H

University of
HUDDERSFIELD

University of Huddersfield Repository
Alviano, Mario and Faber, Wolfgang

Solving NP-SPEC Domains Using ASP
Original Citation

Alviano, Mario and Faber, Wolfgang (2013) Solving NP-SPEC Domains Using ASP. In: 20th
RCRA International Workshop on "Experimental Evaluation of Algorithms for solving problems
with combinatorial explosion”, 14-15 June 2013, Rome, Italy.

This version is available at http://eprints.hud.ac.uk/id/eprint/21034/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Translating NP-SPEC into ASP*

Mario Alviano and Wolfgang Faber

Department of Mathematics
University of Calabria
87036 Rende (CS), Italy
mario@alviano.net, wf@wfaber.com

Abstract. NP-SPEC is a language for specifying problems in NP in a declarative
way. Despite the fact that the semantics of the language was givendosimgfto
Datalog with circumscription, which is very close to ASP, so far the only exjstin
implementations are by means BIC'L‘ PS¢ Prolog and via Boolean satisfia-
bility solvers. In this paper, we present translations from NP-SPEC intous
forms of ASP, and provide an experimental evaluation of existing impi¢sne
tions and the proposed translations to ASP using various ASP solverdstVe a
argue that it might be useful to incorporate certain language consufitt®-
SPEC into mainstream ASP.

1 Introduction

NP-SPEC is a language that was proposed in [4, 6] in order goifypproblems in
the complexity class NP in a simple, clear, and declaratiag Whe language is based
on Datalog with circumscription, in which some predicates eéircumscribed, while
others are not and are thus “left open”. Some practical featare added to this basic
language, often by means of reductions.

The original software system supporting NP-SPEC was desttiin [4] and was
written in the ECL! PS¢ Constraint Programming System, based on Prolog. A sec-
ond software system, SPEC2SAWas proposed in [5], which rewrites NP-SPEC into
propositional formulas for testing satisfiability. The ®m has also been tested quite
extensively in [7], also for several problems taken from CIBP with promising re-
sults.

Interestingly, to our knowledge so far no attempt has beedenta translate NP-
SPEC into Answer Set Programming (ASP), which is very similaspirit to Datalog
with circumscription, and thus a good candidate as a tramsftion target. Moreover,
several efficient ASP software systems are available, wsticluld guarantee good per-
formance. A crucial advantage of ASP versus propositicaiédfgability is the fact that

* A preliminary version of this work has been presented at ASPOCP 2012.
Proceedings of the0t" RCRA workshop orExperimental Evaluation of Algorithms for Solv-
ing Problems with Combinatorial ExplosigRCRA 2013).
Rome, Italy, June 14-15, 2013.

! http://www.dis.uniromal.it/cadoli/research/projects INP-SPEC/
code/SPEC2SAT/

NP-SPEC problem descriptions are in general not propositi@and therefore a reduc-
tion from NP-SPEC to SAT has to include an implicit instatitia (or grounding) step.
Also ASP allows for variables, and ASP systems indeed peogjatimized grounding
procedures, which include many advanced techniques fradabdse theory (such as
indexing, join-ordering, etc). This takes the burden ofansiating in a smart way from
the NP-SPEC translation when using ASP systems.

In this paper we provide a translation from NP-SPEC intoasivariants of ASP.
We discuss properties and limitations of the translatiahalso provide a prototype im-
plementation, for which we provide a preliminary experitaianalysis, which shows
that our approach is advantageous, in particular that it jdfyif grounding tasks are
delegated to existing systems. The rest of the paper isstagcas follows: in section 2
we review the language NP-SPEC and give a very brief accduAS®. In section 3
we provide the main ingredients for translations from NFESRo ASP, and discuss
properties and limitations. In section 4 we report on prelany experimental results.
Finally, in section 5 we draw our conclusions.

2 Preliminaries: NP-SPEC and ASP

2.1 NP-SPEC

We first provide a brief definition of NP-SPEC programs. Faiadg, we refer to [4].
We also note that a few minor details in the input languageREG2SAT (in which
the publicly available examples are written) are diffetenvhat is described in [4]. We
will usually stick to the syntax of SPEC2SAT.

An NP-SPEC program consists of two main sectfonse section calleDATABASE
and one calledPECIFICATION, each of which is preceded by the respective keyword.

DATABASE. The database section defines extensional predicates tiomsland (in-
terpreted) constants. Extensional predicates are defipedibng p = {t,...,tn};
wherep is a predicate symbol and eaeh is a tuple with matching arity. For unary
predicates, each tuple is simply an integer or a constanbslyrfor arity greater than
1, itis a comma-separated sequence of integers or congtabb$s enclosed in round
brackets. Unary extensions that are ranges of integersisarba abbreviated to..m,
wheren andm are integers or interpreted constants. Constant defigitioa written as
c = i; wherei is an integer.

Example 1.The following defines the predicatelge representing a graph with six
nodes and nine edges, and a constamgpresenting the number of nodes.

DATABASE
n = 6;
edge = {(1a 2)7 (37 1)a (273)7 (6a 2)7 (57 G)a (47 5)7 <Sa 5)7 (174)a (47 1)};

2 SPEC2SAT also has a third, apparently undocumented section saliadH, which seems to
define only output features and which we will not describe here.

