
University of Huddersfield Repository

Newall, Matthew

GPU cluster for acceleration of scientific and engineering applications in the context of higher
education

Original Citation

Newall, Matthew (2015) GPU cluster for acceleration of scientific and engineering applications in
the context of higher education. Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/23746/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

UNIVERSITY OF HUDDERSFIELD

GPU Cluster for Acceleration of Scientific
and Engineering Applications in the

Context of Higher Education

Author:
Matthew NEWALL

Supervisor:
Dr Violeta HOLMES

A thesis submitted in fulfilment of the requirements
for the degree of Masters By Research

High Performance Computing
School Of Computing and Engineering

February 2015

http://www.hud.ac.uk
http://hpc.hud.ac.uk
http://www.hud.ac.uk/ce

1

Copyright Statement

• The author of this thesis (including any appendices and/or schedules to this the-

sis) owns any copyright in it (the Copyright) and s/he has given The University of

Huddersfield the right to use such Copyright for any administrative, promotional,

educational and/or teaching purposes.

• Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

• The ownership of any patents, designs, trade marks and any and all other intel-

lectual property rights except for the Copyright (the Intellectual Property Rights)

and any reproductions of copyright works, for example graphs and tables (Repro-

ductions), which may be described in this thesis, may not be owned by the author

and may be owned by third parties. Such Intellectual Property Rights and Repro-

ductions cannot and must not be made available for use without the prior written

permission of the owner(s) of the relevant intellectual Property Rights and/or Re-

production

2

Abstract

Many fields of research now rely on High Performance Computing (HPC) systems

which can process ever larger datasets, with increasing accuracy and speed. Many

universities now provide a HPC service. Following the trend over the past few years of

the worlds fastest supercomputers being accelerated using Graphical Processing Units

(GPUs), there is a growing interest in the use of GPUs in Higher Education Institutions.

The characteristics of GPUs make them excellently suited to any task exhibiting a high

level of data parallelism. Recent developments in GPU technologies have focused on

improving performance and integration in HPC, and for processing data other than dis-

play graphics.

To investigate the benefits such a system could have to the University of Huddersfield,

a small GPU cluster has been deployed. The intention behind this thesis is to detail the

deployment of the system and to demonstrate, through case studies, the required effort

a potential user could expect in order to take advantage of it.

As a result of this work it can be demonstrated that even a modest GPU cluster can be

of benefit to the University. The cluster is helping our researchers to analyse complex

data using visualisation, and accelerating data processing.

3

Acknowledgements

I would like first and foremost to thank my supervisor Violeta Holmes for her invaluable

advice and support both day and night. Without her this project would not have been

possible. I would also like to thank Paul Lunn from Birmingham City University for pro-

viding his software for the second case study, and for his contributions to publications

based on this work. Thanks to Graeme Greaves from the Electron Microscopy Materi-

als Analysis group at Huddersfield for providing data, And to Hussam Muhamedsaleh

for allowing use of his software in the final case study. Finally i would like to thank

my collegues Ibad Kureshi, Stephen Bonner and John Brennan for their technical and

logistical assistance.

4

Contents

Copyright Statement 1

Abstract 2

Acknowledgements 3

List of Figures 6

List of Tables 7

Abbreviations 8

1 Introduction and Background 9
1.1 Aims and Objectives . 10
1.2 Methodology . 10

2 Literature Review 12
2.1 GPUs as general purpose processors . 12

2.1.1 GPU Programming Frameworks 15
2.1.1.1 Nvidia CUDA . 15
2.1.1.2 openCL . 16

2.2 Obstacles to using GPUs for scientific calculations 17
2.3 Scientific applications of current GPU technology 18
2.4 HPC Systems which use GPUs . 19

2.4.1 TITAN - Oak Ridge National Laboratory 20
2.4.2 Emerald . 20

3 Vega GPU Cluster 22
3.1 The Microsoft Windows HPC Platform . 22
3.2 Cluster Layout . 23
3.3 Deployment . 24
3.4 Testing . 25

4 Platforms and Programming Environments for Scientific Data Visualisation
and Processing 31
4.1 Visualisation . 32
4.2 Multi-Node parallelism . 32

Contents 5

4.3 GPU Programming Framework . 33

5 Case Study 1: Visualisation of large datasets 35
5.1 Electron Microscopy Data . 35
5.2 VisIt . 36
5.3 Evaluation of Results . 37

6 Case Study 2: Accelerated Processing of Radio Telescope Data Using
CUDA 39
6.1 The SETIFFT software . 40

6.1.1 Optimising CUDA performance . 41
6.1.2 Using MPI to increase performance 42

6.2 Evaluation of Results . 43

7 Case Study 3: CUDA Accelerated Analysis of Wavelength scanning Inter-
ferometry Data 46
7.1 The Interferometry Software . 46
7.2 Improving Performance Using MPI . 47
7.3 Evaluation of Results . 48

8 Conclusion 50

9 Further Work 52

A SILOWRITE tool 53

B SETIFFT sonification code 58

C Wavelength Scanning Interferometry Software 74

D GPU Cluster for Accelerated processing and Visualisation of Scientific
Data 90

E Delivering faster results through parallelisation and GPU acceleration 97

References 110

6

List of Figures

2.1 Architecture of the Nvidia GeForce 6800 GPU, showing pipelined design
with separate units for Vertex processing, Rasterization and Blending
(Nvidia, 2006) . 14

2.2 Architecture of the Nvidia TESLA GPU, showing unified design with gen-
eral purpose streaming processors (Lindholm et al., 2008) 14

2.3 A representation of the graphics pipeline as implemented on CUDA GPUs
(Luebke and Humphreys, 2007) . 15

3.1 Current VEGA hardware layout and network topology. 24
3.2 Key steps when deploying VEGA: 1. Selecting Network Topology 2. Con-

figuring NAT and DHCP to allow compute nodes to access outside net-
work 3. Creating a system image for compute nodes 4. Finding bare
metal machines to deploy as compute nodes 5. Checking relevant diag-
nostic tests pass 6. Checking CUDA functionality 26

3.3 Tuning HPL parameters using Lizard . 27
3.4 Simple MPI test program, based loosely on the example from Matto-

torang (2009) . 28
3.5 Output from MPI test program when run on all cores 29
3.6 GPU test programs included with CUDA toolkit (Nvidia, 2013a), from top

to bottom: Device Query, Testing Aligned Types, Matrix Multiplication . . 30

5.1 Visualisation method before VisIt . 36
5.2 Program flow for the SILOWRITE code . 37
5.3 Comparison of Visualisation methods, from top to bottom: Original spread-

sheet, 2D Mesh in VisIt, 3D mesh in VisIt, 3D contour mesh in VisIt 38

6.1 Program flow of the SETIFFT software . 40
6.2 Program flow of the initial MPI program 43
6.3 Program flow of the final MPI version . 44
6.4 Total running times of each version . 45

7.1 Program flow for the original CUDA code 47
7.2 Program flow for the MPI version using multiple GPUs 48
7.3 Total running times for each version . 49
7.4 Representative per-frame processing time 49

7

List of Tables

3.1 Hardware available for VEGA . 23

6.1 Timings for original JAVA program . 40
6.2 Timings for Java program with wrapped CUDA functions 41
6.3 Timings for C++ with serial FFT . 41
6.4 Timings for C++ with CUFFT . 41
6.5 Timings for C++ with CUFFT and MPI, running on multiple GPUs 42
6.6 Timings for C++ with CUFFT and MPI, running on multiple GPUs 42
6.7 Read/write time for the MPI software when reading from different num-

bers of files . 45

8

Abbreviations

GPU Graphics Processing Unit

HPC High Performance Computing

AD Active Directory

QGG QueensGate Grid

CUDA Compute Unified Device Architecture

MPI Message Passing Interface

API Application Programming Interface

CFD Computational Fluid Dynamics

9

Chapter 1

Introduction and Background

High Performance computing systems are now well established as an essential tool for

research and analysis in Higher Education. A High Performance computing system is

one which uses multiple computers to carry out one task, through parallel processing.

Many Universities have some kind of HPC provision. At the University of Huddersfield

a number of HPC systems have been deployed for the use of researchers and students

(Kureshi, 2010). These systems are used regularly for tasks such as large CFD simula-

tions, running MPI software, image rendering and more. However, the fastest computer

HPC systems now include Graphic Processing Units (GPU) (Top500, 2013a). This

research is attempting to answer the following questions

• Why do we need an alternative to CPU systems for scientific processing

• Why are GPUs so suited to this task

• What issues would be faced in deploying a GPU system.

• How would such a system support research in a Higher Education institution such

as the University of Huddersfield.

Aside from the university of Huddersfield, many HE institutions have some kind of HPC

system. However, while GPUs are seeing widespread adoption in research and scien-

tific institutions, they still remain comparatively rare in HE.

Introduction and Background 10

1.1 Aims and Objectives

The overall goal of this project was to investigate the viability of a GPU cluster to compli-

ment the HPC provision available at the University of Huddersfield. The key objectives

for success were:

• Investigate the application of GPU technologies in HPC systems.

• Evaluate existing GPU systems in the context of Higher Education to support

scientific research.

• Deploy a GPU cluster within a HE institutional grid.

• Investigate different platforms and programming environments for the purpose of

highly parallel task and data processing and visualisation.

• Evaluate the suitability of the GPU cluster using representative case studies.

• Propose possible future developments of the system to accelerate HE scientific

research.

The final outcome of this project was considered to be a functional GPU cluster, suc-

cessfully integrated as part of the HPC provision at the university, justified through a

number of case studies.

1.2 Methodology

In order investigate how best to achieve the project aims and objectives, a compre-

hensive literature review was conducted, A GPU cluster was deployed and integrated

into the campus grid, and case studies were carried out to evaluate its usefulness in

supporting the visualisation and processing of data.

The result of this study is presented in this thesis and is organised as outlined below:

• Chapter 2: Investigate existing HPC sytems, the use of GPUs in such systems

and studies on existing GPU clusters, Cluster Middlewares, GPU programming

models and software.

Introduction and Background 11

• Chapter 3: Design and deployment of a GPU cluster is described.

• Chapter 4: Outlines a selection of appropriate software, platforms, and program-

ming environments for visualisation and processing of data, based on the litera-

ture.

• Chapter 5,6, and 7: Presents the results of testing the usefulness and suitability

of the cluster through three representative case studies.

• Chapter 8 and 9: Evaluate the outcomes of the project and propose future devel-

opments.

12

Chapter 2

Literature Review

2.1 GPUs as general purpose processors

There have been numerous efforts up to this point to use GPUs as general purpose

processors. An important concept to bear in mind when establishing the suitability

of an algorithm or program for processing on a GPU is arithmetic intensity, which as

stated by Harris (2005), is the ratio of computation to bandwidth. This is significant as

computational speed currently increases more rapidly than communication speed, so

memory access latency will negate potential computational speedup. Problems with a

high arithmetic intensity are those which exhibit a high level of data parallelism, and

have minimal dependency between data points.

Fung and Mann (2005) present an API, OpenVIDIA, which allows a user to leverage

GPUs to perform computer vision and Image processing tasks. The API uses openGL

to interact with the GPUs. In an image processing or filtering operation, the filters are

written as shaders in Cg (described in the paper as ”fragment programs”), ”to apply

these fragment programs to input images, the input images are initialized as textures

and then mapped to quadrilaterals.” (Fung and Mann, 2005, chap. 3.1). The architec-

ture of the GPU allows each pixel to be processed in parallel providing a significant

speed boost. The same paper describes an implementation of a computer vision algo-

rithm which uses the full pipeline of the GPU, a Hough Transform. An edge detection is

performed on the GPU as a filter operation. The coordinates of these edge pixels are

then fed back to the GPU as an array of vertices, these vertices are further processed

Literature Review 13

on the GPU through its hardware projection matrix, which has been programmed to

perform the Hough Transform (Fung and Mann, 2005, chap. 3.2).

Efforts have also been made to abstract the process of GPU acceleration to high level

operations. Tarditi et al. (2006) describe Accelerator; ”a system that uses data paral-

lelism to program GPUs”. Accelerator allows programmers to accelerate suitable parts

of their code using GPU accelerated functions, without exposing any aspect of the GPU.

Unlike the traditional approach, which would involve compiling the data-parallel parts of

the program as shader programs in native code, Acellerator compiles GPU parts of the

code on the fly at runtime. Using this software Tarditi et al. (2006) were able to demon-

strate an acceleration of up to 18 times over native C code running on a CPU. While it

does not match the performance of hand written GPU code, its simplicity of use makes

it an important step towards accessible GPU acceleration.

As the use of GPUs as accelerators became increasingly common, GPU manufacturers

started to change the design of their units accordingly. Fig. 2.1 Shows the architecture

of the Nvidia GeForce GPU; it is a design highly specialised to graphics with hardware

designed to fulfil specific parts of the graphics pipeline, as was the case most GPUs up

to this point. As can be seen in Fung and Mann (2005, chap. 3.2), and Tarditi et al.

(2006, chap. 3.1), programming GPUs required determining which part of the graphics

pipeline was best suited to the problem, and could require vastly different approaches

depending on which part of the GPU was targeted. To use the full pipeline often meant

numerous copies to and from host memory as it was not possible to utilise the internal

transports on the GPU.

This changed with the Nvidia GeForce 8800, which was the first card based on the pro-

priety compute unified device architecture (CUDA). As can be seen in Fig. 2.2, CUDA

devices replace the hardware pipeline with high numbers of ’stream processors’. As

seen in Fig. 2.3, most of the pipeline is now implemented on the stream processors.

This makes CUDA GPUs much more easily programmable than was previously possi-

ble.

Literature Review 14

FIGURE 2.1: Architecture of the Nvidia GeForce 6800 GPU, showing pipelined design
with separate units for Vertex processing, Rasterization and Blending (Nvidia, 2006)

FIGURE 2.2: Architecture of the Nvidia TESLA GPU, showing unified design with gen-
eral purpose streaming processors (Lindholm et al., 2008)

Literature Review 15

FIGURE 2.3: A representation of the graphics pipeline as implemented on CUDA
GPUs (Luebke and Humphreys, 2007)

2.1.1 GPU Programming Frameworks

2.1.1.1 Nvidia CUDA

As well as the CUDA platform itself, Nvidia actively develop a programming model for

its GeForce, Quadro and Tesla processors. It is highly scalable and will run on an ar-

bitrary number of processors without the need to recompile. This is required because

of the vast and varying number of processor cores in modern GPUs (Nvidia, 2008).

As observed by Garland et al. (2008), the CUDA framework allows a programmer to

use the massively multi-threaded nature of GPUs for a wide range of highly parallel

problems. While this was possible previously, using graphics APIs, CUDA relieves the

programmer of the requirement of intimate knowledge of the target hardware. Addition-

ally, it removes the daunting task of having to negotiate a complicated and unfamiliar

language, as was previously the case when targeting different parts of the graphics

pipeline. All of this allows the programmer to instead ”focus on the important issues of

parallelism - how to craft efficient parallel algorithms” (Garland et al., 2008, chap. 2).

CUDA programs consist of two parts;

• The host program - This can be one or multiple threads, running on the CPU

Literature Review 16

• Parallel kernels - CUDA kernels are scalar sequential programs which execute

on the GPU. These sequential programs operate on a grid of thread blocks, and

must be able to be execute independently.

As an example, consider the loop in Listing. 1.1 The code iterates over a grid of data

and performs the function at each point one at a time. The parallel version in listing. 1.2

performs the same function, but rather than looping through, each point is processed

essentially simultaneously. (Garland et al., 2008)

vo id serial_function (i n t n , f l o a t a , f l o a t *x , f l o a t *y)

{
f o r (i n t i = 0; i<n ; i++)

y [i] = a *x [i] + y [i] ;

}
/ / perform on 1M elements

serial_function (4096*256 , 2 .0 , x , y) ;

LISTING 2.1: A standard C function

vo id gpu_function (i n t n , f l o a t a , f l o a t *x , f l o a t *y)

{
i n t i = blockIdx . x * blockDim . x + threadIdx . x ;

i f (i<n) y [i] = a *x [i] + y [i] ;

}
/ / perform on 1M elements

gpu_function<<4096, 256>>(n , 2 .0 , x , y) ;

LISTING 2.2: The same function as might be written for execution on a CUDA

supported GPUNvidia (2013a)

2.1.1.2 openCL

OpenCL is a parallel programming standard, with notable contributors such as Apple,

ARM, AMD, Samsung and NVidia. It allows programs to take advantage of a very

diverse array of processing devices such as GPUs CPUs DSPs and FPGAs. The stan-

dard is open source and provides mechanisms for hardware vendors to add access

to hardware specific features (Nvidia, 2013d). Listing 2.3 shows and example of the

previously shown GPU function as expressed in openCL.

Literature Review 17

f l o a t gpu_function (f l o a t a , f l o a t *x , f l o a t *y)

{
r e t u r n y = a *x + y ;

}

kernel vo id function (global write_only y , global a , global x)

{
i n t i=get_global_id (0) ;

y [i]= gpu_function (2 . 0 , x [i] , y [i]) ;

}

LISTING 2.3: An example of a functiuon as might be written for OpenCL

2.2 Obstacles to using GPUs for scientific calculations

There are a number of caveats which must be kept in mind when using GPUs for cal-

culations for which they were not designed. Graphics processing is highly tolerant

to small errors so GPUs have not traditionally included error checking and correcting

(ECC) memory systems. Scientific calculations, on the other hand, are highly sensitive

to error. In response to this uncertainty, Haque and Pande (2010) have investigated

the implications of using GPUs with non-ECC memory in non graphics calculations.By

running a memory test program on more than 50,000 GPUs from the Folding@Home

project, it was demonstrated that there is a statistically significant probability of transient

errors occurring in GPU memory.

However, in response to the requirements of the scientific research community, GPU

manufacturers have developed architectures specifically designed for general purpose

processing.

Nvidia Fermi is one such architecture, developed from the start to be well suited for

GPGPU purposes. It is described in detail in its whitepaper (P.Glaskowsky, 2009).

Fermi finally introduces ECC memory protection for DRAM, as well as shared mem-

ories, L1 and L2 cache, and register files. Another notable improvement is double

precision floating point performance, which was less important for graphics processing

(which typically consists of single precision, 32 bit calculations), but very important for

scientific calculations.

Literature Review 18

Even with ECC RAM there may be other precautions required when considering floating

point accuracy on GPUs. While Nvidia GPUs with compute capability 2.0 and higher

(Tesla M series and onwards) are compliant with the same IEEE 754 standard as CPUs

for double precision floating point operations, Whitehead and Fit-florea (2011) suggest

that there may be further precautions required to ensure accuracy when using Nvidia

GPUs. There are fundamental differences in rounding modes on GPUs when compared

to x86. as described in Whitehead and Fit-florea (2011, chap. 4.7) ”rounding modes

are encoded within each floating poin instruction instead of dynamically using a floating

point control word”. Unlike CPUs, There is no mechanism to indicate overflowed or

underflowed calculations, or calculations with inexact logic. This implications of this are

discussed later in the paper; while it is possible to produce the best floating point result

for simple math operations, problems arise with more complex functions. While the

same input will yeild the same results in an individual IEEE 754 compliant operation,

differences in the potential sequencing of operations in GPUs, compared to CPUs, may

mean differences in numerical results, even in newer hardware.

The authors offer some recommendations to ensure accuracy and performance; taking

advantage of CUDA library functions (which have been written with these caveats in

mind), careful comparison of results, and knowledge of the capabilities of the specific

GPU being used.

2.3 Scientific applications of current GPU technology

GPUs have found use in a wide variety of fields. Cardenas-Montes et al. (2014) De-

scribe their efforts at performing an accurate calculation of cosmic shear using GPUs.

Cosmic shear describes the distortion of the observed shapes of distant galaxies as

their light passes through gravitational potential, a phenomenon known as gravitational

lensing. According to Cardenas-Montes et al. (2014), measuring cosmic shear allows

the mass distribution causing the distortion to be derived. This ultimately allows the

measurement of the accelerated expansion of the universe.

This calculation is highly computationally intensive, fitting with O(N2), and it is sug-

gested that all previous attempts used a simplified approach to allow the calculation to

be completed in a reasonable timeframe, at the cost of precision.

Literature Review 19

The code is written for an Nvidia Tesla c1070 card, which is a Fermi architecture card.

When compared to the same calculation performed on the CPU, the new GPU code

represents a 68-fold speed increase. While this shows that GPUs are very powerful if

you have the right problem, it also highlights the importance of well considered memory

management when constructing GPU programs. The authors demonstrated that the

best performance could only be achieved after tuning copy patterns, chunk size, and

cache utilization.

