patternLength -1];

 }

 }

}

Figure A- 4: The Fast Search algorithm code

219

void preprocessing_hrBc(char *pattern, int patternLength, int hrBc[ASIZE]) {

 // Same preprocessing code as the bmBc function

}

void Horspool(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, hrBc[ASIZE];

 /* Preprocessing */

 preprocessing_hrBc(pattern, patternLength, hrBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength - 1;

 jCounter = iCounter + patternLength - 1;

 lastCharacter = iCounter + patternLength - 1;

 if (pattern[jCounter] == text[lastCharacter]){

 patternCounter = 0;

 while (jCounter > iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter; ++patternCounter;

 }

 if (jCounter == iCounter) {

 OUTPUT(iCounter);

 }

 }

 iCounter += hrBc [patternLength-1];

 }

}

Figure A- 5: The Horspool algorithm code

220

void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 qsBc[iCounter] = -1;

 }

 for (jCounter = 0; jCounter < patternLength-1; ++jCounter){

 qsBc[jCounter] = patternLength - jCounter;

 }

}

void QuickSearch(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, qsBc[ASIZE];

 /* Preprocessing */

 preprocessing_qsBc(pattern, patternLength, qsBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = 0;

 jCounter = iCounter + patternLength - 1;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 if (jCounter < iCounter){

 OUTPUT(iCounter);

 }

 iCounter += qsBc [patternLength];

 }

}

Figure A- 6: The Quick-Search algorithm code

221

void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 for (jCounter = 0; jCounter < ASIZE; ++jCounter){

 brBc[iCounter][jCounter] = patternLength+2;

 }

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[iCounter][pattern[0]] = patternLength + 1;

 }

 for (iCounter = 0; iCounter < patternLength - 1; ++iCounter){

 brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[pattern[iCounter-1]][iCounter] = 1;

 }

}

void BerryRavindran(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, brBc[ASIZE][ASIZE];

 /* Preprocessing */

 preprocessing_brBc(pattern, patternLength, brBc);

 /* Searching */

 iCounter = patternLength-1;

 while (iCounter <= textLength){

 jCounter= iCounter – patternLength + 1;

 patternCounter = patternLength-1;

 while (jCounter <= iCounter && pattern[patternCounter] == text[iCounter]) {

 --iCounter;

 --patternCounter;

 }

 if (iCounter < jCounter) {

 OUTPUT(iCounter);

 }

 iCounter = iCounter+brBc[patternLength][patternLength+1];

 }

}

Figure A- 7: The Berry-Ravindran algorithm code

222

int preprocessing_krHashing(char *pattern_OR_textWindow, int patternLength) {

 // This function compute the hashing value for either the pattern characters or the current text from

text[start] ... text[end] and then return the hashing value

 int theHashingValue;

 return theHashingValue;

}

void KarpRabin(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, iCounter2, jCounter, jCounter2, patternCounter,

 int patternHashingValue = 0, textHashingValue = 0;

 char *textWindow;

 /* Preprocessing */

 patternHashingValue = preprocessing_krHashing(pattern, patternLength);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength- patternLength) {

 patternCounter = 0;

 jCounter = iCounter + patternLength - 1;

 iCounter2=iCounter;

 jCounter2=jCounter;

 while (jCounter >= iCounter){

 textWindow += text[jCounter];

 ++iCounter;

 }

 textHashingValue= preprocessing_krHashing(textWindow, patternLength);

 if (patternHashingValue == textHashingValue){

 while (jCounter2 >= iCounter2 && pattern[patternCounter] == text[iCounter2]){

 --jCounter2;

 ++patternCounter;

 }

 }

 if (jCounter2 < iCounter2){

 OUTPUT(iCounter2);

 }

 iCounter ++;

 }

}

Figure A- 8: The Karp-Rabin algorithm code.

223

void preprocessing_SSTable(char *pattern, int patternLength, int ssTable[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 ssTable[iCounter] = pattern[iCounter];

 }

 for (jCounter = 0; jCounter < patternLength-1; ++jCounter){

 ssTable[jCounter] = patternLength - jCounter;

 }

}

void SkipShift(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ssTable[ASIZE];

 char currentChar;

 /* Preprocessing */

 preprocessing_SSTable(pattern, patternLength, ssTable);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength-1;

 startCounter = patternLength-1;

 jCounter = iCounter + patternLength - 1;

 currentChar = pattern[patternCounter];

 for (;patternCounter >= 0;--patternCounter){

 if(currentChar == ssTable[startCounter]){

 iCounter = ssTable[startCounter]+startCounter;

 jCounter = iCounter + patternLength-1;

 }

 }

 patternCounter = 0;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 if (jCounter < iCounter){

 OUTPUT(iCounter);

 }

 iCounter ++;

 }

}

Figure A- 9: The Skip Search algorithm code

224

void preprocessing_ASSTable(char *pattern, int patternLength, int ASSTable[ASIZE]) {

 int bCounter, iCounter, jCounter,tCounter, logPattern, trieLength;

 char *trieCharacters;

 logPattern = 0;

 bCounter = 0;

 tCounter = patternLength;

 while (tCounter > ASIZE) {

 ++logPattern;

 tCounter /= ASIZE;

 }

 if (logPattern == 0){

 logPattern = 1;

 }

 trieLength = 2 + (2*patternLength - logPattern + 1)*logPattern;

 trieCharacters = newTrie(trieLength, trieLength*ASIZE);

 for (iCounter = logPattern; iCounter < ASIZE; ++iCounter){

 ASSTable[iCounter] = trieCharacters[iCounter];

 }

 for (jCounter = logPattern; jCounter < patternLength-1; ++jCounter){

 ASSTable[jCounter] = patternLength - bCounter;

 ++bCounter;

 }

}

void AlphaSkipShift(char *pattern, int patternLength, char *text, int textLength, char *trieCharacters, int

trieLength) {

 int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ASSTable[ASIZE];

 char *patternTrieCharacters;

 /* Preprocessing */

 preprocessing_ASSTable(pattern, patternLength, ASSTable);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength-1;

 startCounter = patternLength-1;

 jCounter = iCounter + patternLength - 1;

 patternTrieCharacters = newTrie(trieLength, trieLength*pattern);

 for (;patternCounter >= logPattern;--patternCounter){

 if(patternTrieCharacters == ASSTable[startCounter]){

 iCounter = ASSTable[startCounter]+startCounter;

 jCounter = iCounter + patternLength-1;

 }

 }

 patternCounter = 0;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 if (jCounter < iCounter){

 OUTPUT(iCounter);

 }

 iCounter ++;

 }

}

Figure A- 10: The Alpha Skip search algorithm code

225

Figure A- 11: The SSABS algorithm code

void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 qsBc[iCounter] = -1;

 }

 for (jCounter = 0; jCounter < patternLength-1; ++jCounter){

 qsBc[jCounter] = patternLength - jCounter;

 }

}

void SSABS(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, qsBc[ASIZE];

