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ABSTRACT: The imidazotetrazine ring is an acid-stable precursor and prodrug of highly-reactive alkyl diazonium ions. We have
shown that this reactivity can be managed productively in an aqueous system for the generation of aziridinium ions with 96% effi-
ciency. The new compounds are potent DNA alkylators and have antitumor activity independent of the O6-methylguanine-DNA
methyltransferase and DNA mismatch repair constraints that limit the use of temozolomide.

Imidazotetrazine 1 is a fascinating heterocycle, on account
of both its Chemistry and the therapeutic applications of its
derivatives. It forms the core of the anti-cancer prodrug Te-
mozolomide® (1 R = CH;; TMZ). Although TMZ has achieved
“plockbuster” status,® it remains the lone member of its drug
class because of the constraints placed on tumor response to
the prodrug by a requirement for DNA mismatch repair
(MMR) and resistance mediated through O6-alkylguanine-
DNA alkyltransferase (MGMT). Herein we report a strategy
that achieves remarkably-effective control of the reactive in-
termediates generated by the imidazotetrazine ring in an aque-
ous environment, in this example to generate aziridinium ions.
This design achieves compounds that react with DNA but
exhibit chemosensitivity independently of MMR and MGMT.

Scheme 1. Release of electrophiles on hydrolysis of the im-
idazotetrazine ring.?
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3For TMZ, R=CH,, MTZ, R=CH,CH,Cl.

At neutral or alkaline pH, imidazotetrazines 1 (e.g. TMZ)
act as a source of diazonium ions 2, with few exceptions ring-
opening as shown in Scheme 1.® Methyldiazonium is released
from TMZ and methylates DNA; lethal interaction of this ad-
duct with MMR causes cell death. There are two kinetic pa-
rameters that determine the effectiveness of imidazotetrazine

prodrugs. The first is the rate of addition of water (or hydrox-
ide ion) to initiate the ring-opening reaction. This is slow at
low pH, so confers acid stability and the convenience of oral
dosing.* The pH-dependence of this reaction also influences
distribution of the prodrug around the body: hydrolysis kinet-
ics at pH 7.4 match closely the uptake rate (peak plasma con-
centration after 30 min) and metabolic half life (t,, = 1.29 h) in
patients." ® The other significant kinetic parameter is the reac-
tivity of the latent electrophile. Hydrolysis of methyldiazonium
in a purely chemical system has t, = 0.39 s.° Again, a sub-
optimal value detracts from clinical effectiveness: ethyldiazo-
nium eliminates or reacts with water before it is able to locate
a reactive nucleic acid target site,” while longer-lived inter-
mediary electrophiles such as chloronium achieve clinical
efficacy.® For TMZ, these clinically-useful, if not formally
optimized, pharmacokinetic properties were achieved seren-
dipitously.

In the design of TMZ analogues with altered spectra of ac-
tivity, we reasoned that a neighboring group participation
(NGP)-based mechanism could be employed to control the
incipient alkyldiazonium ions. This would serve the dual func-
tions of directing reactivity and delivering an alternative form
of damage to DNA. Since the response of tumors to TMZ is
determined by the interaction of covalently modified DNA
with DNA repair systems,” altering the electrophile would
necessarily alter the tumor response. In these respects, the
potential of the imidazotetrazine as an acid-stable precursor of
aziridines or aziridinium ions was explored. These are reactive
intermediates with proven clinical utility, being found widely
in, or generated by, synthetic and natural product anti-tumor
drugs and prodrugs. Furthermore, O6-aminoethylguanine is
known to be refractory to cleavage by MGMT."*
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®Reagents and conditions: (i) CuCl, AcOH, A, 12 h, 41%; (ii)
NH,NH,-H,0, EtOH, rt, 12 h 89%; (iii) NaNO,, AcOH,
CH,CIy/H,0, 0-2 °C; (iv) CH,Cl,, rt, 48 h; (v) DMSO, rt, 48 h,
14% (over steps iii—v).

The synthesis of an aziridinium-precursor imidazotetrazine
3 is presented in Scheme 2. Imidazotetrazine ring closure is
achieved by reaction of diazoazole 4 with an isocyanate 5." *?
This ring closure was placed toward the end of the synthesis to
avoid complications arising from reactivity of the imidazo-
tetrazine itself. Preparation of these derivatives posed a further
synthetic challenge as B-aminoisocyanates were required. Re-
activity of the amine group was controlled by use of anilines,
rater than a protecting group strategy: B-anilinoisocyanates 5
were stable and isolable. For mechanistic studies, a **C-labeled
version was prepared using enriched *C(2)-acrylate 6 (the site
of the label is marked * in the figure and schemes), the label
was estimated as 75 atom% “*CH, by "H NMR. The analogous
bisimidazotetrazine 7 was similarly prepared from p-toluidine.
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Figure 1. Gated decoupled 3C NMR spectrum showing identifi-
cation and quantitation of the final products of **C-labeled imid-
azotetrazine 3 reaction in phosphate buffer, pD 7.8. Resonances
were assigned on the basis of "Jc p coupling constants' and spik-
ing with authentic, unlabelled alcohol 9.2

The prodrug activation mechanism was investigated by re-
action of *C-labeled 3 in phosphate buffer. Final products
were identified and quantitated using gated decoupled “*C
NMR spectroscopy, Figure 1. Products arose from reaction of
the latent electrophiles with both nucleophiles in the system,

the D,0 solvent and phosphate of the buffer. In the phosphate
products 8a,b, the label was detected equally in the two meth-
ylene positions; the alcohol products 9a,b, showed a small
excess of label retained in the starting position. A mechanism
that accounts for these observations is presented in Scheme 3.
It is proposed that diazonium ion 10 is formed as in Scheme 1.
Subsequent reaction is either by intramolecular displacement
of N, by the aniline or direct hydrolysis. The evidence of the
NMR spectrum is that only ca. 4% direct hydrolysis occurs,
with the majority of material forming aziridinium ion 11. This
renders the two methylene positions equivalent, so equally
susceptible to attack by nucleophiles, in consequence of which
the label is scrambled in the products. The cleanness of this
result is gratifying as previous reports on 2-
aminoethyldiazonium ions derived from triazolines and alkyl-
aminotriazenes showed only about 50% ring closure to aziri-
dines, with pathways of diazonium elimination and direct hy-
drolysis contributing significantly to the detected products.”**
The phosphate ester/alcohol product ratio reflects the relative
nucleophilicities of phosphate and D,0.

