

University of Huddersfield Repository

Garside, Joanne, Prescott, Stephen and Shaw, Susan Angela

Intraosseous vascular access in critically ill adults-a review of the literature

Original Citation

Garside, Joanne, Prescott, Stephen and Shaw, Susan Angela (2015) Intraosseous vascular access in critically ill adults-a review of the literature. Nursing in Critical Care. ISSN 13621017

This version is available at http://eprints.hud.ac.uk/id/eprint/23501/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Table 1.0 Summary of IO devices

Device	Manufacturer	Other information
First Access for Shock and Trauma 1 (FAST1®)	PYNG Medical, Richmond, Canada	The FAST1® is the only device currently approved by the FDA for use on the sternum (Day, 2011, PYNG Medical, 2010). It is designed to be inserted into the manubrium (the upper third of the sternum) and consists of an introducer, which houses several stabiliser points and an infusion tube. It relies on operator force i.e. it is not battery operated, pneumatic or spring loaded (PYNG Medical 2010). Downward pressure on the introducer pushes the infusion tube through soft tissue and into the sternum. When the steel tip of the infusion tube is in the marrow, it automatically separates from the introducer which can then be removed (Day, 2011, PYNG Medical, 2010).
EZ-IO®	Vidacare Corporation, San Antonio, Texas, USA	The EZ-IO® system consists of a battery operated small, hand-held power driver, a needle set and connectors (Day, 2011, Vidacare, 2014a). Three sizes (length) of needle are currently available. The power driver is reusable (approx. 500 insertions), containing a sealed lithium battery (Vidacare, 2014b). Recommended sites for insertion are the proximal humerus, the proximal tibia and the distal tibia. Each needle has a black line 5mm from the hub and this is used to help check selection of the correct needle length prior to insertion. The longer needles have additional lines marked every centimetre from the first. The needle is inserted through the skin until it touches bone. At least one black line must be visible above the skin before drilling begins. If not, the needle is removed and a longer one inserted instead. If a black line is visible, the needle can safely be inserted by pressing the trigger on the power driver and applying gentle, consistent, steady downward pressure until the hub of the needle is almost flush with the skin.
Bone Injection Gun (B.I.G™)	Waismed Ltd, Houston, Texas, USA	Introduced in 2000 as the world's first automatic IO device (Waismed, 2009) the B.I.G [™] is a spring- loaded device that delivers the trocar and a needle directly into the bone. The trocar is then removed leaving the needle in situ. The B.I.G [™] is colour coded, signifying sizes appropriate for use in adult and paediatrics, with a third option available for veterinarians (Day, 2011). Suggested insertion sites are the proximal tibia and the proximal humerus (Waismed, 2008).
Cook Needle	Cook Medical Inc, Bloomington, Indiana, USA	A manual device that is likely to be familiar to many emergency nurses (Fenwick, 2010). Although this device has been used for adults (Brenner <i>et al.</i> , 2008, Molin <i>et al.</i> , 2010), product information from Cook Medical (2014) would indicate that it is recommended for use in paediatric emergencies.
Jamshidi® needle	CareFusion, San Diego, California, USA	The Jamshidi® needle is primarily a bone marrow biopsy needle (CareFusion, 2014), but has been used for IO access (Hartholt <i>et al.</i> , 2010, Hoskins <i>et al.</i> , 2012).

Paxton (2012, p. 200) states that

"...for the purposes of IO infusion, the 'intraosseous space' is generally defined as that space within both the cancellous bone of the epiphysis and the medullary cavity of the diaphysis, which is in continuity".

