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Background: The main source of 5-HT in body is in enterchromafin cells of intestine, different studies mentioned different roles for 
endogenous 5-HT and receptors involved and it is not clearified the mechanism of action of endogenous 5-HT.
Objectives: To study the role of endogenous 5-HT on modulation of contraction and relaxation responses induced by electrical field 
stimulation (EFS) in different regions of the rat intestine.
Materials and Methods: Segments taken from the rat duodenum, jejunum, mid and terminal ileum were vertically mounted, connected 
to a transducer and exposed to EFS with different frequencies in the absence and presence of various inhibitors of enteric mediators i. e. 
specific 5-HT receptor antagonists.
Results: EFS-induced responses were sensitive to TTX and partly to atropine, indicating a major neuronal involvement and a cholinergic 
system. Pre-treatment with WAY100635 (a 5-HT1A receptor antagonist) and granisetron up to 10.0 µM, GR113808 (a 5-HT4 receptor 
antagonist), methysergide and ritanserin up to 1.0 µM, failed to modify responses to EFS inall examined tissues. In the presence of SB258585 
1.0 µM (a 5-HT6 receptor antagonist) there was a trend to enhance contraction in the proximal part of the intestine and reduce contraction 
in the distal part. Pre-treatment with SB269970A 1.0 µM (5-HT7 receptor antagonist) induced a greater contractile response to EFS at 0.4 Hz 
only in the duodenum.
Conclusions: The application of 5-HT1A, 5-HT2, 5-HT3, 5-HT4, 5-HT6 and 5-HT7 receptor antagonists, applied at concentrations lower than 1.0 
µM did not modify the EFS-induced contraction and relaxation responses, whichsuggests the unlikely involvement of endogenous 5-HT in 
mediating responses to EFS in the described test conditions.

Keywords:Electric Stimulation Therapy; Serotonin 5-HT1 Receptor Antagonists; Intestine, Small

Implication for health policy/practice/research/medical education:
We already know that the main source of 5-HT in body is intestinal tract. Knowing the role of endogenous 5-HT and subtypes involved in contraction and 
relaxation response could give us a clue about the treatment of gastrointestinal disorders such as IBS, constipation, diarrhea, emesis and so on.
Copyright © 2014, Zahedan University of Medical Sciences; Published by DocS Corp. This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Background
5-hydroxytryptamine (5-HT) can induce changes in gas-

trointestinal motility and transmural transport of fluid 
and electrolytes (1-4). Although the 5-HT content of the 
gastrointestinal tract is higher than that of any other or-
gan (5), the precise role of 5-HT in the physiology of the 
gut remains unknown. The difficulty encountered in es-
tablishing what endogenous 5-HT actually does in the gut 
may be due to the two different sites of 5-HT storage in 
the enterochromaffin cells of the mucosa (6) and in the 
enteric neurones, for which it serves a neurotransmitter 
role (7). Exogenous 5-HT exerts different actions in the 
gut through multiple receptor subtypes. For example, 
5-HT1A receptors are present on the enteric neurons and 
ganglia (8), and presynaptically inhibit the release of ace-
tylcholine at the nicotinic synapse and the secretion of 

tachykinins (9). 5-HT1A receptors are also located postsyn-
aptically where they hyperpolarise the enteric neurons 
(10). 5-HT2 receptors are located directly on the smooth 
muscle, and the 5-HT3 receptors, which are ligand-gated 
ion channels are found in both submucosal and myen-
tericneurones, which mediate a rapidly developing, but 
short lived postsynaptic depolarisation (11, 12). The 5-HT4 
receptor, a neuronal receptor, which augments the re-
lease of acetylcholine at nicotinic synapses (10, 13), also 
increases the amplitude of contractions of the longitudi-
nal muscle in response to transmural electrical stimula-
tion in the guinea pig ileum (14). It isunknown whether 
endogenous 5-HT can access receptors available to stimu-
lation by exogenous 5-HT to mediate the well-established 
contraction or relaxation response in the intestine. 
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2. Objectives
Therefore the aim of the present study was to electri-

cally stimulate the rat intestinal segments in an attempt 
to release endogenous neurotransmitter substances. The 
possibility that released 5-HT may contribute to contrac-
tion and relaxation responses, was investigated using 
5-HT receptor antagonists with selective actions for 5-HT 
receptor subtypes. 