Anthopoulos et al. (2013) offer an improved GPU acellerated cell-list approach. Cell-

lists are important in the field of molecular dynamics as they are used to show atomic

interactions within a given radius. Again, not only is this problem highly computationally

expensive, but it is not trivial to parallelise.

The authors benchmarked their improved algorithm extensively both for speed, an ac-

curacy compared to the same algorthm when run on a CPU. Total runtime is measured

as well as each discrete part of the process, this allows more detailed anaysis of where

the best performace gains are, and which areas perhaps require further optimisation.

To test accuracy it was deemed an unfair test to directly compare CPU and GPU re-

sults due to the differences in rounding methods on both as mentioned earlier. Instead,

double precision results from the CPU code were cast to single then back to double

precision to remove the need to presume rounding error in non-GPU code. Accuracy in

this case is measured as deviation from the CPU results, and is shown to be accurate

to four significant figures.

2.4 HPC Systems which use GPUs

A look at the top500 supercomputer list shows suggests that GPUs are now widely

used in high performance computing. Two of the machines in the top 10 use GPU ac-

celerators, Titan and Emerald, both use Nvidia K20 devices. Titan currently holds the

number 2 spot. In addition, GPU clusters are seeing increasing use in academic insti-

tutions. Emerald, currently one of the largest GPU clusters in Europe (e-infrastructure

South, 2013), is shared between STFC and a number of universities.

Literature Review 20

2.4.1 TITAN - Oak Ridge National Laboratory

Titan has a peak performance of 17.59 PetaFlops, and was once Number one in the

Top500 supercomputer sites (Top500, 2013b), as of November 2013 it is still number

2. It has 18,658 nodes, standard ones ”each with a 16 core AMD opteron 6274 proces-

sor and an Nvidia tesla K20 GPU” (ORNL, 2011b) as well as over 700 Terra-bytes of

memory. Titan demonstrates well the space and power efficiency of GPUs, as despite

occupying the same space as its predecessor, Jaguar, and only using marginally more

power, Titan outperforms Jaguar by a factor of 10 (1.75 PFlops for Jaguar as compared

to 17.59 for Titan) owing to the fact that it has a much higher ratio of GPUs to CPUs.

Researchers working with ORNL (2011a) put extensive consideration, in the years be-

fore Titan was completed, into appropriate software which would be able to take full

advantage of Titans then unique configuration. A selection of 6 codes was made, all

from different scientific disciplines. These codes were then adapted to allow them to

use the system to its full capability. These efforts highlight the importance of an aware-

ness of the capabilities of specific hardware within a GPU cluster. Poor planning and

lack of consideration of memory capacity and throughput, particularly in a GPU, can

have a drastic effect on the performance of software.

Some of the problems Titan is used to solve include: Nanoscale materials analysis,

to aid development of new magnets to improve designs of motors and generators; de-

tailed modelling of the combustion of fossil fuels with the aim of improving the efficiency

of internal combustion engines, and to reduce their impact on the environment; and

detailed atmospheric modelling, to further climate change research.

2.4.2 Emerald

Emerald has a capacity of 114 TerraFlops and includes 372 Nvidia Tesla processors.

Each node has 2 6-core Intel Xeon X5650 processors and either 3 or 8 Tesla M2090s

(e-infrastructure South, 2013). The system is used by the STFC and universities of e-

Infrastructure South consortium (Oxford University, 2013). Emerald serves as a good

indicator that there is demand for GPU accelerated clusters within Higher Education.

Literature Review 21

The literature shows that there is high demand and utilisation of GPUs in a wide range

of scientific disciplines. Some valuable information regarding designing GPU clusters,

developing GPU codes, testing and benchmarking is available and will be put to use in

guiding our own efforts.

22

Chapter 3

Vega GPU Cluster

Investigation into existing GPU systems currently being used to accelerate scientific

computation has demonstrated a significant speedup of simulations, modelling and vi-

sualisation. In order to evaluate the benefit such a system could have for research at

the university of Huddersfield it was necessary to deploy a small GPU cluster. This

chapter details the assembly, installation and testing of this system. The cluster is in-

tegrated into the University campus network and is accessible internally by students

and staff. The Microsoft Windows HPC server software was used to deploy the GPU

cluster.

3.1 The Microsoft Windows HPC Platform

Microsoft provides tools to allow deploying and managing a cluster using Microsoft

Windows Server. Microsoft (2014c) detail the deployment of a complete HPC system

using Microsoft tools.

GPU graphics and compute drivers are widely available for Windows systems (Nvidia,

2013c). Windows HPC cluster manager provides a mechanism to include drivers with

operating system images, to simplify the deployment process. In addition, Microsoft

also provides a number of tools to aid in testing and benchmarking a windows HPC

cluster (Micorsoft, 2014). The Message Passing Interface (MPI) is a standard for cross

process communication designed for parallel compute systems. The MPI system in-

cluded with Windows HPC deployments, MSMPI, is Microsofts implimentation of the

VEGA GPU Cluster 23

MPI-2 standard (Microsoft, 2014a). It is compatible with MPICH2, which makes porting

MPI code from other platforms, such as Linux, relatively simple.

3.2 Cluster Layout

The following hardware was available for the deployment:

Item
Description

Netgear ProSafe GSM7224 24 port Gigabit network switch
Dell Poweredge R410 1x Quad core octo-thread Xeon E 5630

CPU running at 2.53 GHz, 32 GB RAM.
Dell Poweredge C6100 4 node chassis currently with 2 nodes

installed. each with the following spec:
2x Quad core octo-thread Xeon E5620
CPUs, running at 2.4GHz, 24 GB RAM,
and approx 400GB local storage.

Dell Poweredge C410x PCIe Ex-
pansion Chassis + 1 interface card

This chassis can host up to 16 GPUs and
is connected to a compute node using a
PCIe interface card (Dell, 2014)

2x Nvidia Tesla M1020 GPUs These are FERMI architecture cards with
448 processor cores running at 1.15 GHz,
with 3GB of ECC GDDR5 RAM with a
clock speed of 1.546 (Nvidia, 2013e)

TABLE 3.1: Hardware available for VEGA

As the Poweredge C6100 is a four node chassis, it was selected to act as compute

node. There is only a single PCIe interface card available so initially there is only a

single compute node, with the option of adding more in the future. The Poweredge

R410 acts as head node.

In line with Microsoft suggestions, the head node has 2 NICs installed (Microsoft,

2014c). One is connected to the University network, the other is connected to a Gi-

gabit switch, which is used to communicate internally with the compute nodes. This

topology is illustrated in Table. 3.1.

VEGA GPU Cluster 24

FIGURE 3.1: Current VEGA hardware layout and network topology.

3.3 Deployment

Initially, all hardware was tested to ensure it was viable. According to the deployment

procedure outlined by Microsoft (2014c), was to install Windows Server 2008r2, which

is a standard procedure. Once installed, the Head node is connected to the university

network and then added to Active Directory by specifying the domain name. At this

point the following steps are performed to deploy the GPU cluster:

• Microsoft HPC Pack is installed on the head node.

VEGA GPU Cluster 25

• The head node is attached to the private Gigabit switch.

• Compute nodes are deployed by first connecting them to the Private network then

booting to PXE. The Windows HPC software will then load an operating system

and required middleware over the network. This differs from the procedure offered

by Microsoft (2014c), which suggests attaching nodes which have already been

configured with windows server and HPC pack. As the nodes did not already have

Windows installed, it was deemed much simpler to have the head node push out

preconfigured system images to the compute node.

• Finally, drivers for the TESLA cards are installed on the compute node directly

(Nvidia, 2013c).

A summary of the deployment steps required to deploy the GPU cluster, VEGA, can be

seen in Fig. 3.2.

3.4 Testing

The Windows HPC cluster manager includes a number of diagnostic tests to verify clus-

ter deployment. All relevant tests when run on VEGA passed without any problems. The

standard measure of performance of HPC systems, and the test used to measure sys-

tems for inclusion in the top500, is the LINPACK benchmark. The benchmark consists

of ”a dense system of linear equations”(Jack Dongarra and Stewart, 2013), and the

ability of a system to process these is used as a measure of peak performance. The

parallel implementation of LINPACK is known as High Performance LINPACK (HPL).

Microsoft provides a self-tuning HPL utility, Lizard, to benchmark Windows clusters, the

results and final tuned parameters of this can be seen in Fig. 3.3. This however does

not include the extra performance provided by the GPUs, figures from Nvidia state that

peak theoretical performance of each M2050 is 1.03 TFLOPS (Nvidia, 2013e).

More in depth tests were carried out to assess MPI and CUDA Functionality. A sim-

ple program, the source for which can be seen in Listing 3.4, was written to test MPI

functionality. As seen in Fig. 3.5 MPI is fully functional on the cluster. After installing

the CUDA toolkit (Nvidia, 2013b) a number of CUDA accelerated test programs are

available. Fig. 3.6 shows a number of these running successfully.

VEGA GPU Cluster 26

FIGURE 3.2: Key steps when deploying VEGA:
1. Selecting Network Topology

2. Configuring NAT and DHCP to allow compute nodes to access outside network
3. Creating a system image for compute nodes

4. Finding bare metal machines to deploy as compute nodes
5. Checking relevant diagnostic tests pass

6. Checking CUDA functionality

Windows was chosen as the operating system to allow familiarity with users, and easy

integration with the existing active directory network. In addition, running Windows

allows the option of adding the cluster to the backburner render system in use at the

university.

However, CUDA is also available for Linux. Were it required, necessary drivers are

available to allow the same functionality, using a cluster middleware such as OSCAR or

Warewulf (ORNL, 2005), (LBL, 2014).

Although cluster integrity was confirmed using test codes and benchmarking utilities,

it was necessary to examine programming models and environments to allow users to

develop new parallel code and parallelise existing serial codes.

VEGA GPU Cluster 27

Parameter N NB PMAP P Q Threshold
Final Value 44992 304 0 2 12 16
Parameter PFACT NBMIN NDIV RFACT BCast Depth
Final Value 0 4 8 2 1 1
Parameter SWAP L1 U Equilibration Alignment
Final Value 2 0 0 0 16

CPU only performance = 95.02 GIGAFLOPS

FIGURE 3.3: Tuning HPL parameters using Lizard

VEGA GPU Cluster 28

inc lude ” s tda fx . h ”
inc lude <iostream>
inc lude ” mpi . h ”
inc lude<Winsock2 . h>

#pragma comment (l i b , ” Ws2 32 . l i b ”)

using namespace std ;

i n t main (i n t argc , char * argv [])
{

i n t nTasks , rank ;

MPI_Init (&argc ,&argv) ;
MPI_Comm_size (MPI_COMM_WORLD ,&nTasks) ;
MPI_Comm_rank (MPI_COMM_WORLD ,&rank) ;

char hname [128] = ” ” ;

WSADATA wsaData ;

WSAStartup (MAKEWORD (2 , 2) , &wsaData) ;

gethostname (hname , s i z e o f (hname)) ;

WSACleanup () ;

printf (” Number o f threads = %d , My rank = %d\n , My Host = %s ” , nTasks , rank , hname)←↩
;

MPI_Finalize () ;
r e t u r n 0 ;
}

LISTING 3.4: Simple MPI test program, based loosely on the example from Matto-
torang (2009)

VEGA GPU Cluster 29

Number of threads = 24 , My rank = 10
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 13
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 4
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 3
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 16
, My Host = VEGA

Number of threads = 24 , My rank = 0
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 11
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 23
, My Host = VEGA

Number of threads = 24 , My rank = 2
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 7
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 14
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 6
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 15
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 5
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 9
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 1
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 21
, My Host = VEGA

Number of threads = 24 , My rank = 12
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 8
, My Host = GPUNODE0001

Number of threads = 24 , My rank = 22
, My Host = VEGA

Number of threads = 24 , My rank = 20
, My Host = VEGA

Number of threads = 24 , My rank = 19
, My Host = VEGA

Number of threads = 24 , My rank = 18
, My Host = VEGA

Number of threads = 24 , My rank = 17
, My Host = VEGA

FIGURE 3.5: Output from MPI test program when run on all cores

VEGA GPU Cluster 30

FIGURE 3.6: GPU test programs included with CUDA toolkit (Nvidia, 2013a), from top
to bottom: Device Query, Testing Aligned Types, Matrix Multiplication

31

Chapter 4

Platforms and Programming

Environments for Scientific Data

Visualisation and Processing

There is a need to develop parallel programming environments to aid software develop-

ment for parallel computer architectures. However, other than those already outlined in

chapter 2, there are still few mature parallel programming environments. Perhaps more

important is the absence of tools and IDEs that allow for simple debugging and testing

of parallel software with the ease and reliability of those established for traditional serial

programs. This is particularly true for software designed to make use of accelerators.

While debugging and development tools do exist for accelerators such as GPUs, they

are platform specific (for example Nvidia Nsight (Nvidia, 2014)) meaning that develop-

ing parallel software for heterogeneous systems remains a comparatively convoluted

process.

This is an active area of research and calls for publications in this area regularly appear

with significant funding interest from research councils, as in 2020 (2013). This chapter

covers the environments selected for use on VEGA, based on the findings in Chapter

2, with particular focus on systems that support visualisation of scientific data, and

multi-node parallelisation with GPU acceleration.

Platforms and Programming Environments for Scientific Data Visualisation and
Processing 32

4.1 Visualisation

Visualisation of scientific data is not a novel concept. Matlab is used extensively to

plot 2D and 3D images. Similarly, CFD and MD packages such as ANSYS (INC, 2014)

and DL POLY (STFC, 2014) provide inbuilt software for visualisation of processed data.

When evaluating the available visualisation software for deployment on VEGA, VisIt, a

parallel visualisation tool, was chosen for its focus on parallel processing using MPI,

as well as GPU accelerated rendering. In addition, it boasts compatibility with a vast

range of CAD, CFD, MD, graphing and mathematics software (LLNL, 2013). VisIt is

highly flaxible in the data it can display, thanks to software functions which allow data

to be structured appropriately programatically, in C or FORTRAN.

4.2 Multi-Node parallelism

An integral part of any HPC system is a mechanism to allow programs to utilise multi-

ple CPU cores which do not necessarily occupy the same host node. MPI has proven

itself over the past couple of decades in this regard and has become a standard used

in the vast majority of HPC deployments. MPI supports a wide selection of program-

ming languages such as C++ and and Java (Forum’, 2014). Some key concepts to

consider when using MPI; Communicators, Point to Point operations, and Broadcast

and Collection. Communicators are used to group MPI processes related to the same

task. Most MPI operations must specify a communicator, this ensures that the oper-

ation only effects those processes which are in the same communicator (for example

MPI COMM WORLD). Point to Point operations, such as MPI Send and MPI Recv, are

used to send data from one rank to another in a one to one relationship. Broadcast and

Collection operations such as MPI Bcast and MPI Scatter are one to many or many to

one operations, and are useful for dividing data among processes, and then collecting

after processing.

There are a number of distributions which comply with the MPI standard. MPICH is

the (MPICH, 2014) is perhaps one of the most widely used. Most HPC clusters will

offer a choice of MPI version. Some other options are Open MPI and MSMPI. MSMPI

is an MPI version distributed by Microsoft. It is fully MPICH compatible and is tightly

Platforms and Programming Environments for Scientific Data Visualisation and
Processing 33

integrated with the Windows HPC job scheduler, the scheduler used in VEGA, allowing

simple submission of MPI tasks to the cluster. This close integration makes MSMPI par-

ticularly suited for Multi-node parallel software when Windows HPC is used (Microsoft,

2014b).

Options other than MPI include OpenMP which allows ”multi platform shared memory

parallel programming” (Board, 2013). This offers some flexibility when developing par-

allel software. The programming experience is very similar to that of using MPI, with the

added benefit of shared memory. Parallel Virtual Machine (PVM) is an approach which

aggregates discrete systems which do not necessarily need to have the same hardware

or operating system. PVM allows a heterogenous cluster of machines to appear as a

single virtual machine (ORNL, 2009).

4.3 GPU Programming Framework

The two main GPU programming frameworks remain Nvidia CUDA and OpenCL, al-

though more are gaining traction, such as C++ AMP, in development at Microsoft. A

number of studies, such as those carried out by (Karimi et al., 2010), and (Fang et al.,

2011) have shown that the in many cases, CUDA is able to outperform OpenCL when

both are given the same task. This, coupled with the Nvidia hardware available in VEGA

and existing familiarity with Nvidia tools, are all factors contributing to the choice to use

CUDA for GPU processing. Some important things to bear in mind when develop-

ing CUDA software is effective memory management, as well as device management.

When using GPUs to process data, the most efficient use of the device is if all cores

are occupied. This requires that the host program can stream enough data. This does

not necessarily mean filling GPU memory, as depending on the task being executed on

each GPU core, a smaller data stream may be enough make full use of the hardware.

Minimising copy operations will also help towards efficient use of the hardware. For

example if a process loop (eg a matrix multiplication) only uses a half of the available

CUDA cores, then organising into batches, so that two data ranges are processed si-

multaneously, will reduce time spent copying to and from the device. Also important to

consider is the fact that devices can only be controlled by a single host thread at a time,

Platforms and Programming Environments for Scientific Data Visualisation and
Processing 34

so programs which use multiple GPUs must take care to check which GPU is being

requested to avoid crashing.

The challenge of parallel programming is a problem that is yet to be addressed fully.

The approach taken as part of this research is outlined in the following section in the

form of three case studies. The first two of these case studies were published in the

proceedings of the Science and Information conference 2014 (Newall et al., 2014). In

addition, the final two studies were published as a chapter in in the Springer series

book, Studies in Computational intelligence. These publications can be seen in appen-

dices D and E respectively.

35

Chapter 5

Case Study 1: Visualisation of

large datasets

As models and datasets become larger and more complex, new systems are required

to enable useful analysis. To support the need of researchers at the University, it was

deemed necessary to deploy a visualisation tool which could work with large or complex

datasets.

To this end, and existing software, VisIt, was obtained and installed on VEGA. VisIt is a

software developed by the Lawrence Livermore National Laboratory (LLNL), described

as ”Parralel, Interactive, Visualisation” (LLNL, 2013). It is specifically designed to utilise

HPC resources to enable interactive simulation of terrascale datasets, and supports

GPU accelerated rendering.

5.1 Electron Microscopy Data

The Electron Microscope Materials Analysis group (EMMA) at the university, is tasked

with ”the interaction of energetic particles with matter” (EMMA, 2014). The research

carried out in this area generates large volumes of data, both through experimentation

and simulation. One simulation in particular was of interest as the visualisation meth-

ods being employed at the time, a large colour coded spreadsheet, were not deemed

adequate. The data in question is an array of cells, the value of each representing the

Case Studies 36

energy of a point on a cylinder, and the values change over time. The spreadsheet that

was in use was unwieldy and cannot all be seen at once as seen in Fig 5.1. This made

proper analysis difficult, ideally the data would be shown as points on an actual cylinder

as a 3D contour. For these reasons the data was deemed a good candidate for case

study.

FIGURE 5.1: Visualisation method before VisIt

5.2 VisIt

Visit displays data that is defined on 2D or 3D meshes, this presents a challenge; The

electron microscopy data is simply a comma delimited list of values. The solution was

to build a software tool to format this data, and save it to an appropriate file format.

The SILO library was developed by LLNL fo use with VisIt in situations such as this,

and allows production of data meshes programmatically (LLNL, 2010). Following the

recommendations in the SILO users guide, the software was built uses standard SILO

functions to save the data in 3 different formats:

• A 2D mesh where the data is represented by colour (similar to the function of the

original spreadsheet)

• A 3D Mesh representing a cylinder (also colour coded)

Case Studies 37

• and finally a 3D mesh which deforms based on the value of each point over time

(contour).

Fig. 5.2 shows a summary of important parts of the program, full listings can be seen

in appendix 1.

FIGURE 5.2: Program flow for the SILOWRITE code

5.3 Evaluation of Results

Fig. 5.3 Shows a few images of each visualisation method at different time steps. The

final 3D contour model fulfils the original requirements of the project and allows real

time interactive analysis of the simulation data. The main advantage of this model is

that all the data for each time step can be seen at once. The animation can be easily

saved to video.

Although VisIt is designed for visualisation scientific data, unless the data is already

formatted to fit one of the file types that VisIt supports, it is necessary to pre-process

the data from often a large repository to structured data suitable for visualisation. This

Case Studies 38

FIGURE 5.3: Comparison of Visualisation methods, from top to bottom: Original
spreadsheet, 2D Mesh in VisIt, 3D mesh in VisIt, 3D contour mesh in VisIt

illustrates that visualisation of raw scientific data is not a straight forward process, and

that the main effort is still the responsibility of a software engineer.

