University of Huddersfield Repository

Garside, Joanne, Prescott, Stephen and Shaw, Susan Angela

Intraosseous vascular access in critically ill adults-a review of the literature

Original Citation

Garside, Joanne, Prescott, Stephen and Shaw, Susan Angela (2015) Intraosseous vascular access in critically ill adults-a review of the literature. Nursing in Critical Care. ISSN 13621017

This version is available at http://eprints.hud.ac.uk/23501/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Table 1.0 Summary of IO devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Access for Shock and Trauma 1 (FAST1®)</td>
<td>PYNG Medical, Richmond, Canada</td>
<td>The FAST1® is the only device currently approved by the FDA for use on the sternum (Day, 2011, PYNG Medical, 2010). It is designed to be inserted into the manubrium (the upper third of the sternum) and consists of an introducer, which houses several stabiliser points and an infusion tube. It relies on operator force i.e. it is not battery operated, pneumatic or spring loaded (PYNG Medical 2010). Downward pressure on the introducer pushes the infusion tube through soft tissue and into the sternum. When the steel tip of the infusion tube is in the marrow, it automatically separates from the introducer which can then be removed (Day, 2011, PYNG Medical, 2010).</td>
</tr>
<tr>
<td>EZ-IO®</td>
<td>Vidacare Corporation, San Antonio, Texas, USA</td>
<td>The EZ-IO® system consists of a battery operated small, hand-held power driver, a needle set and connectors (Day, 2011, Vidacare, 2014a). Three sizes (length) of needle are currently available. The power driver is reusable (approx. 500 insertions), containing a sealed lithium battery (Vidacare, 2014b). Recommended sites for insertion are the proximal humerus, the proximal tibia and the distal tibia. Each needle has a black line 5mm from the hub and this is used to help check selection of the correct needle length prior to insertion. The longer needles have additional lines marked every centimetre from the first. The needle is inserted through the skin until it touches bone. At least one black line must be visible above the skin before drilling begins. If not, the needle is removed and a longer one inserted instead. If a black line is visible, the needle can safely be inserted by pressing the trigger on the power driver and applying gentle, consistent, steady downward pressure until the hub of the needle is almost flush with the skin.</td>
</tr>
<tr>
<td>Bone Injection Gun (B.I.G™)</td>
<td>Waismed Ltd, Houston, Texas, USA</td>
<td>Introduced in 2000 as the world’s first automatic IO device (Waismed, 2009) the B.I.G™ is a spring-loaded device that delivers the trocar and a needle directly into the bone. The trocar is then removed leaving the needle in situ. The B.I.G™ is colour coded, signifying sizes appropriate for use in adult and paediatrics, with a third option available for veterinarians (Day, 2011). Suggested insertion sites are the proximal tibia and the proximal humerus (Waismed, 2008).</td>
</tr>
<tr>
<td>Cook Needle</td>
<td>Cook Medical Inc, Bloomington, Indiana, USA</td>
<td>A manual device that is likely to be familiar to many emergency nurses (Fenwick, 2010). Although this device has been used for adults (Brenner et al., 2008, Molin et al., 2010), product information from Cook Medical (2014) would indicate that it is recommended for use in paediatric emergencies.</td>
</tr>
<tr>
<td>Jamshidi® needle</td>
<td>CareFusion, San Diego, California, USA</td>
<td>The Jamshidi® needle is primarily a bone marrow biopsy needle (CareFusion, 2014), but has been used for IO access (Hartholt et al., 2010, Hoskins et al., 2012).</td>
</tr>
</tbody>
</table>
Paxton (2012, p. 200) states that

“...for the purposes of IO infusion, the ‘intraosseous space’ is generally defined as that space within both the cancellous bone of the epiphysis and the medullary cavity of the diaphysis, which is in continuity”.