3. Materials and Methods

3. 1. Drugs
Atropine sulphate (Sigma), granisetron (GlaxoSmith-

Kline), methysergide maleate (Sandoz), tetrodotoxin 
(Sigma), WAY100635 (N-[2-[4-(2-methoxyphenyl)-1-piper-
azinyl] ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide-
trihydrochloride) (Research Biochemicals Inc), GR113808 
([1-[2-[(methylsulphonyl) amino] ethyl]-4-piperidinyl] 
methyl 1-methyl-1H-indole-3-carboxylate), SB269970-A 
(®)-3-(2-(2-(4-Methyl-piperidin-1-yl)ethyl)-pyrolidine-
1-sulphonyl)-phenol SB258585 (4-Iodo-N-[4-methoxy-3-(4-
methyl-piperazin-1-yl)-phenyl]-benzenesulphonamide) 
(Glaxo Smith Kline Beecham) and DL-PCPA methylester 
hydrochloride (Sigma) were dissolved in distilled water; 
ritanserin (Research Biochemicals Inc) was dissolved in 
methanol with distilled water being used for further di-
lutions. Preliminary experiments established that the ve-
hicles used did not show any effect on the tissues or the 
responses to EFS. 

3. 2. Preparation of Isolated Tissues
All procedures were carried out in accordance with in-

stitutional guidelines for animal care. Adult male Lister 
Hooded rats (Bradford University strain) (250-350 g) were 
killed by cervical dislocation following a blow to the 
head. The whole intestine was removed and immediately 
placed in freshly prepared Krebs’ solution (composition 
mM: NaCl 118, KCl 4. 7, KH2PO4 1.2, MgSO4 1.2, CaCl2 2. 5, 
NaHCO3 25 and glucose 10) and gassed with 95% O2 and 
5% CO2 at room temperature. The mesentery and fatty tis-
sue were removed and the intestine was emptied of its 
contents by flushing Krebs’ solution gently through it 
using a narrow tipped pipette. Two segments were taken 
from four different regions of the intestine: duodenum, 
jejunum, mid ileum and terminal ileum, 1-5 cm, 10-14 cm, 
30-34 cm distal to the pyloric region, and 1-5 cm proximal 
to the ileocaecal junction, respectively. Each segment was 
connected vertically to a tissue holder, which contained 
two stainless steel electrodes of 40 mm length, 80 mm 
apart. 

After connecting the tissues to the tissue holders using 
cotton threads, the tissues were bathed in a 25 mL water-
jacketed organ bath containing 20 mL Krebs’ solution 
and placed under a 1.0 g tension. The Krebs’ solution was 
maintained at a temperature of 37 ± 0.5oC and gassed 

continuously with a mixture of 95% O2 and 5% CO2. Each 
tissue was left to equilibrate in the presence or absence 
of the antagonist for 1 hour, and washed every 20 min-
utes. The resting tension was re-adjusted to 1.0 g when 
required throughout the experiment. Longitudinally 
mediated responses were recorded using isometric Grass 
transducers (FT03, Grass Instrument Co. , Mass, USA) and 
displayed, stored and analyzedusing a PC Pentium com-
puter with the Power Lab Chart V4. 0.4 software. 

3. 3. Method of Electrical Field Stimulation (EFS)
The effects of different drugs were observed in stimu-

lated tissues. Stimulation of tissues was carried out us-
ing stainless steel electrodes extended from the Perspex 
tissue holders. Tissues were electrically stimulated using 
200 BioScience stimulators. In all experiments double 
pulse stimulation with 75 ms delay between pulses and 
0.5 ms pulse width at supramaximal voltage of 30 v and 
frequencies of 0.4, 1.0 and 10 Hz were used. The duration 
of the stimulation was 1 minute, which was applied at 
ten-minute intervals. Preliminary experiments revealed 
that these parameters were suitable to obtain reproduc-
ible responses for the entire duration of the experiments. 