SPECIFICATION. The SPECIFICATION section consists of two parts: a search space
declaration and a stratified Datalog program. The searatesgpeclaration serves as a
domain definition for “guessed” predicates and must be onaae of themetafacts
Subset(d, p), Permutation(d, p), Partition(d, p,n), andIntFunc(d, p,n..m), which
we will describe below.

Subset(d, p). This is the basic construct to which all following searchcspdeclara-
tion constructs are reduced in the semantic definition inH&}e,d is adomain defini-
tion, which is either an extensional predicate, a range or a Cartesian product(<),
union (+), intersection £), or difference {) of two domains. Symbap is a predicate
identifier and the intended meaning is that the extensignan be any subset of the
domain definition’s extension, thus giving rise to nondetaism or a “guess”.

Example 2.Together with the code of Example 1, the following specifaatvill rep-
resent all subgraphs (including the original graph) asresitas of predicateubgraph.

SPECIFICATION
Subset(edge, subgraph).

Permutation(d,p). Concerning this construcd, is again a domain definition, and
will have an extension in which each tuple dfs present and an additional argument
associates a unique integer between 1 and the cardinalibheaxtension od (say,c)

to each tuple, thereby defining a permutation. The exteasibmthus define a bijective
functions from tuples of the extension®to {1..c}.

Example 3.Together with the code of Example 1, the following specifaatill rep-
resent all enumerations of edges.

SPECIFICATION
Permutation(edge, edgeorder).

One extension oddgeorder that reflects the ordering of the edges as written in Exam-
ple 1is

edgeorder(1,2,1), edgeorder(3, 1,2), edgeorder(2, 3, 3),
edgeorder(6,2,4), edgeorder(5, 6,5), edgeorder(4,5, 6),
edgeorder(3,5,7), edgeorder(1,4,8), edgeorder(4,1,9).

Partition(d,p,n). Also in this casep will have one argument more than In this
case, extensions @fwill define functions from tuples of the extension®fo {1..n},
thereby defining (possibly empty) partitions.

Example 4.Together with the code of Example 1, the following specifaatvill rep-
resent all possible pairs of graphs that partition the igpaph.

SPECIFICATION
Partition(edge,partition,2).

One extension opartition that has the first four edges in the first partition (i.e.,
partition 0) and the last five edges in the second partiti@n, (partition 1) would be

partition(1,2,0), partition(3,1,0), partition(2,3,0),
partition(6,2,0), partition(5,6,1), partition(4,5,1),
partition(3,5,1), partition(1,4,1), partition(4,1,1).

IntFunc(d,p,n..m). Again,p will have one argument more than Here, extensions
of p will define functions from tuples of the extensiondfo {n..m}.

Example 5.The following specification is equivalent to the one in Exdnp

SPECIFICATION
IntFunc(edge, partition,0..1).

Stratified Datalog Program.The stratified Datalog program is written usiag—— as
the rule implication symbol. It may contain built-in predtes =, <, >, >=, <=,

I =), arithmetic expressions, and stratified aggregatesNT, SUM, MIN, MAX). It may
also contain integrity constraints, in which case rule seazhtain the special symbol
fail. Rule implication is denoted by ——, the aggregates are written as for example
SUM(p(*, -, Y), Z : n..m) where:x specifies the argument to be aggregated over; variables
that are not shared with other rule literals are local (asexigp case the anonymous
variable_) and represent the arguments that are not fixed; variakdéste shared with
other rule literals are considered fixed in the aggregatiad;variablez will contain the
valuation of the aggregate, which must be in the range Comments may be written
in C++ style (using/ * */ or //).

Example 6.As an example, consider the well-known Hamiltonian Cyclebtem. The
NP-SPEC distribution contains an example program for amei@graph:

DATABASE

n = 6; //no. of nodes

edge = {(1’2)7(3v1)7(2>3)7(672)7(576)7(4»5)7(375)7(174)7(471)};
SPECIFICATION

Permutation({1..n}, path).

fail < — — path(X,P), path(Y,P + 1), NOT edge(X,Y).

fail < — — path(X,n), path(Y, 1), NOT edge(X,Y).

The DATABASE section contains an encoding of the example graph by meatteof
binary predicateedge and defines a constantfor representing the number of nodes
of that graph. Implicitly it is assumed that the nodes areled) by integers froni

to n. The SPECIFICATION section then first guesses a permutation of the nodes and
then verifies the Hamiltonian Cycle condition by means oégnity constraints, one
exploiting the linear order of the permutation identifieaed another one to close the
cycle from the last permutation identifier to the first one.

The semantics of NP-SPEC programs is provided by means afldaatvith Cir-
cumscription, in which some predicates are minimized. Thatns that among all

models only those which are minimal with respect to the mingd predicates are
accepted. Moreover, among these only those which make #aaspsymbolfail
false are considered and referred to as answers. All métadiae reduced to the ba-
sic metafacBubset that effectively states that the predicate defined by thafaet is
not minimized. For further details of the semantics, werteid4].

2.2 ASP

Concerning ASP, we only give a very brief overview, detailsynie found in works
such as [3, 12, 16]. An ASP program consists of rules

Ly V---VLg : —Body

where theL; are literals containing variables and constag®ssibly containing strong
negation) an@ody, which is a conjunction of literals, that may also contairitbns,
aggregates and default negation. Rules without headskadhtiegrity constraints. The
semantics is based on the Gelfond-Lifschitz reduct [15]alad guarantees minimality
of the answer sets.