Scheme 3. Fate of the **C Label. Approximately 96 % con-
version to the aziridinium ion 11 and 4 % direct hydrolysis of
the diazonium ion occur. Final products show complete
scrambling (1:1 mixtures) of the label confirming the interme-
diacy of a discrete aziridinium ion 11.
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Table 1. pH Dependence of imidazotetrazine hydrolysis
kinetics at 37 °C.

pH=4.0 pH=7.4 pH=8.0
K @ t,, 0 ke g, 0 k@ g,

TMZ 0.100 2530 140  1.38  46.220. 0.42
+0.001 0.0

3 0.500 415 152 1.27 49.5+0. 0.39
+0.003 *0.3

7 0.400 485 144 133  451%l 043
+0.006 +0.7

[a] k' pseudo first order rate constant, x 10° s™, data are mean
+SD of 3 independent determinations. [b] t, half life, h. Citrate-
phosphate buffers.

The hydrolysis kinetics (pseudo-first order disappearance of
imidazotetrazine, An= 330 nm) were measured for com-
pounds 3, 7 and TMZ (Table 1). For all compounds, the half
life was much longer under acidic than neutral or basic condi-
tions, although compounds 3 and 7 show a subtly increased



reactivity under acidic conditions compared with TMZ. Even 3 7

so, the t,, values measured at pH 4.0 remain much longer than - ——m el
the uptake and elimination rates of orally-administered TMZ. G+A 0 1 10 20 50100 1 10 20 50 100 uM
It is interesting to note that the site of structural variation in
imidazotetrazines 3 and 7, compared with TMZ, is distant
from and not conjugated with the hydrolytic reaction centre,
C-4. This change in acid reactivity demonstrates a curious
complexity of the imidazotetrazine system.

The interaction of compounds 3 and 7 with DNA and the 8
sequence specificity of covalent DNA modification were as- t ) 4 L

sessed by a combination of cleavage-based and polymerase
stop assays. The piperidine cleavage assay indicated that the
compounds alkylate identical GN7 sites at guanine-rich se-
guences, with the bifunctional agent 7 being more reactive
than the monofunctional 3 (Figure 2). The same sites of reac- .
tion were identified using the polymerase stop assay which 5-CGG-¥
detects all covalent adducts (see Figure S9; supporting infor-

mation). Additionally it was shown that compound 3 produced

the same GN7 alkylation pattern and identical sites of covalent

bonding as the nitrogen mustard drug melphalan (Figures S8

and S9; supporting information). The reaction of TMZ with

the same DNA sequence has previously been investigated by

these methods and shows similar patterns of sequence selectiv-

ity.{Clark, 1995 #169}{Arrowsmith, 2000 #165}

-

— -
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Figure 2. DNA reaction by the piperidine cleavage method show- 538 et e,
ing GN7 alkylation on the upper strand of pBR322 DNA modified
by compounds 3 and 7. Arrows indicate the position and sequence

context of the alkylated guanines.

In vitro anti-cancer activity of compounds 3 and 7 was as-
sessed in a pair of MMR proficient and deficient cell lines:
A2780 and A2780-cp70,"® Figure 3. Compounds 3 and 7 were
more active than TMZ and MTZ and their relative potency
correlates with their different DNA reactivity (Figure 2). For
TMZ the ICs, was >27-fold lower in the MMR-proficient cell
line (compare the shaded and grey bars). This ratio was re-
duced to 5.8-fold for new bifunctional agent 7 and 2.8-fold for
mono-functional 3. The extent of MGMT-mediated resistance
can be assessed by comparing the black and the shaded bars
(i.e. MGMT-/MGMT+ with MMR proficient). TMZ was >30-
fold more potent in the absence of MGMT whilst the new
agents were equipotent. Moreover, in the absence of MMR, all
compounds showed activity greater than TMZ, irrespective of
the MGMT status of the cells, showing that MMR-dependent
activity and MGMT-mediated resistance are now only minor
determinants of the antitumor effect.

Figure 3. In vitro chemosensitivity (ICsy / pM) of selected com-
pounds against A2780 (MMR+) and A2780-cp70 (MMR-) cell
lines in the absence (MGMT+) and presence (MGMT-) of the
MGMT inactivator PaTrin2 (10 uM). All data are the mean of >3
determinations, error bars are the SD. * IC5, >250 puM.
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Overall, remarkable control of the reactive intermediates
generated from imidazotetrazines has been achieved with 96%
of an alkyldiazonium ion being directed to aziridinium ring
closure under aqueous conditions. In reaction with DNA,
compound 7 has sequence selectivity and reactivity similar to
melphalan. Moreover, the pH-dependence of the hydrolysis
kinetics mirrors the parent TMZ, so the new compounds have
the potential for oral bioavailability. The new compounds dis-
closed herein have potent anti-cancer activity that is independ-
ent of the two principal constraints on TMZ activity - MMR
and MGMT.
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