3. 4. Experimental Design
Using a paired experimental design, the frequency-re-

sponse curves to EFS (0.4, 1.0 and 10.0 Hz) in the absence 
(control) or presence of antagonists were constructed. 
For the four selected regions of the intestine, one seg-
ment was randomly taken as the control and the others 
for tests. The test tissues were left to equilibrate with 
the antagonists atropine (muscarinic antagonist, 10 nM, 
0.1 and 1.0 µM), WAY100635 (5-HT1A receptor antagonist, 
1.0-10.0 µM (15)), methysergide (5-HT1/2/7 receptor an-
tagonist, 1.0 µM), ritanserin (5-HT2 receptor antagonist 
0.1 and 1.0 µM), granisetron (5-HT3 receptor antagonist, 
1.0-10.0 µM), GR 113808 (5-HT4 receptor antagonist, 1.0 µM 
(16)), SB258585 (5-HT6 receptor antagonist, 1.0 µM (17)), 
SB269970A (5-HT7 receptor antagonist, 1.0 µM (18)) for 
one hour before the application of EFS. The antagonists 
were constantly present in the organ bath during the 
construction of the response curves. In separate experi-
ments the effect of tetrodotoxin (TTX, 1.0 µM, 1 hour pre-
treatment) on the responses to EFS was studied. The num-
ber of observations ‘n’ represents the number of animals 
used. The profile of action of antagonists on responses to 
EFS was similar in different regions of the intestine; rep-
resentative data is shown. 

3. 5. Analysis of Results
Changes in g tension were expressed as either a percent-

age of the maximal response to KCl (0.1 mM) or the mean 
of the absolute values plus standard error of the mean. 
The significance of differences between the control and 
the test responses was determined using the paired stu-
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dents’ t-test; values of less than 0.05 were considered 
statistically significant. The responses to the phasic and 
tonic components of the EFS applied at 10.0 Hz were 
measured during the first 10 seconds and 60 seconds of 
stimulation, respectively. The relaxation responses were 
analysed by measuring the minimum tonic response ob-
served during the one-minute stimulation. 

4. Results

4. 1. The Effect of EFS on Intestinal Tissues
The application of EFS induced frequency-dependent 

contraction responses in all examined segments. The 
contraction response to EFS at low frequencies of 0.4 and 
1.0 Hz developed slowly and proceeded by a small relax-
ation response in all examined tissues; EFS at a frequency 
of 10.0 Hz caused a rapid contraction (phasic) which was 
followed by a sustained contraction (tonic) (Figure 1). 

4. 2. The Effect of Tetrodotoxin (TTX) on Modifying 
the Responses to EFS

A one-hour pre-treatment with TTX ( 1.0 µM) significantly 
reduced (by approximately 90%) or abolished the contrac-
tions induced by EFS, at different frequencies (Figure 2). 

Figure 1. Representative traces showing contractile response induced by EFS in different regions of the rat small intestine

Representative tracings showing the initial relaxation and subsequent contractile response to EFS for 1 min at 0.4, 1.0 and 10.0 Hz, 30.0 v and 0.5 ms width 
in the duodenum, jejunum, mid ileum, and terminal ileum of the rat small intestine.
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Figure 2. The Contraction Responses Induced by Electrical Field Stimulation (30 v; 0.4, 1 and 10 Hz, and 0.5 ms width) in the Absence and Presence of 1.0 
µM Tetrodotoxin in the rat Small Intestine
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4. 3. The Ability of Atropine to Modify EFS Induced 
Responses

In tissues taken from the jejunum and ileum but not the 
duodenum, atropine (0.01, 0.1 and 1.0 µM) significantly (P 
< 0.05) reduced the contractions induced by EFS applied 
at low frequencies of 0.4 and 1.0 Hz. In the presence of 
atropine, the effect of EFS applied at 10.0 Hz was to in-
duce a measurable relaxation response prior to the con-
traction response. Moreover, atropine significantly (P < 
0.05-0.001) reduced or abolished the phasic contraction 
responses in all four regions of the intestinal tract (Fig-
ure 3). Furthermore, atropine was able to significantly (P 
< 0.05-0.001) reduce the tonic component of the contrac-
tile response to the EFS at 10.0 Hz in the duodenum, jeju-
num and mid ileum but not in the terminal ileum. 