39

Chapter 6

Case Study 2: Accelerated

Processing of Radio Telescope

Data Using CUDA

The Serch for Extra Terrestrial Intelligence (SETI) is a group whos mission is to serch

for non earth signals from space, in the hopes of locating intelligence. One of the main

aspects of this endevour, is the analysis of vast amounts of radio telescope data. There

have been numerous projects which have intended to accelerate this process such as

processing the data into images to speed up human analysis of the data, even allowing

enthusisasts at home to look through the data. But it is a time consuming task, even

with these methods the data is being collected faster than it can be analysed so more

efficient methods are required. To this end, the SonicSETI project has started sonifying

the data. Sonification is a process whereby a stream of data is converted into sound.

Studies have shown that sonified data can be reviewed by humans at a much greater

rate than visual anaylsis, and patterns are much more descernable from background

noise (Kramer, 1993). Perhaps the most prominent example of sonification is that of

the Geiger counter, which uses audible clicks which increase in frequency as radiation

levels increase. While the sonified data may be much easier to analyse, processing the

data is a time consuming proesss in itself, so investigation was started into the potential

benefits of GPU acceleration.

Case Studies 40

6.1 The SETIFFT software

In order to sonify the data, a piece of software was written in JAVA by Paul Lunn for the

Sonic SETI project. Fig. 6.1 shows the program logic. In order to asses which parts of

the software would best benefit from acceleration, different sections of the code were

timed, these timings can be seen in Table 6.1. In each test, the software performs 244

FFTs using a 2GB file as input, measurements are averaged over 10 separate runs.

FIGURE 6.1: Program flow of the SETIFFT software

Action
Time Taken (Ms)

Read data 3713182 (1:01:53)
Perform FFT 4491666 (1:13:52)
Calculate Power Spectrum 477218 (0:07:57)
Save to File 1344062 (0:22:24)
Total run time 10026326 (2:47:06)

TABLE 6.1: Timings for original JAVA program

Timings showed that the program spent most of its time reading in data and performing

the FFT. As each FFT takes over a minute, and the full datasets can require over 500

FFTs, the first step was to replace the serial FFT with a parallel, GPU accelerated

one. The Nvidia CUFFT library fits this purpose, and there exist JAVA wrappers for

its functions (CUFFT is C). Using this library, FFT precessing time was successfully

reduced by over 30 times, as seen in Table 6.2

Case Studies 41

Action
Time Taken (Ms)

Read data 3801657 (01:03:22)
Perform FFT 916464 (00:15:16)
Calculate Power Spectrum 483007 (00:08:03)
Save to File 1404548 (0:23:25)
Total Run Time 5711437 (1:35:11)

TABLE 6.2: Timings for Java program with wrapped CUDA functions

In order to improve read and write time, and to make better use of CUDA functions,

the program was rewitten in C++, first with a serial FFT as seen in table 6.3, then with

CUFFT as seen in table 6.4.

Action
Time Taken (Ms)

Read data 29686 (0:00:27)
Perform FFT 1541246 (0:25:41)
Calculate Power Spectrum 56436 (0:00:56)
Save to File 29686 (0:00:30)
Total Run Time 1810008 (0:30:10)

TABLE 6.3: Timings for C++ with serial FFT

Action
Time Taken (Ms)

Read data 17344
Perform FFT 90720
Calculate Power Spectrum 70781
Save to File 17344
Total run time 277674

TABLE 6.4: Timings for C++ with CUFFT

6.1.1 Optimising CUDA performance

The original software, as well as initial CUDA versions, read enough data to perform

a single FFT, process it, and write to file. However this is an inefficient use of GPU

memory. Each element in the complex array used to process the data is 16 bytes in

size, and FFT size is 8388608. Accounting for the output array, the 3GB on the Tesla

cards can hold enough data to process 10 FFTs for each copy operation. Table 6.5

shows timings for memory copy and FFT execution time.

Case Studies 42

Batch size
Copy operations Time (Ms)

Single FFT 488 90720 (0:01:31)
5 FFTs 98 36225 (0:00:36)
10 FFTs 50 27313 (0:00:27)

TABLE 6.5: Timings for C++ with CUFFT and MPI, running on multiple GPUs

Making these changes decreased FFT processing time for a 2GB file by 63.4 seconds,

an improvement of over 69%.

6.1.2 Using MPI to increase performance

To utilise the second GPU in the system, and to allow the program to scale to even

larger systems, the program was modified to implement MPI. Fig. 6.2 shows the pro-

gram structure of the initial version. Files are read and written by the master process

rank, and data is sent to and from the worker ranks using MPI.

This initial MPI version was successful in reducing actual processing time, but the large

MPI data transfers added significant overhead, in excess of any performance gained in

processing. The solution was to make use of the shared storage available on VEGA to

remove the need for large MPI send/recieve operations. Fig. 6.3 shows the structure of

the final version of the software. Rather than data being sent to each rank using MPI

functions, each rank opens the relevant file directly. In this version MPI messages are

only used to tell the workers which files to open and where to start and stop reading.

Table. 6.6 shows timings for the final code. Each rank processes a share of the data,

and are timed simultaneously , hence two timings for each section of the program.

Action
Time Taken (Ms)(rank 0) Time Taken (rank 1)

Read data 118043 145642
Perform FFT 12310 12570
Calculate Power Spectrum 40271 40304
Save to File 118043 145642
Total run time 249777

TABLE 6.6: Timings for C++ with CUFFT and MPI, running on multiple GPUs

Case Studies 43

FIGURE 6.2: Program flow of the initial MPI program

6.2 Evaluation of Results

It can be seen that read/write time is increased in the MPI version compared to the sin-

gle process. This is because each process is accessing the same file simultaneously.

Table 6.7 shows times when the program is run with two files from the dataset. As the

datasets are often larger than 8GB, they are split into 2GB files (SETI, 2013a), so this

would not be outside the normal use of the software.

When each process is able to work on a separate file, read/write time is similar to the

time taken when working on a single file, even though double the amount of data is

being processed. During normal operation, the only time multiple process ranks would

Case Studies 44

FIGURE 6.3: Program flow of the final MPI version

access the same file would be if there were an odd number of input files. Were the

software to be developed further it may be worthwhile to factor for this by ensuring that

the final file in an odd numbered set is only processed by one rank.

Case Studies 45

Files
Total FFTs Read/Write time

1 244 145642
2 488 145816

TABLE 6.7: Read/write time for the MPI software when reading from different numbers
of files

Figure 6.4 compares total running times of each significant version of the software, run-

ning with a full dataset 5GB in size (split into 2GB files). Through parrallelisation (using

both CUDA and MPI) and optimisation it has been possible to significantly accelerate

the process of sonifying the radio telescope data.

FIGURE 6.4: Total running times of each version

The primary implication of this is that the rate at which the data can be analysed

is greatly increased, and the time between any potential discoveries is decreased.

This case study is evidence that simply using more powerful hardware will not al-

ways bring proportional performance improvements without efficient and sustainably

designed software.

46

Chapter 7

Case Study 3: CUDA Accelerated

Analysis of Wavelength scanning

Interferometry Data

Optical interferometry is a widely used surface metrology technique. Wavelength scan-

ning interferometry developments have been made that allow the process to be immune

to environmental noise using phase compensation. However this compensation as well

as data analysis processes limit performance, and hamper efforts to inspect this data as

the measurement takes place. The paper Muhamedsalih et al. (2012) details a method

which uses CUDA to accelerate this process with a single GPU. However, while the

results were promising, it wass still not possible to achieve the real time analysis that

was desired.

7.1 The Interferometry Software

The original CUDA program loads a set of bitmap frames, and the noise cancellation is

calibrated by loading a matrix which has been processed by MATLAB. After calibration

the data is processed through an FFT algorithm, and all data is saved to disk. Fig. 7.1

shows a summary of the function of the program. As with the work carried out in the

previous case study, GPU acceleration comes in the form of a parallel FFT algorithm,

CUFFT, as well as a few other mathematical operations.

Case Studies 47

FIGURE 7.1: Program flow for the original CUDA code

7.2 Improving Performance Using MPI

Using the lessons learned in the previous study, the program was modified to allow

it to use multiple GPUs. After including the necessary MPI libraries the program was

modified in a way which results in a structure closely resembling the original program,

but which is duplicated over multiple processes which can each claim its own GPU.

The intended outcome of this modification is a doubling of the total throughput, to allow

the processed data to analysed closer to real-time. The modified program structure is

shown in Fig. 7.2.

Case Studies 48

FIGURE 7.2: Program flow for the MPI version using multiple GPUs

7.3 Evaluation of Results

The graph in Fig. 7.3 shows total running times for both the original software and the

MPI version. It is important to note that in this graph the MPI version is processing

double the amount of data with only a small increase in running time. By dividing the

running time by the number of frames processes we can calculate a representative

per-frame processing time for each version, this is shown in 7.4.

Case Studies 49

FIGURE 7.3: Total running times for each version

FIGURE 7.4: Representative per-frame processing time

50

Chapter 8

Conclusion

Existing GPU clusters were evaluated, with a focus on the Higher Education context and

scientific research. This research allowed informed decisions regarding the deployment

of our own system, and lead to the deployment of VEGA, a small GPU cluster integrated

into to campus network forming part of the institutional grid. With this system in place

it was possible to investigate and evaluate different platforms and programming envi-

ronments to support the goal of highly parallel task and data processing. Using case

studies the suitability of the GPU cluster was evaluated. The first case study showed

that useful visualisation of seemingly abstract data could be achieved using the appro-

priate platforms, and enabled a level of analysis previously not possible for this data.

By using the CUDA GPU programming model, as well as MPI, significant performance

gains were possible, both for sonification of radio telescope data, and analysis of wave-

length scanning interferometry data. While the initial objective was to use CUDA with

Java and C++ to accelerate applications using multi-core GPU devices, It has been

possible to achieve even greater performance gains though implementation of multi-

system MPI code, to allow multiple GPUs to process data. Not only will the CUDA

implimentations scale automatically to larger, faster GPUs, but MPI allows scaling to

multi node GPU clusters.

The project has shown that even a modest investment in GPU systems would assist

research in higher education institution, as with a comparatively small physical and

energy footprint, data processing has been accelerated to levels comparable to a much

larger HPC cluster.

Conclusion 51

It has become evident through the work carried out that the major obstacle in achieving

potential speed up using GPU technology is lack of parallel platforms for creating, de-

bugging and tenting parallel programs. To make effective use of a GPU cluster implies

a greater effort on the part of the software author, compared to other HPC program-

ming. Future investment in integrated and development environments is necessary to

enable better utilisation of the existing GPU hardware. These are issues included as

part of the EPSRC E-Infrastructure roadmap and Software and an infrastructure strat-

egy (EPSRC, 2014a). There were a number of calls from the EPSCRC council related

to Software of the Future which will attempt address these issues (EPSRC, 2014b).

52

Chapter 9

Further Work

The case studies detailed here have been designed to scale to much larger systems

through using MPI. Running the software on larger systems will allow the efficiency and

performance of the software to be assessed, giving opportunity to discover bottlenecks

and develop more concrete methods for software design on GPU clusters.

This work shows the importance of efficient and sustainable software design. Timings

showed that the performance gains from efficient design and language choices are just

as important as targeting more powerful hardware. In order to make the most time

and cost effective of hardware, evidence shows that investment in sustainable software

infrastructures will be essential (Venters et al., 2014).

53

Appendix A

SILOWRITE tool

inc lude <s i l o . h>

inc lude <iostream>

inc lude <fstream>

inc lude <sstream>

inc lude <s t r i n g>

inc lude <vector>

using namespace std ;

const f l o a t pi = 3.14159265359;

i n t main (i n t argc , char * argv [])

{
i n t NX= 360;

i n t NY= 100;

i n t NZ= 1;

i n t nnodes = NX *NY *NZ ;

i f (argc<3)

{
cerr<< ”USAGE: ”<<argv [0]<< ” 100 / / (t ime i n ns) 10.0 / / rad ius ”<<endl ;

system (” pause ”) ;

r e t u r n −1;

}

stringstream tim , radi , mul ;

tim<<argv [1] ;

radi<<argv [2] ;

mul<<argv [3] ;

Appendix A. SILOWRITE tool 54

i n t maxtime ;

tim>>maxtime ;

f l o a t radius , multiplier ;

radi>>radius ;

mul>>multiplier ;

f l o a t * x=new f l o a t [nnodes] ;

f l o a t * y=new f l o a t [nnodes] ;

f l o a t * z=new f l o a t [nnodes] ;

f l o a t * data=new f l o a t [nnodes] ;

f o r (i n t time=0; time<=maxtime ; time++)

{
/ * Open inpu t data * /

ostringstream oss ;

oss << ” data / ” << time << ” ns . dat ” ;

string fname = oss . str () ;

string *str ;

str=new string [nnodes] ;

f l o a t * indata ;

indata=new f l o a t [nnodes] ;

ifstream file (fname) ;

i n t i = 0;

i f (! file) / / Always t e s t the f i l e open .

{
cout<<

” E r ro r opening i npu t f i l e ,

e i t h e r i n c o r r e c t path s p e c i f i e d

or i n s u f f i c i e n t data ”<<endl ;

system (” pause ”) ;

r e t u r n −1;

}
whi le (! file . eof ())

{
getline (file , str [i] , ' ') ;

i f (i ==nnodes−1)

{
i=0;

getline (file , str [i] , ' ') ;

}
i++;

}
f o r (i n t i=0; i<nnodes ; i++)

{
indata [i]= atof (str [i] . c_str ()) ;

}

Appendix A. SILOWRITE tool 55

DBfile * dbfile = NULL ;

/ * Open the S i l o f i l e * /

char filename [1 0 0] ;

sprintf (filename , ” ou tput / out%04d . s i l o ” , time) ;

dbfile = DBCreate (filename , DB_CLOBBER , DB_LOCAL ,

” s imu la t i on t ime step ” , DB_HDF5) ;

i f (dbfile == NULL)

{
fprintf (stderr , ” Could not c reate S i l o f i l e !\n ”) ;

r e t u r n −1;

}

/ * Copy i n data * /

f o r (i n t i=0; i<nnodes ; i++) data [i]= indata [i] ;

/ * Add t im ing data f o r V i s I t * /

DBoptlist * optlist = DBMakeOptlist (2) ;

DBAddOption (optlist , DBOPT_CYCLE , (vo id *)&time) ;

DBAddOption (optlist , DBOPT_DTIME , (vo id *)&time) ;

/ * Create Geometry * /

f l o a t rad=0;

/ * 3D Mesh * /

f o r (i n t iY=0;iY<NY ; iY++)

{
f o r (i n t iX=0;iX<NX ; iX++)

{
f o r (i n t iZ=0;iZ<NZ ; iZ++)

{

rad=iX * (pi /179) ;

x [iY *NZ *NX+iX *NZ+iZ]= radius *cos (rad) ;

y [iY *NZ *NX+iX *NZ+iZ]=iY−50;

z [iY *NZ *NX+iX *NZ+iZ]= radius *sin (rad) ;

}

}
}

Appendix A. SILOWRITE tool 56

i n t dims [] = {NX , NY , NZ } ;

i n t ndims = 3;

f l o a t * coords [] = { (f l o a t *) x , (f l o a t *) y , (f l o a t *) z } ;

DBPutQuadmesh (dbfile , ” Cy l inder ” , NULL , coords , dims , ndims ,

DB_FLOAT , DB_NONCOLLINEAR , optlist) ;

/ * Add data * /

dims [0] = NX ; dims [1] = NY ; dims [2] = NZ ;

DBPutQuadvar1 (dbfile , ” 3D” , ” Cy l inder ” , data , dims ,

ndims , NULL , 0 , DB_FLOAT , DB_NODECENT , NULL) ;

/ * 2D Mesh * /

f o r (i n t iY=0;iY<NY ; iY++)

{
f o r (i n t iX=0;iX<NX ; iX++)

{
f o r (i n t iZ=0;iZ<NZ ; iZ++)

{
x [iY *NZ *NX+iX *NZ+iZ]=iX ;

y [iY *NZ *NX+iX *NZ+iZ]=iY−50;

}

}
}

i n t dims2 [] = {NX , NY } ;

ndims = 2;

f l o a t * coords2 [] = { (f l o a t *) x , (f l o a t *) y } ;

DBPutQuadmesh (dbfile , ” FlatMesh ” , NULL , coords2 , dims2 , ndims ,

DB_FLOAT , DB_NONCOLLINEAR , optlist) ;

/ * Add data * /

dims [0] = NX ; dims [1] = NY ; ;

DBPutQuadvar1 (dbfile , ” F l a t ” , ” FlatMesh ” , data , dims ,

ndims , NULL , 0 , DB_FLOAT , DB_NODECENT , optlist) ;

/ * 3D countour mesh * /

f l o a t radiuscont ;

i=0;

f o r (i n t iY=0;iY<NY ; iY++)

{
f o r (i n t iX=0;iX<NX ; iX++)

{
f o r (i n t iZ=0;iZ<NZ ; iZ++)

Appendix A. SILOWRITE tool 57

{

rad=iX * (pi /179) ;

radiuscont=radius+data [i] * multiplier ;

i++;

x [iY *NZ *NX+iX *NZ+iZ]= radius *cos (rad) ;

y [iY *NZ *NX+iX *NZ+iZ]=iY−50;

z [iY *NZ *NX+iX *NZ+iZ]= radius *sin (rad) ;

}

}
}

i n t dims3 [] = {NX , NY , NZ } ;

ndims = 3;

f l o a t * coords3 [] = { (f l o a t *) x , (f l o a t *) y , (f l o a t *) z } ;

DBPutQuadmesh (dbfile , ” Contour ” , NULL , coords3 , dims3 , ndims ,

DB_FLOAT , DB_NONCOLLINEAR , optlist) ;

/ * Add data * /

dims [0] = NX ; dims [1] = NY ; dims [2] = NZ ;

DBPutQuadvar1 (dbfile , ” 3DContour ” , ” Contour ” , data , dims ,

ndims , NULL , 0 , DB_FLOAT , DB_NODECENT , optlist) ;

/ * Close the S i l o f i l e . * /

DBFreeOptlist (optlist) ;

DBClose (dbfile) ;

}
de le te [] x , y , z , data ;

r e t u r n 0 ;

}

LISTING A.1: ”main.cpp”

58

Appendix B

SETIFFT sonification code

Original program written by Paul Lunn for the SonicSETI project (SETI, 2013b). It was

modified extensively and mostly rewritten to take advantage of multiple GPUs. Memo-

ryMapped is a function written by Brumme (2014) and is used here to handle the large

input files.

inc lude <iostream>

inc lude <s t d i o . h>

inc lude <s t r i n g . h>

inc lude <math . h>

inc lude <t ime . h>

inc lude <mpi . h>

inc lude <vector>

inc lude <sys / s t a t . h>

inc lude ” cuComplex . h ”

inc lude <Winsock2 . h>

#pragma comment (l i b , ” Ws2 32 . l i b ”)

inc lude <cuda runt ime . h>

inc lude <c u f f t . h>

inc lude <cuda . h>

inc lude <h e l p e r f u n c t i o n s . h>

inc lude <helper cuda . h>

inc lude ” s e t i f i l e . h ”

/ / MPI TAGS

def ine MSG 1

Appendix B. SETIFFT sonification code 59

def ine RANGE 2

def ine MEM 3

def ine DATA 4

def ine PI 3.14159265358979323846

i n t myrank , totalranks ;

MPI_Status Stat ;

/ /−=−
i n t checkErrors (i n t err)

{
i f (err>1) r e t u r n 1 ;

swi tch (err)

{
case 1: r e t u r n 1 ;

d e f a u l t : std : : cout<<” Something ' s wrong ! ? ! ? ”<<std : : endl ; break ;

case 0: std : : cout<<” \n\nRequired :\n'− i f <path > ' s p e c i f i e s the path to the ←↩
i npu t f i l e (s) . There can be any number o f these , a t l e a s t one i s requ i red \n\←↩
nOptions :\n−v Enables progress messages , may increase runt ime\n−d Enables debug ←↩
mode, w i l l d e f i n i t e l y increase runt ime\n−t P r i n t s t im ing in fo rma t i on \n−help ←↩
Shows these h i n t s ”<<std : : endl ; break ;

case −1: std : : cout<<” Could not open inpu t f i l e ! ”<<std : : endl ; break ;

case −2: std : : cout<<” Could not open output f i l e ! ”<<std : : endl ; break ;

case −3: std : : cout<<” Problem w r i t i n g to output f i l e ! ”<<std : : endl ; break ;

case −4: std : : cout<<” Problem a l l o c a t i n g GPU! ”<<std : : endl ; break ;

case −5: std : : cout<<” Problem reading from inpu t f i l e ! ”<<std : : endl ; break ;

