Search:
Computing and Library Services - delivering an inspiring information environment

From patterns to processes and back: analysing density-dependent responses to an abiotic stressor by statistical and mechanistic modelling

Moe, S. Jannicke, Kristoffersen, Anja B., Smith, Robert H. and Stenseth, Nils Chr. (2005) From patterns to processes and back: analysing density-dependent responses to an abiotic stressor by statistical and mechanistic modelling. Proceedings of the Royal Society of London Part B Biological Sciences, 272 (1577). pp. 2133-2142. ISSN 0962-8452

[img] PDF
Restricted to Registered users only

Download (398kB)

    Abstract

    Our knowledge about population-level effects of abiotic stressors is limited, largely due to lack of appropriate time-series data. To analyse interactions between an abiotic stressor and density-dependent processes, we used experimental time-series data for stage-structured populations (the blowfly Lucilia sericata) exposed to the toxicant cadmium through 20 generations. Resource limitation results in competition both in the larval and the adult stages. The toxicant has only negative effects at the organism level, but nevertheless, there were positive population-level effects. These are necessarily indirect, and indicate overcompensatory density-dependent responses. A non-parametric model (generalized additive model) was used to investigate the density-dependent structures of the demographic rates, without making assumptions about the functional forms. The estimated structures were used to develop a parametric model, with which we analysed effects of the toxicant on density-dependent and density-independent components of the stage-specific demographic rates. The parameter estimates identified both synergistic and antagonistic density–toxicant interactions. It is noteworthy that the synergistic interaction occurred together with a net positive effect of the toxicant. Hence, the effects of such interactions should be considered together with the capacity for compensatory responses. The combination of the two modelling approaches provided new insight into mechanisms for compensatory responses to abiotic stressors.

    Item Type: Article
    Additional Information: © 2005 The Royal Society
    Uncontrolled Keywords: non-parametric modelling, generalized additive modelling, time-series analysis, stage-specific density dependence, density–toxicant interaction
    Subjects: Q Science > Q Science (General)
    Q Science > QR Microbiology
    Schools: School of Applied Sciences
    References:

