University of Huddersfield Repository

Barlow, Roger

CP violation: Recent results from BaBar

Original Citation

This version is available at http://eprints.hud.ac.uk/21275/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Roger Barlow
representing the BaBar collaboration

Huddersfield University

25th July 2014
A brief history of CP violation in particle physics

Discovery 1964
Small effect (0.3%) for s quark: \(K_L^0 \rightarrow \pi^+\pi^- \)

Nothing much happened for almost 40 years: \(K_L^0 \rightarrow \ell^\pm\pi^\mp\nu, \ K_L^0 \rightarrow \pi^0\pi^0 \)

Seen in B mesons (b quark): BaBar and Belle

PRL 81 091801, 2001, Nobel prize 2008
Large effects (several %). Many measurements.
Mainstream \(\Upsilon(4S) \rightarrow B^0\bar{B}^0 \)
1st decays to CP eigenstate, 2nd tagged as \(b \) or \(\bar{b} \)
Plot decay time dependences.

Reported in D mesons (c quark)

\(^1\)For Kobayashi and Maskawa
Overview
Talk covers 7 non-mainstream beauty results and 3 charm results

Caused by complex weak phase in:

Mixing
Indirect CP violation
Violation of CP quantum number conservation

Decays
Direct CP violation
E.g. asymmetry in $B^0 \rightarrow K^+\pi^- / \overline{B^0} \rightarrow K^-\pi^+$ is $9.8 \pm 1.2\%$

Interference between mixing and decays
Different time dependence
Results from $471 \times 10^6 \Upsilon(4S)$ decays produced with speed $0.5c$ in the lab
Luminosity $1.2 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$
Currents 2-3 amps
Technical triumph. Design goals greatly exceeded.
The **BABAR** detector

Precision vertex chamber, charged particle tracking, PID using DIRC, precision EM calorimeter, muon detector.
Direct CP violation in $B^{\pm} \rightarrow K^{*\pm}(892)\pi^0$

new result - preliminary

Select $B^{\pm} \rightarrow K_s^0\pi^{\pm}\pi^0$. BR $(45.9 \pm 2.6 \pm 3.0 \pm 8.6) \times 10^{-6}$

First measurement!

Final error uncertainty due to signal model

Overall $A_{CP} = \frac{N^+ - N^-}{N^+ + N^-} = 0.07 \pm 0.05 \pm 0.03 \pm 0.04$

Fit Dalitz plot using isobar model: $K^*^0(892)\pi^+$, $K^{*+}(892)\pi^0$, $K_s^0\rho^+$, etc

$A_{CP} = -0.52 \pm 0.14 \pm 0.04 \pm 0.04$: Significant at 3.4σ

Difference between $B^+ \rightarrow K^{*+}\pi^0$ and $B^- \rightarrow K^{*-}\pi^0$
Direct CP violation in $B^\pm \rightarrow K^{(*)\pm}D^{(*)0}$: global fit to γ

Interference between 2 diagrams in final states accessible through D or \bar{D}
- GGSZ: $K\pi\pi$ etc
- GL: K^+K^- etc
- ADS: $K^+\pi^-$ doubly-Cabibbo-suppressed states

$\gamma = (69^{+17}_{-16})^\circ$

Significant at 5.9σ
$B^0 \rightarrow \pi^+ \pi^- \pi^0$: fit to α

Dalitz plot: fit
$\rho^\pm \pi^\mp$ and $\rho^0 \pi^0$.
Transform to square plot to include efficiencies

Time dependent fit
$\propto 1 + C \cos(\Delta_m t) + S \sin(\Delta_m t)$
C terms are direct CP,
S terms are interference
Results interpretable in terms of CKM angle α
10 different exclusive X_s modes ($K^+, K^+\pi^0, K^+\pi^-, K^+\pi^-\pi^0, K^+\pi^-\pi^+, K^0_S, K^0_S\pi^0, K^0_S\pi^+, K^0_S\pi^+\pi^0, K^0_S\pi^+\pi^-\pi^0$)

Extrapolation gives branching ratio

$$(6.73^{+0.70+0.34}_{-0.64-0.25} \pm 0.50) \times 10^{-6}$$

for $m^2_{\ell\ell} > 0.1$

$$A_{CP} = 0.04 \pm 0.11 \pm 0.01$$

blue=electrons,
black=muons,
red=average
Use charged B mesons and self-tagging neutral B meson decays. Sum over exclusive X_s states. Reconstruct 38 ($x2$) different final states - use 16 with good statistics.