Practical ASP systems differ in several details, for instaseveral do not support
disjunction in rule heads, built-in predicates and arittimexpressions may differ and
also aggregates are sometimes written in slightly diffeveays. In this paper, we will
use the syntax of gringo ditp://potassco.sourceforge.net/) and DLV
(http://www.dlvsystem.com). Both systems assume that the input programs
are safe, that is, each variable in a rule must also occur os#iye body atom. While
gringo can also parse disjunctive programs, clasp, theesdls often used with, can
only deal with nondisjunctive programs.

Example 7.As an example, consider the Hamiltonian Cycle problem asi@irce from
above. An ASP encoding similar to the NP-SPEC program sesirregould be:

#constn =6

edge(1,2). edge(3,1). edge(2, 3). edge(6,2). edge(5, 6).

edge(4,5). edge(3,5). edge(1,4). edge(4,1).

d(1..n).

path(X, 1)Vpath(X, 2) Vpath(X, 3) Vpath(X, 4) Vpath(X, 5) Vpath(X, 6) : — d(X).
: — path(X,A), path(Y,A), X! =Y.

: — path(X,P), path(Y,Z), not edge(X,Y), Z=P + 1.

: — path(X,n), path(Y, 1), not edge(X,Y).

This program is usable for gringo with clasp, using trshift option (transforming
the disjunctive rule into several nondisjunctive onesfl BhV. We can observe that the
extensional definition is rewritten into a number of factd #mat the constant definition
also just changes syntax. As for the permutation staterheng, we first use a predi-
cated representing the domain definition, and then a disjunctive and an integrity
constraint. The disjunctive rule states that each tupl@ééndomain definition must be

3 Many modern ASP systems also allow for function symbols, but theyatreeeded here.

assigned one of the numbers 1 to 6, and the integrity constaforces the bijection,

that is, no different tuples of the domain definition must bsigned the same number.
The final two integrity constraints are direct translatifmsn the NP-SPEC program.
The only difference is the arithmetic expression that hanlbmoved outside the fact
in order to conform to DLV'’s syntax (gringo would also haveegted the immediate

translation from the NP-SPEC program).

3 Translation from NP-SPEC to ASP

We now report how the various constructs of NP-SPEC progreasnsbe translated
into ASP. We start with th®ATABASE section constructs. An extensional declaration
of the formp = {t4, ..., t,} will be translated to facts(t,) - - - p(t,), and one of the
formp = {n..m} will be translated to factg(n) - - - p(m). Constant declarations such as
c = i, instead, will be managed in-memory by replacing all oceneces ok with i.

Now for the main task, translating tl®®ECIFICATION constructs. Any composed
domain definition is associated with a fresh extensionalipated as follows:

— for the Cartesian produgt >< g, the following set of facts is createdd(x, .. .,

Xiyj) | p(x1,...,%:) Aq(Xiq1,...,%:45)}, Wherei andj are the arities op and
q, respectively;

— for the unionp + q, the following set of facts is createfd(x,, ..., x:) | p(x1,.- .,
xi) Vq(x1,...,x%:)}, wherei is the arity of bothp andq;

— for the intersectiop * g, the following set of facts is createfi (x4, .. ., x;) | p(x1,
...yx1) Aq(x1,...,x:)}, wherei is the arity of bothp andq; and

— for the difference — q, the following set of facts is createfd (x4, ..., x;) | p(x1,
...,x1) A .q(x1, ..., x4)}, Wherei is the arity of bothp andq, and—.q(x4, ..., x4)
is true if and only if the facy(x4, . .., x3) is not part of the translation.

For nested domain definitions, we just repeat this processsizely using fresh sym-
bols in each recursive step. In the following we will assuimat tdomain definitions
have been treated in this way and that the top-level prezlwfahe translation ig and
has arityn.

We then look at metafacts. The simplest ongubset(d, p), for which we produce

PXy, o X))V —p(Xy,. o, Xp) : —d(Xy, .-, X))

If available (for instance when using gringo or Iparse), \&e also use choice rules for
translatingSubset(d, p):

{p(xla s ;Xn) : d(xla cee 7Xn)}'
For the metafadtermutation(d, p), we will create

PXy, o X, D)V VPR, Xy e) r — d(Xy, -, Xp).
5*p(Xj_,...,Xn,A),p(Yi,...,Yn,A),X]_! :Yi.

T p(X17"'7XnaA)7p(Yla'"7YD7A)3X11! =Y.

wheren is the arity ofd andc is the cardinality ofi. The first rule specifies intuitively
that for each tuple id one ofp(Xy,..., %, 1) - - p(Xy, ..., Xs, c) should hold, and by
minimality exactly one of these will hold. The integrity ciraints ensure that no dif-
ferent numbers will be associated to the same tuple. As amalive to the disjunctive
rule, one can use a choice rule

H{p(Xy, .., Xy 1)1 s —d(Xy, ..o, Xn)-

Instead of then integrity constraints it is possible to write just one usargaggregate,
if available. In the DLV syntax, one could write

: — #count{Xy,..., Xn : P(Xy, .., Xn, A)} > 1, p(L, ..., A).
or in gringo syntax
: — 2 #count{p(X1,...,%s,A)}, (..., A).