    Allee, W. C. 1938 The social life of animals. London: William
    Heinemann.
    Aviles, L. 1999 Cooperation and non-linear dynamics: an
    ecological perspective on the evolution of sociality. Evol.
    Ecol. Res. 1, 459–477.
    Bjørnstad, O. N., Begon, M., Stenseth, N. C., Falck,W., Sait,
    S. M. & Thomson, D. J. 1998 Population dynamics of the
    Indian meal moth: demographic stochasticity and delayed
    regulatory mechanisms. J. Anim. Ecol. 67, 110–126.
    (doi:10.1046/j.1365-2656.1998.00168.x.)
    Bowman, A. W. & Azzalini, A. 1997 Applied smoothing
    techniques for data analysis: the Kernel approach with S-Plus
    illustrations. Oxford statistical science series, vol. 18.
    Oxford, UK: Clarendon Press.
    Brillinger, D. R., Guckenheimer, J., Guttorp, P. & Oster, G.
    1980 Empirical modelling of population time series data:
    the case of age and density dependent vital rates. Lect.
    Math. Life Sci. 13, 65–90.
    Daniels, S. 1994 Effects of cadmium toxicity on population
    dynamics of the blowfly Lucilia sericata. Ph.D. Thesis,
    University of Reading.
    Ellner, S., Bailey, B. A., Bobashev, G. V., Gallant, A. R.,
    Grenfell, B. T. & Nychka, D. W. 1998 Noise and
    nonlinearity in measles epidemics: combining mechanistic
    and statistical approaches to population modeling. Am.
    Nat. 151, 425–440. (doi:10.1086/286130.)
    Forbes, V. E., Sibly, R.M. & Calow, P. 2001 Toxicant impacts
    on density-limited populations: a critical review of theory,
    practice, and results. Ecol. Appl. 11, 1249–1257.
    Forrest, B. 1996 Toxins and blowfly populations. Ph.D. Thesis,
    University of Leicester.
    Goodbrod, J. R. & Goff, M. L. 1990 Effects of larval
    population density on rates of development and interactions between two species of Chrysomya (Diptera:
    Calliphoridae) in laboratory culture. J. Med. Entomol. 27,
    338–343.
    Grant, A. 1998 Population consequences of chronic toxicity:
    incorporating density dependence into the analysis of life
    table response experiments. Ecol. Model. 105, 325–335.
    (doi:10.1016/S0304-3800(97)00176-2.)
    Gurney, W. S. C., Blythe, S. P. & Nisbet, R. M. 1980
    Nicholson’s blowflies revisited. Nature 287, 17–21.
    (doi:10.1038/287017a0.)
    Hanski, I. 1987 Nutritional ecology of dung- and carrionfeeding
    insects. In Nutritional ecology of insects, mites,
    spiders, and related invertebrates (ed. F. Slansky & J. G.
    Rodriguez), pp. 837–884. New York: Wiley.
    Hastie, T. J. & Tibshirani, R. J. 1990 Generalized additive
    models. Monographs on statistics and applied probability,
    vol. 43. London: Chapman & Hall.
    Kendall, B. E., Briggs, C. J., Murdoch, W. W., Turchin, P.,
    Ellner, S. P., McCauley, E., Nisbet, R. M. & Wood, S. N.
    1999 Why do populations cycle? A synthesis of statistical
    and mechanistic modeling approaches. Ecology 80,
    1789–1805.
    Liess, M. 2002 Population response to toxicants is altered by
    intraspecific interaction. Environ. Toxicol. Chem. 21,
    138–142. (doi:10.1897/1551-5028(2002)021!0138:
    PRTTIAO2.0.CO;2.)
    Lingjærde, O. C., Stenseth, N. C., Kristoffersen, A. B.,
    Smith, R. H., Moe, S. J., Read, J. M., Daniels, S. &
    Simkiss, K. 2001 Exploring the density-dependent
    structure of blowfly populations by nonparametric additive
    modeling. Ecology 82, 2645–2658.
    Manly, B. F. J. 1990 Stage-structured populations: sampling,
    analysis and simulation. London: Chapman & Hall.
    May, R. M. 1973 Stability and complexity in model ecosystems.
    Monographs in population biology, vol. 6. Princeton, NJ:
    Princeton University Press.
    Maynard Smith, J. 1974 Models in ecology. London:
    Cambridge University Press.
    McCullagh, P. & Nelder, J. A. 1989 Generalized linear models,
    2nd edn. Monographs on statistics and applied probability,
    vol. 37. London: Chapman & Hall.
    Moe, S. J., Stenseth, N. C. & Smith, R. H. 2001 Effects of a
    toxicant on population growth rates: sublethal and delayed
    responses in blowfly populations. Funct. Ecol. 15,
    712–721. (doi:10.1046/j.0269-8463.2001.00575.x.)
    Moe, S. J., Stenseth, N. C. & Smith, R. H. 2002a Density
    dependence in blowfly populations: experimental evaluation
    of non-parametric time-series modelling. Oikos 98,
    523–533. (doi:10.1034/j.1600-0706.2002.980317.x.)
    Moe, S. J., Stenseth, N. C. & Smith, R. H. 2002b Densitydependent
