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Abstract 

This article presents numerical simulations of conjugated heat transfer in a fouled channel with a 

moving depositing front. The depositing front separating the fluid and the deposit layer is 

captured using the level-set method. Fluid flow is modeled by the incompressible Navier-Stokes 

equations. Numerical solution is performed on a fixed mesh using the finite volume method. The 

effects of Reynolds number and thermal conductivity ratio between the deposit layer and the 

fluid on local Nusselt number as well as length-averaged Nusselt number are investigated. It is 

found that heat transfer performance, represented by the local and length-averaged Nusselt 

number reduces significantly in a fouled channel compared with that in a clean channel. Heat 

transfer performance decreases with the growth of the deposit layer. Increase in Reynolds,  

Prandtl numbers or both enhances heat transfer. Besides, heat transfer is enhanced when the 

thermal conductivity ratio between the deposit layer and the fluid is lower than 20 but it 

decreases when the thermal conductivity ratio is larger than 20.      

Keywords: Conjugated heat transfer, Moving depositing front, Level-set method, Nusselt 

number. 
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Nomenclature 

C particle concentration (kg/m3) 

cp specific heat (J/kgּK) 

D diffusion coefficient (m2/s) 

f friction coefficient 

H height of domain (m) 

H() smoothed heaviside function 

k thermal conductivity (W/mּK) 

rd reaction rate for deposition (m/s) 

L length of domain (m) 

Nu Nusselt number 

n̂  unit normal at the interface 

q


 deposition flux (kg/ m2 ּs) 

p pressure (Pa) 

Pr Prandtl number 

Re Reynolds number 

 sign  Sign function 

S signum fuction 

T temperature (oC) 

t time (s) 

t    pseudo time (s) 

 

 

u


 velocity vector (m/s) 

 

 

 

 

ut tangential velocity (m/s) 

x,y Cartesian coordinate 

x mesh size (m) 

Greek Symbols  

 height of the deposit region (m) 

   Dirac delta function 


~
 diffusion coefficient (m2/s) 

 dimensionless temperature 

 level set function (m)  

φ component of extiu ,


 

 interface thickness (m)  

 

 

dynamic viscosity (kg/m·s) 

ρ density (kg/m3) 



International Journal of Thermal Science, 2015, Vol. 88, pp. 136–147. 

3 

 

 shear stress (Pa) 

 domain of interest 

Subscripts  

b bulk 

d deposit 

i interface 

i,ext extension velocity 

in inlet 

out outlet 

w wall 

+ fluid region 

- deposit region 

* dimensionless  

0 initial status 

 

1 Introduction 

Conjugated heat transfer in a channel with a deposit layer gradually growing on the wall is 

widely encountered in many engineering applications such as fouling in heat exchangers [1-4]. In 

these systems, the working fluid carries particles either of an organic or inorganic origin flowing 

into channels. These particles have a tendency to deposit onto the wall of the channels, forming a 

deposit layer. The continuously growing and increasingly thicker deposit layer, formed by the 

deposited particles, normally has a low thermal conductivity. With heat transfer involved, such 

deposit layer introduces extra thermal resistance and consequently leads to a low heat transfer 

performance of the system. Besides, the deposit layer reduces flow cross sectional area of the 

channel and directly responsible for inducing a larger pressure drop. Unfortunately, the 

deposition process, although highly undesirable for heat transfer, can only be minimized. 

Therefore, such kind of system normally operates with a formed deposit layer of a tolerable 
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thickness. As such, a good understanding of the conjugated heat transfer coupling the evolving 

deposit layer and fluid flow is important.  

Conjugated heat transfer with a moving depositing front can be investigated experimentally. 

Nuntaphan and Kiatsiriroat [1] studied the effect of fly ash on the heat transfer performance of a 

heat exchanger with spiral finned-tubes. They found that the thermal resistance caused by the 

fouling of the fly ash increases with time in the testing period of 8 hours. The growing of silica 

deposition in a heat exchanger during combustion of siloxane with gas was experimentally 

studied by Turkin et al. [2]. Their results showed that particle distribution of the silica had no 

much effect on the deposition flux. However, the deposition flux of silica increases linearly with 

the siloxane concentration in the mixture. Li et al. [3] investigated fouling in corrugated heat 

exchangers. They found that increase of inlet fluid velocity reduces fouling resistance. Fouling in 

a twisted tube heat exchanger is studied by Al-Hadhrami et al. [4]. Their results showed that the 

heat input had significant effect on fouling resistance when the inlet fluid velocity was low. 