}

Sleep (2000) ;

i f (err <= 0) exit (1) ;

r e t u r n 0 ;

}
i n t concatinateFiles (const std : : vector<std : : string> &fileNames) / / t h i s b i t i s 100% not←↩

por tab le and i s almost c e r t a i n l y poor form , but i t s f a s t e r than reading i n the ←↩
f i l e s (Were a l ready using windows . h anyway)

{ / / j o i n s m u l t i p l e f i l e s w i th f i lename format *< i n teger >.<extension>

size_t numFiles = fileNames . size () ;

std : : string command ;

std : : stringstream ss ;

ss<<” copy ” ;

f o r (i n t i=0; i<numFiles ; i++)

Appendix B. SETIFFT sonification code 60

{
ss<<fileNames [i]<< ” ” ;

}
ss>>command ;

system (command . c_str ()) ;

r e t u r n 1 ;

}
bool checkExistance (const std : : string& name)

{
s t r u c t stat b ;

r e t u r n (stat (name . c_str () , &b) == 0) ;

}
i n t cleanUp (const std : : vector<std : : string> &fileNames)

{
size_t numFiles = fileNames . size () ;

std : : vector<std : : string> concFiles ;

std : : string concChk ;

i n t file=0;

f o r (i n t i=0;i<=0;i=i)

{
concChk=fileNames [file]+ std : : to_string (i) ;

i f (checkExistance (concChk))

{
concFiles [i]= concChk ;

i++;

}
else

{
concatinateFiles (concFiles) ;

file++;

}
}
r e t u r n 1 ;

}
i n t main (i n t argc , char * * argv)

{

i n t totalranks , myrank , master = 0;

MPI_Status Stat ;

MPI_Request sreq = MPI_REQUEST_NULL ;

MPI_Request * rreq ;

i n t exit=0;

/ / OPTIONS (set i n command swi tches)−=−=−=−=−=−=−=−=−=−=−=−
i n t verbose= f a l s e ;

bool debug= f a l s e ;

Appendix B. SETIFFT sonification code 61

/ /−=−

MPI_Init (&argc ,&argv) ;

MPI_Comm_size (MPI_COMM_WORLD , &totalranks) ;

MPI_Comm_rank (MPI_COMM_WORLD , &myrank) ;

rreq = new MPI_Request [totalranks] ;

i n t fftPower=23;

std : : vector<std : : string> fileNames ;

i n t fileCount=0;

/ / parse opt ions / use d e f a u l t s

i f (myrank==master) std : : cout << argv [0]<< ” ” ;

i f (argc < 1&&myrank==master)

{
r e t u r n checkErrors (0) ;

}

MPI_Barrier (MPI_COMM_WORLD) ;

f o r (i n t i = 1; i < argc ; i++)

{
i f (myrank==master) std : : cout << argv [i]<< ” ” ;

i f (std : : string (argv [i]) == ”− i f ”)

{
(fileNames . push_back (argv [++i])) ;

fileCount++;

}
else i f (std : : string (argv [i]) == ”−v ”)

{
verbose=atoi (argv [++i]) ;

}
else i f (std : : string (argv [i]) == ”−d ”)

{
debug= t rue ;

}
else i f (std : : string (argv [i]) == ”−help ”&&myrank==master)

{
r e t u r n checkErrors (0) ;

}
else i f (myrank==master)

{
r e t u r n checkErrors (0) ;

}
}

i f (fileCount==0)

{

Appendix B. SETIFFT sonification code 62

r e t u r n checkErrors (0) ;

}
i f (debug&&myrank==master)

{
std : : cout << ” Inpu t once debugger i s a t ta tched . . . ” << std : : endl ;

std : : cin . get () ;

}

MPI_Barrier (MPI_COMM_WORLD) ;

/ /−=−=−=−=−=−=−=−=−=−=−=−=−=−=−

i n t range [3] = {0 ,0 ,0} ; / / f i r s t f i l e , f i r s t f f t , t o t a l f f t s

bool data= t rue ;

char instruction = 0;

i n t totalFFTs=0;

i n t fftsPerNode=0;

i f (myrank == master)

{
bool * skiprank=new bool [totalranks] ;

bool * GPUrank=new bool [totalranks] ;

f o r (i n t i=0;i<totalranks ; i++)

{
skiprank [i]= f a l s e ;

GPUrank [i]= f a l s e ;

}
i n t gpus=0;

f o r (i n t i=1;i<totalranks ; i++)

{
rreq [i] = MPI_REQUEST_NULL ;

char testgpu= f a l s e ;

MPI_Recv (&testgpu , 1 , MPI_CHAR , i , MSG , MPI_COMM_WORLD ,&Stat) ;

i f (testgpu) gpus++;

e lse skiprank [i]= t r ue ; / / ranks w i thou t gpus are skipped

}
/ / D iv ide data based on number o f gpus

i n t * totalFFTsInFile = new i n t [fileCount] ;

f o r (i n t i=0;i<fileCount ; i++)

{

Appendix B. SETIFFT sonification code 63

checkErrors (totalFFTsInFile [i]= SETIFILE : : getNumFFTs (fileNames [i] , fftPower←↩
)) ;

totalFFTs+=totalFFTsInFile [i] ;

}

fftsPerNode=totalFFTs / gpus ;

i n t rem=totalFFTs%gpus ;

i n t file=0;

i n t sentTotal=0;

i n t sentTotalInFile=0;

f o r (i n t i=1;i<totalranks ; i++)

{
i f (! skiprank [i])

{
range [0] = file ;

range [2] = fftsPerNode+rem ;

sentTotal+=fftsPerNode+rem ;

sentTotalInFile+=fftsPerNode+rem ;

i f (sentTotalInFile>=totalFFTsInFile [file])

{
sentTotalInFile−=totalFFTsInFile [file] ;

file++;

}

rem=0; / / i f to ta lFFTs i s not devided evenly , remainder goes to f i r s t ←↩
rank

MPI_Send (range , 3 , MPI_INT , i , RANGE , MPI_COMM_WORLD) ;

range [1]+= range [2] ;

}
}
i f (verbose>1) std : : cout << ” Master : To ta l FFTs : ”<<totalFFTs<<” . FFTs per ←↩

rank : ”<<fftsPerNode <<std : : endl ;

f o r (i n t i=1;i<totalranks ; i++)

{
i f (! skiprank [i])

{
MPI_Irecv (&instruction , 1 , MPI_CHAR , i , MSG , MPI_COMM_WORLD ,&rreq [i]) ;

}
}
whi le (data) / / wa i t f o r any response from any rank

{
f o r (i n t i=1;i<totalranks ; i++)

{
i f (! skiprank [i])

{
i n t flag=0;

MPI_Test (&rreq [i] ,& flag ,&Stat) ;

Appendix B. SETIFFT sonification code 64

i f (flag) / / i f there was an i n s t r u c t i o n do something , e lse move on

{
swi tch (instruction)

{
case 3: data= f a l s e ; break ;

case 4: data= f a l s e ; break ;

}
}

}
}

}
}
else i f (totalranks>=2)

/ /WORK=−=−=−=−=−=−=−=−=

{
char testGPU=SETIFILE : : getDeviceCount () ;

MPI_Send (&testGPU , 1 , MPI_CHAR , master , MSG , MPI_COMM_WORLD) ;

SYSTEMTIME st ;

GetSystemTime (&st) ;

i n t startTime = ((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds ;

i f (testGPU ! =0)

{
MPI_Recv (&range , 3 , MPI_INT , master , RANGE , MPI_COMM_WORLD ,&Stat) ;

i n t file = range [0] ;

i n t first = range [1] ;

i n t total = range [2] ;

i n t rankFileCount=1;

i n t templen = range [2]−range [1] ;

wh i le (templen>SETIFILE : : getNumFFTs (fileNames [file] , 2 3))

{
templen−=SETIFILE : : getNumFFTs (fileNames [file++] ,23) ;

rankFileCount++;

}

file = range [0] ;

i n t readtime=0 , ffttime=0 , powertime=0 , writetime=0;

f o r (i n t i=0; i<rankFileCount ; i++)

{
std : : string ofn = fileNames [file] ;

Appendix B. SETIFFT sonification code 65

ofn . resize (ofn . size ()−3) ;

ofn . append (” s e t i f i l e ” +std : : to_string (myrank)) ;

SETIFILE seti (fftPower , fileNames [file] , ofn , myrank−1) ;

i f (total+first>seti . getNumFFTs ()) total=seti . getNumFFTs () ;

i f (verbose>0)std : : cout<<” Rank ”<<myrank<<” : Performing ”<<total<<” ←↩
FFTs from f i l e ”<<fileNames [file]<<std : : endl ;

checkErrors (seti . doFFT (first , total)) ;

file++;

total=range [2]−total ;

readtime+=seti . readtime ;

powertime+=seti . powerstime ;

writetime+=seti . writetime ;

seti . ˜ SETIFILE () ;

}
i f (verbose>0)std : : cout<<” Rank ”<<myrank<<” read t ime : ”<<readtime<<” f f t ←↩

t ime : ”<<ffttime<<” c a l c u l a t e powers t ime : ”<<powertime<<” w r i t e t ime : ”<<readtime←↩
<<std : : endl ;

instruction=3;

GetSystemTime (&st) ;

i n t taskTime = (((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds) ;

taskTime = taskTime − startTime ;

std : : cout<<” To ta l t ime : ”<< taskTime<<std : : endl ;

MPI_Send (&instruction , 1 , MPI_CHAR , master , MSG , MPI_COMM_WORLD) ;

}
}
else

{
std : : cout << ” SETIFFTcu : Must be s t a r t e d wi th a t l e a s t −n 2 ” << std : : endl ;

}

MPI_Barrier (MPI_COMM_WORLD) ;

MPI_Finalize () ;

r e t u r n exit ;

}

LISTING B.1: ”SETIFFTcu.cpp”

Appendix B. SETIFFT sonification code 66

#pragma once

inc lude ”MemoryMapped . h ”

inc lude ” cuComplex . h ”

inc lude <cuda . h>

c lass SETIFILE

{
p r i v a t e :

i n t fail ;

i n t N , N_2 ;

std : : string inName , outName ;

MemoryMapped inFile ;

FILE * outFile ;

size_t fileLength ;

i n t numFFTs ;

cuDoubleComplex * data ;

unsigned long long * power ;

/ / Process

i n t read (i n t) ;

i n t calculatePowers (i n t) ;

i n t writePowers (i n t) ;

size_t pos ;

i n t capacity ;

CUcontext cudaContext ;

CUdevice cudaDevice ;

p u b l i c :

i n t readtime , ffttime , powerstime , writetime ;

i n t doFFT (i n t , i n t) ;

/ / Get

i n t getN () ;

i n t getNumFFTs () ;

size_t getFileLength () ;

Appendix B. SETIFFT sonification code 67

s t a t i c i n t getNumFFTs (std : : string , i n t) ;

s t a t i c size_t getFileLength (std : : string) ;

s t a t i c i n t getDeviceCount () ;

vo id printTime () ;

std : : string getFileName () ;

i n t checkFail () ;

SETIFILE (i n t , std : : string , std : : string , i n t) ;

˜ SETIFILE () ;

} ;

LISTING B.2: ”setifile.h”

Appendix B. SETIFFT sonification code 68

inc lude ” s e t i f i l e . h ”

inc lude ”MemoryMapped . h ”

inc lude ” cuComplex . h ”

inc lude <cuda runt ime . h>

inc lude <c u f f t . h>

inc lude <cuda . h>

inc lude <h e l p e r f u n c t i o n s . h>

inc lude <helper cuda . h>

inc lude <iostream>

SETIFILE : : SETIFILE (i n t fftPower , std : : string fileName , std : : string ←↩
destinationFileName , i n t device)

{
readtime=0;

ffttime=0;

powerstime=0;

writetime=0;

fail = 1;

N=(i n t) pow (2 , fftPower) ;

N_2 = N / 2 ;

inName = fileName ;

outName = destinationFileName ;

inFile . open (inName , MemoryMapped : : WholeFile , MemoryMapped : : SequentialScan) ;

i f (! inFile . isValid ()) fail = −1;

outFile = fopen (outName . c_str () , ”wb”) ;

i f (outFile==NULL) fail = −2;

fileLength=inFile . size () ;

numFFTs=(i n t) fileLength / N ;

inName = fileName ;

outName = destinationFileName ;

pos=0;

capacity=0;

checkCudaErrors (cuInit (0)) ;

CUresult result = cuDeviceGet (&cudaDevice , device) ;

i f (result == CUDA_SUCCESS)

{
checkCudaErrors (cuCtxCreate (&cudaContext , CU_CTX_SCHED_AUTO , cudaDevice)) ;

}
}

Appendix B. SETIFFT sonification code 69

SETIFILE : : ˜ SETIFILE ()

{
cuCtxDestroy (0) ;

DEVICE_RESET ;

inFile . close () ;

fclose (outFile) ;

}

i n t SETIFILE : : doFFT (i n t firstFFT , i n t totalFFTs)

{
SYSTEMTIME fftst ;

GetSystemTime (&fftst) ;

i n t fftstartTime = ((((fftst . wHour *60)+fftst . wMinute) *60)+fftst . wSecond) *1000 + ←↩
fftst . wMilliseconds ;

size_t fmem , tmem ;

i n t running=totalFFTs ;

checkCudaErrors (cuMemGetInfo (&fmem , &tmem)) ;

i n t size= s i z e o f (cuDoubleComplex) ;

capacity=fmem / size ;

capacity /=N ;

capacity / = 2 ; / / CUFFT makes another ar ray on the GPU whi le processing data , so←↩
we can only f i l l h a l f o f GPU memory

i f (capacity<=0)

{
fail= −4;

r e t u r n fail ;

}

i n t num=capacity ;

wh i le (running>0)

{
i f (running<capacity)

{
num=running ;

}
data=new cuDoubleComplex [num *N] ;

fail = read (num) ;

/ / A l l oca te device memory

size_t mem_size= s i z e o f (cuDoubleComplex) * N *num ;

cuDoubleComplex * d_data ;

checkCudaErrors (cudaMalloc ((vo id * *)&d_data , mem_size)) ;

/ / Copy data to device

Appendix B. SETIFFT sonification code 70

checkCudaErrors (cudaMemcpy (d_data , data , mem_size , cudaMemcpyHostToDevice←↩
)) ;

/ / CUFFT plan

cufftHandle plan ;

checkCudaErrors (cufftPlan1d (&plan , N , CUFFT_Z2Z , num)) ;

checkCudaErrors (cufftExecZ2Z (plan , d_data , d_data , CUFFT_FORWARD)) ;

/ / Copy data back to host

checkCudaErrors (cudaMemcpy (data , d_data , mem_size , cudaMemcpyDeviceToHost)←↩
) ;

/ / Destroy CUFFT complex

checkCudaErrors (cufftDestroy (plan)) ;

cudaFree (d_data) ;

calculatePowers (num) ;

running−=num ;

de le te [] data ;

}
GetSystemTime (&fftst) ;

i n t ffttaskTime = (((((fftst . wHour *60)+fftst . wMinute) *60)+fftst . wSecond) *1000←↩
+ fftst . wMilliseconds) ;

ffttaskTime = ffttaskTime − fftstartTime ;

ffttime+=ffttaskTime ;

r e t u r n fail ;

}
i n t SETIFILE : : read (i n t num)

{
SYSTEMTIME st ;

GetSystemTime (&st) ;

i n t startTime = ((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds ;

i n t ret= −5;

f o r (i n t i=0;i<num *N ; i++)

{
char re=0;

char im=0;

i f (pos<getFileLength ()) re = inFile [pos ++] ;

e lse re=−1;

i f (pos<getFileLength ()) im = inFile [pos ++] ;

e lse im=−1;

Appendix B. SETIFFT sonification code 71

data [i]= make_cuDoubleComplex (re , im) ;

ret=1;

}
GetSystemTime (&st) ;

i n t taskTime = (((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds) ;

taskTime = taskTime − startTime ;

readtime+=taskTime ;

ffttime−=taskTime ;

r e t u r n ret ;

}
i n t SETIFILE : : calculatePowers (i n t num)

{

SYSTEMTIME st ;

GetSystemTime (&st) ;

i n t startTime = ((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds ;

power = new unsigned long long [num *N_2] ;

double * powtemp=new double [num *N_2] ;

f o r (i n t a=0;a<num ; a++)

{
f o r (i n t i = 0; i< N_2 ; i++)

{
powtemp [i] = (hypot (data [i] . x , data [i] . y) / (N_2)) ;

char ch [8] , ch2 [8] ;

memcpy (ch , &powtemp [i] , 8) ;

f o r (i n t c=0;c<8;c++) ch2 [c]=ch[7−c] ;

memcpy (&power [i] , ch2 , 8) ;

}
}

de le te [] powtemp ;

GetSystemTime (&st) ;

i n t taskTime = (((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds) ;

powerstime += taskTime − startTime ;

ffttime−=taskTime ;

fail=writePowers (num) ;

de le te [] power ;

r e t u r n 1 ;

}

Appendix B. SETIFFT sonification code 72

i n t SETIFILE : : writePowers (i n t num)

{
SYSTEMTIME (st) ;

GetSystemTime (&st) ;

i n t startTime = ((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds ;

size_t ret = −3;

i f (outFile==NULL) ret = −2;

e lse

{
ret=fwrite (power , s i z e o f (unsigned long long) ,num *N_2 , outFile) ;

}
GetSystemTime (&st) ;

i n t taskTime = (((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds) ;

taskTime = taskTime − startTime ;

writetime+=taskTime ;

ffttime−=taskTime ;

r e t u r n ret ;

}

size_t SETIFILE : : getFileLength () { r e t u r n fileLength ;}
std : : string SETIFILE : : getFileName () { r e t u r n inName ;}
i n t SETIFILE : : getN () { r e t u r n N ;}
i n t SETIFILE : : getNumFFTs () { r e t u r n numFFTs ;}
i n t SETIFILE : : checkFail () { r e t u r n fail ;}

/ / S t a t i c Funct ions−=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−=−
i n t SETIFILE : : getNumFFTs (std : : string fname , i n t power)

{
size_t len = getFileLength (fname) ;

i f (len<0) r e t u r n −1;

size_t num=len / pow (2 , power) ;

r e t u r n num ;

}
size_t SETIFILE : : getFileLength (std : : string fname)

{
MemoryMapped infile ;

infile . open (fname , MemoryMapped : : WholeFile , MemoryMapped : : SequentialScan) ;

i f (! infile . isValid ()) r e t u r n −1;

size_t length=infile . size () ;

infile . close () ;

r e t u r n length ;

}

i n t SETIFILE : : getDeviceCount ()

{

Appendix B. SETIFFT sonification code 73

i n t devCount ;

cudaGetDeviceCount (&devCount) ;

r e t u r n devCount ;

}

LISTING B.3: ”setifile.cu”

The following file is an example of a batch script used to execute the MPI task.