The remaining metafacts are actually much simpler to tedeslas the bijection
criterion does not have to be checked. The following tabtsvsithe translations, where
n is the arity ofd, and DLV syntax is listed above, gringo syntax below.

p(Xi, .., %0,0) V... Vp(Xy,. .., Xk — 1) : —d(Xq,...,%n).
1{p(X1,.. . X0, 0.k — 1)J1: —d(Xy, ..., Xa).
p(X1,. .. X0, 1) V... Vp(Xi,. . Xa,]) : —d(Xg, ..., %)
1{p(Xs,.. ., Xa,1..3)}1: —d(Xy, ..., %)

What remains are the Datalog rules of tECIFICATION section. Essentially,
eachHead < —— Body is directly translated intdlead’ : — Body’, with only minor
differences. Ifiead is fail, thenHead’ is empty, otherwise it will be exactly the same.
The difference betweeBody andBody’ is due to different syntax for arithmetics, ag-
gregates and due to safety requirements. Concerning atitengringo can accept al-
most the same syntax as NP-SPEC with only minor differenges$ instead ofabs,
#pow instead of), while DLV is much more restrictive. DLV currently does reatp-
port negative integers and it does not provide construetesponding t6 . Moreover,
arithmetic expressions may not be nested in DLV programisthis limitation can be
overcome by flattening the expressions.

Concerning aggregates, DLV and gringo support similaraynihich is a little bit
different from the one used in NP-SPEC but rather straightiod to rewrite according
to the following schema: Arguments marked with asterisksfiast replaced with fresh
variables; these are the arguments on which the aggredatiction is applied. Apart
from COUNT, exactly one asterisk may appear in each aggregate. Hemeggaegate
SUM(p(*, -, Y),Z : n..m) is written in DLV’s and gringo’s syntax, respectively, as

Partition(d,p,k)

IntFunc(d,p,i..j)

#sum{X : p(X,_,Y)} =2, 4(2) Z #sumlp(X, _,Y) = X] Z, d(2)

whereX is a fresh variable and is a fresh predicate defined by faet&) - - - d(m).
AggregatesiIN andMAX are rewritten similarly, whileOUNT(p(x, _, *,Y),Z : n..m) iS
written in DLV’s and gringo’s syntax, respectively, as

#count{Xy,Xs : p(X1, -, X2,Y)} = Z, 4(Z) Z #count{p(Xy, X2, Y)} Z, 4(2).

A more difficult problem presents the safety conditions er#d by the ASP sys-
tems. NP-SPEC has a fairly lax safety criterion, while fatamce DLV requires each
variable to occur in a positive, non-builtin body literahdsalso gringo has a similar cri-
terion. This mismatch can be overcome by introducing appatgodomain predicates
when needed.

4 Experiments

We have created a prototype implementation of the transftiom described in sec-
tion 3, which is available dittp://archives.alviano.net/npspec2asp/ .

It is written in C++ usingbison andflex , and called NPSPEC2ASP. The imple-
mentation at the moment does only rudimentary correctriessks of the program and
is focused on generating ASP programs for correct NP-SPRE@.iMoreover, at the
moment it generates only the disjunctive rules describeseition 3 rather than the
choice rules, but we plan to add the possibility to createawss of the ASP code in the
near future. For the experiments, the transformation useBermutation produced
the integrity constraint with the counting aggregate.

We used this implementation to test the viability of our aygmh, in particular as-
sessing the efficiency of the proposed rewriting in ASP wétspect to the previously
available transformation into SAT. In the benchmark we udeld several instances
available on the NP-SPEC site. More specifically, we comsidiéwo sets of instances,
namely themiscellaneaand csplib2npspedenchmarks. Even if these instances have
been conceived for demonstrating the expressivity of thguage rather than for as-
sessing the efficiency of an evaluator, it turned out thahdee these comparatively
small instances there are quite marked performance diifee Below we provide
some more details on thmiscellaneaandcsplib2npspebenchmarks.

Coloringis an instance of th&raph Coloringproblem, i.e., given a grapfi and
a set ofk colors, checking whether it is possible to assign a coloraichenode of
in such a way that no adjacent nodes(éfhare the same color. In tlizgiophantine
problem, three positive integedsb, ¢ are given, and an integer solution to the equation
ax? + by = c is asked for. Thdactoring problem consists of finding two non-trivial
factors (i.e., greater thah) of a given integem. In the Hamiltonian Cycleproblem
a graphG is given, and a cycle traversing each node exactly once ictsed An
instance of thaob Shop Schedulingroblem consists of integers(jobs), m (tasks)p
(processors), and) (global deadline). Jobs are ordered collections of tasks,emch
task is performed on a processor for some time. Each proceaagerform one task
at a time, and the tasks belonging to the same job must berpetbin order. The
problem is checking whether it is possible for all jobs to hsadlineD. In theProtein
Folding problem, a sequence efelements in{ H, P} is given, and the goal is to find
a connected, non-overlapping shape of the sequence oniméisional, discrete grid,
so that the number of “contacts”, i.e., the number of norusatjal pairs ofH for
which the Euclidean distance of the positions is 1, is in @girangeR. In theQueens
problem, an integen is given, and the goal is to plaeenon-attacking queens on a
nxn chessboard. In the tested instances 5. Given an array of integers, thé&orting
problem consists of arranging the elementsidgh non-descending order. An instance