Genić et al. [5] investigated fouling in 8 plate heat exchangers. They found that fouling depends 

strongly on the fluid velocity. Wax deposition in a crude oil pipeline system was studied by 

Valinejad and Nazar [6]. It was shown that a waxy crude oil with high wax content resulted in 

more solid wax deposited on the walls. Zhang et al. [7] conducted experimental and theoretical 

investigations of fouling on four corrugated plate heat exchangers. The effects of plate height, 

plate spacing and plate angle on the fouling process were studied. They concluded that the plate 

heat exchanger with the largest diameter and height to pitch ratio gave the best antifouling 

performance. Their theoretical results agreed well with the experimental data. Malayeri et al. [8] 

studied the influence of fouling under pool boiling process. They found that the increase of 

bubble formation reduces fouling. Generally, experimental study may involve large time scale. 
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One of the examples is fouling in heat exchangers. Fouling of heat exchanger can occur in weeks, 

months, years or even longer. Once the heat exchanger is fouled, cleaning process is necessary. 

Physical cleaning generally involves dismantling and reassembling of the equipment. In certain 

industries, chemicals can be used to remove the deposit. If not performed properly, these 

cleaning processes will inevitably damage the equipment and thus shorten the life of the 

equipment. Therefore, the cost for experimental study of fouling could be substantial. 

Occasionally, experiments demand extreme cautiousness because of high pressure and hazardous 

chemical materials. In view of this, theoretical investigations, especially numerical simulations, 

play an important role in understanding conjugated heat transfer with a moving depositing front.  

The channel with a moving depositing front is generally divided into two regions, i.e. a fluid 

region and a deposit region formed by the deposited solid particles. In clean channels where no 

particle deposit on the walls; heat is directly transferred to the incoming fluid in the form of 

convection heat transfer between the hot surface and the incoming fluid. However, with particle 

deposition formed on the wall of the channel, heat has to be conducted first through the 

additional deposit layer from hot wall to the depositing front. Then the incoming fluid carries the 

heat downstream. From a modeling point of view, this kind of problem is governed by 

conservation equations for mass, momentum, species and energy, coupled with the appropriate 

interfacial condition at the depositing front separating the fluid from the deposit layer. In 

particular, the depositing front is a moving boundary. All of these should be incorporated in the 

numerical model so that the heat transfer with a moving depositing front can be studied more 

realistically especially when the deposit layer is not thin relative to the characteristic length. 

Giving the difficulties in capturing the moving depositing front, most of the existing numerical 

works are based on a known fixed depositing front. Sunden [9] studied the conjugated heat 
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transfer in a circular cylinder with a heated core inside. The heat core is assumed to be the 

deposit layer. It is found that thermal conductivity ratio between the deposit layer and fluid has 

significant effect on the heat transfer. Owen et al. [10] investigated the thermal resistance of the 

deposit layer on the surface of the tube in heat exchanger without considering fluid flow. Their 

results show that heat transfer can increase or decrease depending on the thickness of the deposit 

layer as well as its thermal conductivity. Brahim et al. [11] simulated heat transfer in deposition 

process with a fictitious growth rate of the crystal deposit. Thermal resistance caused by the 

growth of the crystals was predicted. Their work is among the first which consider the depositing 

front as a moving boundary. However, simplification of a simple geometry for the depositing 

front is assumed. Their model can be modified to capture the actual growth of the crystal more 

precisely. Heat transfer performance of fouling cross-flow heat exchanger is numerically studied 

by Kaptan et al. [12]. The deposit layer due to fouling is assumed to be concentric or eccentric to 

the tube of the heat exchanger. Effects of the thermal conductivity and the thickness of the 

deposit layer on heat transfer coefficient are investigated. It is found that thicker deposit layer 

reduces the heat transfer rate. A similar study has been done by Vessakosol and Charoensuk [13] 

who investigated effect of Prandtl number and thermal conductivity ratio between fluid and 

deposit layer on heat transfer performance of a heat exchanger. Their results showed that high 

heat transfer performance was expected for high Reynolds number as well as Prandtl number.  