: : Switches :

: : Required :

: : '− i f <path> ' specifies the path to the i npu t file (s) . There can be any number of ←↩
these , at least one is required

: : Options :

: : −v Enables progress messages , may increase runtime

: : −d Enables debug mode , will definitely increase runtime

: : −h prints these hints , then quits

mpiexec −n 3 SETIFFTcu . exe −v 5 −d − i f 1 . dat − i f 2 . dat − i f 3 . dat

: : exit codes : 0 = Normal exit , a l l data processed , 1 = Fail , no data processed , 2 = ←↩
Fail , some data processed

LISTING B.4: ”SETIFFT with MPI.bat”

74

Appendix C

Wavelength Scanning

Interferometry Software

Full code for case study 3, based on the original CUDA software described by Muhamed-

salih et al. (2012). Functions and data operations taken directly from original code, the

program structure was modified and MPI functions added.

inc lude <iostream>

inc lude <s t d i o . h>

inc lude <s t d l i b . h>

inc lude <c u t i l i n l i n e . h>

inc lude <conio . h>

inc lude <s t r i n g . h>

inc lude <sstream>

inc lude <helper cuda . h>

inc lude <cuda . h>

inc lude <mpi . h>

inc lude <cuda runt ime . h>

inc lude <windows . h> / / f o r handl ing bitmap f i l e s , not por tab le , remove f o r o ther ←↩
p la t fo rms

/ / MPI TAGS

def ine MSG 1

def ine RANGE 2

def ine MEM 3

def ine DATA 4

Appendix C. Wavelenghth Scanning Interferometry Software 75

long lNumImage=256; / / 1 2 8 / / 1 2 8 / / 2 5 6 / / 1 0 2 4 / / 5 1 2 / / 6 4 / / 2 5 6 / / 3 0 0 / / 1 2 8

long lNumPulses2=1024;

i n t LensX=5;

f l o a t *Kv ;

/ / ex tern

i n t DeviceFFT (LPBYTE lpLinear , long FrameWidth , long FrameHeight , char * szFileName , ←↩
f l o a t * Kv , long lNumImage , long lNumPulses2 , i n t LensX , i n t rank) ;

f l o a t * CalcuateWaveNo () ;

i n t main (i n t argc , char * argv [])

{

i n t totalranks , myrank , master = 0;

MPI_Status Stat ;

MPI_Request sreq = MPI_REQUEST_NULL ;

MPI_Request * rreq ;

MPI_Init (&argc ,&argv) ;

MPI_Comm_size (MPI_COMM_WORLD , &totalranks) ;

MPI_Comm_rank (MPI_COMM_WORLD , &myrank) ;

rreq = new MPI_Request [totalranks] ;

i f (myrank==master)

{
i f (totalranks<2)

{
std : : cout<<” Program must be s t a r t e d wi th more than one rank ”<<std : : endl ;

MPI_Finalize () ;

r e t u r n 0 ;

}
std : : cout<<” Enter to s t a r t ”<<std : : endl ;

std : : cin . get () ;

}
MPI_Barrier (MPI_COMM_WORLD) ;

i f (myrank==master) / / a l l t im ing done i n master thread

{
SYSTEMTIME st ;

GetSystemTime (&st) ;

i n t startTime = ((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds ;

bool * gpuRanks=new bool [totalranks] ;

i n t numGpus =0;

MPI_Barrier (MPI_COMM_WORLD) ;

Appendix C. Wavelenghth Scanning Interferometry Software 76

f o r (i n t i=1;i<totalranks ; i++)

{
char result=0;

MPI_Recv (&result , 1 , MPI_CHAR , i , MSG , MPI_COMM_WORLD ,&Stat) ;

i f (result)

{
gpuRanks [i]= t r ue ;

numGpus++;

}
else gpuRanks [i]= f a l s e ;

}

MPI_Barrier (MPI_COMM_WORLD) ;

GetSystemTime (&st) ;

i n t taskTime = (((((st . wHour *60)+st . wMinute) *60)+st . wSecond) *1000 + st .←↩
wMilliseconds) ;

taskTime = taskTime − startTime ;

std : : cout<< lNumImage * numGpus <<” Frames processed i n : ”<< taskTime <<” ←↩
mi l l i seconds ”<< std : : endl ;

}

else / / work

{
MPI_Barrier (MPI_COMM_WORLD) ;

LPBYTE lpLinear ;

long FrameWidth=640;

long FrameHeight=480;

char szFileName [1 2 8] ;

sprintf (szFileName , ”%d ” , myrank) ;

strcat (szFileName , ” \\out . sd f ”) ;

std : : stringstream ss ;

bool gpuRank = f a l s e ;

/ * *
(1) Upload you data here (The 256 frames) and generate a p o i n t e r (l pL i nea r) ←↩

to i n d i c a t e the l o c a t i o n

(2) Generate a path to save the SDF F i l e szFileName

* * /

FILE * bmp ;

DWORD size = lNumImage * FrameHeight * FrameWidth ;

Appendix C. Wavelenghth Scanning Interferometry Software 77

BYTE * pixdata = new BYTE [size] ;

BITMAPFILEHEADER bmpheader ;

std : : string fn ;

f o r (i n t i = 0; i < lNumImage ; i++)

{
ss . clear () ;

ss << ” data\\ ” << i+1000 << ” .BMP” ;

ss >> fn ;

bmp = fopen (fn . c_str () , ” rb ”) ;

i f (bmp==NULL) std : : cout << ” F i l e : ” << fn << ” could not be opened ” <<←↩
std : : endl ;

fread (&bmpheader , s i z e o f (BITMAPFILEHEADER) ,1 , bmp) ; / / read bitmap header ←↩
data

i f (bmpheader . bfType !=19778) / / check f i l e i s v a l i d BMP

{
std : : cout << ” F i l e : ” << fn << ” i s not v a l i d BMP format ” << std : :←↩

endl ;

}
fseek (bmp , bmpheader . bfOffBits , SEEK_SET) ; / / seek past header b i t s and to ←↩

ac tua l image data

fread (&pixdata [i * size] , s i z e o f (BYTE) ,size , bmp) ; / / read image data

fclose (bmp) ;

}
lpLinear=pixdata ;

i n t device = myrank−1;

checkCudaErrors (cuInit (0)) ;

CUcontext cudaContext ;

CUdevice cudaDevice ;

CUresult result = cuDeviceGet (&cudaDevice , device) ;

i f (result == CUDA_SUCCESS)

{
result = cuCtxCreate (&cudaContext , CU_CTX_SCHED_AUTO , cudaDevice) ;

gpuRank= t rue ;

}

MPI_Send (&gpuRank , 1 , MPI_CHAR , master , MSG , MPI_COMM_WORLD) ;

i f (gpuRank== t rue)

{
Kv=CalcuateWaveNo () ;

i f (DeviceFFT (lpLinear , FrameWidth , FrameHeight , szFileName , Kv , lNumImage ,←↩
lNumPulses2 , LensX , myrank) ==−1) std : : cout <<” I n s u f f i c i e n t Memory on GPU”<<std : :←↩
endl ;

Appendix C. Wavelenghth Scanning Interferometry Software 78

}
MPI_Barrier (MPI_COMM_WORLD) ;

}
MPI_Finalize () ;

r e t u r n 0 ;

}

f l o a t * CalcuateWaveNo ()

{
i n t FrameStep=1; / / This value w i l l be used to jump one or th ree frames i n case ←↩
captured frames are 128 or 64 r e s p e c t i v e l y

i n t WavelengthCounter=0;

i n t i=0;

f l o a t * KvFit=(f l o a t *) malloc (s i z e o f (f l o a t) * lNumImage) ; / / A l l oca te a mat r i x f o r ←↩
KvFi t

f l o a t *Kv=(f l o a t *) malloc (s i z e o f (f l o a t) * lNumImage) ; / / 1 / lambda

/ /−−−−−Loading the (kv =1/ wavelength) matr ix−−−−−−−−−−−−−−−−−
FILE * pCalMat ; / / c a l i b r a t i o n mat r i x

pCalMat=fopen (” KvFit256 . b in ” , ” rb ”) ; / / Change the Path

i f (pCalMat != NULL)

{
fread (KvFit , s i z e o f (f l o a t) , lNumImage , pCalMat) ;

fclose (pCalMat) ;

}
/ /−−−−−−−−−−−−−−−−−−END−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (lNumImage==128){
FrameStep=2;

}
else i f (lNumImage==64){

FrameStep=4;

}
else{

FrameStep=1;

}

f o r (i=0;i<lNumImage ; i++)

{
/ / Kv [i] = 1 /Lambda [WavelengthCounter] ;

Kv [i]= KvFit [WavelengthCounter] * 0 . 9 0 2 ; / / 0.902 i s a c a l i b r a t i o n f a c t o r

WavelengthCounter=WavelengthCounter+FrameStep ;

}

Kv [0]=1 /683 .42 ; / / measured value wi th spectrometer / / used

Appendix C. Wavelenghth Scanning Interferometry Software 79

Kv [lNumImage−1]=1/590.516; / / measured value wi th spectrometer

free (KvFit) ;

r e t u r n Kv ;

}

LISTING C.1: ”main.cu”

Appendix C. Wavelenghth Scanning Interferometry Software 80

inc lude <c u t i l i n l i n e . h>

inc lude <c u t i l . h>

inc lude <math . h>

inc lude <FFT . h>

inc lude <FFT kernel . cu>

inc lude <helper cuda . h>

inc lude <cuda . h>

inc lude <cuda runt ime . h>

long BuffElement=0;

long DataElement ;

long ElementWritten ;

i n t i , j ;

i n t FrameCounter ;

FILE * IntensityValueFile ;

char Hussbuffer [5 0] ; / / de le te i t

FILE * pPixelFile ;

/ / char MonitorFileName [1 2 8] ;

vo id WriteIntoText (Complex * HostMontrMatrx , long FrameWidth , long FrameHeight , long ←↩
lNumImage , char * MonitorFileName) ;

vo id WriteFloatIntoText (f l o a t * HostFloatMatrx , long FrameWidth , long FrameHeight , long ←↩
lNumImage , char * MonitorFileName) ;

i n t DeviceFFT (LPBYTE lpLinear , long FrameWidth , long FrameHeight , char * szFileName ,←↩
f l o a t * Kv , long lNumImage , long lNumPulses2 , i n t LensX , i n t rank) ;

i n t DeviceFFT (LPBYTE lpLinear , long FrameWidth , long FrameHeight , char * szFileName ,←↩
f l o a t * Kv , long lNumImage , long lNumPulses2 , i n t LensX , i n t rank)

{
CUresult result ;

char fileName [1 2 8] ;

/ /−−−−−−−−Transfer the r e c i p r o c a l o f wavelength a r r a r y (Kv) to GPU Global memory ←↩
−−−−−
f l o a t * Kv_d ;

size_t mem_size = lNumImage * s i z e o f (f l o a t) ;

cudaMalloc ((vo id * *)&Kv_d , mem_size) ; / / see page 48 the bottom note f o r cudaMalloc←↩
f u n c t i o n

cudaMemcpy (Kv_d , Kv , mem_size , cudaMemcpyHostToDevice) ; / / Copy wavelength values

/ /−−−−−−−−−−−−−−−−−−−−−−

/ *−−−−The f o l l o w i n g code statments are c a l i b r a t i o n steps

−−−−The c l i b r a t e d mat r i x has been processed by Matlab and saved i n D dr ive−−−−−←↩

* /

Appendix C. Wavelenghth Scanning Interferometry Software 81

/ /−−−−−−−−−−−−−−−One Frame a l i b r a t i o n−−−−−−−−−−−−−−−−−−−−−−−−
FILE * pCalOneFrame ; / / c a l i b r a t i o n one Frame

/ /−−− A l l oca te memory space f o r the background I n e n s i t y ar ray i n CPU

f l o a t * OneFrameIntHost=(f l o a t *) malloc (s i z e o f (f l o a t) * FrameHeight * FrameWidth) ; / / on ←↩
the host s ide

sprintf (fileName , ”%d ” , rank) ;

strcat (fileName , ” \\OneFrameIntensity . b in ”) ;

pCalOneFrame=fopen (fileName , ” rb ”) ;

i f (pCalOneFrame != NULL)

{
fread (OneFrameIntHost , s i z e o f (f l o a t) , FrameHeight * FrameWidth , pCalOneFrame) ;

fclose (pCalOneFrame) ;

}
f l o a t * OneFrameInt_d ; / / d iscont inuous phase mat r i x

mem_size= s i z e o f (f l o a t) * FrameHeight * FrameWidth ;

cudaMalloc ((vo id * *)&OneFrameInt_d , mem_size) ;

cudaMemcpy (OneFrameInt_d , OneFrameIntHost , mem_size , cudaMemcpyHostToDevice) ;

/ /−−−−−−−−−−−−−−−END−−−−−−−−−−−−−−−−−−−−−−−−

/ /−−−−−Sing le P i xe l C a l i b r a t i o n a t d i f f e r e n t wavelengths−−−−−−−−
FILE * pCalMat ; / / c a l i b r a t i o n one p i x e l (200 ,200)

f l o a t * CalMatHost=(f l o a t *) malloc (s i z e o f (f l o a t) * lNumImage) ; / / on the host s ide

sprintf (fileName , ”%d ” , rank) ;

i f (LensX==2)

{
i f (lNumImage==256)

{
strcat (fileName , ” \\RemoveBackground 256 . b in ”) ;

}
else i f (lNumImage==128)

{
strcat (fileName , ” \\RemoveBackground 128 . b in ”) ;

}
else i f (lNumImage==64)

{
strcat (fileName , ” \\RemoveBackground 64 . b in ”) ;

}

}
else i f (LensX==5)

{
i f (lNumImage==256)

{
strcat (fileName , ” \\RemoveBackground 256 . b in ”) ;

}

Appendix C. Wavelenghth Scanning Interferometry Software 82

else i f (lNumImage==128)

{
strcat (fileName , ” \\RemoveBackground 128 . b in ”) ;

}
else i f (lNumImage==64)

{
strcat (fileName , ” \\RemoveBackground 264 . b in ”) ;

}
}
else i f (LensX==10)

{
i f (lNumImage==256)

{
strcat (fileName , ” \\RemoveBackground 256 . b in ”) ;

}
else i f (lNumImage==128)

{
strcat (fileName , ” \\RemoveBackground 128 . b in ”) ;

}
else i f (lNumImage==64)

{
strcat (fileName , ” \\RemoveBackground 64 . b in ”) ;

}
}
pCalMat=fopen (fileName , ” rb ”) ;

i f (pCalMat != NULL)

{
fread (CalMatHost , s i z e o f (f l o a t) , lNumImage , pCalMat) ;

fclose (pCalMat) ;

}

f l o a t * CalMat_d ; / / d iscont inuous phase mat r i x

cudaMalloc ((vo id * *)&CalMat_d , s i z e o f (f l o a t) * lNumImage) ;

cudaMemcpy (CalMat_d , CalMatHost , s i z e o f (f l o a t) * lNumImage , cudaMemcpyHostToDevice) ;

/ /−−−−−−−−−−−−−−END of C a l i b r a t i o n−−−−−−−−−−−−−−−−−−−−−

/ /−−−Copy the BUFFER data to a l l o c a t e memory BufData

mem_size=lNumImage * FrameWidth * FrameHeight ;

byte * BufData=new byte [mem_size] ;

memcpy (BufData , lpLinear , mem_size) ;

/ /−−

/ /−−−−−Div ide the Captured Data i n t o 4 par t s because gof memory l i m i t a t i o n ←↩
−−−−−−−−−−−
i n t ProcessStep=4;

i n t HeightDivider=FrameHeight / ProcessStep ;

Appendix C. Wavelenghth Scanning Interferometry Software 83

i n t CorrectionFactor=HeightDivider / BLOCK_SIZE ;

HeightDivider=CorrectionFactor * BLOCK_SIZE ;

i n t RemainPixels=FrameHeight−HeightDivider * ProcessStep ;

/ /−−

unsigned i n t size_StepHeight_d=HeightDivider * FrameWidth ; / /

unsigned i n t mem_size_StepHeight_d= s i z e o f (f l o a t) * size_StepHeight_d ;

f l o a t * HostFinalStepHeight=(f l o a t *) malloc (s i z e o f (f l o a t) * HeightDivider * FrameWidth *←↩
ProcessStep) ;

f o r (i n t ProcessCounter=0;ProcessCounter<ProcessStep ; ProcessCounter++)

{
/ /−−−−A l l oca te a memory space f o r Data i n the GPU

Complex * data_d ;

unsigned i n t size_data_d=lNumImage * HeightDivider * FrameWidth ; / / 1 D ar ray mat r i x

unsigned i n t mem_size_data_d= s i z e o f (Complex) * size_data_d ;

cudaMalloc ((vo id * *)&data_d , mem_size_data_d) ;

/ /−−−−

/ /−−−−A l l oca te a memory space f o r Phase i n the GPU

f l o a t * phase_discont_d ; / / d iscont inuous phase mat r i x

unsigned i n t size_phase_discont=lNumImage * HeightDivider * FrameWidth ; / / 1←↩
D ar ray mat r i x

unsigned i n t mem_size_phase_discont= s i z e o f (f l o a t) * size_phase_discont ;

cudaMalloc ((vo id * *)&phase_discont_d , mem_size_phase_discont) ;

/ /−−−−

/ /−−−−A l l oca te a memory space f o r phase set and cor rec ted phase i n the GPU

f l o a t * phase_set_d ; / / d iscont inuous phase mat r i x

cudaMalloc ((vo id * *)&phase_set_d , mem_size_phase_discont) ;

f l o a t * phase_cont_d ; / / d iscont inuous phase mat r i x

cudaMalloc ((vo id * *)&phase_cont_d , mem_size_phase_discont) ;

/ /−−−−

/ /−−−−A l l oca te a memory space f o r Suface Height i n the GPU

f l o a t * StepHeight_d ;

unsigned i n t size_StepHeight_d=HeightDivider * FrameWidth ; / /

unsigned i n t mem_size_StepHeight_d= s i z e o f (f l o a t) * size_StepHeight_d ;

cudaMalloc ((vo id * *)&StepHeight_d , mem_size_StepHeight_d) ;

/ /−−−−

/ /−−−−A l l oca te a memory space f o r Suface Height i n the Host

f l o a t * HostStepHeight=(f l o a t *) malloc (mem_size_StepHeight_d) ; / / on the host s ide

/ /−−−−

Appendix C. Wavelenghth Scanning Interferometry Software 84

/ *
/ Replace the Bu f fe r i n f o rma t i on i n t o Data mat r i x

* /

unsigned i n t size_Data=lNumImage * FrameWidth * HeightDivider ; / / FrameHeight *←↩
FrameWidth ;

unsigned i n t mem_size_Data= s i z e o f (Complex) * size_Data ;

Complex * Data=(Complex *) malloc (mem_size_Data) ; / / the data t h a t i s going to be ←↩
processed

DataElement=0;

f o r (FrameCounter=0; FrameCounter<lNumImage ; FrameCounter++)

{
BuffElement=0;

f o r (i=0; i<HeightDivider ; i++){
f o r (j=0; j<FrameWidth ; j++){

DataElement=(i * FrameWidth * lNumImage) +(j * lNumImage) +FrameCounter ; ←↩
/ / va r he igh t (j) =row number & va r w id th (i) = co l number

Data [DataElement] . x=(f l o a t) (BufData [BuffElement + ((ProcessCounter *←↩
HeightDivider) * FrameWidth) +FrameCounter * (FrameHeight * FrameWidth)]) ;

BuffElement=BuffElement+1;

}
}

}
/ /−−−−−−−End of Data Arrangement−−−−−−−−−−−−−−−−−−−−

/ /−−−−−−−−−−−−−−−−S t a r t Slop phase Ana lys is using GPU−−−−−−−−−

/ /−−−− (1) Trans fer arrangement frames i n t o GPU

cudaMemcpy (data_d , Data , mem_size_data_d , cudaMemcpyHostToDevice) ;

/ /−−−−

/ /−−−− (2) Thread Generat ion

/ / This c o n d i t i o n has set because the m u l t i p l i e d mat r i x i s square and can d i v i d e ←↩
over t i l e width

dim3 dimBlock (BLOCK_SIZE , BLOCK_SIZE) ; / / spec i f y the dimensions o f each BLOCK i n←↩
terms of number o f thread

dim3 dimGrid (FrameWidth / BLOCK_SIZE , HeightDivider / BLOCK_SIZE) ; / / spec i f y the ←↩
dimensions o f each GRID i n terms of number o f thread

/ /−−−−

/ /−−− (3) Remove the Background I n t e n s i t y

CalibrationIntensityPattern<<<dimGrid , dimBlock>>>(data_d , CalMat_d , OneFrameInt_d ,←↩
ProcessCounter , FrameWidth , HeightDivider , lNumImage) ;

/ /−−− (3 . a) Remove the o f f s e t

Appendix C. Wavelenghth Scanning Interferometry Software 85

RemoveOffset<<<dimGrid , dimBlock>>>(data_d , ProcessCounter , FrameWidth , HeightDivider←↩
, lNumImage) ;

/ /−−− (Non) Wr i te t e x t f i l e the f f t o f one p i x e l (1)

Complex * HostMontrMatrx=(Complex *) malloc (mem_size_data_d) ;

cudaMemcpy (HostMontrMatrx , data_d , mem_size_data_d , cudaMemcpyDeviceToHost) ;

sprintf (fileName , ”%d ” , rank) ;

strcat (fileName , ” \\Ca l i b ra tedS igna l . t e x t ”) ;

WriteIntoText (HostMontrMatrx , FrameWidth , FrameHeight , lNumImage , fileName) ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ /−−− (4) Apply FFT

cufftHandle plan ;

cufftPlan1d (&plan , lNumImage , CUFFT_C2C , FrameWidth * HeightDivider) ;

cufftExecC2C (plan , (cufftComplex *) data_d , (cufftComplex *) data_d , CUFFT_FORWARD)←↩
;

/ /−−− (5) Find the peak of spectrum to i d e n t i f y the f i l t e r i n g c u t t i n g edge

fftFindPeaks<<<dimGrid , dimBlock>>>(data_d , HeightDivider , FrameWidth , lNumImage) ;

