Computing and Library Services - delivering an inspiring information environment

Fitting population dynamic models to time-series data by gradient matching

Ellner, Stephen P., Seifu, Yodit and Smith, Robert H. (2002) Fitting population dynamic models to time-series data by gradient matching. Ecology, 83 (8). pp. 2256-2270. ISSN 0012-9658

[img] PDF
Restricted to Registered users only

Download (561kB)


    We describe and test a method for fitting noisy differential equation models to a time series of population counts, motivated by stage-structured models of insect and zooplankton populations. We consider semimechanistic models, in which the model structure is derived from knowledge of the life cycle, but the rate equations are estimated nonparametrically from the time-series data. The method involves smoothing the population time series x(t) in order to estimate the gradient dx/dt, and then fitting rate equations using penalized regression splines. Computer-intensive methods are used to estimate and remove the biases that result from the data being discrete time samples with sampling errors from a continuous time process. Semimechanistic modeling makes it possible to test assumptions about the mechanisms behind population fluctuations without the results being confounded by possibly arbitrary choices of parametric forms for process-rate equations. To illustrate this application, we analyze time-series data on laboratory populations of blowflies Lucilia cuprina and Lucilia sericata. The models assume that the populations are limited by competition among adults affecting their current birth and death rates. The results correspond to the actual experimental conditions. For L. cuprina (where the model's structure is appropriate) a good fit can be obtained, while for L. sericata (where the model is inappropriate), the fitted model does not reproduce some major features of the observed cycles. A documented set of R functions for all steps in the model-fitting process is provided as a supplement to this article.

    Item Type: Article
    Additional Information: © Ecological Society of America
    Uncontrolled Keywords: blowflies, gradient matching, Lucilia cuprina, Lucilia sericata, model fitting, partially specified models, population dynamics, semimechanistic models, semiparametric models, stage structured models
    Subjects: G Geography. Anthropology. Recreation > G Geography (General)
    Q Science > QR Microbiology
    Schools: School of Applied Sciences