The diaphysis (or shaft) of a typical long bone (so called because of their elongated shape, not their overall size – Marieb & Hoehn, 2013) consists of a narrow medullary cavity covered by a relatively thick layer of cortical, or compact bone (Marieb & Hoehn, 2013, Paxton, 2012,). The epiphysis (the bone ends) consist of a much thinner layer of cortical bone covering a network of cancellous (or spongy) bone, also known as trabecular bone (Laroche, 2002, Marieb & Hoehn, 2013, Paxton, 2012). According to Laroche (2002), blood enters the long bone through six groups of arteries. Because of this unique and highly vascular network, the bone marrow is constantly being perfused, and does not collapse in the presence of hypotension, hypovolaemia or shock (Hartholt et al., 2010, Levitan et al., 2009). Indeed, animal studies have shown that even in the presence of continuous blood loss, bone marrow perfusion and venous outflow are maintained at a time when peripheral vessels would be constricted (Paxton, 2012). A large sinus runs along the centre of the medullary cavity and acts as a reservoir for any substances collected within the IO space. Substances injected into the epiphysis will drain via medullary veins into this central medullary sinus. The sinus drains into further veins that run parallel to the groups of arteries (Laroche, 2002, Paxton, 2012). The sternum is defined as a flat bone (Marieb & Hoehn, 2013) and does not possess the typical characteristics of a long bone. Paxton (2012) suggests, however, that two types of bone can be used for IO infusion; bone that contains yellow marrow (typically the long bones) and bone that contains red marrow. The sternum contains a high level of red marrow (Marieb & Hoehn, 2013, Paxton, 2012).
Table 3.0 Summary of selected research papers

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim, sample and setting</th>
<th>Research design and methods</th>
<th>Major findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brenner et al., 2008</td>
<td>Comparison of manual Man-IO and semi-automatic (EZ-IO) IO devices. 84 participants from specialist seminar attendance. Germany.</td>
<td>Prospective study Experimental design Randomised, non-blinded. 2 practice groups – evaluated and compared the 2 insertion approaches on cadavers.</td>
<td>The EZ-IO is more user friendly and is associated with fewer technical problems.</td>
</tr>
<tr>
<td>Gazin et al., 2011</td>
<td>To assess the safety and efficacy of EZ-IO for difficult vascular access. 39 patients (34 adults and 5 children). Pre-hospital. France.</td>
<td>Prospective observational study.</td>
<td>EZ-IO is safe and has a high success rate of use in the out of hospital setting – suggests that it could be the preferred vascular access option whenever IV or fluid resuscitation is needed in an emergency.</td>
</tr>
<tr>
<td>Hartholt et al., 2010</td>
<td>To determine which IO needle (Jamshidi, BIG and FAST1) is preferable for gaining access (n=92, 69=Adult). Helicopter medical team. Netherlands.</td>
<td>Single centre, single blinded prospective randomised trial</td>
<td>IV access remains gold standard and should not be replaced. IO is good alternative. The Jamshidi was placed significantly faster than the FAST. No difference in success or complication rate or user friendliness.</td>
</tr>
<tr>
<td>Hoskins et al., 2012</td>
<td>To compare the pharmacokinetics of IO tibia and sternum drug delivery with central venous during CPR. US and Brazil.</td>
<td>Prospective animal study (pigs) Anaesthetised Pigs (n=13).Cardiac arrest induced by Potassium Chloride injection</td>
<td>Given the limitations of the animal model, the results are valid and useful. Recommended that sternal IO route be considered as the first choice of drug delivery during CPR when IV access has not been established, and that the tibial IO route is also justified as second choice.</td>
</tr>
<tr>
<td>Lamhaut et al., 2010</td>
<td>To compare IO and IV access with and without protective equipment. Nine RN and 16 physicians. France.</td>
<td>Participants each given four simulated experiments and timed for successful access. Four experiments PVC & IO with and without protective equipment.</td>
<td>IO significantly quicker to timing of access in both situations - Mean time saved 20-24s under normal and 39-20s with CBRN.</td>
</tr>
<tr>
<td>Leidel et al., 2010</td>
<td>To compare two IO access</td>
<td>Prospective randomised</td>
<td>EZ-IO faster and more</td>
</tr>
</tbody>
</table>

3
devices, 40 patients. Consecutive admissions over an 18 month period that met the inclusion criteria. Germany.

Leidel et al., 2012

Comparison of intraosseous versus central venous vascular access in adults under resuscitation in the emergency department with inaccessible peripheral veins. Germany.

Prospective observational study success rates on first attempt of CVC and IO (n=40)

IO cannulation was significantly more successful and faster to gain when compared to landmark-based CVC. IO access is not a surrogate for CVC and cannot replace it.

Levitan et al., 2009

To determine skill acquisition and performance by using a battery-operated, intraosseous needle driver in cadavers. USA.

