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Abstract: Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE). Because of lack 

of fault samples, a monitoring system cannot be trained on all possible condition patterns. Thus it is important to differentiate abnormal 

or unknown patterns from normal pattern with novelty detection methods. One-class support vector machine (OCSVM) that has been 

commonly used for novelty detection cannot deal well with large scale samples. In order to model the normal pattern of the turbopump 

with OCSVM and so as to monitor the condition of the turbopump, a monitoring method that integrates OCSVM with incremental 

clustering is presented. In this method, the incremental clustering is used for sample reduction by extracting representative vectors from 

a large training set. The representative vectors are supposed to distribute uniformly in the object region and fulfill the region. And 

training OCSVM on these representative vectors yields a novelty detector. By applying this method to the analysis of the turbopump’s 

historical test data, it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 

training vectors, and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by 

different abnormal events such as vane shedding, rub-impact and sensor faults. This monitoring method does not need fault samples 

during training as classical recognition methods. The method resolves the learning problem of large samples and is an alternative 

method for condition monitoring of the LRE turbopump. 
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1  Introduction 
 

Turbopump is the propulsion machinery of a large-scale 
liquid rocket engine (LRE). Once faults of the turbopump 
occur, they will threaten the safety of the engine. Thus, 
condition monitoring is important for turbopump to insure 
reliable operation throughout the course of turbopump’s 
service and ground test[1]. Vibration is a main cause of 
turbopump destructions and it directly images the condition 
of the turbopump. Thus vibration monitoring is one of 
significant ways for turbopump condition monitoring. 

For the turbopump of this LRE, large amounts of 
vibration signals have been collected through a number of 
accelerometers mounted on the turbopump outside. Most of 
these signals are from normal turbopump. Abnormal signals 
can hardly be sampled due to the reasons as follows. (1) 
The turbopump is manufactured with high reliability, thus 
faults may rarely occur and less historic cases can be 
referred. (2) Once a novel event is suspected, the 
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turbopump will be turned off immediately to avoid any 
further damages, which makes it less possible to have 
chance to collect this sample signal. (3) Taking into account 
of loss that may be caused by faults, faults embedding 
experiment has never been performed on the turbopump. 
And it is very expensive to construct an experimental 
facility that is fairly similar to the real system. Thus it is 
difficult to collect abnormal samples of most fault modes 
by fault simulation. 

In the case of lacking fault samples, vibration monitoring 
relies on comparative assessments of the status under 
testing with normal status. This strategy is named novelty 
detection, one-class classification or outlier detection.  

Novelty detection is the identification of new or 
unknown data or signal that a machine learning system is 
not aware of during training[2]. For machine condition 
monitoring, the philosophy of such approach is to establish 
a description of normality using the features that represent 
the normal condition, and then test for deviation from the 
normality when new data becomes available[3]. It shows 
that research efforts have been made in novelty detection 
and kinds of approaches have been exploited as reviewed in 
Refs. [2, 4–5].  
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As for the turbopump, previous work by the authors has 
concentrated on online detection algorithms and a real-time 
fault detection system[1, 6]. The length of training set for 
online methods is restricted. As incoming feature vectors 
are tested and then added to the training set, elder vectors 
are removed. Thus the detectors yielded by online 
framework are adaptive but not complete.  

In this paper, a novelty detection method in classical 
framework is presented to establish a complete description 
of normality for the turbopump. In order to solve the 
learning problem of large samples, one-class support vector 
machine (OCSVM) is integrated with incremental 
clustering algorithm. Incremental clustering is used to 
extract a small quantity of representative vectors from large 
amounts of available samples. Representative vectors 
extracted are supposed to distribute uniformly in the object 
region and fulfill the region. Then a detector can be yielded 
by training OCSVM on these representative vectors. The 
layout of this paper is as follows: Section 2 describes the 
novelty detection method integrating OCSVM with 
incremental clustering. Section 3 contains the novelty 
detection results of the LRE turbopump. The paper 
concludes with some discussion in section 4.  

