Search:
Computing and Library Services - delivering an inspiring information environment

meso Substituent Effects on the Geometric and Electronic Structures of High-Spin and Low-Spin Iron(III) Complexes of Mono-meso-Substituted Octaethylporphyrins.

Kalish, Heather, Camp, Jason, Stepien, Marcin, Latos-Grazynski, Lechoslaw, Olmstead, Marilyn M. and Balch, Alan L. (2002) meso Substituent Effects on the Geometric and Electronic Structures of High-Spin and Low-Spin Iron(III) Complexes of Mono-meso-Substituted Octaethylporphyrins. Inorganic Chemistry, 41 (4, Cop). pp. 989-997. ISSN 0020-1669

Metadata only available from this repository.

Abstract

Introduction of a single meso substituent into ClFeIII(OEP) or K[(NC)2Fe(OEP)] results in significant changes in the geometric and/or spectroscopic properties of these complexes. The mono-meso-substituted iron(III) complexes ClFeIII(meso-Ph-OEP), ClFeIII(meso-Bu-OEP), ClFeIII(meso-MeO-OEP), ClFeIII(meso-Cl-OEP), ClFeIII(meso-NC-OEP), ClFeIII(meso-HC(O)-OEP), and ClFeIII(meso-O2N-OEP) were isolated and characterized by their UV/visible and paramagnetically shifted 1H NMR spectra. The structures of both ClFeIII(meso-Ph-OEP) and ClFeIII(meso-NC-OEP) were detd. by x-ray crystallog. Both mols. have five-coordinate structures typical for high-spin (S = 5/2) iron(III) complexes. However, the porphyrins themselves no longer have the domed shape seen in ClFeIII(OEP), and the N4 coordination environment possesses a slight rectangular distortion. These high-spin, mono-meso-substituted iron(III) complexes display 1H NMR spectra in chloroform-d soln. which indicate that the conformational changes seen in the solid-state structures are altered by normal mol. motion to produce spectra consistent with Cs mol. symmetry. In pyridine soln. the high-spin six-coordinate complexes {(py)ClFeIII(meso-R-OEP)} form. In methanol soln. in the presence of excess potassium cyanide, the low-spin six-coordinate complexes K[(NC)2FeIII(meso-R-OEP)] form. The 1H NMR spectra of these show that electron-donating substituents produce an upfield relocation of the meso-proton chem. shifts. This relocation is interpreted in terms of increased contribution from the less common (dxz,dyz)4(dxy)1 ground electronic state as the meso substituent becomes more electron donating. [on SciFinder(R)]

Item Type: Article
Additional Information: Unmapped bibliographic data: PY - 2002/// [EPrints field already has value set] M3 - 10.1021/ic011034q [Field not mapped to EPrints] JA - Inorg. Chem. [Field not mapped to EPrints]
Uncontrolled Keywords: iron porphyrin substituent effect structure electronic state, conformation iron porphyrin meso substituent effect, crystal structure iron chloro porphyrin
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
Related URLs:
Depositing User: Sara Taylor
Date Deposited: 15 Jan 2015 14:18
Last Modified: 15 Jan 2015 14:18
URI: http://eprints.hud.ac.uk/id/eprint/22280

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©