    compensations in blowfly populations give
    indirectly positive effects of a toxicant. Ecology 83,
    1597–1603.
    Murdoch,W.W., Kendall, B. E., Nisbet, R. M., Briggs, C. J.,
    McCauley, E. & Bolser, R. 2002 Single-species models for
    many-species food webs. Nature 417, 541–543. (doi:10.
    1038/417541a.)
    Murua, R., Gonzalez, L. A. & Lima, M. 2003 Population
    dynamics of rice rats (a Hantavirus reservoir) in southern
    Chile: feedback structure and non-linear effects of climatic
    oscillations. Oikos 102, 137–145. (doi:10.1034/j.1600-
    0706.2003.12226.x.)
    Nelson,W. A., McCauley, E. & Wimberta, J. 2004 Capturing
    dynamics with the correct rates: inverse problems using
    semiparametric approaches. Ecology 85, 889–903.
    Nicholson, A. J. 1954a Compensatory reactions of populations
    to stresses, and their evolutionary significance.
    Aust. J. Zool. 2, 1–8. (doi:10.1071/ZO9540001.)
    Nicholson, A. J. 1954b An outline of the dynamics of animal
    populations. Aust. J. Zool. 2, 9–65. (doi:10.1071/
    ZO9540009.)
    Nisbet, R. M. & Gurney, W. S. C. 1982 Oscillations in
    laboratory fly populations. In Modelling fluctuating
    populations (ed. R. M. Nisbet & W. S. C. Gurney),
    pp. 285–308. Chichester: Wiley.
    Parker, G. A. 2000 Scramble in behaviour and ecology. Phil.
    Trans. R. Soc. B 355, 1637–1645. (doi:10.1098/rstb.2000.
    0726.)
    Readshaw, J. L. & Cuff, W. R. 1980 A model of Nicholson’s
    blowflies cycles and its relevance to predation theory.
    J. Anim. Ecol. 49, 1005–1010.
    Saunders, D. S. & Bee, A. 1995 Effects of larval crowding on
    size and fecundity of the blow fly, Calliphora vicina
    (Diptera: Calliphoridae). Eur. J. Entomol. 92, 615–622.
    Sibly, R. M., Williams, T. D. & Jones, M. B. 2000 How
    environmental stress affects density dependence and
    carrying capacity in a marine copepod. J. Appl. Ecol. 37,
    388–397. (doi:10.1046/j.1365-2664.2000.00534.x.)
    Simkiss, K., Daniels, S. & Smith, R. H. 1993 Effects of
    population density and cadmium toxicity on growth and
    survival of blowflies. Environ. Pollut. 81, 41–45. (doi:10.
    1016/0269-7491(93)90026-K.)
    Smith, R. H., Daniels, S., Simkiss, K., Bell, E. D., Ellner, S.
    & Forrest, B. 2000 Blowflies as a case study in non-linear
    population dynamics. In Chaos in real data: the analysis of
    non-linear dynamics in short ecological time series (ed. J. N.
    Perry, R. H. Smith, I. P. Woiwod & D. Morse),
    pp. 137–172. Dordrecht: Kluwer Academic Publishers.
    So, P.-M. & Dudgeon, D. 1989 Variation in the life-history
    parameters of Hemipyrellia ligurriens (Diptera: Calliphoridae)
    in response to larval competition for food. Ecol.
    Entomol. 14, 109–116.
    Stenseth, N. C. et al. 1998 From patterns to processes: phase
    and density dependencies in the Canadian lynx cycle. Proc.
    Natl Acad. Sci. USA 95, 15 430–15 435. (doi:10.1073/
    pnas.95.26.15430.)
    Stephens, P. A. & Sutherland, W. J. 1999 Consequences of
    the Allee effect for behaviour, ecology and conservation.
    Trends Ecol. Evol. 14, 401–405. (doi:10.1016/S0169-
    5347(99)01684-5.)
    Stephens, P. A., Sutherland, W. J. & Freckleton, R. P. 1999
    What is the Allee effect? Oikos 87, 185–190.
    Stokes, T. K., Gurney,W. S. C., Nisbet, R. M. & Blythe, S. P.
    1988 Parameter evolution in a laboratory insect population.
    Theor. Popul. Theor. 34, 248–265. (doi:10.1016/
    0040-5809(88)90023-8.)
    Turchin, P. 1995 Population regulation: old arguments and a
    new synthesis. In Population dynamics: new approaches and
    synthesis (ed. N. Cappuccino & P. W. Price), pp. 19–40.
    San Diego: Academic Press.
    Uchmanski, J. 2000 Resource partitioning among competing
    individuals and population persistence: an individualbased
    model. Ecol. Model. 131, 21–32. (doi:10.1016/
    S0304-3800(00)00242-8.)
    Ullyett, G. C. 1950 Competition for food and allied
    phenomena in sheep-blowfly populations. Phil. Trans. R.
    Soc. B 234, 77–174.
    Wood, S. N. 2001 Partially specified ecological models. Ecol.
    Monogr. 71, 1–25.

    Depositing User: Sara Taylor
    Date Deposited: 08 Jun 2007
    Last Modified: 28 Jul 2010 19:20
    URI: http://eprints.hud.ac.uk/id/eprint/226

    Document Downloads

    Downloader Countries

    More statistics for this item...

    Item control for Repository Staff only:

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©