Search:
Computing and Library Services - delivering an inspiring information environment

Tribo-electric Charging and Adhesion of Cellulose Ethers and their Mixtures with Flurbiprofen

Ghori, Muhammad U., Šupuk, Enes and Conway, Barbara R. (2014) Tribo-electric Charging and Adhesion of Cellulose Ethers and their Mixtures with Flurbiprofen. European Journal of Pharmaceutical Sciences, 65. pp. 1-8. ISSN 0928-0987

[img] PDF - Submitted Version
Download (5MB)

Abstract

The pervasiveness of tribo-electric charge during pharmaceutical processing can lead to the exacerbation of a range of problems including segregation, content heterogeneity and particle surface adhesion. The excipients, hydroxypropyl methylcellulose and methylcellulose, are often used in drug delivery systems and so it is important to understand the impact of associated factors on their charging and adhesion mechanisms, however, little work has been done. Such phenomena become more prominent when excipients are introduced to a powder mixture alongside the active pharmaceutical ingredient(s) (APIs) with inter- and intra-particulate interactions giving rise to electrification and surface adhesion of powder particles. The aim of this study was to understand the impact of material attributes (particle size, hydroxypropyl (Hpo) to methoxyl (Meo) ratio and molecular size) on the charging and adhesion characteristics of cellulose ethers. Furthermore, poorly compactible and highly electrostatically charged drug, flurbiprofen, was used to develop binary powder mixtures having different polymer to drug levels. Subsequently, a relationship between tribo-electric charging and surface adhesion was studied. Charge was induced on powder particles and measured using a custom built device based on a shaking concept consisting of a Faraday cup connected to electrometer. The diversity in physicochemical properties has shown a significant impact on the tribo-electric charging and adhesion behaviour of MC and HPMC. Moreover, the adhesion and electrostatic charge of the API was significantly reduced when MC and HPMC were incorporated. Moreover, tribo-electric charging shows a linear relationship (R2= 0.81-0.98) with particle surface adhesion, however, other factors were also involved. It is anticipated that such reduction in charge and particle surface adhesion would improve flow and compaction properties during processing.

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QC Physics
R Medicine > RS Pharmacy and materia medica
Schools: School of Applied Sciences
School of Human and Health Sciences > Institute for Skin Integrity and Infection Prevention
Related URLs:
Depositing User: Enes Supuk
Date Deposited: 10 Sep 2014 08:48
Last Modified: 31 Mar 2016 08:26
URI: http://eprints.hud.ac.uk/id/eprint/21512

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©