 
2  Novelty Detection Method Integrating 

OCSVM with Incremental Clustering 
 

2.1  Boundary description using OCSVM 
OCSVM has two basic descriptions, Tax’s hypersphere 

description[7] and Schölkopf’s hyperplane description[8]. 
The former named support vector data description (SVDD) 
tries to find a hypersphere that encompasses most feature 
points in the training set with the minimum radius. Points 
located outside the sphere will be rejected as outliers. 
While the latter named -support vector classifier (-SVC) 
tries to find a hyperplane separates the dataset from the 
origin with maximal margin. When the data is preprocessed 
to have unit norm, -SVC is equivalent to the SVDD 
approach[7]. 

Here the SVDD method will be briefly introduced. 
Suppose X  {xi, i  1, 2,  , l} to be the training set, in 
which xi is one of feature vectors and l is the size of the 
training set. A hypersphere can be obtained by solving the 
quadratic programming optimization problem 

 

,
min

i j 
 

, =1

( ) ( )
l

i j i j
i j

P   = ×å x x ,         (1) 

s.t.  0 ≤ i ≤ (l)1, i  1,2 , l,        (2a) 

1

1
l

i
i


=

=å ,               (2b) 

 
where i and j are Lagrange multipliers. The trade-off 
parameter   (0, 1) is the upper bound on the fraction of 
outliers over all training samples. And  can be used to 
control the trade-off between the volume of the sphere and 

the number of outliers. Solving such a quadratic problem 
means finding a set {i} that minimize P() with subject to 
the constraints of Eq. (2).  

The training vectors with 0, 0    (l)1, and  
(l)1 are respectively called non-support vectors (NSVs), 
boundary support vectors (BSVs), and non-boundary 
support vectors (NBSVs). And they are respectively located 
in, on and outside the sphere as illustrated in Fig. 1.  

 

 
Fig. 1.  Illustration of hypersphere, non-support vectors (NSVs), 

boundary support vectors (BSVs) and non-boundary 
support vectors (NBSVs) in SVDD 

 
The decision function or test function of SVDD is 
 

 ( ) (   )k kk
f bz x z= × -å ,            (3) 

 
where z is a test vector, xk is one of BSVs or NBSVs and k 
is its corresponding Lagrange multiplier, b is the threshold 
or offset. If f(z) ≥ 0, z will be accepted as a normal 
sample, otherwise z will be excluded as a novel sample. As 
BSVs lie on the sphere, the threshold can be yielded by 
inputting one of BSVs to the decision function 
 

BSVs(   )k kk
b x x = ×å ,            (4) 

 
where δ is a scaling parameter used to decrease the 
threshold to reduce false alarms. δ can be set smaller than 
and close to 1. 

A flexible description can be yielded by replacing the 
inner product (xi  xj) in Eqs. (1), (3), and (4) with a kernel 
function K(xi, xj). And OCSVM mostly uses Gaussian 
kernel 
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where  is the width parameter of the Gaussian kernel.  

 
2.2  Density based Incremental clustering 

Density based clustering algorithms are serious 
candidates for processing large samples as they require 
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only a few passes on the training set and have the merits of 
high computational efficiency[9]. Here a simple density 
based incremental clustering algorithm is proposed to 
extract representative points from large historical test data 
of the turbopump. When new training samples are available, 
the cluster described by representative points can be 
updated incrementally without taking past training set into 
account.  

Define V (xi) to be a -neighborhood of xi, which is a 
hypersphere centered at xi with radius  defined by user. 
For any x  V (xi), i - £x x . The “density” of the 
neighborhood of xi is the number of points of X lying in 
V(xi), denoted by N (xi, X). Then two definitions are made 
as follows. 

Definition 1. (dense point and sparse point) A point xi is 
a dense point of X if N (xi, X)  q, q  N, otherwise it is a 
sparse point. Here q is the maximum density defined by 
user. 

Definition 2. (the set of representative points) P is a set 
of X’s representative points, if 

(i) P Í X. 
(ii)  p  P, N (p, X)£ q. 
(iii)  x  X,  p  P, satisfy x  V (p). 
For current novelty detection scheme, there is only one 

cluster in the algorithm. The set of representative points P 
can be extracted from training set X using the algorithm as 
follow. 

