
University of Huddersfield Repository

Alviano, Mario and Faber, Wolfgang

Solving NP-SPEC Domains Using ASP

Original Citation

Alviano, Mario and Faber, Wolfgang (2013) Solving NP-SPEC Domains Using ASP. In: 20th
RCRA International Workshop on "Experimental Evaluation of Algorithms for solving problems
with combinatorial explosion", 14-15 June 2013, Rome, Italy.

This version is available at http://eprints.hud.ac.uk/id/eprint/21034/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Translating NP-SPEC into ASP⋆

Mario Alviano and Wolfgang Faber

Department of Mathematics
University of Calabria

87036 Rende (CS), Italy
mario@alviano.net, wf@wfaber.com

Abstract. NP-SPEC is a language for specifying problems in NP in a declarative
way. Despite the fact that the semantics of the language was given by referring to
Datalog with circumscription, which is very close to ASP, so far the only existing
implementations are by means ofECL

i
PS

e Prolog and via Boolean satisfia-
bility solvers. In this paper, we present translations from NP-SPEC into various
forms of ASP, and provide an experimental evaluation of existing implementa-
tions and the proposed translations to ASP using various ASP solvers. We also
argue that it might be useful to incorporate certain language constructsof NP-
SPEC into mainstream ASP.

1 Introduction

NP-SPEC is a language that was proposed in [4, 6] in order to specify problems in
the complexity class NP in a simple, clear, and declarative way. The language is based
on Datalog with circumscription, in which some predicates are circumscribed, while
others are not and are thus “left open”. Some practical features are added to this basic
language, often by means of reductions.

The original software system supporting NP-SPEC was described in [4] and was
written in theECLiPSe Constraint Programming System, based on Prolog. A sec-
ond software system, SPEC2SAT1, was proposed in [5], which rewrites NP-SPEC into
propositional formulas for testing satisfiability. The system has also been tested quite
extensively in [7], also for several problems taken from CSPLIB, with promising re-
sults.

Interestingly, to our knowledge so far no attempt has been made to translate NP-
SPEC into Answer Set Programming (ASP), which is very similar in spirit to Datalog
with circumscription, and thus a good candidate as a transformation target. Moreover,
several efficient ASP software systems are available, whichshould guarantee good per-
formance. A crucial advantage of ASP versus propositional satisfiability is the fact that

⋆ A preliminary version of this work has been presented at ASPOCP 2012.
Proceedings of the20th RCRA workshop onExperimental Evaluation of Algorithms for Solv-
ing Problems with Combinatorial Explosion(RCRA 2013).
Rome, Italy, June 14–15, 2013.

1 http://www.dis.uniroma1.it/cadoli/research/projects /NP-SPEC/
code/SPEC2SAT/

NP-SPEC problem descriptions are in general not propositional, and therefore a reduc-
tion from NP-SPEC to SAT has to include an implicit instantiation (or grounding) step.
Also ASP allows for variables, and ASP systems indeed provide optimized grounding
procedures, which include many advanced techniques from database theory (such as
indexing, join-ordering, etc). This takes the burden of instantiating in a smart way from
the NP-SPEC translation when using ASP systems.

In this paper we provide a translation from NP-SPEC into various variants of ASP.
We discuss properties and limitations of the translation and also provide a prototype im-
plementation, for which we provide a preliminary experimental analysis, which shows
that our approach is advantageous, in particular that it pays off if grounding tasks are
delegated to existing systems. The rest of the paper is structured as follows: in section 2
we review the language NP-SPEC and give a very brief account of ASP. In section 3
we provide the main ingredients for translations from NP-SPEC to ASP, and discuss
properties and limitations. In section 4 we report on preliminary experimental results.
Finally, in section 5 we draw our conclusions.

2 Preliminaries: NP-SPEC and ASP

2.1 NP-SPEC

We first provide a brief definition of NP-SPEC programs. For details, we refer to [4].
We also note that a few minor details in the input language of SPEC2SAT (in which
the publicly available examples are written) are differentto what is described in [4]. We
will usually stick to the syntax of SPEC2SAT.

An NP-SPEC program consists of two main sections2: one section calledDATABASE
and one calledSPECIFICATION, each of which is preceded by the respective keyword.

DATABASE. The database section defines extensional predicates or relations and (in-
terpreted) constants. Extensional predicates are defined by writing p = {t1, . . . , tn};
wherep is a predicate symbol and eachti is a tuple with matching arity. For unary
predicates, each tuple is simply an integer or a constant symbol; for arity greater than
1, it is a comma-separated sequence of integers or constant symbols enclosed in round
brackets. Unary extensions that are ranges of integers can also be abbreviated ton..m,
wheren andm are integers or interpreted constants. Constant definitions are written as
c = i; wherei is an integer.

Example 1.The following defines the predicateedge representing a graph with six
nodes and nine edges, and a constantn representing the number of nodes.

DATABASE

n = 6;
edge = {(1, 2), (3, 1), (2, 3), (6, 2), (5, 6), (4, 5), (3, 5), (1, 4), (4, 1)};

2 SPEC2SAT also has a third, apparently undocumented section calledSEARCH, which seems to
define only output features and which we will not describe here.

SPECIFICATION. TheSPECIFICATION section consists of two parts: a search space
declaration and a stratified Datalog program. The search space declaration serves as a
domain definition for “guessed” predicates and must be one ormore of themetafacts
Subset(d, p), Permutation(d, p), Partition(d, p, n), andIntFunc(d, p, n..m), which
we will describe below.