 /* Preprocessing */

 preprocessing_qsBc(pattern, patternLength, qsBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength - 1;

 jCounter = iCounter + patternLength - 1;

 lastCharacter = iCounter + patternLength - 1;

 if (pattern[jCounter] == text[lastCharacter]){

 patternCounter = 0;

 while (jCounter > iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter; ++patternCounter;

 }

 if (jCounter == iCounter) {

 OUTPUT(iCounter);

 }

 }

 iCounter += qsBc [patternLength-1];

 }

}

226

void preprocessing_KMPBc(char *pattern, int patternLength, int KMPBc[ASIZE]){

 int iCounter,jCounter;

 KMPBc[0]=-1;

 for (iCounter = 1; iCounter < patternLength; iCounter++){

 jCounter = KMPBc[iCounter-1];

 while (jCounter>=0){

 if(pattern[jCounter] ==pattern[iCounter-1]){

 break;

 }

 else{

 jCounter=KMPBc[jCounter];

 }

 KMPBc[iCounter] = jCounter + 1;

 }

 }

}

void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 qsBc[iCounter] = -1;

 }

 for (jCounter = 0; jCounter < patternLength-1; ++jCounter){

 qsBc[jCounter] = patternLength - jCounter;

 }

}

void FJS(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, qsBc[ASIZE], KMPBc[ASIZE];

 /* Preprocessing */

 preprocessing_qsBc(pattern, patternLength, qsBc);

 preprocessing_KMPBc(pattern, patternLength, KMPBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = 0;

 jCounter = iCounter + patternLength - 1;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 if (jCounter < iCounter){

 OUTPUT(iCounter);

 }

 if(pattern[patternCounter] != text[iCounter]){

 iCounter += qsBc [patternLength];

 }

 else{

 iCounter += KMPBc [patternCounter];

 }

 }

}

Figure A- 12: The FJS algorithm code

227

void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 for (jCounter = 0; jCounter < ASIZE; ++jCounter){

 brBc[iCounter][jCounter] = patternLength+2;

 }

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[iCounter][pattern[0]] = patternLength + 1;

 }

 for (iCounter = 0; iCounter < patternLength - 1; ++iCounter){

 brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[pattern[iCounter-1]][iCounter] = 1;

 }

}

void TVSBS(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, brBc[ASIZE][ASIZE];

 /* Preprocessing */

 preprocessing_brBc(pattern, patternLength, brBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength - 1;

 jCounter = iCounter + patternLength - 1;

 lastCharacter = iCounter + patternLength - 1;

 if (pattern[jCounter] == text[lastCharacter]){

 patternCounter = 0;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter; ++patternCounter;

 }

 if (jCounter < iCounter) {

 OUTPUT(iCounter);

 }

 }

 iCounter += brBc [patternLength][patternLength+1];

 }

}

Figure A- 13: The TVSBS algorithm code

228

void preprocessing_ztBc(char *pattern, int patternLength, int ztBc[ASIZE][ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 for (jCounter = 0; jCounter < ASIZE; ++jCounter){

 ztBc[iCounter][jCounter] = patternLength;

 }

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 ztBc[iCounter][pattern[0]] = patternLength - 1;

 }

 for (iCounter = 1; iCounter < patternLength - 1; ++iCounter){

 ztBc[pattern[iCounter - 1]][pattern[iCounter]] = patternLength - 1 - iCounter;

 }

}

void ZTBMH(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, ztBc[ASIZE][ASIZE];

 /* Preprocessing */

 Preprocessing_ztBc(pattern, patternLength, ztBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength - 1;

 jCounter = iCounter + patternLength - 1;

 lastCharacter = iCounter + patternLength - 1;

 if (pattern[jCounter] == text[lastCharacter]){

 patternCounter = 0;

 while (jCounter > iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter; ++patternCounter;

 }

 if (jCounter == iCounter) {

 OUTPUT(iCounter);

 }

 }

 iCounter += ztBc [patternLength-2][patternLength-1];

 }

}

Figure A- 14: The ZTBMH algorithm code

229

void preprocessing_fsGs(char *pattern, int patternLength, int fsGs[XSIZE]) {

 // Same preprocessing code as the bmGs function

}

void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 for (jCounter = 0; jCounter < ASIZE; ++jCounter){

 brBc[iCounter][jCounter] = patternLength+2;

 }

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[iCounter][pattern[0]] = patternLength + 1;

 }

 for (iCounter = 0; iCounter < patternLength - 1; ++iCounter){

 brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[pattern[iCounter-1]][iCounter] = 1;

 }

}

void BRFS(unsigned char *pattern, int patternLength, unsigned char *text, int textLength) {

 int iCounter, jCounter, fsGs[XSIZE], brBc[ASIZE][ASIZE];

char *lastTextCharacter;

char *lastPatternCharacter = pattern[patternLength -1];

/* Preprocessing */

 preprocessing_fsGs(pattern, patternLength, fsGs);

 preprocessing_brBc(pattern, patternLength, brBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength){

 if (lastPatternCharacter != lastTextCharacter){

 iCounter = iCounter + brBc[pattern[iCounter + patternLength] [pattern[iCounter + patternLength+1];

 }

 jCounter = patternLength - 2;

 while (jCounter >= 0 && pattern[jCounter] == text[iCounter + jCounter]){

 jCounter = jCounter - 1;

 }

 if (jCounter < 0){

 OUTPUT(iCounter);

 iCounter = iCounter + brBc[pattern[iCounter + patternLength] [pattern[iCounter + patternLength+1];

 }

 else{

 iCounter += fsGs[jCounter + 1];

 }

 }

}

Figure A- 15: The BRFS algorithm code

230

void preprocessing_KMPBc(char *pattern, int patternLength, int KMPBc[ASIZE]){

 int iCounter,jCounter;

 KMPBc[0]=-1;

 for (iCounter = 1; iCounter < patternLength; iCounter++){

 jCounter = KMPBc[iCounter-1];

 while (jCounter>=0)

 {

 if(pattern[jCounter] ==pattern[iCounter-1]){

 break;

 }

 else{

 jCounter=KMPBc[jCounter];

 }

 KMPBc[iCounter] = jCounter + 1;

 }

 }

}

void preprocessing_bmGs(char *pattern, int patternLength, int bmGs[XSIZE]) {

 int iCounter= patternLength, jCounter= patternLength + 1;

 bmGs[iCounter] = jCounter;

 while (iCounter > 0) {

 while (jCounter <= patternLength && pattern[iCounter - 1] != pattern[jCounter - 1]){

 if (bmGs [jCounter] == 0) {

 bmGs [jCounter] = jCounter – iCounter;

 }

 jCounter = bmGs[jCounter];

 }

 iCounter--, jCounter--;

 bmGs[iCounter] = jCounter;

 }

}

void BM-KMB(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, patternCounter, lastCharacter, bmGs[ASIZE], KMPBc[ASIZE];