The above mentioned simulation work on the conjugated heat transfer is either considering a 

fixed depositing front or pseudo simple depositing front. These can be furhter improved by 

having a dynamocially evolving depositing front. In a channel with a moving depositing front, 

the deposit layer evolves with time and the depositing rate is generally governed by appropriate 

deposition kinetics. Therefore, additional calculations based on such phenomenon to capture the 
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depositing front are necessary. Conjugate heat transfer involving a growing deposit layer, 

although important, has not been studied sufficiently due to its complexity. This numerical study 

is undertaken to fill in some of the gaps in this respect. In this work, the level-set method is used 

to capture the evolving depositing front [15]. Fluid flow is modeled using the incompressible 

Navier-Stokes equations. Numerical solutions were performed on a fixed mesh using the finite 

volume method (FVM). A FORTRAN code was developed for the approach presented in this 

article. The capability of the current model is showcased via examples with fouling in heat 

exchanger. Effects of Reynolds number (up to 1000), Pr number (up to 1.1) and thermal 

conductivity ratio of deposit to fluid (up to 100) on the heat transfer performance were 

investigated. 

2. Problem Description  

The two-dimensional channel of interest is schematically shown in Fig. 1. Both the upper and the 

lower walls are maintained at a temperature of wT . Fluid at a temperature of 
inT  and carrying 

suspended solid particles flows into the channel at the inlet. These solid particles gradually 

deposit onto the walls and form deposit layers. The driving force for the particles to deposit onto 

the surface can either be of a physical, chemical, or a combination of these origins. 

Deposition/fouling with corrosion occur simultaneously is not considered in the current work. 

Regardless of the origin of the deposition, it can be modelled via a deposition flux of a given 

functional form. Here in this article, the deposition flux is assumed to be a first order reaction. 

This functional form can be modified accordingly to incorporate a more general deposition 

process. Once the deposit layers are formed, the domain can be considered to consist of a fluid 

region   and a deposit region  . These two regions are separated by the depositing front  . 

The case of inw TT   is of interest here. Basically, heat is conducted from the hot walls through 
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the deposit layers and then to the flowing fluid. The increasingly thicker deposit layer introduces 

extra thermal resistance and affects heat transfer. The effect on heat transfer is quantitatively 

addressed here in this article.  

3. Mathematical Formulation 

3.1 Governing Equations 

In this study, level-set method is used to capture the evolving depositing front [15]. The level-set 

function   is defined as the signed short normal distance from the front. Opposite signs are 

assigned to the two different regions, in particular, 0  for the fluid region and 0  for the 

deposit region. Of course, the front is then implicitly represented by the zero level-set, i.e. 0 . 

The movement of the front can now be captured by monitoring the evolution of the level-set 

function governed by 





xu

t
exti


,0, 



                                         
(1) 

where extiu ,


is a velocity field extended from the velocity of the depositing front iu


. The 

extension is constructed in such a way that extiu ,


 is constant along the curve normal to the 

depositing front. This can be easily achieved using the approach suggested by [16] as  

  



xnS

t


,0ˆ 



                                                   
(2a) 

 




















0 if

 0 if

0 if

,1

,0

,1







S

                                                 

(2b) 

where   is the velocity component of iu


. Numerically,  will drift away from a distance 

function gradually during the iterative numerical solution. To alleviate this problem, redistancing 
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is introduced [17] whereby the level-set function    is replaced by the “steady-state” solution of 

a second distance function governed by 

   



xsign

t


,01



                                            
(3) 

where t  is the pseudo time for the variable  .  sign is given by 

 
 222 x

sign










                                                      

(4) 

The initial condition for Eq. (4) is 

   xx


  0,                                                                        (5) 

The deposition process is modeled as a first order deposition reaction with the deposition flux 

given by  

idi nCruq ˆ 




                                                         
(6) 

where 
 , dr , C  and in̂  are the density of the deposit, the deposition reaction rate, the particle 

concentration and unit normal vector pointing into the fluid region respectively. Rearrangement 

of Eq. (6) gives the velocity of the depositing front as 

 tx
nCr

u id
i 




,

ˆ


                                                 

(7) 

where the unit vector  in̂  is evaluated as 








n̂

                                                                          

(8) 

The present framework is applicable generally to a general deposition/fouling process as long as 

the functional form of the deposition flux, i.e. Eq. (6), is known for the interested type of 

deposition/fouling. For demonstration purpose, the deposition flux is assumed as a first order 

reaction in this article. 
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The conservation equations governing the transport of mass, momentum, particle and energy for 

the problem are given by 

0 u


                                                           (9) 

 
    Tuupuu

t

u 










                          
(10) 

       



CrCDCu

t

C
d



                             
(11) 

 
  )( TkTuc

t

Tc
p

p




 




                               
(12) 

where D, cp and k are respectively the diffusion coefficient, the specific heat and thermal 

conductivity.   