Density based incremental clustering algorithm. 
Let Xun be the set of points in X that have not been 

considered yet. 
Set Xun  X, P   
While Xun ≠ , do 

Arbitrarily select a x  Xun 
If N (x, P) ≤ q , set 

P  P  {x} 
Xun  Xun  {x} 

End {if} 
End {while} 

When a new training set Xnew is available, P can be 
updated by letting Xun  Xnew, and performing the 
incremental clustering algorithm. Elder training set X needs 
not to be considered any more. 

 
2.3  Integrating OCSVM with incremental clustering 

Support vector machine (SVM) can be used to solve 
problems in various subjects such as novelty detection, 
classification and regression. It becomes popular in 
machine condition monitoring and fault diagnosis due to its 
global solution and excellent generalization [4, 6, 10–13].  

A major limitation of SVM or OCSVM is the high 
computational burden required especially during training 
phase[10, 14]. A quadratic programming optimization problem 
needs to be solved when training SVM, and solving such a 
problem sets high demands on computer memory 
requirements for large training sets. Though decomposition 
methods enable SVM to go through large training sets[14-17], 

they are still time consuming as training vectors extracted 
from turbopump vibration have mounted up to thousands 
upon thousands.  

In order to process the large data sets in vibration 
monitoring of the turbopump, density based incremental 
clustering is used firstly to reduce the size of the training 
set. In this way, a more representative sample is obtained 
and presented to OCSVM for more efficient classification.  

 
2.4  Parameter tuning 

There are four parameters in this novelty detection 
method:  
 —Trade-off parameter of OCSVM, 
 —Width parameter of Gaussian kernel, 
q —Maximum density of V (x), 
 —Radius of V (x). 
Determination of parameters  and  has been deeply 

analyzed in Ref. [7]. Generally, a smaller  should be 
chosen if few training vector is allowed to be rejected. And 
 can be set around dmax2, where dmax is the largest 
distance between training points. A bigger  is suggested in 
fault detection to reduce false alarms on normal data.  

For a fixed training set, the choice of q and  lies on how 
many representative vectors are supposed to be obtained. 
Let n be the number of representative vectors extracted. It’s 
not hard to see that the bigger , the bigger the region 
represented by each representative vector, and the smaller 
the number of vectors needed to represent the complete 
object region. It’s easier to see that the smaller q, the 
smaller the n for a fixed . When q  1, there is only one 
representative vector in each -neighborhood, and 
representative vectors yielded distribute uniformly in the 
object region and none of them is redundant. Thus q  1 is 
suggested first. Then for an acceptable interval [nmin, nmax], 
the value of  can be modified according to the number of 
representative vectors n. Reduce  to increase n when     
n < nmin and increase  to reduce n when n > nmax.  

Fig. 2 displays a simulation case in which the initial 
training set consists of 500 points. 39 representative vectors 
are extracted by performing incremental clustering (q  1,  
  4) on the initial training set. A hypersphere is obtained 
by training OCSVM ( 0.001,   11, δ 0.9) on these 39 
representative vectors. Fig. 3 shows the variation of n with 
 and q. It can be seen that n increases with the decrease of 
 or the increase of q.  

 
3  Turbopump Condition Monitoring 

 
3.1  Feature selection 

A mass of vibration signals including a small quantity of 
fault samples have been recorded from a kind of LRE 
turbopump in a series of ground tests. Restricted by space 
and structure, sensors used to record vibrations are 
mounted on the outside of the turbopump. Vibration signal 
of the turbopump is a superposition of components and it is 
hard to recognize faults of the turbopump according to 
frequency-domain analysis. While faults occur, abrupt  
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Fig. 2.  Illustration of result yielded by performing density based  
incremental clustering and OCSVM on simulated data 

 

 

Fig. 3.  Variation of n with  and q for the case in Fig. 2 

 
shock will arise along with thrust generated by the 
turbopump. Correspondingly, statistic characteristics of 
vibration signals will change in the form of energy or 
waveform. These changes can be described with 
time-domain features, such as mean, stand deviation, root 
mean square (RMS), kurtosis factor (KF), clearance factor 
(CF) and one-step autocorrelation coefficient. Time-domain 
features have the merit of low cost of computation and they 
are widely used for monitoring the turbopump of rocket 
engine in practical engineering. The dependency and fault 
sensitivity of these time-domain features have been 
analyzed with a large amount of test data. And RMS, KF 
and CF are selected finally[18].  