 /* Preprocessing */

 preprocessing_bmGs(pattern, patternLength, bmGs);

 preprocessing_KMPBc(pattern, patternLength, KMPBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = 0;

 jCounter = iCounter + patternLength - 1;

 if(pattern[patternCounter + patternLength-1] != text[jCounter]){

 iCounter += bmGs[jCounter];

 }

 else{

 while (jCounter-1 >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 }

 if (jCounter-1 < iCounter){

 OUTPUT(iCounter);

 }

 iCounter += KMPBc [patternCounter];

 }

}

Figure A- 16: The BM-KMB algorithm code

231

void preprocessing_SSTable(char *pattern, int patternLength, int ssTable[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 ssTable[iCounter] = pattern[iCounter];

 }

 for (jCounter = 0; jCounter < patternLength-1; ++jCounter){

 ssTable[jCounter] = patternLength - jCounter;

 }

}

void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 for (jCounter = 0; jCounter < ASIZE; ++jCounter){

 brBc[iCounter][jCounter] = patternLength+2;

 }

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[iCounter][pattern[0]] = patternLength + 1;

 }

 for (iCounter = 0; iCounter < patternLength - 1; ++iCounter){

 brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[pattern[iCounter-1]][iCounter] = 1;

 }

}

void BRSS(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ssTable[ASIZE], brBc[ASIZE][ASIZE];

 char currentChar;

 /* Preprocessing */

 preprocessing_SSTable(pattern, patternLength, ssTable);

 preprocessing_brBc(pattern, patternLength, brBc);

 /* Searching */

 iCounter = 0;

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength-1;

 startCounter = patternLength-1;

 jCounter = iCounter + patternLength - 1;

 currentChar = pattern[patternCounter];

 for (;patternCounter >= 0;--patternCounter){

 if(currentChar == ssTable[startCounter]){

 iCounter = ssTable[startCounter]+startCounter;

 jCounter = iCounter + patternLength-1;

 }

 }

 patternCounter = 0;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 if (jCounter < iCounter){

 OUTPUT(iCounter);

 }

 iCounter += MAX(ssTable[text[iCounter + patternLength]], brBc[text[iCounter + patternLength]] [text[iCounter

+ patternLength +1]]);

 }

}

Figure A- 17: The BRSS algorithm code

232

void preprocessing_ASSTable(char *pattern, int patternLength, int ASSTable[ASIZE]) {

 int bCounter, iCounter, jCounter,tCounter, logPattern, trieLength;

 char *trieCharacters;

 logPattern = 0;

 bCounter = 0;

 tCounter = patternLength;

 while (tCounter > ASIZE) {

 ++logPattern;

 tCounter /= ASIZE;

 }

 if (logPattern == 0){

 logPattern = 1;

 }

 trieLength = 2 + (2*patternLength - logPattern + 1)*logPattern;

 trieCharacters = newTrie(trieLength, trieLength*ASIZE);

 for (iCounter = logPattern; iCounter < ASIZE; ++iCounter){

 ASSTable[iCounter] = trieCharacters[iCounter];

 }

 for (jCounter = logPattern; jCounter < patternLength-1; ++jCounter){

 ASSTable[jCounter] = patternLength - bCounter;

 ++bCounter;

 }

}

void preprocessing_brBc(char *pattern, int patternLength, int brBc[ASIZE][ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 for (jCounter = 0; jCounter < ASIZE; ++jCounter){

 brBc[iCounter][jCounter] = patternLength+2;

 }

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[iCounter][pattern[0]] = patternLength + 1;

 }

 for (iCounter = 0; iCounter < patternLength - 1; ++iCounter){

 brBc[pattern[iCounter]][pattern[iCounter+1]] = patternLength - iCounter;

 }

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 brBc[pattern[iCounter-1]][iCounter] = 1;

 }

}

void ASSBR(char *pattern, int patternLength, char *text, int textLength, char *trieCharacters, int trieLength) {

 int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ASSTable[ASIZE], brBc[ASIZE][ASIZE];

 char *patternTrieCharacters;

 /* Preprocessing */

 preprocessing_ASSTable(pattern, patternLength, ASSTable);

 preprocessing_brBc(pattern, patternLength, brBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength-1;

 startCounter = patternLength-1;

 jCounter = iCounter + patternLength - 1;

 patternTrieCharacters = newTrie(trieLength, trieLength*pattern);

 for (;patternCounter >= logPattern;--patternCounter){

 if(patternTrieCharacters == ASSTable[startCounter]){

233

 iCounter = ASSTable[startCounter]+startCounter;

 jCounter = iCounter + patternLength-1;

 }

 }

 patternCounter = 0;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 if (jCounter < iCounter){

 OUTPUT(iCounter);

 }

 iCounter += brBc[text[iCounter + patternLength]] [text[iCounter + patternLength +1]]);

 }

}

Figure A- 18: The ASSBR algorithm code

234

void preprocessing_mrcaTable(char *pattern, int patternLength, int *ref1, int *ref2) {

 int iCounter, jCounter;

 char currentcharacter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 ref1[iCounter] = 0;

 ref2[iCounter] = 2 * patternLength;

 }

 for (jCounter = 0; jCounter < patternLength; ++jCounter){

 currentcharacter = pattern[jCounter];

 ref1[currentcharacter] = jCounter + 1;

 ref2[currentcharacter] = 2 * patternLength - jCounter -1;

 }

}

void MRCA(char *pattern, int patternLength, char *text, int textLength, int *ref1, int *ref2) {

 int iCounter, jCounter, startCounter, patternCounter, patternCounterNew, lastCharacter, mrcaTable[ASIZE];

 int ref1_CharPos, ref2_CharPos;

 /* Preprocessing */

 preprocessing_mrcaTable(pattern, patternLength, ref1, ref2);

 /* Searching */

 iCounter = 0;

 mrcaTable[pattern[0]]=1;

 lastCharacter =patternLength;

 patternCounter = 0;

 while (lastCharacter <= textLength - patternLength) {

 if(mrcaTable[lastCharacter - patternLength + patternCounterNew] == pattern[patternCounter];

 {

 for (iCounter = 0; patternCounter = patternLength -1; --patternCounter){

 if(text[lastCharacter - ++iCounter] != pattern[patternCounter])

 {

 patternCounterNew = patternCounter;

 goto next;

 }

 }

 }

 next:

 ref1_CharPos = ref1[text[lastCharacter]];

 if(!ref1_CharPos){

 lastCharacter = ref1 +patternLength;

 ref2_CharPos = ref1[text[lastCharacter];

 }

 else

 {

 ref1 = ref1 + patternLength - ref1_CharPos;

 lastCharacter += ref2[text[ref1]]- ref1_CharPos + 1;

 }

 }

}

Figure A- 19: The MRCA algorithm code

235

int preprocessing_krHashing(char *pattern_OR_textWindow, int patternLength) {

 // This function compute the hashing value for either the pattern characters or the current text from

text[start] ... text[end] and then return the hashing value

 int theHashingValue;

 return theHashingValue;

}

void preprocessing_hrBc(char *pattern, int patternLength, int hrBc[ASIZE]) {

 // Same preprocessing code as the bmBc function

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 hrBc[iCounter] = -1;