By introducing a smoothed Heaviside and a smoothed Dirac functions given respectively by 

 












































 if

 if

 if

,1

,sin
2

1

2

,0

H

                           

(13a) 

 
  






 


otherwise

20 if

,0

,
2

/cos1 



                        (13b) 

The thermo-physical properties in the conservation equations can be evaluated as 

   )1( HH                                       (14a) 

  ))(1()( ppp cHcHc 
                          

(14b) 

 









 0 if

0 if

,

,








                                         (14c)  

 









 0 if

0 if

,

,0






D
D                                       (14d) 
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




k

H

k

H

k

1
 

1
                                          (14e) 

The deposit layer is modeled as an extremely viscous fluid, i.e. a solid. This is easily achievable 

in the present formulation with the viscosity defined by Eq. (14c). The second term on the RHS 

of Eq. (11), i.e.     Crd , accounts for the amount of particles transformed into deposit at 

the depositing front and is only non-zero around the depositing front. During the movement of 

the depositing front via the convection of   through Eq. (1), some of the particles in the 

immediate adjacency of the depositing front are trapped in the deposit region. If left untreated, 

the amount of trapped particles in the growing deposit region increases with time. To alleviate 

this problem, the trapped particles will be redistributed evenly to all other CVs of the fluid region 

following the approach suggested in [14]. 

3.2 Initial and Boundary Conditions 

The problem is symmetric at Hy  . Therefore solutions will only be obtained for the lower half 

of the channel. For each of the case study in the current article, steady state solution for fluid 

flow and heat transfer in a clean channel is first obtained. These results are then used as the 

initial condition in the simulation of the conjugated heat transfer with particle deposition. Such 

simulation process actually reflects the real situation of fouling as fouling of heat exchanger 

usually starts from a clean channel. The boundary conditions are listed below:          

At the inlet ( 0x ) 

inuu  , 0 v , inTT  ,
        otherwise,

5.0,

0

HyHC
C

o 







                 

(15a) 

At the outlet ( Lx  ) 

0




x

u
, 0 v , 0





x

C
, 0




x

T

                                
(15b) 
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At the wall ( 0y ) 

0 


u , 0




y

C
, wTT 

                                      
(15c) 

At the symmetric plane ( Hy  ) 

0




y

u
, 0v , 0





y

C
, 0




y

T

                               

(15d) 

 

3.3 Numerical Method 

The conservation equations (Eqs. 9-12) can be recast into a general equation of the form,  

 
    Su

t




 ~~
~ 




                                      
(16) 

where ~ , 
~

, and S are the “appropriate” density, diffusion coefficient and source term, 

respectively. This general equation is solved via FVM. The velocity-pressure coupling was 

handled with the SIMPLER algorithm [18]. A 2nd order upwind scheme with superbee limiter 

[19] is used for the convective term and a fully implicit scheme is used for time integration.  

The level-set (Eq. 1) and its redistancing equation (Eq. 3) are spatially discretized with WENO5 

(5th order Weighted Essential Non-Oscillatory Scheme) [20]. Since it is a 5th order scheme, 

numerical diffusion is greatly reduced and allow sections of the front with large curvature to be 

captured more accurately. Besides, no oscillatory behaviours in the solution occur in the even 

that characteristics merge. TVD-RK2 (Total-Variational-Diminishing 2nd order Runge-Kutta 

scheme) [21] is employed to ensure numerical stability in the temporal integration of the level-

set and its redistancing equations. To reduce the computational effort, the level-set method is 

implemented in a narrow-band procedure [22] where the level-set function is solved only within 

a band of certain thickness from the interface.  
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4. Results and Discussion  

Verifications of the present approach for modeling of particle deposition with heat transfer were 

performed and documented respectively in [14] and [23], and therefore will not be repeated here. 

