Computing and Library Services - delivering an inspiring information environment

Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells.

Arozarena, Imanol, Goicoechea, I., Erice, O., Ferguson, J., Margison, G.P. and Wellbrock, C. (2014) Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells. Molecular Cancer Therapeutics, 13 (154). ISSN 1535-7163

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB)



The importance of the genetic background of cancer cells for the individual susceptibility to cancer treatments is increasingly apparent. In melanoma, the existence of a BRAF mutation is a main predictor for successful BRAF-targeted therapy. However, despite initial successes with these therapies, patients relapse within a year and have to move on to other therapies. Moreover, patients harbouring a wild type BRAF gene (including 25% with NRAS mutations) still require alternative treatment such as chemotherapy. Multiple genetic parameters have been associated with response to chemotherapy, but despite their high frequency in melanoma nothing is known about the impact of BRAF or NRAS mutations on the response to chemotherapeutic agents.

Using cell proliferation and DNA methylation assays, FACS analysis and quantitative-RT-PCR we have characterised the response of a panel of NRAS and BRAF mutant melanoma cell lines to various chemotherapy drugs, amongst them dacarbazine (DTIC) and temozolomide (TMZ) and DNA synthesis inhibitors.

Although both, DTIC and TMZ act as alkylating agents through the same intermediate, NRAS and BRAF mutant cells responded differentially only to DTIC. Further analysis revealed that the growth-inhibitory effects mediated by DTIC were rather due to interference with nucleotide salvaging, and that NRAS mutant melanoma cells exhibit higher activity of the nucleotide synthesis enzymes IMPDH and TK1. Importantly, the enhanced ability of RAS mutant cells to use nucleotide salvaging resulted in resistance to DHFR inhibitors.

In summary, our data suggest that the genetic background in melanoma cells influences the response to inhibitors blocking de novo DNA synthesis, and that defining the RAS mutation status could be used to stratify patients for the use of antifolate drugs.

Item Type: Article
Subjects: R Medicine > RM Therapeutics. Pharmacology
Schools: School of Applied Sciences
Related URLs:
Depositing User: Imanol Arozarena Arozarena
Date Deposited: 03 Mar 2015 15:11
Last Modified: 08 Nov 2015 15:10


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©