 }

 for (jCounter = 0; jCounter < patternLength; ++jCounter){

 iCounter=pattern[jCounter];

 hrBc[iCounter] = jCounter;

 }

}

void KRBMH(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, iCounter2, jCounter, jCounter2, patternCounter, hrBc[ASIZE];

 int patternHashingValue = 0, textHashingValue = 0;

 char *textWindow;

 /* Preprocessing */

 patternHashingValue = preprocessing_krHashing(pattern, patternLength);

 preprocessing_hrBc(pattern, patternLength, hrBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength- patternLength) {

 patternCounter = 0;

 jCounter = iCounter + patternLength - 1;

 iCounter2=iCounter;

 jCounter2=jCounter;

 while (jCounter >= iCounter){

 textWindow += text[jCounter];

 ++iCounter;

 }

 textHashingValue= preprocessing_krHashing(textWindow, patternLength);

 if (patternHashingValue == textHashingValue){

 while (jCounter2 >= iCounter2 && pattern[patternCounter] == text[iCounter2]){

 --jCounter2;

 ++patternCounter;

 }

 }

 if (jCounter2 < iCounter2){

 OUTPUT(iCounter2);

 }

 iCounter += hrBc [patternLength-1];

 }

}

Figure A- 20: The KRMBH algorithm code

236

void preprocessing_SSTable(char *pattern, int patternLength, int ssTable[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 ssTable[iCounter] = pattern[iCounter];

 }

 for (jCounter = 0; jCounter < patternLength-1; ++jCounter){

 ssTable[jCounter] = patternLength - jCounter;

 }

}

void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 qsBc[iCounter] = -1;

 }

 for (jCounter = 0; jCounter < patternLength-1; ++jCounter){

 qsBc[jCounter] = patternLength - jCounter;

 }

}

void QuickSkipSearch(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, jCounter, startCounter, patternCounter, lastCharacter, ssTable[ASIZE], qsBc[ASIZE];

 char currentChar;

 /* Preprocessing */

 preprocessing_SSTable(pattern, patternLength, ssTable);

 preprocessing_qsBc(pattern, patternLength, qsBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength - patternLength) {

 patternCounter = patternLength-1;

 startCounter = patternLength-1;

 jCounter = iCounter + patternLength - 1;

 currentChar = pattern[patternCounter];

 for (;patternCounter >= 0;--patternCounter){

 if(currentChar == ssTable[startCounter]){

 iCounter = ssTable[startCounter]+startCounter;

 jCounter = iCounter + patternLength-1;

 }

 }

 patternCounter = 0;

 while (jCounter >= iCounter && pattern[patternCounter] == text[iCounter]) {

 --jCounter;

 ++patternCounter;

 }

 if (jCounter < iCounter){

 OUTPUT(iCounter);

 }

 iCounter += MAX(ssTable[text[iCounter + patternLength]], qsBc[text[iCounter + patternLength]]);

 }

}

Figure A- 21: The QSS algorithm code

237

int preprocessing_krHashing(char *pattern_OR_textWindow, int patternLength) {

 // This function compute the hashing value for either the pattern characters or the current text from text[start] ...

text[end] and then return the hashing value

 int theHashingValue;

 return theHashingValue;

}

void preprocessing_qsBc(char *pattern, int patternLength, int qsBc[ASIZE]) {

 int iCounter, jCounter;

 for (iCounter = 0; iCounter < ASIZE; ++iCounter){

 qsBc[iCounter] = -1;

 }

 for (jCounter = 0; jCounter < patternLength-1; ++jCounter){

 qsBc[jCounter] = patternLength - jCounter;

 }

}

void AKRAM(char *pattern, int patternLength, char *text, int textLength) {

 int iCounter, iCounter2, jCounter, jCounter2, tCounter, patternCounter, qsBc[ASIZE];

 int patternPrefixHashingValue = 0, patternSuffixHashingValue = 0;

 int textPrefixHashingValue = 0, textSuffixHashingValue = 0;

 int prefixLength, suffixLength;

 char *patternPrefix, *patternSuffix, *textWindow, *textPrefix, *textSuffix;

 prefixLength = (int)patternLength/2;

 suffixLength = patternLength - prefixLength;

 for (iCounter = 0; iCounter < prefixLength; iCounter++){

 patternPrefix += pattern[iCounter];

 }

 for (iCounter = prefixLength; iCounter < patternLength; iCounter++){

 patternSuffix += pattern[iCounter];

 }

 /* Preprocessing */

 //pattern hashing here while the text hasing in searching phase

 patternPrefixHashingValue = preprocessing_krHashing(patternPrefix, prefixLength);

 patternSuffixHashingValue = preprocessing_krHashing(patternSuffix, suffixLength);

 preprocessing_qsBc(pattern, patternLength, qsBc);

 /* Searching */

 iCounter = 0;

 while (iCounter <= textLength- patternLength) {

 patternCounter = 0;

 jCounter = iCounter + patternLength - 1;

 iCounter2=iCounter;

 jCounter2=jCounter;

 while (jCounter >= iCounter){

 textWindow += text[jCounter];

 ++iCounter;

 }

 for (tCounter = 0; tCounter < prefixLength + iCounter2; tCounter++){

 textPrefix += text[tCounter];

 }

 for (tCounter = prefixLength + iCounter2; tCounter < jCounter2; tCounter++){

 textSuffix += text[tCounter];

 }

 textPrefixHashingValue= preprocessing_krHashing(textPrefix, prefixLength);

 textSuffixHashingValue= preprocessing_krHashing(textSuffix, suffixLength);

 if (patternPrefixHashingValue == textPrefixHashingValue && patternSuffixHashingValue ==

textSuffixHashingValue){

 while (jCounter2 >= iCounter2 && pattern[patternCounter] == text[iCounter2]){

238

 --jCounter2;

 ++patternCounter;

 }

 }

 if (jCounter2 < iCounter2){

 OUTPUT(iCounter2);

 }

 iCounter += qsBc [patternLength];

 }

}

Figure A- 22: The AKRAM algorithm code

239

APPENDIX B: SMILES EBNF

The complete EBNF of the SMILES is listed in this appendix.