4. 4. The Ability of the 5-HT Receptor Antagonists to 
Modify EFS Induced Responses

In the presence of the 5-HT1A receptor antagonist 
WAY100635 1.0, 10.0 nM and 1.0 µM, the responses to EFS 
were comparable to those of control tissues in all seg-
ments examined. In most tissues examined, there was a 
trend for 10.0 µM WAY100635 to reduce the contraction 
response, which inconsistently achieved significance. 
However, the tonic contraction at 10.0 Hz was not re-
duced by 10.0 µM WAY100635 (data not shown). The re-
laxation response to EFS was not modified by WAY100635. 
Methysergide (0.1 and 1.0 µM) induced no changes in the 
contractile response to EFS, with the exception of a trend 
rising at a higher concentration of 1.0 µM to increase 
tonic contractions at 10.0 Hz. This was significant in the
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Figure 3. The Contractile Response Induced by EFS (30 v; 0.4, 1 and 10 Hz and 0.5 ms width) in the Absence and Presence of 10.0 nM- 1.0 μM Atropine in 
the Rat Small Intestine
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jejunum and terminal ileum (P < 0.05 and P < 0.01, re-
spectively), (Figure 4). The relaxation response to EFS re-
duced significantly in the duodenum in the presence of 
1.0 µM methysergide. 

The application of ritanserin at 1.0 µM but not at 0.01 
and 0.1 µM, was able to significantly (P < 0.05) attenu-
ate the contraction and the relaxation responses to EFS 
at all frequencies and in all tissues examined (Figure 5). 
In the presence of granisetron at 10.0 µM (but not at 1.0 
µM) there was a general trend of attenuation of the con-
tractile responses to EFS that frequently achieved signif-
icance (Figure 6). The application of GR113808 ( 1.0 µM) 
failed to modify the responses to EFS applied at different 
frequencies for all tested tissues (data not shown). In the 
presence of SB258585 ( 1.0 µM) the contractile response 
to EFS showed a general increasing trend in the proximal 
part of the intestine (duodenum and jejunum) that fre-
quently achieved significance (P < 0.05, 0.01) (Figure 7). 
There was also a general trend to reduce the contractile 
response in the distal part (mid and terminal ileum). 
However it only achieved significance (P < 0.05) at 1.0 Hz 
in the terminal ileum. Pre-treatment with SB269970A (1.0 
µM) induced an increase (P < 0.05) in the contractile re-
sponse to EFS at 0.4 Hz in the segments taken from the 
duodenum. SB269970A failed to modify the contractile 

and relaxation responses to EFS when applied at other 
frequencies in any other region of the intestine (data 
not shown). Finally, in a separate in vivo experiment, pre-
treatment of rats with para-chlorophenylalanine (PCPA), 
(250 mg/kg, i. p. , for 3 days) to deplete endogenous 5-HT 
(19), also failed to change EFS induced responses. 

Figure 4. The Tonic Component of the Contractile Response Induced by 
EFS (30 v, 0.5 ms Width, 10.0 Hz) in the Absence and Presence of 1.0 μM 
Methysergide in the Rat Small Intestine
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Figure 5. Representative Histograms Showing the Contractile Response Induced by EFS (30 v; 0.4, 1 and 10 Hz, 0.5 ms Width) in the Absence and Pres-
ence of 0.1- 1.0 μM Ritanserin in the Rat Small Intestine
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Figure 6. Contractile Responses Induced by EFS (30 v; 0.4, 1 and 10 Hz, 0.5 ms Width) in the Absence and Presence of 1.0 and 10.0 μM Granisetron in the 
Rat Small Intestine
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Figure 7. Contractile Response Induced by EFS (30 v; 0.4, 1 and 10 Hz, 0.5 ms Width) in the Absence and Presence of 1.0 μM SB258585 in the Rat Small 
Intestine
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5. Discussion
The present study is the first systemic study performed 