    Briggs, C. J., W. W. Murdoch, and R. M. Nisbet. 1999. Recent
    developments in theory for biological control of insect
    pests by parasitoids. Pages 22-42 in B. A. Hawkins and
    H. V. Cornell, editors. Theoretical approaches to biological
    control. Cambridge University Press, Cambridge, UK.
    Carroll, R. J., J. D. Maca, and D. Ruppert. 1999. Nonparametric
    estimation in the presence of measurement errors.
    Biometrika 86:541-554.
    Carroll, R. J., D. Ruppert, and L. W. Stefanski. 1995. Measurement
    error in nonlinear models. Chapman and Hall,
    New York, New York, USA.
    Caswell, H. 2000. Matrix population models. Second edition.
    Sinauer, Sunderland, Massachusetts, USA.
    Cook, J. R., and L. A. Stefanski. 1994. Simulation-extrapolation
    estimation in parametric measurement error models.
    Journal of the American Statistical Association 89:13 14-
    Daniels, S. 1994. Effects of cadmium toxicity on population
    dynamics of the blowfly Llicilia sericata. Dissertation. University
    of Reading, Reading, UK.
    Dennis, B., and M. Taper. 1994. Density dependence in time
    series observations of natural populations: estimation and
    testing. Ecological Monographs 64:205-224.
    de Valpine, P., and A. Hastings. 2002. Fitting population
    models incorporating process noise and observation error.
    Ecological Monographs 72:57-76.
    Eilers, P. H. C., and B. D. Marx. 1996. Flexible smoothing
    with B-splines and penalties (with discussion). Statistical
    Sciences 11:89-121.
    Ellner, S. P., B. A. Bailey, G. V. Bobashev, A. R. Gallant, B.
    T. Grenfell, and D. W. Nychka. 1998. Noise and nonlinearity
    in measles epidemics: combining mechanistic and
    statistical approaches to population modeling. American
    Naturalist 151:425-440.
    Ellner, S. P., B. E. Kendall, S. N. Wood, E. McCauley, C. J.
    Briggs. 1997. Inferring mechanism from time-series data:
    delay-differential equations. Physica D 100: 182-194.
    Fan, J., and I. Gijbels. 1996. Local polynomial modeling and
    its applications. Chapman and Hall, New York, New York,
    Forrest, B. 1996. Toxins and blowfly population dynamics.
    Dissertation. University of Leicester, Leicester, UK.
    GouriCroux, C., and A. Montfort. 1996. Simulation-based
    econometric inference. Oxford University Press, Oxford,
    Gurney, W. S. C., S. P. Blythe, and R. M. Nisbet. 1980.
    Nicholson's blowflies revisited. Nature 287: 17-2 1.
    Gurney, W. S. C., and R. M. Nisbet. 1985. Fluctuation periodicity,
    generation separation, and the expression of larval
    competition. Theoretical Population Biology 28:150-
    Gurney, W. S. C.. and R. M. Nisbet. 1998. Ecological dynamics.
    Oxford University Press, Oxford, UK.
    Haefner, J. W. 1996. Modeling biological systems: principles
    and applications. Chapman and Hall, New York, New York.
    Hastings, A. M. 1997. Population biology: concepts and
    models. Springer-Verlag, New York, New York, USA.
    Hilborn, R., and M. Mangel. 1997. The ecological detective:
    confronting models with data. Princeton University Press,
    Princeton, New Jersey, USA.
    Hudson, P. J., A. P. Dobson, and D. Newborn. 1998. Prevention
    of population cycles by parasite removal. Science
    Ihaka, R., and R. Gentleman. 1996. R: a language for data
    analysis and graphics. Journal of Computational and
    Graphical Statistics 5:299-314.
    Ives, A. R., S. R. Carpenter, andB. Dennis. 1999. Community
    interaction webs and zooplankton responses to planktivory
    manipulations. Ecology 80: 1405-1 421.
    Kendall, B. E., C. J. Briggs, W. W. Murdoch, P. Turchin, S.
    P. Ellner, E. McCauley, R. Nisbet, and S. N. Wood. 1999.
    Why do populations cycle? A synthesis of statistical and
    mechanistic modeling approaches. Ecology 80: 1789-1 805.
    Korpimaki, E., and K. Norrdahl. 1998. Experimental reduction
    of predators reverses the crash phase of small-rodent
    cycles. Ecology 79:2448-2455.
    Laska, M. S., and J. T. Wootton. 1998. Theoretical concepts
    and empirical approaches to measuring interaction strength.
    Ecology 79:461-476.
    Lingjzrde, 0 . C., N. C. Stenseth, A. B. Kristoffersen, R. H.
    Smith, S. J. Moe, J. M. Read, S. Daniels, and K. Simkiss.
    2001. Exploring non-linearities in the stage-specific density-
    dependent structure of experimental blowfly populations
    using non-parametric additive modeling. Ecology 82:
    McCauley, E., R. M. Nisbet, A. M. DeRoos, W. W. Murdoch,
    and W. S. C. Gurney. 1996. Structured population models
    of herbivorous zooplankton. Ecological Monographs 66:
    Murdoch, W. W. 1994. Population regulation in theory and
    practice. Ecology 75:271-287.
    Murdoch, W. W., and C. J. Briggs. 1996. Theory for biological
    control: recent developments. Ecology 77:2001-2013.
    Nicholson, A. J. 1954. An outline of the dynamics of animal