of the Subset Surproblem comprises a finite sel, a sizes(a) € N* for eacha € A,
andB € NT. The goal of the problem is checking whether there is a sultsef A
such that the sum of the sizes of the elementd’iis exactlyB. In a Sudoku, the goal

is to fill a given (partially filled) grid with the numbers 1 t¢ €0 that every column, row,
and3 x 3 box indicated by slightly heavier lines has the numbers 1 889ATis a well-
known NP-complete problem: Given a propositional formIilan conjunctive normal
form, in which each clause has exactly three literals/ isatisfiable, i.e., does there
exist an assignment of variables Bfto {true, false} that makesl” evaluate toirue?
The Tournament Schedulingroblem consists of assigning the matches to rounds of a
round-robin tournament for a sports league. The match igstto several constraints,
such as: (i) complementary tearhsand ¢, have complementary schedules, i.e., for
each round, if ¢; plays home in- thent, plays away in-, and vice versa; (ii) two top
matches cannot take place at distance smaller than a gilesy (&) any team cannot
match two top teams at distance smaller than a given valee. [for details.)

Givenn € N, find a vectors = (sy, ..., s,) such that (i)s is a permutation of
Z, ={0,1,...,n—1}; and (ii) the interval vectov = (|s2 — s1, |s3 — s2, .., [$n —
sn—1|) is a permutation o¥,, \ {0} = {1,2,...,n — 1}. A vectorv satisfying these
conditions is called an all-interval series of sizethe problem of finding such a series
is theAll-interval Seriegproblem of size:. In theBACP(balanced academic curriculum
problem), each course has associated a number of creditaarithve other courses as
prerequisites. The goal is to assign a period to every conmsevay that the number of
courses and the amount of credits per period are in giveresramnd the prerequisite
relationships are satisfied.BA\BD is defined as an arrangementdfistinct objects into
b blocks such that each block contains exaétlgistinct objects, each object occurs in
exactlyr different blocks, and every two distinct objects occur thge in exactly\
blocks. In theCar Sequencingroblem, a number of cars are to be produced; they are
not identical, because different options are availableagigimts on the basic model. The
assembly line has different stations which install theaasioptions (air-conditioning,
sun-roof, etc.). These stations have been designed todanaiost a certain percentage
of the cars passing along the assembly line. Consequemiycars must be arranged
in a sequence so that the capacity of each station is neveeégd. In the testcase
there are 10 cars, 6 variants on a basic model, and 5 optioiolémb ruleris a
set of m integers0 = a; < as < --- < a,, such that then(m — 1)/2 differences
a; —a; (1 < i < j < m) are distinct.Langfords problem is to arrangé sets of
numbers 1 tor so that each appearance of the numiaeis m numbers on from the
last. Given integers andb, the objective of the.ow Autocorrelationproblem is to
construct a binary sequengée of lengthn, where each bit takes the value +1 or -1, so
thatE = ZZ;}(C,C)Q < b, whereC}, = Z?;Ok’l S; - S;x. An ordern magic square
is an x n matrix containing the numbers 1 &, with each row, column and main
diagonal summing up to the same value. Remseyproblem is to color the edges
of a complete graph witlh nodes using at mogt colors, in such a way that there is
no monochromatic triangle in the graph. TReund-robin Tournamergroblem is to
schedule a tournament afteams oven — 1 weeks, with each week divided intg/2
periods, and each period divided into two slots. A tournamarst satisfy the following
three constraints: every team plays once a week; every téara at most twice in the

same period over the tournament; every team plays every t#am.Schur’'s Lemma
problem is to put: balls labeled(1, ..., n} into 3 boxes so that for any triple of balls
(z,y, z) with z +y = z, not all are in the same box. In ti8acial Golferproblem there
aren golfers, each of whom play golf once a week, and always inggais. The goal
is to determine a schedule of play for these golfers, tollageks, such that no golfer
plays in the same group as any other golfer on more than orasiocc

The experiment was executed on an Intel Core2 Duo P8600 2zviH 4 GB of
central memory, running Linux Mint Debian Edition (wheesig) with kernel Linux
3.2.0-2-amd64. Memory was limited to 3 GB and time to 600 sdso The tools
SPEC2SAT and NPSPEC2ASP are compiled with gcc 4.6.3. Ther tgbls involved
in the experiment are satz 215.2 [17], minisat 1.14 [11}a@pi3.0.4 [14], clasp 2.0.6
[13], cmodels 3.83 [18], DLV 2011-12-21 [1], and wasp (versalpha) [9].

In our experiment, we first measured the running time requise SPEC2SAT and
NPSPEC2ASP to rewrite the input specification into SAT an®A8spectively. Then,
for each SAT encoding produced by SPEC2SAT, we ran three ®Ners, namely
satz, minisat and clasp, to obtain one solution if one exisiseach of these executions
we measured the time to obtain the solution or the assettimimnione exists, thus the
sum of the running times of SPEC2SAT and of the SAT solvergddeer, for each ASP
encoding produced by NPSPEC2ASP, we ran two instantiatansely gringo and DLV
(with option--instantiate). Actually, for DLV we also tested a slightly different
version producing ground programs in numeric format, D&V . For each of these
runs we measured the time required to compute the ground A&fPgm, thus the sum
of the running times of NPSPEC2ASP and of the instantiaioalfy, for each ground
ASP program, we computed one solution by using clasp, crepBéV and wasp, and
measured the overall time required by the tool-chain. We ladso measured the sizes
of the instantiated formulas and programs. For SPEC2SATiepert the number of
clauses in the produced formula and the number of propasiticariables occurring in
it. For DLV and gringo we report the number of ground rulesqoreed and the number
of ground atoms occurring in them. There is a slight differsim the statistics provided
by DLV and gringo: DLV does not count ground atoms (and fattia} were already
found to be true; to be more comparable, we added the numlifectsffor DLV.