The diaphysis (or shaft) of a typical long bone (so called because of their elongated shape, not their overall size – Marieb & Hoehn, 2013) consists of a narrow medullary cavity covered by a relatively thick layer of cortical, or compact bone (Marieb & Hoehn, 2013, Paxton, 2012,). The epiphysis (the bone ends) consist of a much thinner layer of cortical bone covering a network of cancellous (or spongy) bone, also known as trabecular bone (Laroche, 2002, Marieb & Hoehn, 2013, Paxton, 2012). According to Laroche (2002), blood enters the long bone through six groups of arteries. Because of this unique and highly vascular network, the bone marrow is constantly being perfused, and does not collapse in the presence of hypotension, hypovolaemia or shock (Hartholt et al., 2010, Levitan et al., 2009). Indeed, animal studies have shown that even in the presence of continuous blood loss, bone marrow perfusion and venous outflow are maintained at a time when peripheral vessels would be constricted (Paxton, 2012). A large sinus runs along the centre of the medullary cavity and acts as a reservoir for any substances collected within the IO space. Substances injected into the epiphysis will drain via medullary veins into this central medullary sinus. The sinus drains into further veins that run parallel to the groups of arteries (Laroche, 2002, Paxton, 2012). The sternum is defined as a flat bone (Marieb & Hoehn, 2013) and does not possess the typical characteristics of a long bone. Paxton (2012) suggests, however, that two types of bone can be used for IO infusion; bone that contains yellow marrow (typically the long bones) and bone that contains red marrow. The sternum contains a high level of red marrow (Marieb & Hoehn, 2013, Paxton, 2012).

Study	Aim, sample and setting	Research design and	Major findings
		methods	
Brenner <i>et al.</i> , 2008	Comparison of manual Man- IO and semi-automatic (EZ- IO) IO devices. 84 participants from specialist seminar attendance.	Prospective study Experimental design Randomised, non-blinded. 2 practice groups – evaluated and compared the 2	The EZ-IO is more user friendly and is associated with fewer technical problems.
	Germany.	insertion approaches on cadavers.	
Gazin <i>et al.</i> , 2011	To assess the safety and efficacy of EZ-IO for difficult vascular access. 39 patients (34 adults and 5 children). Pre-hospital. France.	Prospective observational study.	EZ-IO is safe and has a high success rate of use in the out of hospital setting – suggests that it could be the preferred vascular access option whenever IV or fluid resuscitation is needed in an emergency.
Hartholt <i>et al.</i> , 2010	To determine which IO needle (Jamshidi, BIG and FAST1) is preferable for gaining access (n=92, 69=Adult). Helicopter medical team. Netherlands.	Single centre, single blinded prospective randomised trial	IV access remains gold standard and should not be replaced. IO is good alternative. The Jamshidi was placed significantly faster than the FAST. No difference in success or complication rate or user friendliness.
Hoskins <i>et al.</i> , 2012	To compare the pharmacokinetics of IO tibia and sternum drug delivery with central venous during CPR. US and Brazil.	Prospective animal study (pigs) Anaesthetised Pigs (n=13).Cardiac arrest induced by Potassium Chloride injection	Given the limitations of the animal model, the results are valid and useful. Recommended that sternal IO route be considered as the first choice of drug delivery during CPR when IV access has not been established, and that the tibial IO route is also justified as second choice.
Lamhaut <i>et al.</i> , 2010	To compare IO and IV access with and without protective equipment. Nine RN and 16 physicians. France.	Participants each given four simulated experiments and timed for successful access. Four experiments PVC & IO with and without protective equipment.	IO significantly quicker to timing of access in both situations - Mean time saved 20-24s under normal and 39-20s with CBRN.
Leidel et al., 2010	To compare two IO access	Prospective randomised	EZ-IO faster and more