Subset(d, p). This is the basic construct to which all following search space declara-
tion constructs are reduced in the semantic definition in [4]. Here,d is adomain defini-
tion, which is either an extensional predicate, a rangen..m, or a Cartesian product (><),
union (+), intersection (∗), or difference (−) of two domains. Symbolp is a predicate
identifier and the intended meaning is that the extension ofp can be any subset of the
domain definition’s extension, thus giving rise to nondeterminism or a “guess”.

Example 2.Together with the code of Example 1, the following specification will rep-
resent all subgraphs (including the original graph) as extensions of predicatesubgraph.

SPECIFICATION

Subset(edge, subgraph).

Permutation(d, p). Concerning this construct,d is again a domain definition, andp
will have an extension in which each tuple ofd is present and an additional argument
associates a unique integer between 1 and the cardinality ofthe extension ofd (say,c)
to each tuple, thereby defining a permutation. The extensions ofp thus define a bijective
functions from tuples of the extension ofd to {1..c}.

Example 3.Together with the code of Example 1, the following specification will rep-
resent all enumerations of edges.

SPECIFICATION

Permutation(edge, edgeorder).

One extension ofedgeorder that reflects the ordering of the edges as written in Exam-
ple 1 is

edgeorder(1, 2, 1), edgeorder(3, 1, 2), edgeorder(2, 3, 3),
edgeorder(6, 2, 4), edgeorder(5, 6, 5), edgeorder(4, 5, 6),
edgeorder(3, 5, 7), edgeorder(1, 4, 8), edgeorder(4, 1, 9).

Partition(d, p, n). Also in this casep will have one argument more thand. In this
case, extensions ofp will define functions from tuples of the extension ofd to {1..n},
thereby definingn (possibly empty) partitions.

Example 4.Together with the code of Example 1, the following specification will rep-
resent all possible pairs of graphs that partition the inputgraph.

SPECIFICATION

Partition(edge, partition, 2).

One extension ofpartition that has the first four edges in the first partition (i.e.,
partition 0) and the last five edges in the second partition (i.e., partition 1) would be

partition(1, 2, 0), partition(3, 1, 0), partition(2, 3, 0),
partition(6, 2, 0), partition(5, 6, 1), partition(4, 5, 1),
partition(3, 5, 1), partition(1, 4, 1), partition(4, 1, 1).

IntFunc(d, p, n..m). Again, p will have one argument more thand. Here, extensions
of p will define functions from tuples of the extension ofd to {n..m}.

Example 5.The following specification is equivalent to the one in Example 4:

SPECIFICATION

IntFunc(edge, partition, 0..1).

Stratified Datalog Program.The stratified Datalog program is written using< −− as
the rule implication symbol. It may contain built-in predicates (==, <, >, >=, <=,
! =), arithmetic expressions, and stratified aggregates (COUNT, SUM, MIN, MAX). It may
also contain integrity constraints, in which case rule heads contain the special symbol
fail. Rule implication is denoted by< −−, the aggregates are written as for example
SUM(p(∗, , Y), Z : n..m) where:∗ specifies the argument to be aggregated over; variables
that are not shared with other rule literals are local (as a special case the anonymous
variable) and represent the arguments that are not fixed; variables that are shared with
other rule literals are considered fixed in the aggregation;and variableZ will contain the
valuation of the aggregate, which must be in the rangen..m. Comments may be written
in C++ style (using/ ∗ ∗/ or //).

Example 6.As an example, consider the well-known Hamiltonian Cycle problem. The
NP-SPEC distribution contains an example program for an example graph:

DATABASE

n = 6; //no. of nodes
edge = {(1, 2), (3, 1), (2, 3), (6, 2), (5, 6), (4, 5), (3, 5), (1, 4), (4, 1)};

SPECIFICATION

Permutation({1..n}, path).
fail < −− path(X, P), path(Y, P+ 1), NOT edge(X, Y).
fail < −− path(X, n), path(Y, 1), NOT edge(X, Y).

The DATABASE section contains an encoding of the example graph by means ofthe
binary predicateedge and defines a constantn for representing the number of nodes
of that graph. Implicitly it is assumed that the nodes are labeled by integers from1
to n. TheSPECIFICATION section then first guesses a permutation of the nodes and
then verifies the Hamiltonian Cycle condition by means of integrity constraints, one
exploiting the linear order of the permutation identifiers,and another one to close the
cycle from the last permutation identifier to the first one.

The semantics of NP-SPEC programs is provided by means of Datalog with Cir-
cumscription, in which some predicates are minimized. Thatmeans that among all

models only those which are minimal with respect to the minimized predicates are
accepted. Moreover, among these only those which make the special symbolfail
false are considered and referred to as answers. All metafacts are reduced to the ba-
sic metafactSubset that effectively states that the predicate defined by the metafact is
not minimized. For further details of the semantics, we refer to [4].

2.2 ASP

Concerning ASP, we only give a very brief overview, details may be found in works
such as [3, 12, 16]. An ASP program consists of rules

L1 ∨ · · · ∨ Lk : − Body

where theLi are literals containing variables and constants3 (possibly containing strong
negation) andBody, which is a conjunction of literals, that may also contain built-ins,
aggregates and default negation. Rules without heads act like integrity constraints. The
semantics is based on the Gelfond-Lifschitz reduct [15] andalso guarantees minimality
of the answer sets.