/ /−−− (Non) Wr i te t e x t f i l e the f f t o f one p i x e l (2)

cudaMemcpy (HostMontrMatrx , data_d , mem_size_data_d , cudaMemcpyDeviceToHost) ;

sprintf (fileName , ”%d ” , rank) ;

strcat (fileName , ” \\FFTPowerDensity . t e x t ”) ;

WriteIntoText (HostMontrMatrx , FrameWidth , FrameHeight , lNumImage , fileName) ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ /−−− (6) F i l t e r the DC bias , the conjugate o f the phase and noises

filtering_data_d<<<dimGrid , dimBlock>>>(data_d , FrameWidth , HeightDivider , lNumImage)←↩
;

/ /−−− (7) Apply inverse FFT

cufftExecC2C (plan , (cufftComplex *) data_d , (cufftComplex *) data_d , CUFFT_INVERSE)←↩
;

cufftDestroy (plan) ; / / impor tan t step ; otherwise you can not repeat the propgram

/ /−−− (Non) Wr i te t e x t f i l e the f f t o f one p i x e l (3)

cudaMemcpy (HostMontrMatrx , data_d , mem_size_data_d , cudaMemcpyDeviceToHost) ;

sprintf (fileName , ”%d ” , rank) ;

strcat (fileName , ” \\ iFFTPowerDensity . t e x t ”) ;

WriteIntoText (HostMontrMatrx , FrameWidth , FrameHeight , lNumImage , fileName) ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ /−−− (8) Determine the phase

Determine_phase_discont<<<dimGrid , dimBlock>>>(data_d , phase_discont_d , FrameWidth ,←↩
HeightDivider , lNumImage) ;

Appendix C. Wavelenghth Scanning Interferometry Software 86

/ /−−− (9) Compute the 2 p i phase d i s t r u b u t i o n

Implement_phase_set<<<dimGrid , dimBlock>>>(phase_discont_d , phase_set_d , FrameWidth ,←↩
HeightDivider , lNumImage) ;

/ /−−− (10) Correc t the phase by adding 9 to 8

Calculate_phase_cont<<<dimGrid , dimBlock>>>(phase_cont_d , phase_discont_d ,←↩
phase_set_d , FrameWidth , HeightDivider , lNumImage) ; / / adding the d iscont inuous ←↩
phase to the phase set f u n c t i o n

/ /−−− (Non) Wr i te t e x t f i l e the f f t o f one p i x e l (4)

f l o a t * HostFloatMatrx=(f l o a t *) malloc (mem_size_phase_discont) ;

cudaMemcpy (HostFloatMatrx , phase_cont_d , mem_size_phase_discont ,←↩
cudaMemcpyDeviceToHost) ;

sprintf (fileName , ”%d ” , rank) ;

strcat (fileName , ” \\Phase . t e x t ”) ;

WriteFloatIntoText (HostFloatMatrx , FrameWidth , FrameHeight , lNumImage , fileName) ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ /−−− (11) F i t the phase using l e a s t square approach

LeastSquareFitting<<<dimGrid , dimBlock>>>(phase_cont_d , FrameWidth , HeightDivider ,←↩
lNumImage) ;

/ /−−− (Non) Wr i te t e x t f i l e the f f t o f one p i x e l (5)

cudaMemcpy (HostFloatMatrx , phase_cont_d , mem_size_phase_discont ,←↩
cudaMemcpyDeviceToHost) ;

sprintf (fileName , ”%d ” , rank) ;

strcat (fileName , ” \\Fi t tedPhase . t e x t ”) ;

WriteFloatIntoText (HostFloatMatrx , FrameWidth , FrameHeight , lNumImage , fileName) ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ /−−− (12) Find the Sufrace Height

Find_StepHeight<<<dimGrid , dimBlock>>>(StepHeight_d , phase_cont_d , FrameWidth ,←↩
HeightDivider , Kv_d , lNumImage) ;

/ /−−− (13) upload the r e s u l t back to CPU

cudaMemcpy (HostStepHeight , StepHeight_d , mem_size_StepHeight_d ,←↩
cudaMemcpyDeviceToHost) ; / / FrameWidth * He igh tD iv ide r * s i z e o f (f l o a t)

/ /−−− (14) Place the r e s u l t i n a successive manner i n the sur face he igh t data ←↩
t h a t going to w r i t t e n as SDF

memcpy (HostFinalStepHeight+(ProcessCounter * FrameWidth * HeightDivider) ,←↩
HostStepHeight , mem_size_StepHeight_d) ;

/ /−−−Delete the arrays−−−
cudaFree (data_d) ;

cudaFree (phase_discont_d) ;

cudaFree (phase_set_d) ;

Appendix C. Wavelenghth Scanning Interferometry Software 87

cudaFree (phase_cont_d) ;

cudaFree (StepHeight_d) ;

free (HostStepHeight) ;

free (HostMontrMatrx) ;

free (Data) ;

free (HostFloatMatrx) ;

}

/ /−−− (15) Wr i te the Complete Sufrace Height Data as SDF f i l e

/ /−−− (15 . a) Def ines the en t ry po in t f o r the console a p p l i c a t i o n .

char SDF_ver_num [9] = ”bBCR−1.0 ” ; / / This step must be w r i i t e n f i r s t

char SDF_ManufacID [11]= ”THP−FORM ” ;

char SDF_CreateDate [13]= ” 040520121442 ” ;

char SDF_ModDate [13]= ” 020620120931 ” ;

unsigned i n t SDF_NumPoints=FrameWidth ;

unsigned i n t SDF_NumProfiles=HeightDivider * ProcessStep ; / / +RemainPixels

double SDF_Xscale=3.5300E−006;

double SDF_Yscale=3.5300E−006;

double SDF_Zscale=1.00E−009;

double SDF_Zresolution=−1;

char SDF_Compression=0; / / NULL ;

char SDF_DataType=3; / / 3 f o r f l o a t 6 f o r long 5 f o r sho r t

char SDF_CheckSum=0; / / NULL ;

/ /−−− (15 . b) Set the l a t e r i a l sca le according to the magn i f i ca t i on ←↩
scale

i f (LensX==5)

{ SDF_Xscale=1.1905E−006;

SDF_Yscale=1.1905E−006;

}
else i f (LensX==10)

{ SDF_Xscale=0.6098E−006;

SDF_Yscale=0.6098E−006;

}

else i f (LensX==50)

{ SDF_Xscale=0.1185E−006;

SDF_Yscale=0.1185E−006;

}
else

{ SDF_Xscale=2.9412E−006; / / The 2X magn i f i ca t i on i s the d e f a u l t one

SDF_Yscale=2.9412E−006;

}

Appendix C. Wavelenghth Scanning Interferometry Software 88

FILE * SurfaceFile ;

SurfaceFile = fopen (szFileName , ”wb”) ;

/ /−−− (15 . c) w r i t e the in fo rma t i on onto SDF f i l e

fwrite (SDF_ver_num , 1 ,8 , SurfaceFile) ;

fwrite (SDF_ManufacID ,1 ,10 , SurfaceFile) ;

fwrite (SDF_CreateDate ,1 ,12 , SurfaceFile) ;

fwrite (SDF_ModDate ,1 ,12 , SurfaceFile) ;

fwrite (&SDF_NumPoints , 1 ,2 , SurfaceFile) ;

fwrite (&SDF_NumProfiles , 1 ,2 , SurfaceFile) ;

fwrite (&SDF_Xscale , 1 ,8 , SurfaceFile) ;

fwrite (&SDF_Yscale , 1 ,8 , SurfaceFile) ;

fwrite (&SDF_Zscale , 1 ,8 , SurfaceFile) ;

fwrite (&SDF_Zresolution , 1 ,8 , SurfaceFile) ;

fwrite (&SDF_Compression , 1 ,1 , SurfaceFile) ;

fwrite (&SDF_DataType , 1 ,1 , SurfaceFile) ;

fwrite (&SDF_CheckSum , 1 ,1 , SurfaceFile) ;

ElementWritten=fwrite (HostFinalStepHeight , s i z e o f (f l o a t) , HeightDivider *←↩
FrameWidth * ProcessStep , SurfaceFile) ; / / SizeHostStepHeight

fclose (SurfaceFile) ;

/ /−−− (16) Free the remain ar rays

free (HostFinalStepHeight) ;

free (Kv) ;

cudaFree (Kv_d) ;

free (BufData) ;

free (CalMatHost) ;

cudaFree (CalMat_d) ;

cudaFree (OneFrameInt_d) ;

free (OneFrameIntHost) ;

r e t u r n 1 ;

}

vo id WriteIntoText (Complex * HostMontrMatrx , long FrameWidth , long FrameHeight , long ←↩
lNumImage , char * MonitorFileName)

{

Appendix C. Wavelenghth Scanning Interferometry Software 89

pPixelFile = fopen (MonitorFileName , ”w”) ;

i f (pPixelFile != NULL)

{

/ / 172 number o f rows

/ / 172 number o f columns

f o r (i=(0* lNumImage * FrameWidth) +(0* lNumImage) ; i<(0*lNumImage * FrameWidth) +(0*←↩
lNumImage+(lNumImage)) ; i++)

/ / f o r (i =(110* FrameWidth*107+200*107) ; i <(110*FrameWidth*107+200*107+(107−1)) ; i ++)

{
/ / s p r i n t f (Hussbuffer , ”%d\n ” , ((i n t) F ina lhostResul tConv [i])) ;

sprintf (Hussbuffer , ”%f \n ” , ((f l o a t) HostMontrMatrx [i] . x)) ;

fputs (Hussbuffer , pPixelFile) ;

}
fclose (pPixelFile) ;

}

}

vo id WriteFloatIntoText (f l o a t * HostFloatMatrx , long FrameWidth , long FrameHeight , long ←↩
lNumImage , char * MonitorFileName)

{

pPixelFile = fopen (MonitorFileName , ”w”) ;

i f (pPixelFile != NULL)

{

/ / 172 number o f rows

/ / 172 number o f columns

f o r (i=(0* lNumImage * FrameWidth) +(0* lNumImage) ; i<(0*lNumImage * FrameWidth) +(0*←↩
lNumImage+(lNumImage)) ; i++)

/ / f o r (i =(110* FrameWidth*107+200*107) ; i <(110*FrameWidth*107+200*107+(107−1)) ; i ++)

{
/ / s p r i n t f (Hussbuffer , ”%d\n ” , ((i n t) F ina lhostResul tConv [i])) ;

sprintf (Hussbuffer , ”%f \n ” , ((f l o a t) HostFloatMatrx [i])) ;

fputs (Hussbuffer , pPixelFile) ;

}
fclose (pPixelFile) ;

}

}

LISTING C.2: ”Device functions.cu”

90

Appendix D

GPU Cluster for Accelerated

processing and Visualisation of

Scientific Data

Paper based on the research described in this thesis, published in the proceedings of

the Science and Information Conference 2014

GPU Cluster for Accelerated Processing and
Visualisation of Scientific and Engineering Data

Matthew Newall
School of Computing and Engineering

University of Huddersfield
Huddersfield, UK HD1 3DH
Email:m.newall@hud.ac.uk

Violeta Holmes
School of Computing and Engineering

University of Huddersfield
Huddersfield, UK HD1 3DH
Email: v.holmes@hud.ac.uk

Paul Lunn
School of Digital Media Technology

Birmingham City University
Birmingham, UK

Email: Paul.Lunn@bcu.ac.uk

Abstract—The ability to process, visualise, and work with
large volumes of data in a way that is fast, meaningful, and
accurate is an essential part of many fields of scientific research
today. The success of video game industry has resulted in
ongoing developments in the complexity of Graphical Processing
Units (GPU), as well as rapidly falling cost per core. Their
characteristics make them excellently suited to any task exhibiting
a high level of data parallelism. Recent development of GPU
architectures is aimed at HPC systems and applications.

In this paper we are presenting our experience in designing
and deploying a small dedicated GPU based cluster for processing
and visualising data generated by engineering and scientific
application. This GPU cluster is helping our researchers to
analyse complex data using visualisation, and to accelerate large
data processing. We have shown that our GPU cluster solution
can achieve five to ten times speed up compared to the CPU
system. As a result of our work we can demonstrate that even a
small GPU cluster can benefit Higher Education institutions.

Keywords—GPU, CUDA, GPU Cluster, Visualisation

I. INTRODUCTION

Conventional High-Performance Computing (HPC) re-
sources, used for processing large number data or tasks, rely
on parallel/serial processing using cluster computing facilities
from Commodity Off The Shelf (COTS) hardware, dedicated
HPC servers and recently GPU accelerated systems. GPU
architectures are increasingly used to accelerate scientific ap-
plication processing. In the last few years, Tesla GPUs and
CUDA have had a great impact on the HPC research.

Based on the latest trend of GPU clusters in the top500
list, it is evident that GPU computing can provide supercom-
puting power not only for institutions with large budgets but
also affordable HPC power to the universities and research
institutions.

Graphics rendering is fundamentally a data parallel prob-
lem. Typically rendering is a single process thread which
executes for each pixel to be rendered[1]. As each pixel can
be processed independently from the rest, parallel processing
was a logical outcome. This has lead to the introduction of
dedicated graphics processors which contain multiple identical
processors (modern cards now have thousands) which perform
the same process on a constant stream of data. The data-
parallel architecture of GPUs makes them ideally suited for
many scientific computing problems and they are finding
increased use in this area[2] [3]. The use of GPUs in scientific

programming also has the added benefit that advances in GPU
technology are driven by the lucrative video games industry,
ensuring that processing power increases every year by much
more than increases seen in CPUs and other hardware[4], [5],
[6].

Using GPUs for general purpose programming has in the
past been a complicated and time consuming task, requiring
extensive knowledge of the specific hardware being used.
To aid this effort, programming models and platforms have
been developed which make creating GPU code simpler and
makes the resulting applications more portable. Currently the
most prevalent of these platforms are Nvidia CUDA (Compute
Unified Device Architecture) which enables the production of
code to run on CUDA supported hardware[7], and OpenCL
which supports a wide range of hardware allowing the use of
heterogeneous systems consisting of CPUs GPUs DSPs and
FPGAs[8].

To explore the integration of GPU based clusters within our
university campus grid and its use in accelerating the process-
ing and visualisation of data generated by the researchers at the
University of Huddersfield UK, we have deployed a small GPU
based cluster, named VEGA. The cluster is fully integrated into
the University network which enables job submission to this
cluster by researchers across the university. The system uses
Nvidia TESLA M2050 accelerators. This is a model designed
specifically for High Performance Computing and per card
includes 3GB of GDDR RAM per 448 processor cores running
at 1.15 GHz, and connected via an x16 PCIe interface[9]. An
overview of the architecture of this card can be seen in Fig.
1. As CUDA is optimised for Nvidia hardware, this paper will
focus on that platform.

As well as general purpose processing, GPUs in a HPC
system can still be used for traditional rendering. An example
of software which allows this is the VisIt Parallel Visualisation
software. The software allows visualisation and graphical
analysis of massive data sets in real time. When running in
parallel the software will use GPUs available to each node to
accelerate graphics rendering [11].

The remainder of the paper is organised as follows. Section
II details our efforts in designing and deploying a GPU cluster
for visualization and accelerated processing of scientific data.
An overview of GPU programming models are outlined in
section III. Detailed design and evaluation of two case studies
are presented in Sections IV and V. Section VI contains the

Fig. 1. Detail of the TESLA graphics and computing GPU architecture.
Terminology: SM: streaming multiprocessor; SP: streaming processor; Tex:
texture, ROP: raster operation processor[10].

summary of the work completed in this project.

II. DEPLOYMENT OF THE GPU CLUSTER

There were a number of steps involved in deploying our
GPU cluster:

• Windows Server 2008 r2 and the Microsoft HPC Pack
were installed on the head node.

• The head node is attached to the University Active
Directory (AD) network, as well as to a private gigabit
switch.

• Compute nodes, which are powerful multicore systems
with GPU’s attached, are deployed by first connecting
them to the Private network then booting to PXE. The
Windows HPC software will then load an operating
system and required middleware over the network.

• Finally, drivers for the TESLA cards are installed on
the compute node directly.

Key steps when deploying and testing are:

• Selecting Network Topology

• Configuring NAT and DHCP to allow compute nodes
to access outside network

• Creating a system image for compute nodes

• Finding bare metal machines to deploy as compute
nodes

• Checking relevant diagnostic tests pass

• Checking CUDA functionality.

This can be seen in detail in Fig. 2

For our deployment the following underlying hardware was
utilised:

• The Head Node - 1* Quad Core Intel Xeon E5630
2.53Ghz, 32GB RAM, Windows Server 2012 R2

Fig. 2. Key steps when deploying VEGA.

Fig. 3. Current VEGA hardware layout and network topology.

• The Compute Nodes - 2* Quad Core Intel Xeon E5620
2.40Ghz, 24GB RAM, 2 * NVidia TESLA M2050,
Windows Server 2012 R2

The head node and compute node communicate via a
Gigabit private switch. Job submission can be done directly on
the head node itself, or from any machine on the University
Active Directory network. The hardware and network layout
for VEGA can be seen in Fig. 3.

This GPU cluster has formed a test-bed for exploring
visualisation and acceleration of scientific data.

III. GPU PROGRAMMING MODELS

There currently exist two main models for developing
software to run on GPUs: OpenCL and CUDA. Both models
use the concept of kernels to contain parts of program structure
which interact with compute devices, but differ in hardware
support and scope.

OpenCL is a parallel programming standard, with no-
table contributors such as Apple, ARM, AMD, Samsung and
NVidia. It allows programs to take advantage of a very diverse
array of processing devices such as GPUs CPUs DSPs and FP-
GAs. The standard is open source and provides mechanisms for
hardware vendors to add mechanisms for access to hardware
specific features[8].

void s e r i a l f u n c t i o n (i n t n , f l o a t a , f l o a t ∗x ,
f l o a t ∗y)

{
f o r (i n t i = 0 ; i<n ; i ++)

y [i] = a∗x [i] + y [i] ;
}
/ / pe r fo rm on 1M e l e m e n t s
s e r i a l f u n c t i o n (4096∗256 , 2 . 0 , x , y) ;

Listing 1. A standard C function

CUDA is developed by Nvidia for its GeForce, Quadro
and Tesla processors. It is highly scalable and will run on an
arbitrary number of processors without the need to recompile.
This is required because of the vast and varying number of
processor cores in modern GPUs[12]. As CUDA functions are
called from standard C or C++ it makes GPU programming
much more accessible than has previously been possible. An
example of the required effort to produce CUDA compatible

code can be seen in listings 1 and 2. The CUDA programming
model was used in our case study to accelerate processing of
radio astronomy data produced by SETI

void g p u f u n c t i o n (i n t n , f l o a t a , f l o a t ∗x , f l o a t ∗
y)

{
i n t i = b l o c k I d x . x∗blockDim . x + t h r e a d I d x . x ;
i f (i<n) y [i] = a∗x [i] + y [i] ;

}
/ / pe r fo rm on 1M e l e m e n t s
g p u f u n c t i o n <<4096, 256>>(n , 2 . 0 , x , y) ;

Listing 2. The same function as might be written for execution on a CUDA
supported GPU[13]

IV. VISUALISATION WITH VISIT ON THE VEGA GPU
CLUSTER

At the University, there are a number of resources which
routinely generate large volumes of data, such as X-Ray
tomography and electron microscopy, and so a system able to
display this data in a useful way could be be beneficial. VisIt
is an existing tool which is capable of displaying interactive
2D and 3D models of terascale simulation datasets and is able
to use GPUs to accelerate rendering VisIts user interface can
be seen in detail in Fig. 4.

To demonstrate the ease with which data can be visualised
with this software, a simulation of surface energy of a cylinder
over time was provided by a researcher from the University
of Huddersfield Electron Microscopy and Materials Analysis
group (EMMA). Initially, the data was generated and analysed
in a large spreadsheet, which was impossible to see all at once.
To allow useful visualisation, the simulation was taken into
Matlab and a software tool was created to take the data from
the spreadsheet and prepare it in a format compatible with
VisIt. Key parts of the Matlab script and code preparing the
data can be seen in Listings 3 and 4.

f o r t ime =0: maxtime
q =(eV / ((4 ∗ pi ∗D∗ t ime) ˆ 1 . 5)) / aD ;

f o r y =0:360
f o r x =0:100

h e i g h t =50−x ;
r a d =deg (y +1) ∗ (pi / 1 8 0) ;

v a l (x +1 , y +1) = (1 / 4 0) +(q∗exp (−((s q r t (
h e i g h t ˆ 2 + (r a d i u s ∗ s i n (r a d)) ˆ 2 + (r a d i u s
∗ cos (r a d)−c t o p) ˆ 2)) ˆ 2) / (4 ∗D∗ t ime))) ;

end
end

f i l e n a m e = [’ d a t a \ ’ num2str (t ime) ’ ns . d a t ’] ;
dlmwrite (f i l e n a m e , va l , ’ ’) ;

end

Listing 3. A sample of the Matlab script used to generate data

By running VisIt on the VEGA GPU cluster, rather than on
a standard machine, real time visualisations can use larger or
more complex models. In cases where the model is too large
to view in real time, GPU acceleration reduces the rendering
time needed to create video or images.