Experimental results concerning timscellanedbenchmark are reported in Table 1,
where the time required by NPSPEC2ASP has been omitted $eids always below
the measurement accuracy. On the other hand, the execirtienof SPEC2SAT is
higher, sometimes by several orders of magnitude. In f®RECRSAT has to compute
a ground SAT instance to pass to a SAT solver, while NPSPE®2&@8puts a non-
ground ASP program. A fairer comparison is obtained by agittinthe time taken by
NPSPEC2ASP the time required by the ASP instantiator toirobtground ASP pro-
gram. Columns gringo and “DLV inst” report these times, Wwhare however always
less than those of SPEC2SAT. In Table 2 it can be seen thattedsmumber of ground
rules produced by the ASP systems is usually smaller thanuhwer of clauses pro-
duced by SPEC2SAT, even if often the number of ground atormsesls the number of
propositional variables.

Concerning the computation of one solution from each grogpetification, all
considered SAT and ASP solvers are fast in almost all tekesohly exceptions are satz

for proteinFolding which exceeds the allotted time, and DLV fobShopScheduling
whose execution lasted around 94 seconds. We also note Aflas@ves are faster
than gringo+cmodels fofactoring and that DLV has not been tested on 2 instances

containing negative integers, which are not supported by. DL

Table 1.Running times on theniscellanegbenchmark

SPEC2SAT NPSPEC2ASP

Instance only satz minisat cIaspD.LV DLV DL\./ DLV gringoglrlngo gringer

inst inst+wasp +clasp cmodels
coloring 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0/00
diophantine 0.76 0.86 0.80 0.820.04 0.03 0.07 0.09 0.02 0.06 0/18
factoring 6.19 10.07 6.54 7.630.23 0.43 046 0.69 0.17 1.19 15/46
hamiltonianCycle | 0.02 0.02 0.02 0.020.00 0.00 0.00 0.00 0.00 0.00 0/00
jobShopSchedulingl 44.95 46.74 46.15 46.171.7193.52 232 484 1.02 2.20 6|14
proteinFolding [139.47>600 151.67 142.8BI/A™ N/A* N/A* N/A* 2.63 5.08 10.98
queens 0.02 0.02 0.02 0.020.00 0.00 0.00 0.00 0.00 0.00 0J00
sorting 0.01 0.02 0.02 0.020.00 0.00 0.00 0.00 0.00 0.00 0J02
subsetSum 0.08 0.09 0.09 0.090.00 0.00 0.00 0.00 0.00 0.00 0/00
sudoku 3.15 3.27 3.20 3.210.10 0.09 0.20 0.31 0.11 0.17 0)27
threeSat 0.00 0.00 0.00 O0.00/A* N/A* N/A* N/A* 0.00 0.00 0.0
tournamentScheduling 0.45 0.46 0.46 0.460.03 0.02 0.04 0.04 0.01 0.01 0/02

* The instance contains negative integers.

Table 2. Instance sizes of thmiscellanedbenchmark

NPSPEC2ASP

Instance SPEC2SAT DLV DLVY gringo
Clauses Variables Rules Atom$ Rules Atoms Rules Atoms
coloring 45 1 40 31 40 31 58 38
diophantine 14,628 140 9,800 142 9800 142 9,940 14%
factoring 123,748 498 61,998 500 61998 500 62,496 503
hamiltonianCycle 348 3 261 99 261 99 291 94
jobShopScheduling|209,495 1,98(156,107 2,05p156287 223p158,087 2,089
proteinFolding |735,721 669 N/A* N/A*| N/A* N/A*|520,107 34y
queens 165 2 125 63 125 65 145 61
sorting 427 4 252 126 252 124 294 12¢
subsetSum 1,418 12 49 54 68 91l 100 71
sudoku 33,825 1,458 24,777 2,545 25962 2545 25,263 1,736
threeSat 30 3 N/A* N/A*| N/A* N/A* 87 76
tournamentScheduling 1,641 108 1,675 11% 1793 227 1,810 182

* The instance contains negative integers.