smiles :: = chain

chain :: = branched_atom

 | branched_atom chain

| branched_atom bond chain

| branched_atom DOT chain

bond :: = BOND_1

 | BOND_2

| BOND_3

| BOND_4

| BOND_ARO

branched_atom :: = atom kleene_ringbond kleene_branch kleene_ringbond

kleene_ringbond :: = kleene_ringbond ringbond

 | ringbond

| ""

kleene_branch :: = kleene_branch branch

 | branch

| ""

ringbond :: = RINGBOND

 | DIGIT

branch :: = LPAREN chain RPAREN

 | LPAREN bond chain RPAREN

| LPAREN DOT chain RPAREN

atom :: = bracket_atom

 | aliphatic_organic

| aromatic_organic

| WILDCARD

bracket_atom :: = LBRACKET isotope symbol chiral hcount charge class RBRACKET

aliphatic_organic :: = ELEMENT

aromatic_organic :: = AROMATIC

isotope :: = number

240

symbol :: = ELEMENT

 | AROMATIC

| WILDCARD

chiral :: = CHIRAL

 | CHIRAL CHIRAL

| CHIRAL CHIRAL_CODE

| ""

hcount :: = ELEMENT

 | ELEMENT DIGIT

| ""

charge :: = CHARGE_MINUS

 | CHARGE_MINUS DIGIT

| CHARGE_PLUS

| CHARGE_PLUS DIGIT

| DEPR_MIN

| DEPR_PLUS

| ""

class :: = CLASS_COLON NUMBER

 | ""

number :: = number DIGIT

 | DIGIT

241

APPENDIX C: TOOLKIT AND PARALLEL MODELS

IMPLEMNTATION

Antimicrobial Keywords

Figure C- 1: A sample of extracted Antimicrobial structures

242

Figure C- 2: The local database schema (1)

Figure C- 3: The local database schema (2)

243

Figure C- 4: The local database schema (3)

244

Figure C- 6: Developed toolkit login’s page

Figure C- 5: The local database schema (4)

245

Figure C- 7: Developed chemical structure toolkit

Figure C- 8: Converting chemical structure into SMILES

246

Figure C- 9: SMILE check toolkit

247

Figure C- 10: Enabling OpenMP Model in Microsoft Visual Studio

248

Figure C- 11: Enabling MPI Model in Microsoft Visual Studio

249

APPENDIX D: LOCAL DATABASE TABLES FORMAT AND

DESCRIPTION

We mentioned in chapter 5 (section 5.5), three tables of our Local Database. The following

tables show the remaining relational tables which connecting chemical molecules and their

corresponding information:

Literature Table (8 Fields)

Field Type Null Key Default Example

LITERATURE_ID int(11) PRI 0 2366

TITLE varchar(255) Hepatoprotective Sesquiterpene

Glycosides from Sarcandra glabra

SUBTITLE varchar(255) YES NULL

TITLE_TOTAL_SOUNDEX varchar(255) 131632312361524

2321652625362416

TITLE_TOTAL varchar(255) Hepatoprotective Sesquiterpene

Glycosides from Sarcandra glabra

ET_AL enum('false','true') false false

URL varchar(255) YES NULL http://pubs3.acs.org/acs/journals

/toc.page?incoden=jnprdf&indecade

=0&involume=69&inissue=4

DOI varchar(255) YES NULL 10.1021/np050480d

250

Spectrum Table (15 Fields)

Field Type Null Key Default Example

SPECTRUM_ID int(11) PRI 0 62458

DATE datetime MUL 0000-00-

00

00:00:00

 2006-06-14 14:53:57

SPECFILE mediumtext MUL

LITERATURE mediumtext

LITERATURE_SOUNDEX mediumtext

REVIEW_FLAG enum('false','true','rejected',

'change','edited','hidden')

 MUL false false

REVIEW_KEY varchar(6) 42370

NMRSHIFTDB_NUMBER varchar(255) MUL nmrshiftdb.ice.mpg.

de_patel_2006-06-

14_02:53:57_0652

FINGERPRINT bigint(20) 0 0

USER_ID int(11) MUL 0 30003481

SPECTRUM_TYPE_ID int(11) MUL 0 1

COMMENT longblob YES NULL

COMMENT_SOUNDEX mediumtext

MOLECULE_ID int(11) MUL 0 22207

SIMPLE_SPECFILE varchar(255) 8.8;0|16.7;0|27.1;0|27.8;0|

35.9;0|48.1;0|65.6;0|68.2;0|

68.6;0|71.8;0|75;0|75.1;0|

77.1;0|78;0|78.2;0|80.5;0|

84.5;0|104.2;0|111;0|

126.8;0|129.6;0|131.3;0|

134;0|165.5;0|176.1;0|

251

Spectrum_ Literature Table (2 Fields)

Field Type Null Key Default Example

SPECTRUM_ID int(11) PRI 0 62458

LITERATURE_ID int(11) PRI 0 2366

Spectrum_ Type Table (4 fields)

Field Type Null Key Default Example

SPECTRUM_TYPE_ID int(11) PRI 0 1

DIMENSIONALITY int(11) MUL 0 1

NAME varchar(255) 13C

USER_ID int(11) MUL 0 30003481

Chemical_Name Table (3 fields)

Field Type Null Key Default Example

MOLECULE_ID int(11) PRI 0 22207

NAME varchar(255) PRI Sarcaglaboside E

NAME_SOUNDEX varchar(255) 2624123

Canonical_Name Table (4 fields)

Field Type Null Key Default Example

MOLECULE_ID int(11) PRI 0 22207

CANONICAL_NAME_TYPE_ID int(11) PRI 0 4

NAME varchar(255) MUL InChI=1/C26H38O12/c1-13-4-3-5-15(6-7-

16-14(2)23(32)37-17(16)8-13)9-34-24-

21(30)20(29)19(28)18(38-24)10-35-25-

22(31)26(33,11-27)12-36-25/h4,6,17-

22,24-25,27-31,33H,3,5,7-12H2,1-

252

2H3/b13-4+,15-6-/t17-

,18?,19?,20?,21+,22?,24+,25?,26?/m0/s1

NAME_SOUNDEX mediumtext 521263812134351567161

423237171681393424213

291928183824135252312

631271236254617242527

313571212313415631718

1921242526521

 Molecule_Hyperlink Table (4 fields)

Field Type Null Key Default Example

` int(11) PRI 0 22207

HYPERLINK mediumtext PRI http://pubs3.acs.org/acs/journals/toc.

page?incoden=jnprdf&indecade=0&

involume=69&inissue=4

DESCRIPTION mediumtext

DESCRIPTION_SOUNDEX mediumtext

Article Table (6 Fields)

Field Type Null Key Default Example

LITERATURE_ID int(11) PRI 0 2366

PAGES_FROM int(11) 0 616

PAGES_TO int(11) 0 620

PUBLISHED_IN_BOOK int(11) YES MUL NULL NULL

PUBLISHED_IN_JOURNAL int(11) YES MUL NULL 10000681

ISSUE_NUMBER int(11) YES NULL 4

253

Atom Table (10 Fields)

Field Type Null Key Defaul

t

Example

ATOM_ID int(11) PRI 0 458931

SYMBOL char(3) C

MOLECULE_ID int(11) MUL

0 22207

HOSE_CODE_WITH_RINGS

text YES

MUL

NULL C-3-

10;=CC(CC,C/C,,C/

CO,=CC)=CC,C,&,O/&

C

,&,=O&,C/

ATOMIC_MASS int(11) 0 6

FORMAL_CHARGE int(11) 0 0

IS_AROMATIC enum('false','true')

 false false

IS_VISIBLE enum('false','true')

 false true

HETERO varchar(5) false false

HOSE_CODE varchar(120) C-3;=CC(CC,C/C,,C/

CO,=CC)=CC,C,&,O/

&C,&,=O&,C/

Author Table (5 Fields)

Field Type Null Key Default Example

AUTHOR_ID int(11) PRI 0 211

SURNAME varchar(255) A.