$$A_{CP} = \frac{\Gamma(B^-/\overline{B^0})-\Gamma(B^+/B^0)}{\Gamma(B^-/B^0)+\Gamma(B^+/B^0)}$$

$$A_{CP} = (1.7 \pm 1.9 \pm 1.0)\%$$

consistent with SM prediction

<table>
<thead>
<tr>
<th>#</th>
<th>Final State</th>
<th>#</th>
<th>Final State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$B^+ \rightarrow K_S\pi^+\gamma$</td>
<td>20</td>
<td>$B^0 \rightarrow K_S\pi^0\pi^0\pi^0\pi^0\gamma$</td>
</tr>
<tr>
<td>2</td>
<td>$B^+ \rightarrow K^+\pi^0\gamma$</td>
<td>21</td>
<td>$B^0 \rightarrow K^+\pi^0\pi^-\pi^0\gamma$</td>
</tr>
<tr>
<td>3</td>
<td>$B^0 \rightarrow K^+\pi^-\gamma$</td>
<td>22</td>
<td>$B^0 \rightarrow K_S\pi^0\pi^-\pi^0\gamma$</td>
</tr>
<tr>
<td>4</td>
<td>$B^0 \rightarrow K_S\pi^0\gamma$</td>
<td>23</td>
<td>$B^0 \rightarrow K^+\eta\gamma$</td>
</tr>
<tr>
<td>5</td>
<td>$B^+ \rightarrow K^+\pi^+\pi^-\gamma$</td>
<td>24</td>
<td>$B^0 \rightarrow K_S\eta\gamma$</td>
</tr>
<tr>
<td>6</td>
<td>$B^+ \rightarrow K_S\pi^+\pi^0\gamma$</td>
<td>25</td>
<td>$B^+ \rightarrow K_S\eta\pi^+\gamma$</td>
</tr>
<tr>
<td>7</td>
<td>$B^0 \rightarrow K^+\pi^0\pi^0\gamma$</td>
<td>26</td>
<td>$B^+ \rightarrow K^+\eta\pi^0\gamma$</td>
</tr>
<tr>
<td>8</td>
<td>$B^0 \rightarrow K_S\pi^+\pi^-\gamma$</td>
<td>27</td>
<td>$B^0 \rightarrow K^+\eta\pi^-\gamma$</td>
</tr>
<tr>
<td>9</td>
<td>$B^0 \rightarrow K^+\pi^-\pi^0\gamma$</td>
<td>28</td>
<td>$B^0 \rightarrow K_S\eta\pi^0\gamma$</td>
</tr>
<tr>
<td>10</td>
<td>$B^0 \rightarrow K_S\pi^0\pi^0\gamma$</td>
<td>29</td>
<td>$B^+ \rightarrow K^+\pi^+\pi^-\gamma$</td>
</tr>
<tr>
<td>11</td>
<td>$B^0 \rightarrow K_S\pi^+\pi^-\pi^+\gamma$</td>
<td>30</td>
<td>$B^+ \rightarrow K_S\eta\pi^+\pi^0\gamma$</td>
</tr>
<tr>
<td>12</td>
<td>$B^0 \rightarrow K^+\pi^+\pi^-\pi^0\gamma$</td>
<td>31</td>
<td>$B^0 \rightarrow K_S\eta\pi^+\pi^-\gamma$</td>
</tr>
<tr>
<td>13</td>
<td>$B^0 \rightarrow K^+\pi^0\pi^0\gamma$</td>
<td>32</td>
<td>$B^0 \rightarrow K^+\eta\pi^0\pi^0\gamma$</td>
</tr>
<tr>
<td>14</td>
<td>$B^0 \rightarrow K^+\pi^+\pi^-\gamma$</td>
<td>33</td>
<td>$B^0 \rightarrow K^+K^-K^+\gamma$</td>
</tr>
<tr>
<td>15</td>
<td>$B^0 \rightarrow K_S\pi^0\pi^+\pi^-\gamma$</td>
<td>34</td>
<td>$B^0 \rightarrow K^+K^-\pi^-\gamma$</td>
</tr>
<tr>
<td>16</td>
<td>$B^0 \rightarrow K^+\pi^-\pi^0\pi^0\gamma$</td>
<td>35</td>
<td>$B^+ \rightarrow K^+K^-\pi^-\gamma$</td>
</tr>
<tr>
<td>17</td>
<td>$B^+ \rightarrow K^+\pi^+\pi^-\pi^+\gamma$</td>
<td>36</td>
<td>$B^+ \rightarrow K^+K^-\pi^0\gamma$</td>
</tr>
<tr>
<td>18</td>
<td>$B^0 \rightarrow K_S\pi^+\pi^-\pi^0\gamma$</td>
<td>37</td>
<td>$B^0 \rightarrow K^+K^-K^+\pi^-\gamma$</td>
</tr>
<tr>
<td>19</td>
<td>$B^+ \rightarrow K^+\pi^+\pi^-\pi^0\gamma$</td>
<td>38</td>
<td>$B^0 \rightarrow K^+K^-K_S\pi^0\gamma$</td>
</tr>
</tbody>
</table>
$B^0 \rightarrow D^*+ D^*$ Time dependent asymmetry