Fig. 4. VisIt user interface showing, from left to right: Viewer window, Plot selection and time controls, Host profile window, which allows VisIt to use a
remote compute engine eg. on VEGA.

Fig. 5. Comparison of Visualisation Methods - Left is the original large spreadsheet and Right is the 3 dimensional representation generated by VisIt from the
same data.

A. Evaluation of results

The results of this can be seen in Fig. 5. On the left is the
data as it was being viewed previously, on the right is the data
presented by VisIt. The generated model is fully 3D and can
be manipulated in real-time.

V. ACCELERATION OF SCIENTIFIC AND ENGINEERING
DATA PROCESSING

The Search for Extra-terrestrial Intelligence (SETI) ex-
plores radio astronomy data to discover evidence of technology
based signals generated by civilizations outside of our own
solar system. The data is explored with signal processing
techniques or image based techniques, such as SETILive,
where images of this data are observed by the public who try
to detect patterns in this data. SonicSETI is a project where
radio astronomy data produced by SETI[14] is converted into
sound (or sonified) so that the public can listen to this data to
detect anomalous sounds. Sonification is a process where data
is transformed to sound[15].

A problem presents itself however as the processing of this
data is time consuming in itself, taking almost 12 hours to
process an 8GB set of data. The solution to this problem is to
use GPU accelerated FFT libraries, such as the one provided
by NVidia[16].

The original software, written in JAVA, reads data from
a file then determines how many FFTs to perform, before
processing the data and saving to a new file. The time
taken to process each data set was deemed unacceptable, at
around 12 hours per 8GB dataset. The first effort towards
acceleration was to replace the FFT function with calls to a
CUDA accelerated FFT function, CUFFT. In the JAVA code
this was done via JCUDA, a java wrapper for various cuda
functions, demonstrating that GPU acceleration is accessible
from a variety of languages.

To further increase acceleration, it was deemed necessary
to rewrite the software in C++, in order to have more complete
access to various CUDA functions.

/∗ B u i l d 3D Mesh ∗ /

f o r (i n t iY =0; iY<NY; iY ++)
{

f o r (i n t iX =0; iX<NX; iX ++)
{

f o r (i n t iZ =0; iZ<NZ; iZ ++)
{

r a d =iX ∗ (p i / 1 7 9) ;

x [iY∗NZ∗NX+iX∗NZ+iZ]= r a d i u s ∗ cos (r a d) ;
y [iY∗NZ∗NX+iX∗NZ+iZ]= iY −50;
z [iY∗NZ∗NX+iX∗NZ+iZ]= r a d i u s ∗ s i n (r a d) ;

}

}
}

i n t dims [] = {NX, NY, NZ} ;
i n t ndims = 3 ;

f l o a t ∗ c o o r d s [] = { (f l o a t ∗) x , (f l o a t ∗) y , (f l o a t ∗) z } ;

AddMesh (d b f i l e , ” C y l i n d e r ” , NULL, coords , dims ,
ndims , DB FLOAT, DB NONCOLLINEAR, o p t l i s t) ;

/∗ Add da ta t o t h e mesh ∗ /

dims [0] = NX; dims [1] = NY; dims [2] = NZ;

AddVar i ab le (f i l e , ” 3D” , ” C y l i n d e r ” , da t a , dims ,
ndims , NULL, 0 , DB FLOAT, DB NODECENT, NULL) ;

Listing 4. A sample of the code preparing the data for use in VisIt

A. Evaluation of results

The graph in Fig. 6 compares the performance of the
software, in Java, Java modified to use JCUDA, C++, and C++
with CUDA. Running regular FFT code compared to the GPU
accelerated CUFFT library.

Fig. 6. Run time of each method

As there are 2 GPUs available the program was rewritten
using MPI, allowing the data to be split between the two
GPU’s. Fig 7 shows the run time of the FFT part of each
C++ method, this is the part which has been implemented on
the GPU so gives the best indication of acceleration. While
refactoring the code to take advantage of both GPUs the way
in which data was copied to the GPU was changed to better

/ / A l l o c a t e d e v i c e memory
mem size= s i z e o f (cuDoubleComplex) ∗ N;
cuDoubleComplex ∗ d c u f f t D a t a ;
c h e c k C u d a E r r o r s (cudaMal loc ((void ∗∗)&d c u f f t D a t a ,

mem size)) ;

/ / Copy da ta t o d e v i c e
c h e c k C u d a E r r o r s (cudaMemcpy (d c u f f t D a t a , c u f f t D a t a ,

mem size , cudaMemcpyHostToDevice)) ;

/ / S e t FFT p a r a m e t e r s and e x e c u t e
c u f f t H a n d l e p l a n ;
c h e c k C u d a E r r o r s (c u f f t P l a n 1 d (& plan , N, CUFFT Z2Z , 1))

;
p r i n t f (” S t a r t i n g FFT %d of %d \n ” , f f t s , n u m f f t s) ;
c h e c k C u d a E r r o r s (cu f f tExecZ2Z (p lan , d c u f f t D a t a ,

d c u f f t D a t a ,CUFFT FORWARD)) ;

/ / Copy da ta back t o h o s t
c h e c k C u d a E r r o r s (cudaMemcpy (c u f f t D a t a , d c u f f t D a t a ,

mem size , cudaMemcpyDeviceToHost)) ;

/ / D e s t r o y CUFFT complex
c h e c k C u d a E r r o r s (c u f f t D e s t r o y (p l a n)) ;

c u d a D e v i c e R e s e t () ;

Listing 5. Using CUFFT to execute Forward FFT of Complex array ’fftData’
on the GPU

utilise the memory on-board the device. Previously, enough
data for a single fft was copied to the device before being
executed and copied back. In the MPI version, enough data is
sent to fill the GPU memory before executing a batch of ffts.
This change reduced copy operations from 680 to 34.

Fig. 7. Run time of the parallel/FFT part of each method

It was interesting to note that Java performance was poorer
than C even without GPU acceleration, the result of slower
disc access and the fact that JAVA uses big endian memory
organization, so byte order has to be swapped before sending
to GPU.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a GPU cluster deployment and
its utilisation in accelerating processing and visualisation of
large volumes of data generated by engineering and scientific
applications.

To demonstrate the GPU acceleration of data processing we
have presented the results from two case studies illustrating the

improvements in processing time and 2D and 3D visualisation
of data generated by an electron microscope, and Sonification
of radio telescope data.

Some promising results are evident, and show that even
a modest GPU cluster can bring large performance increases
to suitable problems. Implementing MPI alongside CUDA
allowed software to take advantage of the multiple GPUs
available to VEGA to further improve performance. It is
anticipated that further increases in performance could be
achieved by fine tuning memory use and reducing required
copy operations.

The GPU cluster deployment within the university campus
grid is providing an easy access to this HPC resource for
the researchers in engineering and scientific disciplines, and
reducing the time required to process and visualise their
scientific data. These results and experiences may be helpful as
a methodology for other HE institutions who are considering
GPU cluster support of visualisation and acceleration of data
processing.

Further case studies for acceleration may be found within
the university, such as Wavelength Scanning Interferometry
code[17], and real-time processing of surface metrology data.

VII. ACKNOWLEDGEMENT

We would like to acknowledge the use of QGG campus
grid at the University of Huddersfield, UK and thank Graeme
Greaves of the Electron Microscopy and Materials Analysis
group, for providing the simulation used to demonstrate VisIt.

REFERENCES

[1] J. Nickolls and W.J. Dally. The gpu computing era. Micro, IEEE,
30(2):56–69, March 2010.

[2] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data
parallelism to program gpus for general-purpose uses. In in Proceedings
of the 12th international conference on Architectural, pages 325–335,
2006.

[3] Zhe Fan, Feng Qiu, A. Kaufman, and S. Yoakum-Stover. Gpu cluster for
high performance computing. In Supercomputing, 2004. Proceedings
of the ACM/IEEE SC2004 Conference, pages 47–47, Nov 2004.

[4] Paul E. McKenney. Is parallel programming hard, and, if so, what can
you do about it?, 2011.

[5] Mark Harris. Mapping computational concepts to gpus. In ACM
SIGGRAPH 2005 Courses, SIGGRAPH ’05, New York, NY, USA,
2005. ACM.

[6] Hiroyuki Takizawa and Hiroaki Kobayashi. Hierarchical parallel pro-
cessing of large scale data clustering on a pc cluster with gpu co-
processing. J. Supercomput., 36(3):219–234, June 2006.

[7] Nvidia. What is cuda?, 2013.
[8] Nvidia. Opencl, 2013.
[9] Nvidia. Nvidia tesla m2050 specification, 2013.

[10] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A
unified graphics and computing architecture. Micro, IEEE, 28(2):39–55,
March 2008.

[11] LLNL. About visit, 2013.
[12] Nvidia. Introduction to cuda, 2008.
[13] Nvidia. The cuda parallel computing platform, 2013.
[14] Nvidia. The allen telescope array, 2013.
[15] Terri Bonebright, Perry Cook, John Flowers, Nadine Miner, John

Neuhoff, Robin Bargar, Stephen Barrass, Jonathan Berger, Grigori
Evreinov, W Tecumseh Fitch, et al. Sonification report: Status of the
field and research agenda.

[16] Nvidia. Nvidia cuda zone, 2013.
[17] Hussam Muhamedsalih, Xiang Jiang, and F. Gao. Accelerated surface

measurement using wavelength scanning interferometer with compen-
sation of environmental noise. Procedia Engineering: 12th CIRP
Conference on Computer Aided Tolerancing, April 2012.

97

Appendix E

Delivering faster results through

parallelisation and GPU

acceleration

Book chapter on the research described in this thesis, published in the Springer

Seried book: Studies in Computational Intelligence.

Delivering faster results through parallelisation
and GPU acceleration

Matthew Newall, Violeta Holme, Colin Venters, and Paul Lunn

University of Huddersfield, High Performance Computing Research Group,
Queensgate, Huddersfield, HD1 3DH

Birmingham City University
Franchise Street, Birmingham B42 2SU

Abstract. The rate of scientific discovery depends on the speed at which
accurate results and analysis can be obtained. The use of parallel co-
processors such as Graphical Processing Units (GPUs) is becoming more
and more important in meeting this demand as improvements in serial
data processing speed become increasingly difficult to sustain. However,
parallel data processing requires more complex programming compared
to serial processing. Here we present our methods for parallelising two
pieces of scientific software, leveraging multiple GPUs to achieve up to
thirty times speed up.

Keywords: GPU, CUDA, GPU Cluster, Parallelisation

1 Introduction

Some of the strategic drivers for software development in computational science
and engineering are outlined by EPSRC [1]. In particular, the focus ”develop-
ment of novel code, the development of new functionality for existing codes and
the development and re-engineering of existing codes. Strategic drivers are: de-
veloping code for emerging hardware architectures; developing researchers with
key software engineering skills and software sustainability” [2] is pertinent to
code used in HPC. We consider this strategy one of the key drivers in the con-
text of software sustainability [3], and an important challenge in the development
of scientific and engineering software.

In our research we have focused on improving the efficiency and scalability
of existing software. The examples here have been designed to address the chal-
lenges in processing large radio telescope data (SETI), and optical inferometry
data used in surface measurements. The existing codes were re-engineered to
support different GPU architecture, and enable scaling to larger GPU systems.
In doing this we are addressing some ’software for the future’ issues, taking into
account the new hardware trends in GPUs deployment for HPC software.

Using GPUs in addition to more traditional High Performance Computing
Resources to perform complex tasks or process large volumes of data has become
increasingly common in supercomputing centres over the recent years. This trend

2 Delivering faster results through parallelisation and GPU acceleration

can be seen by looking at the Top500 (A ranking of the worlds top scoring
supercomputing sites [4]) over the past few years.

3D graphics rendering typically executes a single instruction at a time for
every pixel to be rendered, and calculations for a single pixel are independent
from those for other pixels [5]. This has resulted in graphics processors becoming
largely parallel devices with hundreds of stream cores on a single device, capable
of performing an instruction on a constant stream of data at high speed. Driven
by the lucrative video games industry, GPUs are not only outpacing CPUs in
terms of the rate of technological improvement, but also have much lower cost
and power demands per core [6]. Owing to their original intended use in graphics
processing, a fundamentally data parallel problem, GPUs can provide a signif-
icant speed boost to tasks which exhibit high data parallelism. Many fields of
scientific research use software that fits these criteria, and GPUs are seeing in-
creased use in this area [7] [8] [9]. In response to this new GPU architetures
have been designed specifically for general purpose processing, such as Nvidias
TESLA series, shown in Fig. 1.

Fig. 1. Detail of the TESLA graphics and computing GPU architecture. Terminology:
SM: streaming multiprocessor; SP: streaming processor; Tex: texture, ROP: raster
operation processor[10].

To explore the potential for speed up in scientific applications, two existing
software cases have been examined for sections appropriate for parallelisation.
These examples were rewritten to allow them to execute on a GPU cluster, the
deployment of which is detailed in [11].

Delivering faster results through parallelisation and GPU acceleration 3

2 GPU programming models

In order to make general puropse processing on GPUs more acessible, there have
been numerous models and libraries developed. Currently, the most mature of
these are OpenCL and CUDA. Both models use the concept of kernels to contain
parts of program structure which interact with compute devices, but differ in
hardware support and scope.

OpenCL is an open source parallel programming standard, with notable con-
tributors such as Apple, ARM, AMD, Samsung and Nvidia. It allows programs
to take advantage of a very diverse array of processing devices such as GPUs,
CPUs, DSPs, and FPGAs. The standard provides mechanisms for hardware ven-
dors to add mechanisms for access to hardware specific features, which serves to
increase its flexibility[12].

CUDA is developed by Nvidia for its own series of GeForce, Quadro and Tesla
processors. It is flexible in its scalability and will run on an arbitrary number
of processors without the need to recompile. This relieves the programmer of
the burden of requiring specific knowledge of the hardware, which today can
have vastly different clock speeds, RAM and numbers of cores depending on the
model [13]. As CUDA functions are called from standard C or C++ it makes
GPU programming much more accessible than has previously been possible. An
example of the required effort to produce CUDA compatible code can be seen
in listings 1 and 2. The CUDA programming model was used in our case study
to accelerate processing of radio astronomy data produced by SETI, as well as
increasing the throughput of wavelength scanning interferometry data analysis.

3 Accelerated Processing of Radio Telescope data

The Search for Extra-terrestrial Intelligence (SETI) employs various methods
in their attempt to discover evidence of technology based signals generated by
civilizations outside of our own solar system. To this end vast amounts of radio
telescope data must be analysed. The data is explored with signal processing
techniques or image based techniques, such as SETILive, where images of this
data are observed by the public who try to detect patterns in this data. Sonifica-
tion is a process where data is transformed to sound[15]. SonicSETI is a project
where radio astronomy data produced by SETI[16] is converted into sound (or
sonified) so that the public can listen to this data to detect anomalous sounds.

However, processing this data is somewhat time consuming, taking almost
12 hours to process an 8GB set of data. The solution to this problem is to use
GPU accelerated FFT libraries, such as the one provided by Nvidia[17].

The original software, written in JAVA, reads data from a file then determines
how many FFTs to perform, before processing the data and saving to a new file.
The time taken to process each data set was deemed unacceptable, at around 12
hours per 8GB dataset. The first effort towards acceleration was to replace the
FFT function with calls to a CUDA accelerated FFT function, CUFFT. In the

4 Delivering faster results through parallelisation and GPU acceleration

Listing 1: A standard C function

void serial_function (int n, float a, float *x, float *y)

{

for (int i = 0; i<n; i++)

y[i] = a*x[i] + y[i];

}

//perform on 1M elements

serial_function(4096*256, 2.0, x, y);

Listing 2: The same function as might be written for execution on a CUDA supported
GPU[14]

void gpu_function (int n, float a, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i<n) y[i] = a*x[i] + y[i];

}

//perform on 1M elements

gpu_function<<4096, 256>>(n, 2.0, x, y);

JAVA code this was done via JCUDA, a java wrapper for various cuda functions,
demonstrating that GPU acceleration is accessible from a variety of languages.

To further increase acceleration, it was deemed necessary to rewrite the soft-
ware in C++, in order to have more complete access to various CUDA functions.
Shown in Listing 3 is a section the final C++ CUDA code which shows the host
to device memory copy and using CUFFT to perform FFT on the device.

Listing 3: Using CUFFT to execute Forward FFT of Complex array ’fftData’ on
the GPU

//Allocate device memory

mem_size=sizeof(cuDoubleComplex) * N;

cuDoubleComplex *d_cufftData;

checkCudaErrors(cudaMalloc((void**)&d_cufftData, mem_size));

//Copy data to device

checkCudaErrors(cudaMemcpy(d_cufftData, cufftData, mem_size,

cudaMemcpyHostToDevice));

//Set FFT parameters and execute

cufftHandle plan;

checkCudaErrors(cufftPlan1d(&plan, N, CUFFT_Z2Z, 1));

printf("Starting FFT %d of %d \n", ffts, num_ffts);

Delivering faster results through parallelisation and GPU acceleration 5

checkCudaErrors(cufftExecZ2Z(plan, d_cufftData ,d_cufftData

,CUFFT_FORWARD));

//Copy data back to host

checkCudaErrors(cudaMemcpy(cufftData, d_cufftData,

mem_size,cudaMemcpyDeviceToHost));

//Destroy CUFFT complex

checkCudaErrors(cufftDestroy(plan));

cudaDeviceReset();

3.1 Evaluation of results

The graph in Fig. 2 compares the performance of the software, in Java, Java
modified to use JCUDA, C++, and C++ with CUDA. Running regular FFT
code compared to the GPU accelerated CUFFT library.

Fig. 2. Run time of each method

The program was rewritten using MPI, to allow it to take advantage of
multiple GPUs. Fig 3 shows the run time of the FFT part of each C++ method;
this is the part which has been implemented on the GPU so gives the best
indication of acceleration. While restructuring the code to take advantage of
both GPUs, the way in which data was copied to the GPU was changed to
better utilise the memory on-board the device. Previously, enough data for a
single FFT was copied to the device before being executed and copied back. In
the MPI version, enough data is sent to fill the GPU memory before executing
a batch of FFTs. This change reduced copy operations from 680 to 34.

6 Delivering faster results through parallelisation and GPU acceleration

Fig. 3. Run time of the parallel/FFT part of each method

An interesting finding was that Java performance was poorer than C even
without GPU acceleration. It was determined that this was the result of slower
disk access and the fact that JAVA uses big endian memory organization, so
byte order has to be swapped before sending to GPU.

As this approach uses MPI, it would be relatively simple to scale this to any
number of GPUs, the only mitigating factor being that network overhead would
increase for every additional node, eventually making the addition of more nodes
impractical.

4 Accelerated surface measurement with environmental
noise compensation

Optical interferometry is a widely used surface metrology technique. Wavelength
scanning interferometry developments have been made that allow the process
to be immune to environmental noise using phase compensation. However this
compensation as well as data analysis processes limit performance, and hamper
efforts to inspect this data as the measurement takes place. The paper [18] details
a method which uses CUDA to accelerate this process with a single GPU. Using
a Multi-GPU system such as VEGA [11] this process can be accelerated further
to allow a greater number of frames to be processed without a significant increase
in process time.

The original CUDA program loads a set of bitmap frames, and the noise can-
cellation is calibrated by loading a matrix which has been processed by MAT-
LAB. After calibration the data is processed using Nvidias CUFFT GPU accel-
erated parallel FFT algorithm, and all data is saved to disk. By using an MPI
based method to submit to 2 GPUs, two sets of frames can be processed in par-
allel effectively doubling throughput, or alternatively one set can be divided in
two to reduce processing time and increase the efficiency of in-process analysis.
As with the sonification study, the program is split into a master process and a

Delivering faster results through parallelisation and GPU acceleration 7

worker process - which must be able to run an arbitrary number of times, while
the master co-ordinates. As there are 2 GPUs in our system we run 3 processes
- one master and two workers. Fig. 4 shows the main function of the program,
Fig. 5 describes the MPI program which allows the CUDA program to executed
on multiple GPUs.