NAME varchar(255) Hisham

NAME_TOTAL_SOUNDEX varchar(255) 25

NAME_TOTAL varchar(255) A.Hisham

254

Bond Table (5 Fields)

Field Type Null Key Default Example

BOND_ID int(11) PRI 0 561393

DEGREE int(11) 0 1

IS_CONFIGURATION_SPECIFIED enum('false','true') false false

STEREO int(11) 0 0

IS_AROMATIC enum('false','true') false false

Bond_Atom Table (3 Fields)

Field Type Null Key Default Example

BOND_ID int(11) PRI 0 561393

ATOM_ID int(11) PRI 0 10070728

ORDER_NUMBER int(11) 0 1

Book Table (1 Field)

Field Type Null Key Default Example

LITERATURE_ID int(11) PRI 0 10000651

Book_Publisher Table (3 Fields)

Field Type Null Key Default Example

PUBLISHER_ID int(11) PRI 0 140

LITERATURE_ID int(11) PRI 0 10000651

YEAR int(11) 0 1972

255

 Bookmark Table (2 Fields)

Field Type Null Key Default Example

MOLECULE_ID int(11) PRI 0 2217

USER_ID int(11) PRI 0 20003220

Canonical_Name_Type Table (2 Fields)

Field Type Null Key Default Example

CANONICAL_NAME_TYPE_ID int(11) PRI 0 4

CANONICAL_NAME_TYPE varchar(255) INChI

Condition Table (4 Fields)

Field Type Null Key Default Example

CONDITION_ID int(11) PRI 0 1

VALUE varchar(255) Unknown

CONDITION_TYPE_ID int(11) MUL 0 11

USER_ID int(11) MUL 0 1

Condition_Type (7 Fields)

Field Type Null Key Default Example

CONDITION_TYPE_ID int(11) PRI 0 11

CONDITION_NAME varchar(255) Assignment Method

CONDITION_TYPE char(1) MUL M

DATA_TYPE varchar(255) String

DICT_REF varchar(255) nmr:assignmentMethod

UNITS varchar(255)

CML_ENTRY_TYPE varchar(255) metadata

256

Coordinate_Set_2d Table (4 Fields)

Field Type Null Key Default Example

COORDINATE_SET_TYPE_ID int(11) PRI 0 1

ATOM_ID int(11) PRI 0 10070728

X_COORDINATE double 0 84

Y_COORDINATE double 0 45

 Coordinate_Set_3d (5 Fields)

Field Type Null Key Default Example

COORDINATE_SET_TYPE_ID int(11) PRI 0 2

ATOM_ID int(11) PRI 0 10070728

X_COORDINATE double 0 -1.6107

Y_COORDINATE double 0 6.0441

Z_COORDINATE double 0 -1.229

Coordinate_Set_Type (2 Fields)

Field Type Null Key Default Example

COORDINATE_SET_TYPE_ID int(11) PRI 0 2

DESCRIPTION longblob YES NULL Corina generated

Coupling (4 Fields)

Field Type Null Key Default Example

SPECTRUM_ID int(11) PRI 0 62151

ATOM_ID_1 int(11) PRI 0 11353692

ATOM_ID_2 int(11) PRI 0 11353701

CONSTANT double 0 9.4

257

D2 (2 Fields)

Field Type Null Key Default Example

SPECTRUM_ID int(11) MUL 0

c bigint(21) 0

Descriptor_Factors Table (4 Fields)

Field Type Null Key Default Example

PROTONCLASS int(11) YES NULL 1

DESCRIPTOR varchar(6) YES NULL des0

MIN_VALUE float YES NULL -4.85783

DIVISOR float YES NULL 15.6864

Descriptors_1 Table (12 Fields)

Field Type Null Key Default Example

ATOM_ID int(11) 0 10025644

SIGNAL_ID int(11) 0 118780

des0 float 0 0.870193

des1 float 0 1

des2 float 0 1

des3 float 0 0

des5 float 0 0

des6 float 0 0.577553

des7 float 0 3.88273E-36

des8 float 0 0.631443

des9 float 0 0.261656

des10 float 0 0.787642

258

Descriptors_2 Table (13 Fields)

Field Type Null Key Default Example

ATOM_ID int(11) 0 10032017

SIGNAL_ID int(11) 0 294112

des0 float 0 0.802921

des1 float 0 4.76838E-7

des2 float 0 1

des3 float 0 0

des4 float 0 0.5

des5 float 0 0

des6 float 0 0.0925837

des7 float 0 0.528582

des8 float 0 0.180124

des9 float 0 0.713736

des10 float 0 0.751165

Descriptors_3 Table (13 Fields)

Field Type Null Key Default Example

ATOM_ID int(11) 0 10032068

SIGNAL_ID int(11) 0 294084

des0 float 0 0.929478

des1 float 0 1

des2 float 0 1

des3 float 0 0

des4 float 0 0

des5 float 0 0

des6 float 0 0.159696

des7 float 0 0.748386

des8 float 0 0.315996

des9 float 0 0.846154

des10 float 0 0.724766

259

Descriptors_4 Table (11 Fields)

Field Type Null Key Default Example

ATOM_ID int(11) 0 10025646

SIGNAL_ID int(11) 0 118778

des0 float 0 0.789115

des1 float 0 0.310345

des4 float 0 0

des5 float 0 0

des6 float 0 0.547023

des7 float 0 1.32143E-36

des8 float 0 0.305556

des9 float 0 0.5

des10 float 0 0.960485

Descriptors_All Table (13 Fields)

Field Type Null Key Default Example

ATOM_ID int(11) 0 10025646

SIGNAL_ID int(11) 0 118778

des0 float 0 8.37889

des1 float 0 1.7

des2 float 0 0

des3 float 0 0

des4 float 0 1

des5 float 0 4

des6 float 0 0.420249

des7 float 0 3.54736

des8 float 0 0.6875

des9 float 0 0.375

des10 float 0 7.49834

260

Fingerprints Table (17 Fields)

Field Type Null Key Default Example

MOLECULE_ID int(11) 0

fp0 bigint(20) unsigned YES NULL

fp1 bigint(20) unsigned YES NULL

fp2 bigint(20) unsigned YES NULL

fp3 bigint(20) unsigned YES NULL

fp4 bigint(20) unsigned YES NULL

fp5 bigint(20) unsigned YES NULL

fp6 bigint(20) unsigned YES NULL

fp7 bigint(20) unsigned YES NULL

fp8 bigint(20) unsigned YES NULL

fp9 bigint(20) unsigned YES NULL

fp10 bigint(20) unsigned YES NULL

fp11 bigint(20) unsigned YES NULL

fp12 bigint(20) unsigned YES NULL

fp13 bigint(20) unsigned YES NULL

fp14 bigint(20) unsigned YES NULL

fp15 bigint(20) unsigned YES NULL

Guestbook Table (5 Fields)

Field Type Null Key Default Example

GUESTBOOK_ID int(11) PRI 0 100

USER_ID int(11) YES MUL NULL 140

DATE datetime 0000-00-

00

00:00:00

 2004-03-05 12:54:34

TEXT mediumtext We hope to get more feedback

from our users via this

guestbook. For example we

would like to know why quite a

few people register, but only

261

some do submit spectra.