on the rat small intestine from four different regions 
using all major serotonin receptor antagonists in an at-
tempt to modify EFS induced contraction and relaxation 

responses. The principle aim of the present study was 
to investigate the possibility that endogenous 5-HT may 
contribute to the relaxation and contractile responses in-
duced by electrical field stimulation in different regions 
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of the rat small intestine. The systematic study of tissues 
gathered from throughout the length of the intestinal 
tract was considered important for revealing local dif-
ferences in the functional importance of 5-HT. In such 
experiments, electrical field stimulation of tissues was 
used as an effective method for depolarizing nerves, and 
causing the release of neurotransmitters. A drawback to 
this technique is the fact that the stimulating current 
activates all neurons within the myenteric plexus, in-
cluding excitatory and inhibitory elements, sympathetic 
and parasympathetic nerves and, cholinergic and non-
cholinergic neurotransmitters (20). The muscle response 
to field stimulation is thus potentially the net result of 
multiple responses produced by activation of many indi-
vidual neurons (21). 

Different profile of muscle contraction and relaxation 
responses in different regions of the intestine might 
suggest that there are different endogenous neurotrans-
mitters being released and/or interacting with different 
neurotransmitter receptors in different regions of the 
intestine. Furthermore, the release of neurotransmitters 
by the application of EFS at different frequencies might 
be predicted to modify the intensity or profile of the 
contraction-relaxation responses and this was found to 
occur in all tissues examined. 

The EFS-induced contractions were markedly reduced 
or abolished by the sodium channel blocker tetrodotoxin 
(TTX) applied at a concentration that is shown to induce 
a maximal effect (22). This suggests that the existence of 
a major neuronal component is required to mediate EFS 
(0.4, 1.0 and 10.0Hz)-induced contraction in all four seg-
ments. Furthermore, at 10.0 Hz, when EFS induced only 
a very small relaxation or indeed no relaxation at all, 
the effect of TTX was to reveal a clear or enhanced relax-
ation in all tissues. Smooth muscle cell activation by sub-
stances released from enterchromaffin cells, for example, 
might thus contribute to the TTX-insensitive relaxation 
(23). In the present study, there was a consistent trend 
which sometimes achieved significance for contraction 
responses evoked by EFS at lower frequencies which re-
duced by atropine (10.0 or 100.0 nM) in tissues taken 
from the jejunum and ileum, indicating that a compo-
nent of the contraction response is mediated via the re-
lease of acetylcholine. This profile of action was not ob-
served in the duodenum indicating the involvement of 
other transmitters in the contraction response. The relax-
ation responses induced by EFS at lower frequencies were 
not consistently modified by atropine (10.0 nM to 1.0 µM). 
Indeed, in the presence of atropine, the effect of EFS ap-
plied at 10.0 Hz was to induce a measurable relaxation 
response prior to a contraction, which was normally ab-
sent in the control tissues. It can be concluded that the 
transmitter system for mediating relaxation response in 
the tissues is non-cholinergic. 

It has been shown in other studies that nitric oxide and 
VIP contribute to the relaxation response induced by EFS 
in the longitudinal muscle of the mouse intestine (24) 

and rat gastric fundus (25) respectively, possibly involving 
a hyperpolarisation caused by an increase in potassium 
conductance. When EFS was applied at 10.0 Hz, atropine 
could abolish or greatly reduce the phasic contraction re-
sponse in all regions and attenuate the tonic component 
of the contraction response in the duodenum, jejunum 
and mid ileum, but not in the terminal ileum. This indi-
cates a difference in the cholinergic contribution to the 
responses induced by EFS in different regions of the intes-
tine. A similar experiment on the guinea pig ileum (26) 
concluded that the initial phasic component was evoked 
by acethylcholine and by a non-cholinergic neurotrans-
mitter, while the tonic component was maintained pre-
dominantly by prostaglandin released during stimula-
tion. Ivancheva et al. (27) suggested that substance P 
could also contribute to the EFS induced tonic response. 

