University of Huddersfield Repository

Elrawemi, Mohamed, Blunt, Liam, Fleming, Leigh, Muhamedsalih, Hussam and Gao, F.

Wavelength Scanning Interferometry for PV Production In-line Metrology

Original Citation

This version is available at http://eprints.hud.ac.uk/21648/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Flexible PV modules are manufactured using roll-to-roll (R2R) technology. These modules require a flexible barrier material to prevent water vapor ingress.

Two representative Al$_2$O$_3$ ALD samples processed by the Centre for Process Innovations (CPI). These samples have an 80 mm diameter area that has been ALD coated with 40nm Al$_2$O$_3$.

The WVTRs of the study were carried out at the National Physical Laboratory (NPL) using a traceable in house developed instrument.

- The analysis of the results appears to indicate that sample with higher density of large defects exhibit inferior barrier properties.
- WSI results compare favorably with Coherence Correlation Interferometry (CCI) results.
- The results provide basis for development of a proof of concept system.

Acknowledgement

To EPSRC via EU FP7 programme for NanoMend project NMP4 LA-2011-280581 and Libyan Cultural Attaché in London

References