    populations. Australian Journal of Zoology 2:9-65.
    Nicholson. A. J. 1957. The self-adjustment of populations to
    change. Cold Spring Harbor Symposia on Quantitative Biology
    22: 153-173.
    Nychka, D. W., S. Ellner, A. R. Gallant, and D. McCaffrey.
    1992. Finding chaos in noisy systems (with discussion).
    Journal of the Royal Statistical Society Series B 54:399-
    Ohman, M. D., and S. N. Wood. 1996. Mortality estimates
    for planktonic copepods: Psrudocalanus newmani in a temperate
    fjord. Limnology and Oceanography 41: 126-1 35.
    Oksendal, B. 1998. Stochastic differential equations: an introduction
    with applications. Fifth edition. Springer-Verlag,
    New York, New York, USA.
    Olsen, L. F., and W. M. Schaffer. 1990. Chaos versus noisy
    periodicity: alternative hypotheses for childhood epidemics.
    Science 249:499-504.
    Perry, J. N. 2000. Overciew. Pages 173-190 in J. N. Perry,
    R. H. Smith, I. P. Woiwod, and D. Morse. editors. Chaos
    in real data: the analysis of non-linear dynamics from short
    ecological time series. Kluwer Academic, Dordrecht, The
    Pfister, C. 1995. Estimating competition coefficients from
    census data: a test with field manipulations of tidepool
    fishes. American Naturalist 146:27 1-29 1.
    Readshaw. J. L., and W. R. Cuff. 1980. A model of Nicholson's
    blowfly cycles and its relevance to predation theory.
    Journal of Animal Ecology 49:1005-1010.
    Readshaw, J. L., and A. C. M. van Gerwen. 1983. Agespecific
    survival, fecundity and fertility of the adult blowfly,
    Lucilia cupri~la, in relation to crowding, protein food,
    and population cycles. Journal of Animal Ecclogy 52:879-
    Ruppert, D., and R. J. Carroll. 1997. Penalized regression
    splines. Technical Report TR1249. Department of Operations
    Research and Industrial Engineering, Cornell University,
    Ithaca, New York, USA.
    Ruppert, D., and R. J. Carroll. 2000. Spatially adaptive penalties
    for spline fitting. Australian and New Zealand Journal
    of Statistics 42:205-223.
    Smith. R. H., S. Daniels. K. Simkiss. E. D. Bell, S. P. Ellner,
    and B. Forrest. 2000. Blowflies as a case study in nonlinear
    population dynamics. Pages 137-172 in J. N. Perry,
    R. H. Smith. I. P. Woiwod, and D. Morse, editors. Chaos
    in real data: the analysis of non-linear dynamics from short
    ecological time series. Kluwer Academic, Dordrecht, The
    Stefanski, L. A., and J. R. Cook. 1995. Simulation-extrapolation:
    the measurement error jackknife. Journal of the
    American Statistical Association 90:1247-1 256.
    Stokes, T. K., W. S. C. Gurney, R. M. Nisbet. and S. P. Blythe.
    1988. Parameter evolution in a laboratory insect population.
    Theoretical Population Biology 34:248-265.
    Tidd, C. W., L. F. Olsen, and W. M. Schaffer. 1993. The case
    for chaos in childhood epidemics. 11. Predicting historical
    epidemics from mathematical models. Proceedings of the
    Royal Society of London B 254:257-273.
    Tuljapurkar, S., and H. Caswell, editors. 1997. Structuredpopulation
    models in marine, terrestrial, and freshwater
    systems. Chapman and Hall, New York, New York, USA.
    Turchin. P., and S. P. Ellner. 2000tr. Modelling time-series
    data. Pages 33-48 in J. N. Perry, R. H. Smith, I. P. Woiwod,
    and D. Morse, editors. Chaos in real data: the analysis of
    non-linear dynamics from short ecological time series. Kluwer
    Academic, Dordrecht, The Netherlands.
    Turchin, P., and S. P Ellner. 2000b. Living on the edge of Caswell, editors. 1997. Structured-population models in
    chaos: population dynamics of Fennoscandian voles. Ecol- marine, terrestrial, and freshwater systems. Chapman and
    ogy 81:3099-3116. Hall, New York, New York, USA.
    Wahba, G. 1990. Spline models for observational data. So- Wood, S. N. 1999. Semi-parametric population models. Pages
    ciety for Industrial and Applied Mathematics, Philadelphia, 41-50 in Challenges in applied population biology. Aspects
    Pennsylvania, USA. of applied biology. Volume 53. Association of Applied Bi-
    Wood, S. N. 1994. Obtaining birth and mortality patterns
    ologists, Warwick, UK.
    Wood, S. N. 2001. Partially specified ecological models. Ecofrom
    structured population trajectories. Ecological Mono- logical Monographs 71: 1-25.
    graphs 64:23-44. Wood, S. N., and M. B. Thomas. 1999. Super sensitivity to
    Wood, S. N. 1997. Inverse problems and structured-popu- structure in biological models. Proceedings of the Royal
    lation dynamics. Pages 555-586 in S. Tuljapurkar and H. Society of London B 266:565-570.

    Depositing User: Sara Taylor
    Date Deposited: 08 Jun 2007
    Last Modified: 28 Jul 2010 19:20


    Downloads per month over past year

    Repository Staff Only: item control page

    View Item

    University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©