Prospective study (n=99)

EZ-IO requires minimal training, is fast and easy to use.

Molin et al., 2010

To explore current use of intraosseous infusion in national emergency departments excluding trauma centres (n=19). Denmark.

On line survey sent to Head of Emergency Department.

General lack of consensus on indications, use and contraindications.

Suggests need for training in the use of IO access.

Ong et al., 2009a

To compare tibial and humeral IO access using the EZ-IO in a single centre (Emergency Department) (n=24 patients). Singapore.

A non-randomised prospective observational study.

All insertions were reported to be successful on first attempt except one – successful on second attempt. All insertions achieved within 20 seconds. Significantly increased flow rates with pressure bag than without one. No reported complications.

Ong et al., 2009b

To determine the Ease of Vascular Access in Adults Using a Novel Intraosseous Access Device. Singapore.

Observational, prospective study using a simulation bone model.

EZ-IO appeared easy to use with high success rates of insertion with inexperienced participants.

Philbeck et al., 2010

To compare pain and effectiveness of Lidocaine on IO access in different sites. USA.

Experimental study (n=16).

Conscious patients requiring IO infusion experienced less pain in the proximal humerus site.

Reades et al., 2011a

To compare 1st attempt success between tibial and Observational analysis.

Tibial IO needle placement appeared to be a more
<table>
<thead>
<tr>
<th>Study</th>
<th>Objective</th>
<th>Methodology</th>
<th>Findings/Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reades et al., 2011b</td>
<td>To compare IO v Vascular Access during out-of-hospital cardiac arrest. USA.</td>
<td>Randomised controlled trial. 182 patients enrolled – non-traumatic out-of-hospital cardiac arrest.</td>
<td>Tibial IO was found to have highest first attempt success and quickest time for vascular access compared with IV and humeral IO access.</td>
</tr>
<tr>
<td>Reiter et al., 2013</td>
<td>To compare potential for improved resuscitation using LMA and IO lines to standard ETT and CVC. USA.</td>
<td>Simulation trial involving 44 residents.</td>
<td>Using the LMA and IO device led to significantly faster establishment of an airway and vascular access in simulated cardiac arrest.</td>
</tr>
<tr>
<td>Santos et al., 2013</td>
<td>To explore EZ-IO device implementation in a pre-hospital emergency service. Switzerland.</td>
<td>A prospective study and review of the literature.</td>
<td>74% cardiac arrest 26% non-cardiac arrest. EZ-IO effective in achieving vascular access in pre-hospital settings.</td>
</tr>
<tr>
<td>Schalk et al., 2011</td>
<td>To explore the efficacy of the EZ-IO needle driver for out of hospital IO access. Germany.</td>
<td>A preliminary observational multi-centre study (n=77).</td>
<td>Of 22 responsive patients 18 reported pain on infusion regardless of Lignocaine. IO efficient alternative for vascular access and should be considered earlier.</td>
</tr>
<tr>
<td>Sunde et al., 2010</td>
<td>To investigate emergency IO access in a helicopter medical emergency service. Norway.</td>
<td>A retrospective study analysing case notes in pre-hospital setting (n=78).</td>
<td>All emergency services should be familiar with the technique. EZ-IO faster and more reliable.</td>
</tr>
<tr>
<td>Wampler et al., 2012</td>
<td>To investigate paramedics performance inserting humeral IO access in adults. USA.</td>
<td>A retrospective cohort analysis out of hospital setting.</td>
<td>Humeral IO access is a reliable method for obtaining vascular access.</td>
</tr>
</tbody>
</table>
Table 4.0 Summary and recommendations for best practice

- The intraosseous route is a viable alternative to prevent delayed initial vascular access.
- All clinical studies reviewed are limited to the ED or pre-hospital settings therefore further research is required to investigate the whole hospital approach.
- All IO devices are associated with minimal reported complications
- Pain is the significant issue for conscious patients on administration of fluids/flush; therefore Lidocaine is an absolute necessity following insertion.
- The EZ-IO® is the most popular and consistently used device in the adult population.
- Although the proximal humerus is the suggested first choice site, tibial access occurred more frequently and is considered easier and faster by practitioners.
- Initial competence is demonstrated with minimal preparation however ongoing competence and immediate response in the clinical emergency requires further exploration.
- Cost is a significant issue and may influence the choice of route and device therefore analysis of quality and cost effectiveness is required.