Table 1 shows the thermo-physical value for the fluid and deposit used in the simulation. The 

results will be presented in dimensionless form. For this purpose, the system of governing 

equations (Eqs. 9-12) can be non-dimensionalized by defining these dimensionless quantities: x -

coordinate 
H

x
x * , y -coordinate 

H

y
y * , velocity 

inu

u
u *  and temperature 

inw

in

TT

TT




 . 

Then, the problem can be summarily described by the following group of dimensionless 

parameters: Reynolds number, dimensionless concentration, Peclet number, Damkholer number, 

diffusivity ratio and Prandlt number, defined respectively as 






 HuinRe

                                                    

(17a) 






C
C*

 

                                                        (17b) 




D

Hu
Pe in

                                                      

(17c) 




D

Hr
Da d

                                                     

(17d) 






)/(

)/(
*

p

p

ck

ck






                                                

(17e) 

 




k

cp
Pr

                                                    

(17f) 

In the following simulations, the dimensionless inlet concentration *

inC and Damkholer number 

Da are fixed at 0.1 and 5, respectively.  
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4.1 Effect of particle deposition on the heat transfer performance 

The first case of interest is that of Re = 300, Pe = 9.495 and * = 2. The deposit profile obtained 

on three different meshes: 80 × 20 control volumes (CVs) with t = 0.1, 160 × 40 CVs with t = 

0.05 and 320 × 80 CVs with t = 0.025, are shown in Fig. 2. A mesh of 160 × 40 CVs with t = 

0.05 is sufficient to resolve most of the essential features of the deposit layer. The maximum 

differences in the thickness of deposit layer between the mesh of 80 × 20 CVs with t = 0.1 and 

that of 160 × 40 CVs with t = 0.05, the mesh of 160 × 40 CVs with t = 0.05 and that of 320 × 

80 CVs with t = 0.025 are 3% and 0.8%, respectively. Further examination of the mesh 

sensitivity is made on the local Nusselt number Nux defined in Eq.(19a). It is found that the 

differences of Nux between these consecutively refined meshes are 2.8% and 0.5%, respectively. 

Therefore, a mesh size of 160 × 40 CVs with t = 0.05 is employed in all subsequent cases. 

Shown in Fig. 3 are the dimensionless velocity and temperature fields with the deposit profile 

superimposed. The interface between the fluid region and the deposit region, also known as 

depositing front, is plotted with a bold solid line. The numbers on the temperature field is the 

dimensionless temperatures . As mentioned before, simulation for particle deposition starts 

from the steady state solution of flow in a clean channel. Therefore, the dimensionless velocity 

and temperature fields at t = 0 in Fig. 3 also represents the flow and temperature fields in a clean 

channel (without particle deposition). Compared with Fig. 3(a) and Figs. 3(b), 3(c) and 3(d), the 

presence of the deposit layer affects the flow field as well as the temperature field significantly. 

Its presence changes the flow and temperature fields and results in a deterioration of heat transfer.   

At t = 0, fluid carrying suspended particles enters the clean channel at the inlet with a uniform 

velocity. As fluid flows along the channel, the particles deposit onto the walls of the channel 

gradually, forming a deposit layer. Given the impermeability of the deposit layer, the presence of 
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the deposit layer changes the flow field by accelerating and deflecting the flow slightly upward. 

Generally, the deposit layer near the inlet grows faster than that of the downstream and is 

therefore thickest due to higher particle concentration upstream. With particles deposited along 

the flow direction, the concentration of the particle decreases downstream. Therefore, the 

thickness of the deposit layer then decreases along the channel.  

Figure 4 shows the variation of the dimensionless concentration for the suspended particles at 

different times. The dimensionless concentration is mathematically expressed in Eq. (17b). It is 

obvious that the particle concentration in the fluid changes temporally and spatially. Some of 

these particles carried by the fluid deposit onto the walls, leading to a reduction of particle 

concentration in the fluid. 

The plots of the dimensionless deposit thickness (normalized against the characteristic length H) 

at different time in Fig. 5(a) of clearly show this. The friction factor f at different times is also 

included in Fig. 5(a). f is defined as [24]: 

2

8

inu
f






                                                        

(18a) 

where  is 

nut
ˆ 

                                                   

(18b) 

ut is the tangential velocity at the deposition front. The local shear stress at the deposition front 

varies both spatially and temporally. As the deposit grows it is expected the shear stress varies 

significantly along the channel. 