Fig. 4. Program flow for the original CUDA code

8 Delivering faster results through parallelisation and GPU acceleration

Fig. 5. Program flow for the MPI version using multiple GPUs

Delivering faster results through parallelisation and GPU acceleration 9

4.1 Evaluation of results

The graph in Fig. 6 compares total runtime for a single GPU versus two. When
running on one GPU 256 frames are processed, when running on 2 GPUs 512
frames are processed. It can be seen that running on 2 GPUs adds an overhead of
approximately 400 milliseconds, however Fig. 7 shows that running on 2 GPUs
significantly reduces the per-frame processing time, being 1.9 times faster.

Fig. 6. Total run time

Fig. 7. Processing time per frame

While only 2 GPUs were used in this case, our system has a capacity for 16. It
can be speculated, given the results already gained, what the potential speed-up
would be if 16 GPUs were used. Given that a single GPU processes 256 frames
in 9902 milliseconds, and the addition of a second GPU adds a 400 millisecond
overhead, it is not unreasonable to suggest that 16 GPUs may be able to process
4096 frames in around 14 seconds (when including inevitable network overhead)

10 Delivering faster results through parallelisation and GPU acceleration

- an 11 fold increase in throughput over processing on a single GPU, and a 5 fold
increase over 2 GPUs. As the software already utilises MPI, were the hardware
available the software could run at this scale without modification. The law of
diminishing returns will apply here however, as network overhead increases with
the number of processes it would be come less beneficial to keep adding more
GPUs. Using these assumptions we can predict system performance, as shown
in Fig. 8, which illustrates that as we add more GPUs the relative benefit is less
every time. This is where it is important to consider speed versus efficiency. Using
the methods outlined in [19] we can identify that the efficiency of the software,
based on these projections, peaks at 5 GPUs, after which the improvements tend
towards zero. Hence, while speed up does continue to increase after this point,
the resources required to do this might be best used for other tasks.

Fig. 8. Projected per-frame runtime on multiple GPUs

5 Conclusion and Further Work

In this chapter we have presented our work in parellelising existing codes for
processing radio telescope and surface metrology data. Writing sustainable code
for modern, multi-core, multiprocessor systems still presents a challenge. Ex-
isting programming environments for parallel and distributed platforms do not
provide software developers with the tools necessary to test programs for the
newest most powerful hardware.

Using the examples detailed here, and by utilising our own GPU cluster, we
have shown that speed-up of up to 30 times is possible even on a modest GPU
system. This will enable scientists and researchers to process complex problems
and large volumes of data in near real-time.

Delivering faster results through parallelisation and GPU acceleration 11

To further explore the challenges of parallelisation we will investigate how
these software examples scale onto much larger systems by running them on
EMERALD, the UKs largest GPU cluster at Rutherford Appleton Laboratory
[20].

In order to address the energy efficiency of our code, and software sustainabil-
ity with respect to energy efficiency, we will build on our current research project
funded by the innovate UK (technology strategy board) in Energy-Efficient com-
puting [21] . Our focus will be on energy efficient data structures and algorithms
for GPU technology. The resulting software will be evaluated and will be op-
timised under energy efficiency constraints creating more efficient software for
affordable and sustainable high performance computing.

References

1. EPSRC, 2014.
2. EPSRC. Software for the future ii, 2014.
3. Lau L. Griffiths M. Holmes V. Ward R. Jay C. Dibsdale C. Venters, C. and J. Xu.

The blind men and the elephant: Towards an empirical evaluation framework for
software sustainability journal of open research software. In Journal of Open Re-
search Software, 2014.

4. Top500. Titan - cray xk7 , opteron 6274 16c 2.200ghz, cray gemini interconnect,
nvidia k20x, 2013.

5. J. Nickolls and W.J. Dally. The gpu computing era. Micro, IEEE, 30(2):56–69,
March 2010.

6. Paul E. McKenney. Is parallel programming hard, and, if so, what can you do
about it?, 2011.

7. David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data parallelism to
program gpus for general-purpose uses. In in Proceedings of the 12th international
conference on Architectural, pages 325–335, 2006.

8. Mark Harris. Mapping computational concepts to gpus. In ACM SIGGRAPH
2005 Courses, SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

9. Hiroyuki Takizawa and Hiroaki Kobayashi. Hierarchical parallel processing of large
scale data clustering on a pc cluster with gpu co-processing. J. Supercomput.,
36(3):219–234, June 2006.

10. E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified
graphics and computing architecture. Micro, IEEE, 28(2):39–55, March 2008.

11. Paul Lunn Colin Venters Matthew Newall, Violeta Holmes. Gpu cluster for aceller-
ated processing and visualisation of scientific data.

12. Nvidia. Opencl, 2013.
13. Nvidia. Introduction to cuda, 2008.
14. Nvidia. The cuda parallel computing platform, 2013.
15. Terri Bonebright, Perry Cook, John Flowers, Nadine Miner, John Neuhoff, Robin

Bargar, Stephen Barrass, Jonathan Berger, Grigori Evreinov, W Tecumseh Fitch,
et al. Sonification report: Status of the field and research agenda. 1997.

16. Nvidia. The allen telescope array, 2013.
17. Nvidia. Nvidia cuda zone, 2013.
18. Hussam Muhamedsalih, Xiang Jiang, and F. Gao. Accelerated surface measure-

ment using wavelength scanning interferometer with compensation of environmen-
tal noise. Procedia Engineering: 12th CIRP Conference on Computer Aided Tol-
erancing, April 2012.

12 Delivering faster results through parallelisation and GPU acceleration

19. D. L. Eager, J. Zahorjan, and E. D. Lozowska. Speedup versus efficiency in parallel
systems. IEEE Trans. Comput., 38(3):408–423, March 1989.

20. Oxford University. Emerald: e-infrastructure south gpu supercomputer, 2013.
21. Innovate UK, 2014.

110

References

Horizon 2020. Horizon 2020, 2013. URL http://ec.europa.eu/programmes/

horizon2020/.

Athanasios Anthopoulos, Ian Grimstead, and Andrea Brancale. Gpu-accelerated

molecular mechanics computations. Journal of Computational Chemistry, 34(26):

2249–2260, 2013. ISSN 1096-987X. doi: 10.1002/jcc.23384. URL http://dx.doi.

org/10.1002/jcc.23384.

OpenMP Architecture Review Board. Openmp, 2013. URL http://openmp.org/wp/.

Stephan Brumme. Portable memory mapping c++ class, 2014. URL http://create.

stephan-brumme.com/portable-memory-mapping/.

Miguel Cardenas-Montes, Miguel A. Vega-Rodriguez, Christopher Bonnett, Ignacio

Sevilla-Noarbe, Rafael Ponce, Eusebio Sanchez Alvaro, and Juan Jose Rodriguez-

Vazquez. Gpu-based shear–shear correlation calculation. Computer Physics Com-

munications, 185(1):11 – 18, 2014. ISSN 0010-4655. doi: http://dx.doi.org/10.

1016/j.cpc.2013.08.005. URL http://www.sciencedirect.com/science/article/

pii/S001046551300266X.

Dell. Poweredge c410x pcie expansion chassis, 2014. URL http://www.dell.com/

us/business/p/poweredge-c410x/pd.

e-infrastructure South. Emerald, 2013. URL http://www.einfrastructuresouth.ac.

uk/cfi/emerald.

EMMA. Electron microscopy and materials analysis research group, 2014.

EPSRC. E-infrastructure roadmap, 2014a. URL http://www.epsrc.ac.uk/research/

ourportfolio/themes/researchinfrastructure/subthemes/einfrastructure/

strategy/roadmap/.

http://ec.europa.eu/programmes/horizon2020/
http://ec.europa.eu/programmes/horizon2020/
http://dx.doi.org/10.1002/jcc.23384
http://dx.doi.org/10.1002/jcc.23384
http://openmp.org/wp/
http://create.stephan-brumme.com/portable-memory-mapping/
http://create.stephan-brumme.com/portable-memory-mapping/
http://www.sciencedirect.com/science/article/pii/S001046551300266X
http://www.sciencedirect.com/science/article/pii/S001046551300266X
http://www.dell.com/us/business/p/poweredge-c410x/pd
http://www.dell.com/us/business/p/poweredge-c410x/pd
http://www.einfrastructuresouth.ac.uk/cfi/emerald
http://www.einfrastructuresouth.ac.uk/cfi/emerald
http://www.epsrc.ac.uk/research/ourportfolio/themes/researchinfrastructure/subthemes/einfrastructure/strategy/roadmap/
http://www.epsrc.ac.uk/research/ourportfolio/themes/researchinfrastructure/subthemes/einfrastructure/strategy/roadmap/
http://www.epsrc.ac.uk/research/ourportfolio/themes/researchinfrastructure/subthemes/einfrastructure/strategy/roadmap/

References 111

EPSRC. Software for the future ii, 2014b.

Jianbin Fang, A.L. Varbanescu, and H. Sips. A comprehensive performance compari-

son of cuda and opencl. In Parallel Processing (ICPP), 2011 International Conference

on, pages 216–225, Sept 2011. doi: 10.1109/ICPP.2011.45.

’The MPI Forum’. Message passing interface forum, 2014. URL http://www.

mpi-forum.org/.

James Fung and Steve Mann. Openvidia: Parallel gpu computer vision. In Proceedings

of the 13th Annual ACM International Conference on Multimedia, MULTIMEDIA ’05,

pages 849–852, New York, NY, USA, 2005. ACM. ISBN 1-59593-044-2. doi: 10.

1145/1101149.1101334. URL http://doi.acm.org/10.1145/1101149.1101334.

Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hardwick,

Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel computing

experiences with cuda. IEEE Micro, 28(4):13–27, 2008. ISSN 0272-1732. doi:

http://doi.ieeecomputersociety.org/10.1109/MM.2008.57.

I.S. Haque and V.S. Pande. Hard data on soft errors: A large-scale assessment of

real-world error rates in gpgpu. In Cluster, Cloud and Grid Computing (CCGrid),

2010 10th IEEE/ACM International Conference on, pages 691–696, May 2010. doi:

10.1109/CCGRID.2010.84.

M. Harris. Mapping computational concepts to gpus. In ACM SIGGRAPH 2005

Courses, page 50. ACM, 2005.

Ansys INC. About ansys, 2014. URL http://ansys.com/About+ANSYS.

Cleve Moler Jack Dongarra, Jim Bunch and Gilbert Stewart. Liinpack, 2013. URL

http://www.netlib.org/linpack/.

Kamran Karimi, Neil G. Dickson, and Firas Hamze. A performance comparison of

CUDA and opencl. CoRR, abs/1005.2581, 2010. URL http://arxiv.org/abs/

1005.2581.

Gregory Kramer. Auditory Display: Sonification, Audification, and Auditory Interfaces.

Perseus Publishing, 1993. ISBN 0201626047.

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://doi.acm.org/10.1145/1101149.1101334
http://ansys.com/About+ANSYS
http://www.netlib.org/linpack/
http://arxiv.org/abs/1005.2581
http://arxiv.org/abs/1005.2581

References 112

Ibad Kureshi. Establishing a university grid for hpc applications. September 2010. URL

http://eprints.hud.ac.uk/10169/.

LBL. Warewulf: Scalable, modular, adaptable systems management, 2014. URL http:

//warewulf.lbl.gov/trac/wiki/About.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified graphics

and computing architecture. Micro, IEEE, 28(2):39–55, March 2008. ISSN 0272-

1732. doi: 10.1109/MM.2008.31.

LLNL. Silo users guide, 2010.

LLNL. About visit, 2013. URL https://wci.llnl.gov/codes/visit/about.html.

D. Luebke and G. Humphreys. How gpus work. Computer, 40(2):96–100, Feb 2007.

ISSN 0018-9162. doi: 10.1109/MC.2007.59.

Risman Adnan Mattotorang. Ms-mpi with visual studio 2008,

2009. URL http://blogs.msdn.com/b/risman/archive/2009/01/04/

ms-mpi-with-visual-studio-2008.aspx.

Micorsoft. Microsoft hpc pack 2008 and hpc pack 2008 r2 tool pack, 2014. URL http:

//www.microsoft.com/en-us/download/details.aspx?id=8433.

Microsoft. Using microsoft message passing interface, 2014a. URL http://technet.

microsoft.com/en-us/library/4cb68e33-024b-4677-af36-28a1ebe9368f.

Microsoft. Microsoft mpi, 2014b. URL http://msdn.microsoft.com/en-us/library/

bb524831%28v=vs.85%29.aspx.

Microsoft. Diy supercomputing: How to build a small windows hpc cluster,

2014c. URL http://social.technet.microsoft.com/wiki/contents/articles/

2539.diy-supercomputing-how-to-build-a-small-windows-hpc-cluster.aspx.

MPICH. Mpich, 2014. URL http://www.mpich.org/.

Hussam Muhamedsalih, Xiang Jiang, and F. Gao. Accelerated surface measurement

using wavelength scanning interferometer with compensation of environmental noise.

Procedia Engineering: 12th CIRP Conference on Computer Aided Tolerancing, April

2012. URL http://eprints.hud.ac.uk/15357/.

http://eprints.hud.ac.uk/10169/
http://warewulf.lbl.gov/trac/wiki/About
http://warewulf.lbl.gov/trac/wiki/About
https://wci.llnl.gov/codes/visit/about.html
http://blogs.msdn.com/b/risman/archive/2009/01/04/ms-mpi-with-visual-studio-2008.aspx
http://blogs.msdn.com/b/risman/archive/2009/01/04/ms-mpi-with-visual-studio-2008.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=8433
http://www.microsoft.com/en-us/download/details.aspx?id=8433
http://technet.microsoft.com/en-us/library/4cb68e33-024b-4677-af36-28a1ebe9368f
http://technet.microsoft.com/en-us/library/4cb68e33-024b-4677-af36-28a1ebe9368f
http://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx
http://social.technet.microsoft.com/wiki/contents/articles/2539.diy-supercomputing-how-to-build-a-small-windows-hpc-cluster.aspx
http://social.technet.microsoft.com/wiki/contents/articles/2539.diy-supercomputing-how-to-build-a-small-windows-hpc-cluster.aspx
http://www.mpich.org/
http://eprints.hud.ac.uk/15357/

References 113

Matthew Newall, Violeta Holmes, and Paul Lunn. Gpu cluster for accelerating pro-

cessing and visualisation of scientific and engineering data, August 2014. URL

http://eprints.hud.ac.uk/21907/.

Nvidia. Geforce 6 architecture, 2006. URL http://technet.microsoft.com/en-us/

library/4cb68e33-024b-4677-af36-28a1ebe9368f.

Nvidia. Introduction to cuda, 2008. URL http://www.training.prace-ri.eu/

uploads/txpracetmo/IntroductiontoCUDA.pdf.

Nvidia. The cuda parallel computing platform, 2013a. URL http://www.nvidia.com/

object/cuda-parallel-computing-platform.html.

Nvidia. Cuda toolkit, 2013b. URL https://developer.nvidia.com/cuda-toolkit.

Nvidia. Download drivers, 2013c. URL http://www.nvidia.com/Download/index.

aspx?lang=en-us.

Nvidia. Opencl, 2013d. URL https://developer.nvidia.com/opencl.

Nvidia. Nvidia tesla m2050 specification, 2013e. URL http://www.nvidia.com/docs/

IO/43395/BD-05238-001v03.pdf.

Nvidia. Sonicseti website, 2014. URL https://developer.nvidia.com/

nvidia-nsight-visual-studio-edition/.

ORNL. Oscar: Open source cluster application resources, 2005. URL http://www.

csm.ornl.gov/oscar/.

ORNL. Parallel virtual machine, 2009. URL http://www.csm.ornl.gov/pvm/.

ORNL. Titan: Built for scince, 2011a.

ORNL. Ornl debuts titan supercomputer, 2011b.

Oxford University. Emerald: e-infrastructure south gpu supercomputer, 2013. URL

http://people.maths.ox.ac.uk/gilesm/emerald.html.

P.Glaskowsky. Nvidia’s fermi -the first complete gpu architecture. 2009. URL

http://www.nvidia.co.uk/content/PDF/fermi_white_papers/P.Glaskowsky_

NVIDIA’s_Fermi-The_First_Complete_GPU_Architecture.pdf.

http://eprints.hud.ac.uk/21907/
http://technet.microsoft.com/en-us/library/4cb68e33-024b-4677-af36-28a1ebe9368f
http://technet.microsoft.com/en-us/library/4cb68e33-024b-4677-af36-28a1ebe9368f
http://www.training.prace-ri.eu/uploads/txpracetmo/IntroductiontoCUDA.pdf
http://www.training.prace-ri.eu/uploads/txpracetmo/IntroductiontoCUDA.pdf
http://www.nvidia.com/object/cuda-parallel-computing-platform.html
http://www.nvidia.com/object/cuda-parallel-computing-platform.html
https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/Download/index.aspx?lang=en-us
http://www.nvidia.com/Download/index.aspx?lang=en-us
https://developer.nvidia.com/opencl
http://www.nvidia.com/docs/IO/43395/BD-05238-001v03.pdf
http://www.nvidia.com/docs/IO/43395/BD-05238-001v03.pdf
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition/
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition/
http://www.csm.ornl.gov/oscar/
http://www.csm.ornl.gov/oscar/
http://www.csm.ornl.gov/pvm/
http://people.maths.ox.ac.uk/gilesm/emerald.html
http://www.nvidia.co.uk/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.co.uk/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf

References 114

SETI. The allen telescope array, 2013a. URL http://www.seti.org/ata.

SETI. Sonicseti website, 2013b. URL http://www.sonicseti.com/.

STFC. The dl poly molecular simulation package, 2014. URL http://www.stfc.ac.

uk/SCD/research/app/ccg/software/DL_POLY/44516.aspx.

David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data parallelism to pro-

gram gpus for general-purpose uses. In in Proceedings of the 12th international

conference on Architectural, pages 325–335, 2006.

Top500. The top500 supercomputers, 2013a. URL http://www.top500.org/.

Top500. Titan - cray xk7 , opteron 6274 16c 2.200ghz, cray gemini interconnect, nvidia

k20x, 2013b. URL http://www.top500.org/system/177975#.U4-c5PldXW4.

C. Venters, L. Lau, M. Griffiths, V. Holmes, R. Ward, C. Jay, C. Dibsdale, and J. Xu.

The blind men and the elephant: Towards an empirical evaluation framework for soft-

ware sustainability’ journal of open research software. In Journal of Open Research

Software, 2014. ISBN 2049-9647.

Nathan Whitehead and Alex Fit-florea. Precision and performance: Floating point and

ieee 754 compliance for nvidia gpus, 2011.

http://www.seti.org/ata
http://www.sonicseti.com/
http://www.stfc.ac.uk/SCD/research/app/ccg/software/DL_POLY/44516.aspx
http://www.stfc.ac.uk/SCD/research/app/ccg/software/DL_POLY/44516.aspx
http://www.top500.org/
http://www.top500.org/system/177975#.U4-c5PldXW4

	Copyright Statement
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction and Background
	1.1 Aims and Objectives
	1.2 Methodology

	2 Literature Review
	2.1 GPUs as general purpose processors
	2.1.1 GPU Programming Frameworks
	2.1.1.1 Nvidia CUDA
	2.1.1.2 openCL

	2.2 Obstacles to using GPUs for scientific calculations
	2.3 Scientific applications of current GPU technology
	2.4 HPC Systems which use GPUs
	2.4.1 TITAN - Oak Ridge National Laboratory
	2.4.2 Emerald

	3 Vega GPU Cluster
	3.1 The Microsoft Windows HPC Platform
	3.2 Cluster Layout
	3.3 Deployment
	3.4 Testing

	4 Platforms and Programming Environments for Scientific Data Visualisation and Processing
	4.1 Visualisation
	4.2 Multi-Node parallelism
	4.3 GPU Programming Framework

	5 Case Study 1: Visualisation of large datasets
	5.1 Electron Microscopy Data
	5.2 VisIt
	5.3 Evaluation of Results

	6 Case Study 2: Accelerated Processing of Radio Telescope Data Using CUDA
	6.1 The SETIFFT software
	6.1.1 Optimising CUDA performance
	6.1.2 Using MPI to increase performance

	6.2 Evaluation of Results

	7 Case Study 3: CUDA Accelerated Analysis of Wavelength scanning Interferometry Data
	7.1 The Interferometry Software
	7.2 Improving Performance Using MPI
	7.3 Evaluation of Results

	8 Conclusion
	9 Further Work
	A SILOWRITE tool
	B SETIFFT sonification code
	C Wavelength Scanning Interferometry Software
	D GPU Cluster for Accelerated processing and Visualisation of Scientific Data
	E Delivering faster results through parallelisation and GPU acceleration
	References