In the present study the possibility that endogenous 
5-HT may be involved in the atropine-insensitive residual 
contraction and relaxation responses induced by EFS, was 
first investigated using a 5-HT receptor antagonist with 
‘selectivity’ for the 5-HT1A receptors, WAY100635 (pKB, 8. 
7 in the rat brain (15, 28)). WAY100635, when applied in 
concentrations ranging from 1.0 nM to 1.0 µM, that have 
been shown in functional assays to block 5-HT1A-medi-
ated effects at nanomolar concentrations (15), failed to 
block neither the contractions nor relaxations induced 
by EFS at low or high frequency stimulations. Even when 
applied at 10.0 µM, WAY100635 failed to consistently 
modify the EFS induced contractions and relaxations in 
the duodenum, jejunum and mid ileum. In the terminal 
ileum, a high concentration of WAY100635, reduced the 
contractions. However the mechanism of this inhibitory 
action of WAY100635 remains to be established. The abili-
ty of methysergide 1.0µ M (a 5-HT1/2/7 receptor antagonist, 
pKi, 7. 1-8. 2 for 5-HT1/2receptors and pKi 7. 1-7. 9 for 5-HT7 
receptors (29)) to increase the tonic contraction response 
to EFS when applied at 10.0 Hz only in the jejunum and 
terminal ileum, may indicate that the methysergide sen-
sitive sites in these regions are involved in an inhibitory 
response. However, when methysergide was used in the 
presence of atropine, the tonic contraction was compa-
rable to that of the control tissues, indicating that the 
inhibitory response mediated by methysergide-sensitive 
sites is cholinergic in nature (data not shown). This is in 
line with studies by Nowak et al. who showed evidence 
for the existence of muscarinic inhibitory neurotrans-
mission in the rat small intestine upon the action of M1 
muscarinic receptors located on inhibitory neurons (21). 
This may suggest a modulatory action by endogenous se-
rotonin on cholinergic neurotransmission via methyser-
gide sensitive sites. 

The results of the present study indicate that the 5-HT2 
antagonist, ritanserin (pKi 8. 5-7. 6 (30)), administered at 
nanomolar concentrations failed to modify relaxation 
and contractile responses to EFS. However at the higher 
concentration of 1.0 µM, ritanserin diminished EFS-in-
duced contractions recorded from the rat intestine. It has 
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been shown that the 5-HT2 receptors are involved in me-
diating a contraction response to the exogenously added 
5-HT, following the administration of 10 nM – 0.1 µM ri-
tanserin which could reliably block 5-HT2 receptors in 
theGIT of different species (31-33). Also, in in vitro binding 
assays in brain tissue (34), the antagonism by ritanserin 
was achieved at concentrations in the nanomolar range. 
This suggests that a reliable receptor blockage should be 
achieved with a 1.0 µM concentration of ritanserin. Thus, 
in the present study a strong antagonism of the EFS-in-
duced contractions by 1.0 µM ritanserin might be attrib-
uted to the involvement of 5-HT2 receptors in mediating 
a response to endogenously released serotonin. However, 
such action of ritanserin at a concentration of 1.0 µM 
may also reflect additional non-specific action on other 
mechanisms (30) since ritancerin at 1 µM was also able to 
reduce significantly the contractile response induced by 
KCl (100 mM). 