Table 3 reports experimental results concerningcs@ib2npspedenchmark. We
start by observing that instances in this benchmark are nes@irce demanding than
instances in theniscellaneagbenchmark. In fact, we note thgblombRuleris too dif-
ficult for SPEC2SAT, which did not terminate on the allottédd on this instance.
On the other hand, the rewriting provided by NPSPEC2ASPdsessed in around 39
seconds by gringo+cmodels, in around 30 seconds by gritgsg-and DLV +wasp,
and in around 28 seconds by DLV. Another hard instancalllsterval, for which
only satz, DLV and DLW +wasp terminated in the allotted time. All other solvers,
including gringo+clasp and gringo+cmodels, exceeded Hotted time, even if the
NPSPEC2ASP rewriting and the instantiation by gringo isdpo®d in less time than
the output of SPEC2SAT. This instance is an outlier in oulegxpents and we conjec-
ture that it is due to an “unlucky case” for the BerkMin heticis adopted by minisat,
clasp and cmodels. In almost all other instances the ASRbompute solutions in
less than 1 second, while SAT solvers typically require shsaconds, see in particular
langford, lowAutocorrelatiorandmagicSquareFor this last instance we also measured
a timeout for gringo+cmodels. The size of the programs predipy the ASP instantia-
tors is always smaller than the size of the formulas prodbge8SPEC2SAT, sometimes
by orders of magnitude, even if the number of ground atomenaékceeds the number
of propositional variables. A major cause for the differeit size appear to be aggre-
gates in the problem specification, which are supportedelgtby ASP systems, but
require expensive rewritings for SAT solvers.

The experimental results show that translating NP-SPEGrpros into ASP rather
than SAT seems to be preferable, due to the fact that sogdtisti instantiation tech-
niques can be leveraged. Moreover, also the nondetermisisarch components of

Table 3. Running times on thesplib2npspebenchmark

* The instance contains negative integers.

SPEC2SAT NPSPEC2ASP

Instance only satz minisat cIaspD.LV DLV DL\./ DLV gringo gringo gringer

inst inst+wasp +clasp cmodels

allinterval 1.48 38.33 >600 >600 0.06 0.98 0.11 0.16 0.05>600 >600
bacp 6.77 6.55 6.45 6.490.00 0.00 0.00 0.01 0.00 0.00 0{04
bibd 410 436 4.24 4.260.02 0.09 0.05 0.07 0.01 0.02 0{42
carSequencing | 9.0315.21 9.18 9.300.87 0.84 1.14 130 0.32 0.51 1163
golombRuler >600 >600 >600 >60024.85 24.23 28.26 31.09 26.75 30.37 39.51
langford 11.82 13.24 12.88 12.8%.03 0.89 0.07 0.44 0.02 0.07 22}44

lowAutocorrelation |23.48 24.82 24.11 24.58/A* N/A* N/A* N/A* 0.02 0.02 0.08

magicSquare |10.78 11.07 10.92 10.93.16 22.50 0.22 1.80 0.11 0.34 >600
ramseyProblem | 0.00 0.01 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0/00
roundrobinTournament2.32 2.55 2.19 2.190.00 0.00 0.01 0.02 0.00 0.00 0/01
schursLemma 0.12 0.12 0.12 0.120.00 0.00 0.00 0.00 0.00 0.00 0{00
socialGolfer 755 7.78 7.66 7.80.08 0.09 0.15 0.21 0.05 0.06 0{27

ASP systems can compete well with SAT solvers, making theotis&P solvers very
attractive for practical purposes.

5 Conclusion

In this paper we have presented a transformation of NP-SR&ams into ASP. The
translation is modular and not complex at all, allowing fery efficient transforma-
tions. Compared to the previously available transfornmaiido Boolean satisfiability,
there are a number of crucial differences: While our tramsédion is from a formalism
with variables into another formalism with variables, Beanh satisfiability of course
does not allow for object variables. Therefore any tramsfdion to that language has
to do an implicit instantiation. It is obvious that instatidn can be very costly, and thus
using sophisticated instantiation methods is often ctudiawever, optimization meth-
ods for instantiation are often quite involved and not easiyniplement, and therefore
adopting them in a transformation is detrimental. After #ike appeal of transforma-
tions are usually their simplicity and the possibility teuge existing software after
the transformation. Our transformation method does juadt thy not instantiating it is
possible to re-use existing instantiators inside ASP systenany of which use quite so-
phisticated techniques like join ordering heuristics, ayic indexing and many more.
We have provided a prototype implementation that showctgesdvantage. Even if
only rather small examples were tested, already in mostasetitases a considerable
advantage of our method can be observed.

Table 4.Instance sizes of thesplib2npspebenchmark

NPSPEC2ASP

Instance SPEC2SAT DLV DLV"™ gringo
Clauses Variables Rules AtomsRules Atoms Rules Atoms
allinterval 21,737 761 9,239 1,6399239 1639 9,961 1,601
bacp 39,531 1,518 314 316 322 392 436 360
bibd 31,843 4,424 2,684 2,047 2705 2404 4,091 2,279
carSequencing 39,875 786 33,398 21933428 303 33,506 218
golombRuler N/A** N/A**|653,593 96 65361096 1,149,561 105
langford 130,518 7299 3,736 793 3574 1054 4,015 803
lowAutocorrelation {186,407 5,952 N/A* N/A*| N/A* N/A* 2,339 1,041
magicSquare 38,564 1,976 5458 872 5773 108% 18,445 14,518
ramseyProblem 80 30 60 50 60 50 90 61
roundrobinTournament 9,272 456 1,203 27% 1203 355 1,467 40(
schursLemma 175 30 155 40 155 40 185 51
socialGolfer 21,600 1,424 11,097 44111105 561 11,321 442

* The instance contains negative integers.
** The system did not terminate in 30 minutes.