Practical ASP systems differ in several details, for instance several do not support
disjunction in rule heads, built-in predicates and arithmetic expressions may differ and
also aggregates are sometimes written in slightly different ways. In this paper, we will
use the syntax of gringo 3 (http://potassco.sourceforge.net/) and DLV
(http://www.dlvsystem.com). Both systems assume that the input programs
are safe, that is, each variable in a rule must also occur in a positive body atom. While
gringo can also parse disjunctive programs, clasp, the solver it is often used with, can
only deal with nondisjunctive programs.

Example 7.As an example, consider the Hamiltonian Cycle problem and instance from
above. An ASP encoding similar to the NP-SPEC program seen earlier would be:

#const n = 6

edge(1, 2). edge(3, 1). edge(2, 3). edge(6, 2). edge(5, 6).
edge(4, 5). edge(3, 5). edge(1, 4). edge(4, 1).
d(1..n).
path(X, 1)∨path(X, 2)∨path(X, 3)∨path(X, 4)∨path(X, 5)∨path(X, 6) : − d(X).
: − path(X, A), path(Y, A), X ! = Y.
: − path(X, P), path(Y, Z), not edge(X, Y), Z = P+ 1.
: − path(X, n), path(Y, 1), not edge(X, Y).

This program is usable for gringo with clasp, using the--shift option (transforming
the disjunctive rule into several nondisjunctive ones), and DLV. We can observe that the
extensional definition is rewritten into a number of facts and that the constant definition
also just changes syntax. As for the permutation statement,here we first use a predi-
cated representing the domain definition, and then a disjunctive rule and an integrity
constraint. The disjunctive rule states that each tuple in the domain definition must be

3 Many modern ASP systems also allow for function symbols, but they are not needed here.

assigned one of the numbers 1 to 6, and the integrity constraint enforces the bijection,
that is, no different tuples of the domain definition must be assigned the same number.
The final two integrity constraints are direct translationsfrom the NP-SPEC program.
The only difference is the arithmetic expression that has been moved outside the fact
in order to conform to DLV’s syntax (gringo would also have accepted the immediate
translation from the NP-SPEC program).

3 Translation from NP-SPEC to ASP

We now report how the various constructs of NP-SPEC programscan be translated
into ASP. We start with theDATABASE section constructs. An extensional declaration
of the formp = {t1, . . . , tn} will be translated to factsp(t1) · · · p(tn), and one of the
form p = {n..m} will be translated to factsp(n) · · · p(m). Constant declarations such as
c = i, instead, will be managed in-memory by replacing all occurrences ofc with i.

Now for the main task, translating theSPECIFICATION constructs. Any composed
domain definition is associated with a fresh extensional predicated as follows:

– for the Cartesian productp >< q, the following set of facts is created:{d(x1, . . . ,
xi+j) | p(x1, . . . , xi) ∧ q(xi+1, . . . , xi+j)}, wherei andj are the arities ofp and
q, respectively;

– for the unionp+ q, the following set of facts is created:{d(x1, . . . , xi) | p(x1, . . . ,
xi) ∨ q(x1, . . . , xi)}, wherei is the arity of bothp andq;

– for the intersectionp ∗ q, the following set of facts is created:{d(x1, . . . , xi) | p(x1,
. . . , xi) ∧ q(x1, . . . , xi)}, wherei is the arity of bothp andq; and

– for the differencep− q, the following set of facts is created:{d(x1, . . . , xi) | p(x1,
. . . , xi) ∧ ¬.q(x1, . . . , xi)}, wherei is the arity of bothp andq, and¬.q(x1, . . . , xi)
is true if and only if the factq(x1, . . . , xi) is not part of the translation.

For nested domain definitions, we just repeat this process recursively using fresh sym-
bols in each recursive step. In the following we will assume that domain definitions
have been treated in this way and that the top-level predicate of the translation isd and
has arityn.

We then look at metafacts. The simplest one isSubset(d, p), for which we produce

p(X1, . . . , Xn) ∨ −p(X1, . . . , Xn) : − d(X1, . . . , Xn).

If available (for instance when using gringo or lparse), we can also use choice rules for
translatingSubset(d, p):

{p(X1, . . . , Xn) : d(X1, . . . , Xn)}.

For the metafactPermutation(d, p), we will create

p(X1, . . . , Xn, 1) ∨ . . . ∨ p(X1, . . . , Xn, c) : − d(X1, . . . , Xn).
: − p(X1, . . . , Xn, A), p(Y1, . . . , Yn, A), X1! = Y1.

...
: − p(X1, . . . , Xn, A), p(Y1, . . . , Yn, A), Xn! = Yn.

wheren is the arity ofd andc is the cardinality ofd. The first rule specifies intuitively
that for each tuple ind one ofp(X1, . . . , Xn, 1) · · · p(X1, . . . , Xn, c) should hold, and by
minimality exactly one of these will hold. The integrity constraints ensure that no dif-
ferent numbers will be associated to the same tuple. As an alternative to the disjunctive
rule, one can use a choice rule

1{p(X1, . . . , Xn, 1..c)}1 : − d(X1, . . . , Xn).

