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NOMENCLATURE 

 

M = preordered set of measurands (objects to be measured)  

X = specified numerical relational system (NRS)  

D = partially ordered set of observed data  

ψ = homomorphism, a structure preserving mapping  

φ = deterministic measurement process  

h = forward mapping of the measurement, ℎ𝜓 = 𝜑  

g = the inverse or pseudo-inverse of h  

DS = (function processing) dilation filter 

ES = (function processing) erosion filter 

CS = (function processing) closing filter 

 

 

1. Introduction  

 

In surface metrology, the upper and lower specification limits 

(USL and LSL) of a free-form surface profile are defined in ISO 1101 

(2005 [1]) as two curves enveloping circles of certain diameter t, the 

centers of which are situated on the nominal surface profile. Let lo, lT , 

lB be the functions representing the nominal profile, the USL and the 

LSL respectively in a specified interval I, ( ) ( ) ( )B o Tl x l x l x  for all 

x I . Then it can be observed that, by taking the circle of diameter t 

as a structuring element of morphological operation [2], lT and lB are 

respectively the dilation and erosion of lo. A partial order  between t

he functions can be defined as l1  l2, if and only if (iff) 
1 2( ) ( )l x l x  

for all x I . Let l be a function representing the real surface profile 

of a work piece fabricated according to the nominal profile, then it is 

within specification if lB  l  lT . 

The canonical method of measuring surface profile is contact 

measurement by moving a tactile stylus along the surface to be 

measured to obtain the locus of the centre point of the stylus tip, 

called the traced profile (see figure 1). Let c be a function 

representing the traced profile and assume the stylus tip is an ideal cir

cular disk S in the plane of the surface profile. Then c is the dilation 

of l, and the real surface profile l can be estimated by the erosion of c 

with S as the structuring element, which is called as real mechanical 

profile in [3], denoted as 𝑙’. Denote the dilation filter as :SD l c  

and the erosion filter as : 'SE c l , the combination of DS followed 

by ES is a closing filter [2], denoted as : 'SC l l . Since CS is not an 

identical operation, the estimated profile is not always the same as the 

real surface profile. 

Assume there is a real surface profile l which is exactly the same 

as the USL lT, i.e. l is marginally within specification. By the 

extensive property of a closing filter [4], we have l  𝐶𝑆(𝑙), thus the 

estimated profile is always above the real surface profile. Hence we 

have l = lT  l’, which shows a contradiction that the measurement 

result of l can be out of specification.  

To be able to understand this contradiction, a framework of 

measurement is proposed base on representational measurement 

theory in section 2. For solving this contradiction, a desired property 

and a correction of the specification of free-form surface profile is 
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A contradiction is shown in this paper that, for contact surface measurement, if a measured surface profile is 

exactly coincident with the USL (upper specification limit), the measured result may still be out of specification. To 

understand and avoid this contradiction, a relational construction of measurement is proposed bases on the 

representational measurement theory. By observing the connection between measurement and inverse problem, 

measurement is modeled as a mapping from the preordered set of measurands (objects to be measured) to the 

partially ordered set of measured values. Thereby, a desired property of the specifications limits is derived, and a 

correction of the USL of surface profile is proposed. 
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proposed in section 3. 
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Fig. 1 Measurement of surface profile with tactile stylus  

2. Relational Structure of Measurement 

 

2.1 Relational construction 

In representational measurement theory a measurement is 

possible only if there is a structure-preserving mapping ψ (called 

homomorphism) from the empirical relational system (ERS) to a 

specified numerical relational system (NRS) [5]. An ERS consists of 

a set of measurands with certain relational structures (e.g. 

concatenation structure, conjoint structure) called empirical structure. 

There are always certain ordered relations between the measurands 

which are determined by the ‘value’ of the common attribute(s) to be 

measured. For different empirical structures, there are many types of 

ordered relations, like simple order, weak order and partial order, but 

normally they all belong to a type of very general relation called 

preorder, which is transitive and reflexive. Both the ERS and the 

specified NRS are preordered, denoted as M and X respectively. 