Heat transfer from the wall to the fluid would eventually rely on convective heat transfer 

occurring at the depositing front. The mere presence of the deposit layer changes the flow field 

and the strength of convective heat transfer. To quantify this effect, local Nusselt number defined 

as  
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(19a) 

in introduced where 
iT  and bT  are respectively the temperature at the depositing front and the 

bulk temperature. The bulk temperature is given by 

dyuTdyuT

HH

b 


                                              

(19b) 

Figure 5(b) shows the comparison of Nux between a clean and a fouled channel. The transient 

Nux in the fouled channel is shown. Generally, the fouled channel consistently has a lower Nux 

than that of a clean channel. With the solid particles deposited onto the wall of the channel, a 

deposit layer is formed. This deposit layer introduces an additional thermal resistance for the 

heat to be transferred from the heated wall to the fluid, consequently, leads to a lower heat 

transfer performance of the system compared with that in clean channel. As time passes, the 

thickness of the deposit layer increases, resulting in an even lower Nux. It is therefore obvious 

that Nux reduces with the increase of time. 

4.2 Effect of Reynolds number on the heat transfer performance 

Figure 6 shows the dimensionless velocity and temperature fields for Re = 100, Pe = 3.165, and 

* = 2. Re is directly related to the inlet velocity. A smaller Re corresponds to a lower inlet 

velocity. With a low inlet velocity, the residence time of particles remains in the channel is 

longer. The more time the particles spend in the channel, the more time it can diffuses to the 

depositing front and get deposited. This moves the thickest of the deposit layer upstream as 

compared with that at Re = 300, Pe = 9.495 and * = 2. The particle concentration downstream 

then reduces, leading to a thin deposit layer downstream. The deposit profile at different times is 

shown in Fig. 7. Such distribution of the deposit layer on the heated wall is not favorable for heat 
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transfer. Generally, a fluid with low temperature possesses high potential to obsorb heat from the 

hot surface maintained at a constant temperature. Therefore, a higher heat transfer performance 

is expected at the inlet region of the channel as the inlet fluid has a low temperature. However, in 

this case, a thick deposit layer formed near the inlet present a large thermal resistance which 

hinders heat to be transferred from the heated wall to the inlet cool fluid. This reduces the heat 

transfer performance significantly.    

The transient behavior of fluid flow and heat transfer at a Re of 500, Pe = 15.825 and *= 2 are 

shown in Fig. 8. Although the particle concentration in the entrance region is high, most of these 

particles do not deposit because of the high inlet fluid velocity. Instead, these particles are 

carried by the flowing fluid downstream instead of diffusing towards the depositing front. As a 

result, the leading edge as well as the location with the thickest deposit layer moves downstream. 

This can be seen from the deposit profile shown in Fig. 9. The increase of inlet velocity increases 

convection heat transfer in the depositing front between the fluid and deposit regions. Denser 

isothermals are found near the depositing front which indicates a high heat transfer performance. 

In the deposit layer, the heat transfer mode is conduction rather than convection. Therefore, the 

deposit has a relatively constant temperature gradient.    

The transient variation of Nux at Re = 100, Pe = 3.165 and Re = 500, Pe = 15.825 for * = 2 are 

shown in Figs. 10(a) and 10(b), respectively. Similar to that shown in Fig. 5 for Nux at Re = 300, 

Pe = 9.495, the presence of deposit layer reduces Nux significantly. At Re = 500, Nux decreases 

with the growth of the deposit layer. This is not observed at Re = 100, Pe = 3.165. Given the 

thick deposit layer near the inlet region, a slight difference in Nux is found at different times 

downstream of x* = 3 at Re = 100, Pe = 3.165. This indicates that the heat transfer performance 
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deteriorates at the early stage of fouling process. Special attention should therefore be directed to 

engineering system prone to such behaviors.  

The comparisons of* and Nux at different Re and Pe are further made at t = 30 s, shown in Fig. 

11(a) and 11(b), respectively. High Re number forms a thin deposit layer upstream and a thick 

deposit layer downstream while a different deposit profile is created at low Re and Pe numbers. 