Instead of then integrity constraints it is possible to write just one usingan aggregate,
if available. In the DLV syntax, one could write

: − #count{X1, . . . , Xn : p(X1, . . . , Xn, A)} > 1, p(, . . . , , A).

or in gringo syntax

: − 2 #count{p(X1, . . . , Xn, A)}, p(, . . . , , A).

The remaining metafacts are actually much simpler to translate, as the bijection
criterion does not have to be checked. The following table shows the translations, where
n is the arity ofd, and DLV syntax is listed above, gringo syntax below.

Partition(d, p, k)
p(X1, . . . , Xn, 0) ∨ . . . ∨ p(X1, . . . , Xn, k− 1) : − d(X1, . . . , Xn).

1{p(X1, . . . , Xn, 0..k− 1)}1 : − d(X1, . . . , Xn).

IntFunc(d, p, i..j)
p(X1, . . . , Xn, i) ∨ . . . ∨ p(X1, . . . , Xn, j) : − d(X1, . . . , Xn).

1{p(X1, . . . , Xn, i..j)}1 : − d(X1, . . . , Xn).

What remains are the Datalog rules of theSPECIFICATION section. Essentially,
eachHead < −− Body is directly translated intoHead′ : − Body′, with only minor
differences. IfHead is fail, thenHead′ is empty, otherwise it will be exactly the same.
The difference betweenBody andBody′ is due to different syntax for arithmetics, ag-
gregates and due to safety requirements. Concerning arithmetics, gringo can accept al-
most the same syntax as NP-SPEC with only minor differences (#abs instead ofabs,
#pow instead of̂), while DLV is much more restrictive. DLV currently does notsup-
port negative integers and it does not provide constructs corresponding tô . Moreover,
arithmetic expressions may not be nested in DLV programs, but this limitation can be
overcome by flattening the expressions.

Concerning aggregates, DLV and gringo support similar syntax, which is a little bit
different from the one used in NP-SPEC but rather straightforward to rewrite according
to the following schema: Arguments marked with asterisks are first replaced with fresh
variables; these are the arguments on which the aggregationfunction is applied. Apart
from COUNT, exactly one asterisk may appear in each aggregate. Hence, an aggregate
SUM(p(∗, , Y), Z : n..m) is written in DLV’s and gringo’s syntax, respectively, as

#sum{X : p(X, , Y)} = Z, d(Z) Z #sum[p(X, , Y) = X] Z, d(Z)

whereX is a fresh variable andd is a fresh predicate defined by factsd(n) · · · d(m).
AggregatesMIN andMAX are rewritten similarly, whileCOUNT(p(∗, , ∗, Y), Z : n..m) is
written in DLV’s and gringo’s syntax, respectively, as

#count{X1, X2 : p(X1, , X2, Y)} = Z, d(Z) Z #count{p(X1, , X2, Y)} Z, d(Z).

A more difficult problem presents the safety conditions enforced by the ASP sys-
tems. NP-SPEC has a fairly lax safety criterion, while for instance DLV requires each
variable to occur in a positive, non-builtin body literal, and also gringo has a similar cri-
terion. This mismatch can be overcome by introducing appropriate domain predicates
when needed.

4 Experiments

We have created a prototype implementation of the transformation described in sec-
tion 3, which is available athttp://archives.alviano.net/npspec2asp/ .
It is written in C++ usingbison and flex , and called NPSPEC2ASP. The imple-
mentation at the moment does only rudimentary correctness checks of the program and
is focused on generating ASP programs for correct NP-SPEC input. Moreover, at the
moment it generates only the disjunctive rules described insection 3 rather than the
choice rules, but we plan to add the possibility to create variants of the ASP code in the
near future. For the experiments, the transformation used for Permutation produced
the integrity constraint with the counting aggregate.

We used this implementation to test the viability of our approach, in particular as-
sessing the efficiency of the proposed rewriting in ASP with respect to the previously
available transformation into SAT. In the benchmark we included several instances
available on the NP-SPEC site. More specifically, we considered two sets of instances,
namely themiscellaneaandcsplib2npspecbenchmarks. Even if these instances have
been conceived for demonstrating the expressivity of the language rather than for as-
sessing the efficiency of an evaluator, it turned out that even for these comparatively
small instances there are quite marked performance differences. Below we provide
some more details on themiscellaneaandcsplib2npspecbenchmarks.

Coloring is an instance of theGraph Coloringproblem, i.e., given a graphG and
a set ofk colors, checking whether it is possible to assign a color to each node ofG
in such a way that no adjacent nodes ofG share the same color. In theDiophantine
problem, three positive integersa, b, c are given, and an integer solution to the equation
ax2 + by = c is asked for. TheFactoringproblem consists of finding two non-trivial
factors (i.e., greater than1) of a given integern. In the Hamiltonian Cycleproblem
a graphG is given, and a cycle traversing each node exactly once is searched. An
instance of theJob Shop Schedulingproblem consists of integersn (jobs),m (tasks),p
(processors), andD (global deadline). Jobs are ordered collections of tasks, and each
task is performed on a processor for some time. Each processor can perform one task
at a time, and the tasks belonging to the same job must be performed in order. The
problem is checking whether it is possible for all jobs to meet deadlineD. In theProtein
Folding problem, a sequence ofn elements in{H,P} is given, and the goal is to find
a connected, non-overlapping shape of the sequence on a bi-dimensional, discrete grid,
so that the number of “contacts”, i.e., the number of non-sequential pairs ofH for
which the Euclidean distance of the positions is 1, is in a given rangeR. In theQueens
problem, an integern is given, and the goal is to placen non-attacking queens on a
n×n chessboard. In the tested instance,n = 5. Given an arrayA of integers, theSorting
problem consists of arranging the elements ofA in non-descending order. An instance