There is a second aspect of our work, which regards ASP. Abeaseen in sec-
tion 3, the translation dfermutation either gives rise to possibly many integrity con-
straints or one with an aggregate. In any case, all curreRtiASantiators will material-
ize all associations between tuples of the domain defindiwhthe permutation identi-
fiers, even if the identifiers are not really important fonéad the problem. This means
that there are obvious symmetries in the instantiated progiThere exist proposals
for symmetry breaking in ASP (e.qg. [10]), but they typicadiyploy automorphism de-
tection. We argue that in cases like this, a statementHéenutation, Partition,
or IntFunc would make sense as a language addition for ASP solvershvdaicld
exploit the fact that the permutation identifiers introdagearticular known symmetry
pattern that does not have to be detected by any external tool

Future work consists of consolidating the prototype sofénand extending it in
several directions. In fact, we intend to investigate thesality to extend our transfor-
mation to work with other languages that are similar to NEESPMoreover, we want
to consider alternative translations into SAT using mofieieft structures for encoding
cardinality constraints [2]. We also want to extend the expent, which in this paper
comprises only benchmarks and instances available on theitweof SPEC2SAT. In-
stances and benchmarks from the 3rd ASP Competition [8]@wd gandidates for our
future experimentation. Finally, we also intend to explire possibility and impact of
introducingPermutation, Partition, or IntFunc into ASP languages.

References

1. M. Alviano, W. Faber, N. Leone, S. Perri, G. Pfeifer, and G. d@ma. The disjunctive
datalog system DLV. In G. Gottlob, editddatalog 2.Q volume 6702 olecture Notes in
Computer Sciencgages 282—301. Springer Berlin/Heidelberg, 2011.

2. R. Adn, R. Nieuwenhuis, A. Oliveras, and E. Ragliez-Carbonell. Cardinality networks: a
theoretical and empirical studZonstraints 16(2):195-221, 2011.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem SolGiag-
bridge University Press, 2003.

4. M. Cadoli, G. lanni, L. Palopoli, A. Schaerf, and D. Vasile. An Exable Specification
Language for Solving all the Problems in NBomputer Language26(2/4):165—-195, 2000.

5. M. Cadoli, T. Mancini, and F. Patrizi. SAT as an effective solving tetbgy for constraint
problems. In F. Esposito, Z. W. Ras, D. Malerba, and G. Semerditorg Foundations of
Intelligent Systems, 16th International Symposium, ISMIS 2006, Bali, September 27-
29, 2006, Proceedingsolume 4203 of_ecture Notes in Computer Scienpages 540-549.
Springer, 2006.

6. M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An exa&lule specification
language for solving all problems in NP. Rroceedings of the First International Workshop
on Practical Aspects of Declarative Languageslume 1551 of_ecture Notes in Computer
Sciencepages 16—30. Springer, 1999.

7. M. Cadoli and A. Schaerf. Compiling problem specifications into SATtificial Intelli-
gence 162(1-2):89-120, 2005.

8. F. Calimeri, G. lanni, F. Ricca, M. Alviano, A. Bria, G. Catalano, Sz W. Faber, O. Feb-
braro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. RadleC. Santoro,
M. Sirianni, G. Terracina, and P. Veltri. The third answer set progranmgraompetition:
Preliminary report of the system competition track. In J. Delgrande angaler, editors,

10.

11.

12.

13.

14.

15.

16.

17.

18.

11th International Conference on Logic Programming and Nonmonot@e&soning (LP-
NMR 2011) volume 6645 oLecture Notes in Computer Scienpages 388-403. Springer
Berlin/Heidelberg, 2011.

. C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, and M. Siriaihe birth of a WASP:

Preliminary report on a new ASP solver. In F. Fioravanti, edR26th Italian Conference on
Computational Logic (CILC 2011yolume 810 ofCEUR Workshop Proceedingsages 99—
113. Sun SITE Central Europe, 2011.

C. Drescher, O. Tifrea, and T. Walsh. Symmetry-breaking anset solving Al Communi-
cations 24(2):177-194, 2011.

N. Een and N. 8rensson. An extensible SAT-solver. 3AT, pages 502-518, 2003.

M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaar M. T. Schneider.
Potassco: The potsdam answer set solving collec®driCommunications24(2):107-124,
2011.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Coulfilieén answer set solving.
In Twentieth International Joint Conference on Artificial Intelligence (1J©K), pages 386—
392. Morgan Kaufmann Publishers, Jan. 2007.

M. Gebser, T. Schaub, and S. Thiele. Gringo : A new groundeariswer set program-
ming. In C. Baral, G. Brewka, and J. Schlipf, editorsgic Programming and Nonmono-
tonic Reasoning — 9th International Conference, LPNMRW@Iume 4483 of ecture Notes
in Computer Scienggages 266-271, Tempe, Arizona, May 2007. Springer Verlag.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programd &isjunctive
DatabasesNew Generation Computing:365-385, 1991.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, Bn8carcello. The DLV
System for Knowledge Representation and Reaso#iG Transactions on Computational
Logic, 7(3):499-562, July 2006.

C. M. Li. A constraint-based approach to narrow search treesatfiability. Information
Processing Letters/1(2):75-80, 1999.

Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer SleeB&nhanced to Non-tight
Programs. In V. Lifschitz and I. Niemé&| editors Proceedings of the 7th International Con-
ference on Logic Programming and Non-Monotonic Reasoning (LPNMRelume 2923
of LNAI, pages 346-350. Springer, Jan. 2004.