Such a deposit layer profile changes heat transfer performance. For example, at x* = 0.6, the 

thickness of the deposit layer at Re = 100 is almost 2 times that of Re = 300 and 4 times that of 

Re = 500. With such large thickness of the deposit layer, Nux at Re = 100 is then significantly 

reduced by 50% and 36% compared with that of Re = 500 and Re = 300, respectively. However, 

a slight better heat transfer performance is observed at Re = 500 compared to that of Re = 300 

and Re = 100 between x* = 2 and x* = 3. After that, there is no much difference in the heat 

transfer performance at these three Reynolds numbers. This is due to the thick deposit layer 

downstream under high Re number. The thickness of the deposit layer at Re = 500 at x* = 2.5 is 

as high as 3.3 times and 1.3 times compared with that of Re = 100 and Re = 300. Such thick 

deposit layer downstream at high Re number actually presents large thermal resistance, resulting 

a reduced heat transfer compared with that of thin deposit layer downstream formed at low Re 

number. As expected, high Re number corresponds to high heat transfer performance in a clean 

channel.  

In addition to the comparison in local Nusselt number Nux, the length-averaged Nu number, i.e. 

Nua is also used to evaluate the heat transfer performance at different Re number to characterize 

the overall heat transfer performance. The length-averaged Nu number Nua is obtained from Nux 

number as 
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The variation of Nua at different Re number is shown in Fig. 12. With a deposit layer in the 

fouled channel, Nua reduces significantly compared with that of a clean channel. Further growth 

of the deposit layer leads to a decrease of Nua. Generally, Nua number shows a relatively linear 

increase with the increase of Re number.  

4.3 Effect of thermal conductivity ratio between the deposit layer and fluid on the heat 

transfer performance 

Effect of thermal conductivity ratio between the deposit layer and the fluid is now discussed. 

Figure 13 shows the transient behaviours of the temperature fields at Re = 300, Pe = 9.495 and 

*= 20. Since the flow field is uncoupled with the temperature field in the current study, the 

velocity field can be referred to as Fig. 3 since these two cases have similar flow field. With the 

increase of *, i.e. thermal conductivity of the deposit layer, the thermal resistance introduced by 

the deposit layer reduces. Therefore, heat is more easily conducted from the heated wall through 

deposit layer, leading to a small temperature gradient inside of the deposit layer. Upon 

transferred to the depositing front, the incoming fluid then carries the heat away. On the other 

hand, the decrease of thermal conductivity of the deposit layer presents large thermal resistance. 

This results in additional resistance in transferring heat from the wall to the depositing front at 

low * which reduces the heat transfer performance.  

Effect of * on Nux at different times is shown in Fig. 15. Note Nux for the clean channel is only 

taken from the steady state results for comparison purpose. As expected, heat transfer 

performance is significantly reduced when compared to that of a clean channel. The increase of 

* increases Nux at the entrance region. Upon careful examinations of the graphs for different * 
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shown in the zoomed in area in each figure, it is surprising to find that Nux at * = 100 becomes 

smaller gradually after x* = 1 and it reaches minimum among the testing cases at t = 30 s. Large 

Nux at the entrance region indicates high convection heat transfer, leading to a high temperature 

of the fluid at the entrance region. With a high temperature fluid flowing downstream, the 

convection heat transfer is therefore reduced.  

Figure 16 shows the temporal variations of Nua at different *. Note that x-axis is in log scale. 

Generally, the increase of * increases Nua which enhances the heat transfer performance. Such 

enhancement on the heat transfer performance becomes less significant with the increase of the 

thermal conductivity ratio between the deposit layer and the fluid. It decreases after * = 20 

given the decreased Nux discussed above.  

4.4 Effect of Pr number on the heat transfer performance 

Figure 17 shows the effect of Pr number on Nua. Pr number is defined in Eq. (17f). Generally, 

the increase of Pr number increases the heat transfer performance. Again, the heat transfer 

performance in a clean channel is much better than that in a fouled channel. With time 

progresses, the heat transfer performance in the fouled channel reduces due to the increase of the 

thickness of deposit layer.  

5. Concluding Remarks  

The present article investigates conjugated heat transfer in a channel with a growing deposit 

layer. The depositing front is captured by the level-set method. Heat transfer performance is 

quantified using local Nusselt number as well as length-averaged Nusselt number. It is shown 

that heat transfer performance is significantly reduced in fouled channel compared with that of a 

clean channel. With the growth of the deposit layer on the heated wall, heat transfer performance 

decreases. The increase of length-averaged Nusselt number is found with the increase of Re and 
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Pr numbers. The length-averaged Nusselt number increases when the thermal conductivity ratio 

between the deposit layer and the fluid is less than 20.  
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Table 1 Thermo-physical values of the fluid and deposit layer 

 kg/m3) cp (J/kgּK) (kg/m·s) k (W/mּK) 