of theSubset Sumproblem comprises a finite setA, a sizes(a) ∈ N
+ for eacha ∈ A,

andB ∈ N
+. The goal of the problem is checking whether there is a subsetA′ of A

such that the sum of the sizes of the elements inA′ is exactlyB. In aSudoku, the goal
is to fill a given (partially filled) grid with the numbers 1 to 9, so that every column, row,
and3×3 box indicated by slightly heavier lines has the numbers 1 to 9. 3-SATis a well-
known NP-complete problem: Given a propositional formulaT in conjunctive normal
form, in which each clause has exactly three literals, isT satisfiable, i.e., does there
exist an assignment of variables ofT to {true, false} that makesT evaluate totrue?
TheTournament Schedulingproblem consists of assigning the matches to rounds of a
round-robin tournament for a sports league. The match is subject to several constraints,
such as: (i) complementary teamst1 and t2 have complementary schedules, i.e., for
each roundr, if t1 plays home inr thent2 plays away inr, and vice versa; (ii) two top
matches cannot take place at distance smaller than a given value; (iii) any team cannot
match two top teams at distance smaller than a given value. (See [7] for details.)

Given n ∈ N, find a vectors = (s1, ..., sn) such that (i)s is a permutation of
Zn = {0, 1, . . . , n− 1}; and (ii) the interval vectorv = (|s2 − s1|, |s3 − s2|, . . . , |sn −
sn−1|) is a permutation ofZn \ {0} = {1, 2, . . . , n − 1}. A vectorv satisfying these
conditions is called an all-interval series of sizen; the problem of finding such a series
is theAll-interval Seriesproblem of sizen. In theBACP(balanced academic curriculum
problem), each course has associated a number of credits andcan have other courses as
prerequisites. The goal is to assign a period to every coursein a way that the number of
courses and the amount of credits per period are in given ranges, and the prerequisite
relationships are satisfied. ABIBD is defined as an arrangement ofv distinct objects into
b blocks such that each block contains exactlyk distinct objects, each object occurs in
exactlyr different blocks, and every two distinct objects occur together in exactlyλ
blocks. In theCar Sequencingproblem, a number of cars are to be produced; they are
not identical, because different options are available as variants on the basic model. The
assembly line has different stations which install the various options (air-conditioning,
sun-roof, etc.). These stations have been designed to handle at most a certain percentage
of the cars passing along the assembly line. Consequently, the cars must be arranged
in a sequence so that the capacity of each station is never exceeded. In the testcase
there are 10 cars, 6 variants on a basic model, and 5 options. AGolomb ruler is a
set ofm integers0 = a1 < a2 < · · · < am such that them(m − 1)/2 differences
aj − ai (1 ≤ i < j ≤ m) are distinct.Langford’s problem is to arrangek sets of
numbers 1 ton so that each appearance of the numberm is m numbers on from the
last. Given integersn and b, the objective of theLow Autocorrelationproblem is to
construct a binary sequenceSi of lengthn, where each bit takes the value +1 or -1, so
thatE =

∑n−1

k=1
(Ck)

2 ≤ b, whereCk =
∑n−k−1

i=0
Si · Si+k. An ordern magic square

is an × n matrix containing the numbers 1 ton2, with each row, column and main
diagonal summing up to the same value. TheRamseyproblem is to color the edges
of a complete graph withn nodes using at mostk colors, in such a way that there is
no monochromatic triangle in the graph. TheRound-robin Tournamentproblem is to
schedule a tournament ofn teams overn − 1 weeks, with each week divided inton/2
periods, and each period divided into two slots. A tournament must satisfy the following
three constraints: every team plays once a week; every team plays at most twice in the

same period over the tournament; every team plays every other team.Schur’s Lemma
problem is to putn balls labeled{1, . . . , n} into 3 boxes so that for any triple of balls
(x, y, z) with x+ y = z, not all are in the same box. In theSocial Golferproblem there
aren golfers, each of whom play golf once a week, and always in groups ofs. The goal
is to determine a schedule of play for these golfers, to lastl weeks, such that no golfer
plays in the same group as any other golfer on more than one occasion.

The experiment was executed on an Intel Core2 Duo P8600 2.4 GHz with 4 GB of
central memory, running Linux Mint Debian Edition (wheezy/sid) with kernel Linux
3.2.0-2-amd64. Memory was limited to 3 GB and time to 600 seconds. The tools
SPEC2SAT and NPSPEC2ASP are compiled with gcc 4.6.3. The other tools involved
in the experiment are satz 215.2 [17], minisat 1.14 [11], gringo 3.0.4 [14], clasp 2.0.6
[13], cmodels 3.83 [18], DLV 2011-12-21 [1], and wasp (version alpha) [9].