It is known that agonists of the 5-HT receptors increase 
the release of acethylcholine from the motor nerve end-
ing within the intestinal muscle and facilitate peristalsis 
and may be involved in mechanismsat 5-HT3 receptors 
(35-37). However, in the present study granisetron at a con-
centration as high as 1.0 µM failed to significantly modify 
relaxation and contractile responses to EFS. Although 
there was a significant reduction in contractile response 
to EFS in the presence of 10.0 µM granisetron, the selec-
tivity of granisetron on 5-HT3 receptors at this concentra-
tion is questionable (38). Granisetron strongly and selec-
tively binds to the 5-HT3 receptor with a binding constant 
of 0.26 nM and exhibits a 4000 – 40000 times greater 
binding affinity for the 5-HT3 receptor than other bind-
ing sites, including other 5-HT subtypes and also adren-
ergic, histaminergic and opioid receptors. Its selectivity 
to the 5-HT3 receptor over other receptor types is > 1000:1 
(39). The lack of effect of the selective 5-HT4 receptor an-
tagonist GR113808 on responses to EFS also indicates the 
unlikely involvement of 5-HT4 receptors. However, the 
existence of 5-HT4 receptors has been demonstrated in 
the gut (40). In the small intestine, 5-HT4 receptors medi-
ate mucosal secretion and smooth muscle relaxation (41, 
42). Furthermore, the 5-HT4 receptor has an established 
role in mediating contraction responses via a cholinergic 
mechanism in the guinea-pig intestine and colon (14, 43). 
In the present study, the lack of evidence for the involve-
ment of 5-HT4 receptors in mediating a response to EFS 
could be that the receptors do not play a dominant role 
in mediating a response to endogenously-released 5-HT 
under normal physiological conditions. There is also evi-
dence that the enterochromaffin cells are endowed with 
5-HT4autoreceptors and that their stimulation causes in-
hibition of 5-HT release (44). 

In the present study, pre-treatment with SB258585, a 
selective 5-HT6 receptor antagonist with high specific 
binding (17) at a concentration of 1µM, induced different 
effects depending on the frequency of EFS used and the 

region of the intestine; a significantly greater contrac-
tion response to EFS at 0.4 and 1.0 Hz in the duodenum 
and jejunum, and a reduction of EFS-induced contraction 
at the same frequencies in the ileum was observed. Ap-
plication of EFS at higher frequency of 10.0 Hz induced a 
greater contractile response for both the tonic and phasic 
components of contraction only in segments taken from 
the jejunum. Furthermore, a greater relaxation response 
was observed in the presence of antagonist in some in-
testinal segments. To date there is no functional evidence 
for the involvement of 5-HT6 receptors in the periphery. 
Thus the present study could be the first evidence for the 
involvement of 5-HT6 receptors in EFS-induced response 
upon endogenously released serotonin, which require 
further investigations. 

The application of the selective 5-HT7 receptor antago-
nist SB269970A at a concentration of 1 µM induced a 
greater contractile response to EFS at low frequency of 0.4 
Hz only in segments taken from the duodenum. This in-
dicates the involvement of 5-HT7 receptors in a relaxation 
response to the endogenous 5-HT as antagonism of these 
receptors resulted in a greater response. This is in line 
with previous studies where the 5-HT7 receptor was im-
plicated in a relaxation response in the gastrointestinal 
tract (45-47). In summary, the application of 5-HT recep-
tor antagonists, revealed that methysergide- (5-HT1/2/7 
receptor), ritanserin- (5-HT2 receptor), SB258585- (5-HT6 
receptor) and SB269970- (5-HT7 receptor) sensitive sites 
might be involved in the endogenous 5-HT mediating 
contraction or relaxation response to EFS. However, con-
sidering the concentration of antagonists applied for the 
present study, and the fact that at concentrations lower 
than 1µM, none of antagonists were able to consistently 
modify the EFS induced contractile or relaxation respons-
es. Even, in case of depletion of 5-HT from enteric neurons 
by PCPA failed to modify EFS response, may suggest the 
unlikelihood of direct involvement of endogenous 5-HT 
in mediating contraction or relaxation responses to EFS 
in different regions of the rat small intestine. According-
ly, recent studies have shown that endogenous serotonin 
is neither required for colonic peristalsis in vitro, nor gas-
trointestinal (GI) transit in vivo (48, 49). 
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