VALID enum('false','true') false true

Hcount Table (3 Fields)

Field Type Null Key Default Example

MOLECULE_ID int(11) 0

H_COUNT bigint(21) 0

COUNT bigint(21) 0

Hcountnew Table (3 Fields)

Field Type Null Key Default Example

MOLECULE_ID int(11) 0

H_COUNT bigint(21) 0

COUNT bigint(21) 0

Hose_Codes Table (7 Fields)

Field Type Null Ke

y

Defau

lt

Example

HOSE_CODE text YES

 NULL

 H-

;C(HHC/,,

CCC/HCC,

H

H&,HH.),H

C

&,HHC,,,,,/

,=

CC,,,HHC/

VALUE float 0 0.96

262

SPECTRUM_ID int(11) 0 62151

CONDITION_TY

PE

char(1) m

SYMBOL char(3) H

REVIEW_FLAG enum('false','true','rejected','change','edited','hi

dden')

 false True

WITH_RINGS int(1) 0 1

Id_Table (4 Fields)

Field Type Null Key Default Example

ID_TABLE_ID int(11) PRI NULL 12

TABLE_NAME varchar(255) UNI MOLECULE

NEXT_ID int(11) YES NULL 124282

QUANTITY int(11) YES NULL 187

Identifier Table (3 Fields)

Field Type Null Key Default Example

ATOM_ID int(11) PRI 0 20707736

LITERATURE_ID int(11) PRI 0 20002226

IDENTIFIER varchar(255) C

Is_Author Table (3 Fields)

Field Type Null Key Default Example

AUTHOR_ID int(11) PRI 0 20001883

LITERATURE_ID int(11) PRI 0 20002226

AUTHOR_ORDER int(11) 0 3

Is_Editor Table (3 Fields)

263

Field Type Null Key Default Example

AUTHOR_ID int(11) PRI 0

LITERATURE_ID int(11) PRI 0

EDITOR_ORDER int(11) 0

Isotope Table (4 Fields)

Field Type Null Key Default Example

SPECTRUM_TYPE_ID int(11) PRI 0 1

AXIS int(11) PRI 0 1

ELEMENT_SYMBOL varchar(255) MUL C

ATOMIC_MASS int(11) 0 13

Jetspeed_Anon_Profile Table (6 Fields)

Field Type Null Key Default Example

PSML_ID int(11) PRI 0 120

MEDIA_TYPE varchar(99) YES MUL NULL wml

LANGUAGE char(2) YES NULL en

COUNTRY char(2) YES NULL

PAGE varchar(99) YES NULL default.psml

PROFILE longblob YES NULL <?xml version="1.0"?><portlets

xmlns=http://www.apache.rg/2000/02/C>

Jetspeed_Group_Profile Table (7 Fields)

Field Type Null Key Default Example

PSML_ID int(11) PRI 0 120

GROUP_NAME varchar(99) YES MUL NULL Jetspeed

MEDIA_TYPE varchar(99) YES NULL

LANGUAGE char(2) YES NULL

COUNTRY char(2) YES NULL

PAGE varchar(99) YES NULL news.psml

264

PROFILE longblob YES NULL <?xml version="1.0"?><portlets

xmlns=http://www.apache.rg/2000/02/C>

Jetspeed_Role_Profile Table (7 Fields)

Field Type Null Key Default Example

PSML_ID int(11) PRI 0 120

ROLE_NAME varchar(99) YES MUL NULL admin

MEDIA_TYPE varchar(99) YES NULL

LANGUAGE char(2) YES NULL

COUNTRY char(2) YES NULL

PAGE varchar(99) YES NULL default.psml

PROFILE longblob YES NULL <?xml version="1.0"?><portlets

xmlns=http://www.apache.rg/2000/02/C>

Jetspeed_User_Profile Table (7 Fields)

Field Type Null Key Default Example

PSML_ID int(11) PRI 0 120

USER_NAME varchar(32) YES MUL NULL admin

MEDIA_TYPE varchar(99) YES NULL html

LANGUAGE char(2) YES NULL

COUNTRY char(2) YES NULL

PAGE varchar(99) YES NULL default.psml

PROFILE longblob YES NULL <?xml version="1.0"?><portlets

xmlns=http://www.apache.rg/2000/02/C>

Journal Table (4 Fields)

Field Type Null Key Default Example

JOURNAL_ID int(11) PRI 0 283

265

TITLE varchar(255) Journal of Chemical Society

SUBTITLE varchar(255) YES NULL Perkin Tansactions 2

ITA varchar(255) YES NULL J.Chem.Soc.,Perkin Trans.2

Journal_Volume Table (4 Fields)

Field Type Null Key Default Example

JOURNAL_VOLUME_ID int(11) PRI 0 466

VOLUME int(11) 0 0

YEAR int(11) 0 2001

JOURNAL_ID int(11) MUL 0 283

Labgroup Table (3 Fields)

Field Type Null Key Default Example

LABGROUP_ID int(11) PRI 0

LABGROUP_NAME varchar(20) UNI

LEADER int(11) 0

Machine Table (6 Fields)

Field Type Null Key Default Example

MACHINE_ID int(11) PRI 0

NAME varchar(20)

FIELD_STRENGTH int(11) MUL 0

LABGROUP_ID int(11) 0

VALID enum('false','true') false

DEFAULT_MACHINE enum('false','true') false

266

Measurement_Condition Table (5 Fields)

Field Type Null Key Default Example

MEASUREMENT_CONDITION_ID int(11) PRI NULL 100

TEMPERATURE float 0 0

FIELD_STRENGTH int(11) 0 0

SOLVENT mediumtext

USER_ID int(11) 0 100

Publisher Table (3 Fields)

Field Type Null Key Default Example

PUBLISHER_ID int(11) PRI 0 30000100

NAME varchar(255) University of Florida

PLACE varchar(255) Florida

Raw_File Table (3 Fields)

Field Type Null Key Default Example

RAW_FILE_ID int(11) PRI 0

SAMPLE_ID int(11) MUL 0

URL varchar(255)

Raw_File_Spectrum Table (2 Fields)

Field Type Null Key Default Example

RAW_FILE_ID int(11) PRI 0

SPECTRUM_ID int(11) PRI 0

267

ReviewGroup Table (2 Fields)

Field Type Null Key Default Example

REVIEWGROUP_ID int(11) PRI 0 100

REVIEWGROUP_NAME varchar(20) UNI ice

Review_Group_User Table (2 Fields)

Field Type Null Key Default Example

REVIEWGROUP_ID int(11) PRI 0 100

USER_ID int(11) PRI 0 163

Sample Table (16 Fields)