In our experiment, we first measured the running time required by SPEC2SAT and
NPSPEC2ASP to rewrite the input specification into SAT and ASP, respectively. Then,
for each SAT encoding produced by SPEC2SAT, we ran three SAT solvers, namely
satz, minisat and clasp, to obtain one solution if one exists. For each of these executions
we measured the time to obtain the solution or the assertion that none exists, thus the
sum of the running times of SPEC2SAT and of the SAT solvers. Moreover, for each ASP
encoding produced by NPSPEC2ASP, we ran two instantiators,namely gringo and DLV
(with option--instantiate). Actually, for DLV we also tested a slightly different
version producing ground programs in numeric format, i.e.,DLVw. For each of these
runs we measured the time required to compute the ground ASP program, thus the sum
of the running times of NPSPEC2ASP and of the instantiator. Finally, for each ground
ASP program, we computed one solution by using clasp, cmodels, DLV and wasp, and
measured the overall time required by the tool-chain. We have also measured the sizes
of the instantiated formulas and programs. For SPEC2SAT, wereport the number of
clauses in the produced formula and the number of propositional variables occurring in
it. For DLV and gringo we report the number of ground rules produced and the number
of ground atoms occurring in them. There is a slight difference in the statistics provided
by DLV and gringo: DLV does not count ground atoms (and facts)that were already
found to be true; to be more comparable, we added the number offacts for DLV.

Experimental results concerning themiscellaneabenchmark are reported in Table 1,
where the time required by NPSPEC2ASP has been omitted because it is always below
the measurement accuracy. On the other hand, the execution time of SPEC2SAT is
higher, sometimes by several orders of magnitude. In fact, SPEC2SAT has to compute
a ground SAT instance to pass to a SAT solver, while NPSPEC2ASP outputs a non-
ground ASP program. A fairer comparison is obtained by adding to the time taken by
NPSPEC2ASP the time required by the ASP instantiator to obtain a ground ASP pro-
gram. Columns gringo and “DLV inst” report these times, which are however always
less than those of SPEC2SAT. In Table 2 it can be seen that alsothe number of ground
rules produced by the ASP systems is usually smaller than thenumber of clauses pro-
duced by SPEC2SAT, even if often the number of ground atoms exceeds the number of
propositional variables.

Concerning the computation of one solution from each groundspecification, all
considered SAT and ASP solvers are fast in almost all tests. The only exceptions are satz

for proteinFolding, which exceeds the allotted time, and DLV forjobShopScheduling,
whose execution lasted around 94 seconds. We also note that SAT solves are faster
than gringo+cmodels forfactoring, and that DLV has not been tested on 2 instances
containing negative integers, which are not supported by DLV.

Table 1.Running times on themiscellaneabenchmark

Instance
SPEC2SAT NPSPEC2ASP

only satz minisat clasp
DLV

DLV
DLVw DLVw

gringo
gringo gringo+

inst inst+wasp +clasp cmodels
coloring 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00

diophantine 0.76 0.86 0.80 0.820.04 0.03 0.07 0.09 0.02 0.06 0.18
factoring 6.19 10.07 6.54 7.630.23 0.43 0.46 0.69 0.17 1.19 15.46

hamiltonianCycle 0.02 0.02 0.02 0.020.00 0.00 0.00 0.00 0.00 0.00 0.00
jobShopScheduling 44.95 46.74 46.15 46.171.71 93.52 2.32 4.84 1.02 2.20 6.14

proteinFolding 139.47 >600 151.67 142.83N/A∗ N/A∗ N/A∗ N/A∗ 2.63 5.08 10.98
queens 0.02 0.02 0.02 0.020.00 0.00 0.00 0.00 0.00 0.00 0.00
sorting 0.01 0.02 0.02 0.020.00 0.00 0.00 0.00 0.00 0.00 0.02

subsetSum 0.08 0.09 0.09 0.090.00 0.00 0.00 0.00 0.00 0.00 0.00
sudoku 3.15 3.27 3.20 3.210.10 0.09 0.20 0.31 0.11 0.17 0.27
threeSat 0.00 0.00 0.00 0.00N/A∗ N/A∗ N/A∗ N/A∗ 0.00 0.00 0.00

tournamentScheduling 0.45 0.46 0.46 0.460.03 0.02 0.04 0.04 0.01 0.01 0.02

∗ The instance contains negative integers.

Table 2. Instance sizes of themiscellaneabenchmark

Instance
SPEC2SAT

NPSPEC2ASP
DLV DLVw gringo

Clauses Variables Rules Atoms Rules Atoms Rules Atoms
coloring 45 18 40 31 40 31 58 38

diophantine 14,628 140 9,800 142 9800 142 9,940 145
factoring 123,748 498 61,998 500 61998 500 62,496 503

hamiltonianCycle 348 36 261 99 261 99 291 94
jobShopScheduling 209,495 1,980156,107 2,052156287 2232158,087 2,089

proteinFolding 735,721 669 N/A∗ N/A∗ N/A∗ N/A∗ 520,107 347
queens 165 25 125 65 125 65 145 61
sorting 427 49 252 126 252 126 294 120

subsetSum 1,418 125 49 54 68 91 100 77
sudoku 33,825 1,458 24,777 2,545 25962 2545 25,263 1,736
threeSat 30 39 N/A∗ N/A∗ N/A∗ N/A∗ 87 76

tournamentScheduling 1,641 108 1,675 115 1793 227 1,810 182

∗ The instance contains negative integers.