A practical measurement process can be modeled as a mapping 

between the ERS to a NRS of observed data, denoted as : M D  , 

but due to the limitation of measurement resolution and measurement 

error, normally φ is not a homomorphism. Moreover the output of a 

measurement process is not necessarily the measured values (of the 

measurands), since in many cases the measured values cannot be 

directly observed. For simplicity, we assume no random error is 

involved in the observed data, which means the measurement process 

φ is deterministic. To be precise, φ is deterministic iff for any 

measurands ,a b M , ( ) ( )a b a b   , where a b  means a 

is equivalent to b.  

Take the measurands true values and observed data as preordered 

sets M, X and D respectively, the following connection between X and 

D can be derived. For a deterministic measurement process 

: M D  , let : M X   be a homomorphism between the ERS 

M and a specified NRS X, there exists a unique mapping :h X D , 

such that h   (see figure 2, proof omitted). The derived diagram 

is called the relational construction of measurement. 

M

D

h

X




 

Fig. 2 Relational construction of measurement 

 

2.2 Inverse problems of measurement 

In many cases the measurands are measured indirectly by another 

related quantity, e.g. electrical resistance of a resistor can be measured 

by the observed data of electric current under a certain voltage. To 

estimate the true values of the measurands from the observed data is 

an inverse problem [6], and its forward mapping is the mapping h in 

the relational construction.  

The inverse or pseudo-inverse of h, denoted as :g D X  can be 

used to find the inverse solution. The output of g is thus the measured 

value. Hence a deterministic measurement can be taken as a mapping 

: M X  , and g  . 

For the measurement of a surface profile mentioned in section 1, 

the forward mapping is DS, which is not invertible, and its pseudo-

inverse is ES, in the sense that S S S SD E D D [4]. The essential reason 

of the contradiction is that DS is not a one-to-one mapping, and thus 

the inverse solution is not unique. 

 

3. A Correction in Specification of free-form surface  

 

We expect that if the true value of a measurand is in the 

specification, its measured value is also within specification. Hence 

the following desired property of specification (P1) should be 

satisfied. Let a be a specification limit, 𝑎 ∈ 𝑋 , then 𝑔ℎ 𝑎 = 𝑎 . 

Moreover, when P1 is satisfied, the measurement resolution can be 

reflected by the specification limits. Just like from 3.00+/-0.5mm, we 

can see the measurement resolution is expected to be 0.01mm. 

The problem is how to make sure P1 is satisfied. For the 

measurement of surface profile, since the closing filter is idempotent 

[4], i.e. 
S S SC C C , and 

S S SC E D , if the USL and LSL are in the 

range of CS, we have ( )S SE D a a , 𝑎 = 𝑙𝐵  or 𝑙𝑇, thus P1 is satisfied. 

Therefore, the closing filter can be used as a correction for the 

specification limits of surface profiles defined in ISO 1101 (2005). 

The contradiction can be solved by correcting the USL from 𝑙𝑇  to 

𝐶𝑆(𝑙𝑇). For the LSL, it is the erosion of the nominal profile by a disk 

of diameter t, denoted as ( )T oD l . By the basic properties of erosion 

and dilation [4], we have S S S SE D E E , and t is normally bigger than 

the diameter of the stylus S, so ( ) ( ) ( )T o S S T o S T oE l E D E l C E l  . 

That means, 𝑙𝐵 = 𝐶𝑆(𝑙𝐵), the LSL does not need to be corrected. 

 

4. Conclusions  

 

The relational structure derived in this paper is useful for 

understanding measurement in the perspective of inverse problems. 

The correction of a contradiction in the specification of free-form 

surface is demonstrated as an application of the theory. The next stage 

of research is to model measurement with uncertainty involved as a 

system of mappings base on the deterministic framework.  
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