Field Type Null Key Default Example

SAMPLE_ID int(11) PRI 0

USERS_ID varchar(20)

USER_ID int(11) MUL 0

SOLVENT int(11) MUL 0

MACHINE int(11) MUL 0

PROBABLE_STRUCTURE int(11) YES MUL NULL

DATE datetime 0000-00-

00

00:00:00

OTHER_NUCLEI varchar(50)

SPECIAL_CARE varchar(50)

WISHED_SPECTRUM varchar(50)

FINISHED varchar(8)

PROCESS enum('self','worker','robot') self

ATTACHMENT_NAME varchar(20)

ATTACHMENT longblob

USERS_ID_COMMENT varchar(40)

OTHER_WISHED_SPECTRUM varchar(50)

268

Sessions Table (3 Fields)

Field Type Null Key Default Example

SESSIONS int(11) PRI 0 2

LOWEST_LOAD_SERVER varchar(255) YES NULL nmrshiftdb.cubic.uni-koeln.de

SESSIONS_ALL int(11) 0 176126

Shift Table (3 Fields)

Field Type Null Key Default Example

SIGNAL_ID int(11) PRI 0 1281322

AXIS int(11) PRI 0 1

VALUE float 0 124.9

Signal Table (4 Fields)

Field Type Null Key Default Example

SIGNAL_ID int(11) PRI 0 1281322

INTENSITY float 0 0

SPECTRUM_ID int(11) MUL 0 50367

MULTIPLICITY varchar(255) YES NULL S

Signal_Atom Table (2 Fields)

Field Type Null Key Default Example

SIGNAL_ID int(11) PRI 0 1281322

ATOM_ID int(11) PRI 0 88

269

Spectrum_Condition Table (2 Fields)

Field Type Null Key Default Example

SPECTRUM_ID int(11) PRI 0 58353

CONDITION_ID int(11) PRI 0 1

Spectrum_Fingerprints Table (4 Fields)

Field Type Null Key Default Example

MOLECULE_ID int(11) 0

SIMPLE_SPECFILE varchar(255)

FINGERPRINT bigint(20) 0

NAME varchar(255)

Spectrum_Hyperlink Table (4 Fields)

Field Type Nul

l

Ke

y

Defau

lt

Example

SPECTRUM_ID int(11) PRI

0 6887

HYPERLINK mediumtex

t

 PRI

 http://www.mdpi.org/molbank/molbank

2002

/m0287hnmr.jdx

DESCRIPTION mediumtex

t

 jdx-File

DESCRIPTION_SOUND

EX

mediumtex

t

 23214

Spectrum_Keyword Table (2 Fields)

270

Field Type Null Key Default Example

SPECTRUM_ID int(11) PRI 0 17064

KEYWORD_ID int(11) PRI 0 3506

Statistics Table (10 Fields)

Field Type Null Key Default Example

YEAR int(11) YES NULL 2003

MONTH int(11) YES NULL 8

PREDICTION int(11) YES NULL 88

EXACT_SUBSTRUCTURE int(11) YES NULL 45

LINE_SEARCH int(11) YES NULL 50

SUBSTRUCTURE_FUZZY_SEARCH int(11) YES NULL 47

WEIGHT_SEARCH int(11) YES NULL 0

NAME int(11) YES NULL 138

CAS int(11) YES NULL 894

OTHER_SEARCH int(11) YES NULL 209

Turbine_Group Table (3 Fields)

Field Type Null Key Default Example

GROUP_ID int(11) PRI 0 1

GROUP_NAME varchar(99) UNI Jetspeed

OBJECTDATA mediumblob YES NULL

Turbine_Permission Table (3 Fields)

Field Type Null Key Default Example

PERMISSION_ID int(11) PRI 0 1

PERMISSION_NAME varchar(99) UNI view

OBJECTDATA mediumblob YES NULL

271

Turbine_Role Table (3 Fields)

Field Type Null Key Default Example

ROLE_ID int(11) PRI 0 1

ROLE_NAME varchar(99) UNI User

OBJECTDATA mediumblob YES NULL

Turbine_Role_Permission Table (2 Fields)

Field Type Null Key Default Example

ROLE_ID int(11) PRI 0 1

PERMISSION_ID int(11) PRI 0 1

Turbine_Scheduled_Job Table (9 Fields)

Field Type Null Key Default Example

JOB_ID int(11) PRI 0

SECOND int(11) -1

MINUTE int(11) -1

HOUR int(11) -1

WEEK_DAY int(11) -1

DAY_OF_MONTH int(11) -1

TASK varchar(99)

EMAIL varchar(99) YES NULL

PROPERTY mediumblob YES NULL

Turbine_User Table (14 Fields)

Field Type Null Key Default Example

USER_ID int(11) PRI 0 1

LOGIN_NAME varchar(32) UNI admin

272

PASSWORD_VALUE varchar(32)

FIRST_NAME varchar(99)

LAST_NAME varchar(99)

TITLE varchar(99) YES NULL

ADDRESS varchar(99)

CITY varchar(99)

STATE varchar(99) YES NULL

ZIP_CODE varchar(99)

COUNTRY varchar(99)

WEB_PAGE varchar(99) YES NULL

AFFILIATION_1 varchar(99) YES NULL

EMAIL varchar(99)

Turbine_User_Group_Role Table (3 Fields)

Field Type Null Key Default Example

USER_ID int(11) PRI 0 1

GROUP_ID int(11) PRI 0 1

ROLE_ID int(11) PRI 0 1

User Table (3 Fields)

Field Type Null Key Default Example

userid varchar(20) 0 admin

password varchar(16) 0 admin

level varchar(5) YES NULL admin

273

User_Spectrum Table (5 Fields)

Field Type Null Key Default Example

USER_ID int(11) PRI 0 140

SPECTRUM_ID int(11) PRI 0 10040588

ASSIGNMENT_DATE datetime YES NULL

REVIEW_DATE datetime YES NULL 2003-08-15 10:31:22

USER_SPECTRUM_ID int(11) PRI 0 0

User_Spectrum_Edit Table (3 Fields)

Field Type Null Key Default Example

USER_ID int(11) PRI 0 163

SPECTRUM_ID int(11) PRI 0 3403

EDIT datetime PRI 0000-00-00 00:00:00 2002-11-08 00:00:00

User_Spectrum_Mark Table (5 Fields)

Field Type Null Key Default Example

USER_ID int(11) PRI 0 140

SPECTRUM_ID int(11) PRI 0 10014699

MARK int(11) 0 1

MARK_DATE datetime 0000-00-00

00:00:00

 2004-06-23 10:45:34

COMMENT mediumtext Assignments obviously nonsense

(but correctly

read from dkfz files)

274

Wishlist Table (4 Fields)

Field Type Null Key Default Example

USER_ID int(11) PRI 0 1

DATE datetime 0000-00-00 00:00:00 2005-04-07 15:33:32

SPECTRUM_TYPE_ID int(11) PRI 0 2

MOLECULE_ID int(11) PRI 0 20053596