Table 3 reports experimental results concerning thecsplib2npspecbenchmark. We
start by observing that instances in this benchmark are moreresource demanding than
instances in themiscellaneabenchmark. In fact, we note thatgolombRuleris too dif-
ficult for SPEC2SAT, which did not terminate on the allotted time on this instance.
On the other hand, the rewriting provided by NPSPEC2ASP is processed in around 39
seconds by gringo+cmodels, in around 30 seconds by gringo+clasp and DLVw+wasp,
and in around 28 seconds by DLV. Another hard instance isallInterval, for which
only satz, DLV and DLVw+wasp terminated in the allotted time. All other solvers,
including gringo+clasp and gringo+cmodels, exceeded the allotted time, even if the
NPSPEC2ASP rewriting and the instantiation by gringo is produced in less time than
the output of SPEC2SAT. This instance is an outlier in our experiments and we conjec-
ture that it is due to an “unlucky case” for the BerkMin heuristics adopted by minisat,
clasp and cmodels. In almost all other instances the ASP solvers compute solutions in
less than 1 second, while SAT solvers typically require several seconds, see in particular
langford, lowAutocorrelationandmagicSquare. For this last instance we also measured
a timeout for gringo+cmodels. The size of the programs produced by the ASP instantia-
tors is always smaller than the size of the formulas producedby SPEC2SAT, sometimes
by orders of magnitude, even if the number of ground atoms often exceeds the number
of propositional variables. A major cause for the difference in size appear to be aggre-
gates in the problem specification, which are supported natively by ASP systems, but
require expensive rewritings for SAT solvers.

The experimental results show that translating NP-SPEC programs into ASP rather
than SAT seems to be preferable, due to the fact that sophisticated instantiation tech-
niques can be leveraged. Moreover, also the nondeterministic search components of

Table 3.Running times on thecsplib2npspecbenchmark

Instance
SPEC2SAT NPSPEC2ASP

only satz minisat clasp
DLV

DLV
DLVw DLVw

gringo
gringo gringo+

inst inst+wasp +clasp cmodels
allInterval 1.48 38.33 >600 >600 0.06 0.98 0.11 0.16 0.05>600 >600

bacp 6.77 6.55 6.45 6.490.00 0.00 0.00 0.01 0.00 0.00 0.04
bibd 4.10 4.36 4.24 4.260.02 0.09 0.05 0.07 0.01 0.02 0.42

carSequencing 9.03 15.21 9.18 9.300.87 0.84 1.14 1.30 0.32 0.51 1.63
golombRuler >600 >600 >600 >600 24.85 24.23 28.26 31.09 26.75 30.37 39.51

langford 11.82 13.24 12.88 12.850.03 0.89 0.07 0.44 0.02 0.07 22.44
lowAutocorrelation 23.48 24.82 24.11 24.53N/A∗ N/A∗ N/A∗ N/A∗ 0.02 0.02 0.03

magicSquare 10.78 11.07 10.92 10.930.16 22.50 0.22 1.80 0.11 0.34 >600
ramseyProblem 0.00 0.01 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00

roundrobinTournament2.32 2.55 2.19 2.190.00 0.00 0.01 0.02 0.00 0.00 0.01
schursLemma 0.12 0.12 0.12 0.120.00 0.00 0.00 0.00 0.00 0.00 0.00
socialGolfer 7.55 7.78 7.66 7.680.08 0.09 0.15 0.21 0.05 0.06 0.27

∗ The instance contains negative integers.

ASP systems can compete well with SAT solvers, making the useof ASP solvers very
attractive for practical purposes.

5 Conclusion

In this paper we have presented a transformation of NP-SPEC programs into ASP. The
translation is modular and not complex at all, allowing for very efficient transforma-
tions. Compared to the previously available transformation into Boolean satisfiability,
there are a number of crucial differences: While our transformation is from a formalism
with variables into another formalism with variables, Boolean satisfiability of course
does not allow for object variables. Therefore any transformation to that language has
to do an implicit instantiation. It is obvious that instantiation can be very costly, and thus
using sophisticated instantiation methods is often crucial. However, optimization meth-
ods for instantiation are often quite involved and not easy to implement, and therefore
adopting them in a transformation is detrimental. After all, the appeal of transforma-
tions are usually their simplicity and the possibility to re-use existing software after
the transformation. Our transformation method does just that; by not instantiating it is
possible to re-use existing instantiators inside ASP systems, many of which use quite so-
phisticated techniques like join ordering heuristics, dynamic indexing and many more.
We have provided a prototype implementation that showcasesthis advantage. Even if
only rather small examples were tested, already in most of those cases a considerable
advantage of our method can be observed.

Table 4. Instance sizes of thecsplib2npspecbenchmark

Instance
SPEC2SAT

NPSPEC2ASP
DLV DLVw gringo

Clauses Variables Rules AtomsRules Atoms Rules Atoms
allInterval 21,737 761 9,239 1,639 9239 1639 9,961 1,601

bacp 39,531 1,518 314 316 322 392 436 360
bibd 31,843 4,424 2,684 2,047 2705 2404 4,091 2,279

carSequencing 39,875 786 33,398 21933428 303 33,506 218
golombRuler N/A∗∗ N/A∗∗ 653,593 96 65361096 1,149,561 105

langford 130,518 7299 3,736 793 3574 1054 4,015 803
lowAutocorrelation 186,407 5,952 N/A∗ N/A∗ N/A∗ N/A∗ 2,339 1,041

magicSquare 38,564 1,975 5458 872 5773 1085 18,445 14,513
ramseyProblem 80 30 60 50 60 50 90 61

roundrobinTournament 9,272 456 1,203 275 1203 355 1,467 400
schursLemma 175 30 155 40 155 40 185 51
socialGolfer 21,600 1,424 11,097 44111105 561 11,321 442

∗ The instance contains negative integers.
∗∗ The system did not terminate in 30 minutes.