One D^* reconstructed fully from $D^0\pi$ with $D^0 \rightarrow K\pi, K\pi\pi, K\pi\pi\pi, K^0_S\pi\pi$
Second reconstructed partially: combine first with slow pion and requiring missing mass consistent with M_D.
Flavour of other B^0 from identified kaon or lepton.

$C = 0.15 \pm 0.09 \pm 0.04 \quad S = -0.34 \pm 0.12 \pm 0.05$
Consistent with $\sin2\beta$ determined from $B^0 \rightarrow$charmonium
CP violation in mixing: $B^0 \rightarrow D^{*-} X \ell \nu_\ell$ and a kaon tag

Reminder: CPV in mixing not seen by BaBar: dilepton asymmetry (PRL 96 251802 (2006))

$$A_{CP} = (1.6 \pm 5.4 \pm 3.8) \times 10^{-3}$$ Consistent with SM(≈ 0). Means the DØ result must be due to B_s decays.

Partial reconstruction technique for D^*
Tag the other B through kaon
(avoiding lepton identification systematics)

$$A_{CP} = \frac{N(B^0 \bar{B}^0) - N(B^0 \bar{B}^0)}{N(B^0 \bar{B}^0) + N(B^0 \bar{B}^0)} = (0.6 \pm 1.7^{+3.8}_{-3.2}) \times 10^{-3}$$
Charm: $D^0 \rightarrow K^+ K^-$, $K^{\pm} \pi^{\mp}$, $\pi^+ \pi^-$

Compare lifetimes to CP even $K^+ K^-$ and $\pi^+ \pi^-$ with CP mixed $K^{\pm} \pi^{\mp}$

Rate Γ^+ for $D^0 \rightarrow CP_{even}$,
$\bar{\Gamma}^+$ for $\bar{D}^0 \rightarrow CP_{even}$,
Γ for $D^0 \rightarrow CP_{mixed}$

$\gamma_{CP} = \frac{\Gamma^+ + \bar{\Gamma}^+}{2\Gamma} - 1 = (0.72 \pm 0.18 \pm 0.12)\%$

$\Delta \gamma = \frac{\Gamma^+ - \bar{\Gamma}^+}{2\Gamma} = (0.09 \pm 0.26 \pm 0.06)\%$

So 3.3σ evidence for mixing, no evidence for CP violation.
Evaluate charge asymmetry:

\[A_{CP} = (0.37 \pm 0.30 \pm 0.15)\% \]

Also no sign in any of the subregions (low \(M_{K\pi} \), \(K^* \), \(\phi \), high \(M_{K\pi} \)) or in isobar-model fits (\(KK^* \), \(\pi\phi \), etc)
Charm: $D^\pm \rightarrow K_S^0 K^\pm$, $D_S^\pm \rightarrow K_S^0 K^\pm$, $D_S^\pm \rightarrow K_S^0 \pi^\pm$

Detector charge bias determined from data

$A_{CP}(D^\pm \rightarrow K_S^0 K^\pm) = (0.13 \pm 0.36 \pm 0.25)\%$
$A_{CP}(D_S^\pm \rightarrow K_S^0 K^\pm) = (-0.05 \pm 0.23 \pm 0.24)\%$
$A_{CP}(D_S^\pm \rightarrow K_S^0 \pi^\pm) = (0.6 \pm 2.0 \pm 0.3)\%$

All consistent with zero and small SM prediction (0.33 \%).
Measurements of CP violation in B mesons continue
No sign of CP violation in charm
No sign of charge asymmetry as reported by DØ
Results give consistent values of CKM matrix α, β, γ angles.
Powerful constraints on New Physics models