Fluid  (1.0~5.0) 2.14×10-3 0.01 

Deposit layer 1.0 (1.0~5.0)   (0.005~1) 
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Fig. 1 Schematic of a two-dimensional channel. 
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Fig. 2 Deposit profile obtained using 80 × 20 CVs, t = 0.1 s (      ), 160 × 40 CVs, t = 0.05 s 

(        ) and 320 × 80 CVs, t = 0.025 s (        ). 
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(d) 

Fig. 3 Dimensionless velocity and temperature fields for Re = 300, Pe = 9.495, * = 2, Pr = 

0.214 in the fouled channel at (a) t = 0, (b) t = 10 s, (c) t = 20 s, and (d) t = 30 s.  
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Fig. 4 Dimensionless concentration fields for Re = 300, Pe = 9.495, * = 2, Pr = 0.214 in the 

fouled channel at (a) t = 10 s, (c) t = 20 s, and (d) t = 30 s.  
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(b) 

Fig. 5 Evolution of (a) the deposition profile and friction factor, and (b) Nux along the channel 

for Re = 300, Pe = 9.495, * = 2 and Pr = 0.214. 
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(d) 

Fig. 6 Dimensionless velocity and temperature fields for the case of Re = 100, Pe = 3.165, * = 2 

and Pr = 0.214 in the fouled channel at (a) t = 0, (b) t = 10 s, (c) t = 20 s, and (d) t = 30 s. 
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Fig. 7 Evolution of the deposition profile for Re = 100, Pe = 3.165, * = 2 and Pr = 0.214. 
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(d) 

Fig. 8 Dimensionless velocity and temperature fields for the case of Re = 500, Pe = 15.825, * = 

2 and Pr = 0.214 in the fouled channel at (a) t = 0, (b) t = 10 s, (c) t = 20 s, and (d) t = 30 s.  
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Fig. 9 Evolution of the deposition profile for Re = 500, Pe = 15.825, * = 2 and Pr = 0.214. 
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(b) 

Fig. 10 Variation of Nux along the channel for a clean and a fouled channel for (a) Re = 100, Pe 

= 3.165 and (b) Re = 500, Pe = 15.825 at * = 2 and Pr = 0.214.  
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(b) 

Fig. 11 Variation of (a) *, and (b) Nux under different Re and Pe numbers at t = 30 s under * = 

2 and Pr = 0.214. 
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Fig. 12 Variation of Nua at different Re and Pe numbers at * = 2 and Pr = 0.214. 
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Fig. 13 Dimensionless temperature fields under Re = 300, Pe = 9.495, * = 20 and Pr = 0.214 in 

the fouled channel at (a) t = 0, (b) t = 10 s, (c) t = 20 s, and (d) t = 30 s.  



International Journal of Thermal Science, 2015, Vol. 88, pp. 136–147. 

38 

 

 

 

0.1

0.3
0.2

0.4
0.50.60.70.8 0.9

t = 0 s

Frame 001  12 Nov 2013  0 TIME STEP

0.3
0.1

0.4 0.6
0.2

0.5 0.7

= 10 st

Frame 001  12 Nov 2013  0 TIME STEP

 
                                    (a)                                                                         (b) 

0.40.2
0.5

0.7

0.3
0.6

0.8

0.1

= 20 st

Frame 001  12 Nov 2013  0 TIME STEP

 

0.50.3
0.6

0.8

0.4

0.7
0.9

0.20.1

= 30 st

Frame 001  12 Nov 2013  0 TIME STEP

 
                                    (c)                                                                         (d) 

Fig. 14 Dimensionless temperature fields under Re = 300, Pe = 9.495, * = 0.2 and Pr = 0.214 in 

the fouled channel at (a) t = 0, (b) t = 10 s, (c) t = 20 s, and (d) t = 30 s.  
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Fig. 15 Variation of Nux along the channel for a clean and a fouled channel at Re = 300, Pe = 

9.495 and Pr = 0.214 under different * (a) t = 10 s, (b) t = 20 s and (c) t = 30 s.  
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Fig. 16 Variation of Nua for different * at Re = 300, Pe = 9.495 and Pr = 0.214.  
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Fig. 17 Variation of Nua for different Pr numbers at Re = 300, Pe = 9.495 and * = 2.  

 

 