There is a second aspect of our work, which regards ASP. As canbe seen in sec-
tion 3, the translation ofPermutation either gives rise to possibly many integrity con-
straints or one with an aggregate. In any case, all current ASP instantiators will material-
ize all associations between tuples of the domain definitionand the permutation identi-
fiers, even if the identifiers are not really important for solving the problem. This means
that there are obvious symmetries in the instantiated program. There exist proposals
for symmetry breaking in ASP (e.g. [10]), but they typicallyemploy automorphism de-
tection. We argue that in cases like this, a statement likePermutation, Partition,
or IntFunc would make sense as a language addition for ASP solvers, which could
exploit the fact that the permutation identifiers introducea particular known symmetry
pattern that does not have to be detected by any external tool.

Future work consists of consolidating the prototype software and extending it in
several directions. In fact, we intend to investigate the possibility to extend our transfor-
mation to work with other languages that are similar to NP-SPEC. Moreover, we want
to consider alternative translations into SAT using more efficient structures for encoding
cardinality constraints [2]. We also want to extend the experiment, which in this paper
comprises only benchmarks and instances available on the website of SPEC2SAT. In-
stances and benchmarks from the 3rd ASP Competition [8] are good candidates for our
future experimentation. Finally, we also intend to explorethe possibility and impact of
introducingPermutation, Partition, or IntFunc into ASP languages.

References

1. M. Alviano, W. Faber, N. Leone, S. Perri, G. Pfeifer, and G. Terracina. The disjunctive
datalog system DLV. In G. Gottlob, editor,Datalog 2.0, volume 6702 ofLecture Notes in
Computer Science, pages 282–301. Springer Berlin/Heidelberg, 2011.

2. R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell. Cardinality networks: a
theoretical and empirical study.Constraints, 16(2):195–221, 2011.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

4. M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, and D. Vasile. An Executable Specification
Language for Solving all the Problems in NP.Computer Languages, 26(2/4):165–195, 2000.

5. M. Cadoli, T. Mancini, and F. Patrizi. SAT as an effective solving technology for constraint
problems. In F. Esposito, Z. W. Ras, D. Malerba, and G. Semeraro, editors,Foundations of
Intelligent Systems, 16th International Symposium, ISMIS 2006, Bari, Italy, September 27-
29, 2006, Proceedings, volume 4203 ofLecture Notes in Computer Science, pages 540–549.
Springer, 2006.

6. M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An executable specification
language for solving all problems in NP. InProceedings of the First International Workshop
on Practical Aspects of Declarative Languages, volume 1551 ofLecture Notes in Computer
Science, pages 16–30. Springer, 1999.

7. M. Cadoli and A. Schaerf. Compiling problem specifications into SAT.Artificial Intelli-
gence, 162(1–2):89–120, 2005.

8. F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber, O. Feb-
braro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. C. Santoro,
M. Sirianni, G. Terracina, and P. Veltri. The third answer set programming competition:
Preliminary report of the system competition track. In J. Delgrande and W. Faber, editors,

11th International Conference on Logic Programming and NonmonotonicReasoning (LP-
NMR 2011), volume 6645 ofLecture Notes in Computer Science, pages 388–403. Springer
Berlin/Heidelberg, 2011.

9. C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, and M. Sirianni. The birth of a WASP:
Preliminary report on a new ASP solver. In F. Fioravanti, editor,26th Italian Conference on
Computational Logic (CILC 2011), volume 810 ofCEUR Workshop Proceedings, pages 99–
113. Sun SITE Central Europe, 2011.

10. C. Drescher, O. Tifrea, and T. Walsh. Symmetry-breaking answer set solving.AI Communi-
cations, 24(2):177–194, 2011.

11. N. Éen and N. S̈orensson. An extensible SAT-solver. InSAT, pages 502–518, 2003.
12. M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub,and M. T. Schneider.

Potassco: The potsdam answer set solving collection.AI Communications, 24(2):107–124,
2011.

13. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), pages 386–
392. Morgan Kaufmann Publishers, Jan. 2007.

14. M. Gebser, T. Schaub, and S. Thiele. Gringo : A new grounder for answer set program-
ming. In C. Baral, G. Brewka, and J. Schlipf, editors,Logic Programming and Nonmono-
tonic Reasoning — 9th International Conference, LPNMR’07, volume 4483 ofLecture Notes
in Computer Science, pages 266–271, Tempe, Arizona, May 2007. Springer Verlag.

15. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 9:365–385, 1991.

16. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, andF. Scarcello. The DLV
System for Knowledge Representation and Reasoning.ACM Transactions on Computational
Logic, 7(3):499–562, July 2006.

17. C. M. Li. A constraint-based approach to narrow search trees forsatisfiability. Information
Processing Letters, 71(2):75–80, 1999.

18. Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight
Programs. In V. Lifschitz and I. Niemelä, editors,Proceedings of the 7th International Con-
ference on Logic Programming and Non-Monotonic Reasoning (LPNMR-7), volume 2923
of LNAI, pages 346–350. Springer, Jan. 2004.