Table 3.0 Summary of selected research papers

	devices, 40 patients.	study	successful than BIG but not
	Consecutive admissions		statistically significant.
	over an 18 month period that		etallollouily eigenited in
	met the inclusion criteria.		
	Germany.		
Leidel <i>et al.</i> , 2012	Comparison of intraosseous	Prospective observational	IO cannulation
	versus central venous	study success rates on first	was significantly more
	vascular access in adults	attempt of CVC and IO	successful and faster to gain
	under resuscitation in the	(n=40)	when compared to
	emergency department with		landmark-based CVC
	inaccessible peripheral		IO access is not a surrogate
	veins. Germany.		for CVC and cannot replace
			it.
Levitan <i>et al.</i> , 2009	To determine skill	Prospective study (n=99)	EZ-IO requires minimal
	acquisition and performance		training, is fast and easy to
	by using a battery-operated,		use.
	intraosseous		
	needle driver in cadavers.		
	USA.		
Molin <i>et al.</i> , 2010	To explore current use of	On line survey sent to Head	General lack of consensus
	intraosseous infusion in	of Emergency Department.	on indications, use and
	national		contraindications.
	emergency departments		
	excluding trauma centres		Suggests need for training in
	(n=19). Denmark.		the use of IO access.
Ong <i>et al.</i> , 2009a	To compare tibial and	A non-randomised	All insertions were reported
	humeral IO access using the	prospective observational	to be successful on first
	EZ-IO in a single centre	study.	attempt except one -
	(Emergency Department)		successful on second
	(n=24 patients). Singapore.		attempt. All insertions
			achieved within 20 seconds.
			Significantly increased flow
			rates with pressure bag than
			without one. No reported
			complications.
Ong <i>et al.</i> , 2009b	To determine the Ease of	Observational, prospective	EZ-IO appeared easy to use
	Vascular Access in	study using a simulation	with high success rates of
	Adults Using a Novel	bone model.	insertion with inexperienced
	Intraosseous Access		participants.
	Device. Singapore.		
Philbeck et al., 2010	To compare pain and	Experimental study (n=16).	Conscious patients requiring
	effectiveness of Lidocaine		IO infusion experienced less
	on IO access in different		pain in the proximal
	sites. USA.		humerus site.
Reades et al., 2011a	To compare 1 st attempt	Observational analysis.	Tibial IO needle placement
	success between tibial and		appeared to be a more

	humeral IO insertion during	88 patients in out of hospital	effective insertion site than
	out of hospital cardiac arrest. USA.	setting EMS.	the proximal humerus.
Reades et al., 2011b	To compare IO v Vascular	Randomised controlled trial.	Tibial IO was found to have
	Access during out-of		highest first attempt success
	hospital cardiac arrest. USA.	182 patients enrolled – non	and quickest time for
		traumatic out-of-hospital	vascular access compared
		cardiac arrest.	with IV and humeral IO
			access.
Reiter et al., 2013	To compare potential for	Simulation trial involving 44	Using the LMA and IO
	improved resuscitation using	residents.	device led to significantly
	LMA and IO lines to		faster establishment of an
	standard ETT and CVC.		airway and vascular access
	USA.		in simulated cardiac arrest.
Santos et al., 2013	To explore EZ-IO device	A prospective study and	74% cardiac arrest
	implementation in a pre-	review of the literature.	26% non-cardiac arrest.
	hospital emergency service.		
	Switzerland.		EZ-IO effective in achieving
			vascular access in pre-
			hospital settings.
Schalk et al., 2011	To explore the efficacy of	A preliminary observational	Of 22 responsive patients 18
	the EZ-IO needle driver for	multi-centre study (n=77).	reported pain on infusion
	out of hospital IO access.		regardless of Lignocaine.
	Germany.		
			IO efficient alternative for
			vascular access and should
			be considered earlier.
Sunde et al., 2010	To investigate emergency IO	A retrospective study	All emergency services
	access in a helicopter	analysing case notes in pre-	should be familiar with the
	medical emergency service.	hospital setting (n=78).	technique.
	Norway.		
			EZ-IO faster and more
			reliable.
Wampler et al., 2012	To investigate paramedics	A retrospective cohort	Humeral IO access is a
	performance inserting	analysis out of hospital	reliable method for obtaining
	humeral IO access in adults.	setting.	vascular access.
	USA.		

Table 4.0 Summary and recommendations for best practice

- The intraosseous route is a viable alternative to prevent delayed initial vascular access.
- All clinical studies reviewed are limited to the ED or pre-hospital settings therefore further research is required to investigate the whole hospital approach.
- All IO devices are associated with minimal reported complications
- Pain is the significant issue for conscious patients on administration of fluids/flush; therefore Lidocaine is an absolute necessity following insertion.
- The EZ-IO® is the most popular and consistently used device in the adult population.
- Although the proximal humerus is the suggested first choice site, tibial access occurred more frequently and is considered easier and faster by practitioners.
- Initial competence is demonstrated with minimal preparation however ongoing competence and immediate response in the clinical emergency requires further exploration.
- Cost is a significant issue and may influence the choice of route and device therefore analysis of quality and cost effectiveness is required.