Vibration of turbopump is also sensitive to kinds of 
random factors and its statistic characteristics may vary 
with tests carried out at different time. In order to enable 
these detection features to have better consistency and 
uniform data scaling, the changing rates of RMS, KF and 
CF instead of themselves are used as final detection 
features. For a time-domain feature x, its changing rate is 
defined as 

 
( 1) ( )

.
( )x

x i x i
d

x i

+ -
=                 (6) 

 
Fig. 4 shows the RMS of vibration in test TF619 and its 

changing rates dRMS.  

 

Fig. 4.  Comparison of RMS and its changing rates dRMS 

 
 

3.2  Fault detection 
Vibration signals of the turbopump were sampled at 50 

kHz. Features were calculated every 0.05 s. 91 
representative points were extracted by performing density 
based incremental clustering on 36 800 feature vectors. 
And these 36 800 feature vectors were extracted from 10 
historical tests, which are identified by the field engineer to 
cover various normal operating conditions. The maximum 
density of V(x) was q  1 and the radius of V(x) was   
0.12. A novelty detector was yielded by training OCSVM 
on these 91 representative points. Parameters of the 
OCSVM are   0.01,   0.8, δ 0.98. Then the novelty 
detector was used to detect abnormality in historical data 
records. 

By taking f(x) in Eq. (3) as novelty index, Fig. 5 displays 
the features of test TF619. During test TF619, turbo vanes 
shed at 120.83 s and 127.18 s, which caused short shocks in 
the vibration waveform. But these faults had not been given 
enough attention. It was fortunate that nasty accident had 
not been caused and the test continued to the end. Fig. 6 
shows the novelty indexes of the vibration signal in test 
TF619.  

Fig. 7 displays the features of test TF627 during which 
serious rub-impact occurred from 11.73 s. Emergency 
measure was taken to shut down the turbopump. Fig. 8 
shows the novelty indexes of the vibration signal in test 
TF627. 

Fig. 9 displays the features of test TN618. During test 
TN618, the turbopump itself was normal, but sensor faults 
occurred. The vibration sensor disabled during time 
intervals [91.52 s, 93.11 s] and [103.66 s, 104.98 s]. Fig. 10 
shows the novelty indexes of the vibration signal in test 
TN618.  
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Fig. 5.  Detection features of test TF619 

 

 

Fig. 6.  Novelty detection results of test TF619 

 

 

Fig. 7.  Detection features of test TF627 

 

 

Fig. 8.  Novelty detection results of test TF627 

 
It can be seen from Fig. 6, Fig. 8 and Fig. 10 that the 

novelty detector derived from the combination of 
incremental clustering and OCSVM can detect these kinds 
of faults effectively. Detection results of all the normal tests 
that we have (15 tests including those 10 tests used for 
training the detector) showed no false alarm. 

 

Fig. 9.  Detection features of test TN618 

 

 

Fig. 10.  Novelty detection results of test TF618 

 
 

4  Conclusions 
 
(1) A novelty detection method is developed for 

turbopump vibration monitoring.  
(2) This method extracts a more representative data set 

from large historical data sets with density based 
incremental clustering algorithm. By this pre-processing, 
the data points in the representative set distribute uniformly 
and cover the entire object region.  

(3) When new tests are available, the set of 
representative points can be updated easily leaving elder 
training set out of account. Moreover, the size of the 
representative set is under control.  

(4) A novelty detector used to describe the boundary of 
the object region is yielded by training OCSVM on the 
representative set.  

(5) Applying this method to the condition monitoring of 
a LRE turbopump has proved that it can identify different 
spikes in vibration signals caused by abnormal events such 
as vane shedding, rub-impact and sensor faults.  
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