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Abstract 

Motor current signature analysis (MCSA) has been an effective way of monitoring electrical machines 

for many years. However, inadequate accuracy in diagnosing incipient broken rotor bars (BRB) has 

motivated many studies into improving this method. In this paper a modulation signal bispectrum 

(MSB) analysis is applied to motor currents from different broken bar cases and a new MSB based 

sideband estimator (MSB-SE) and sideband amplitude estimator are introduced for obtaining the 

amplitude at sfs)21(   (s is the rotor slip and sf  is the fundamental supply frequency) with high 

accuracy. As the MSB-SE has a good performance of noise suppression, the new estimator produces 

more accurate results in predicting the number of BRB, compared with conventional power spectrum 

analysis. Moreover, the paper has also developed an improved model for motor current signals under 

rotor fault conditions and an effective method to decouple the BRB current which interferes with that 

of speed oscillations associated with BRB. These provide theoretical supports for the new estimators 

and clarify the issues in using conventional bispectrum analysis.  

 

Keywords: Induction motors, conventional bispectrum, modulation signal bispectrum, motor current 

signal model, broken rotor bar. 

1 INTRODUCTION 

Induction motors are the most widely used prime movers in industry. Broken rotor bars (BRB) in 

motors are a common fault which often brings unexpected breakdowns and leads to loss of 

productivity. In recent years, this type of fault has been increasingly studied for developing advanced 



techniques that permit on-line early detection and diagnosis of motor faults to avoid any negative 

consequences of unexpected shutdowns.  

As the main stream technique, signature analysis of motor phase current (MCSA) based on spectrum 

amplitude, has been widely used to detect BRB and end ring faults. The sideband components at 

frequency sfks)21(   have been used to detect such faults, (s is the rotor slip and sf  is the supply 

frequency, and harmonic integer k=1, 2, 3,… n). In particular, the amplitudes at these sideband 

components are tested to estimate the number of BRB for diagnosing the severity of the problem. 

Although, the MCSA gives acceptable detection results, its diagnostic method on a number of BRBs 

has not yet had a unified method. As shown in the review papers [1, 2] there are more than 5 formulae 

suggested by different researchers to predict the number of BRB based sideband amplitudes from 

spectrum analysis.  

One of the causes of this inconsistency may stem from the inherent drawbacks of noise inclusion in 

discrete Fourier transform (DFT) based spectrum analysis. To obtain more accurate results new signal 

processing methods have been tried in many of the latest studies. Of particular interest is the work to 

perform diagnosis to involve the phase information from DFT. In [3] the phase, rather than the 

modulus, of DFT of current signals was explored for broken rotor bar detection, The results show the 

phase of DFT allows the detection of one broken rotor bar when the motor operates under a low load 

(25% of rated load) but the robustness of the method decreases in the case of the half-broken rotor bar.  

Furthermore, Saidi, et al [4] tried to use the diagonal slices of a conventional bispectrum(CB) applied 

to stator current signals, which is a good attempt at combining the information from both the modulus 

and phase for BRB detection through CB. They claim that the results are superior in the accurate 

detection of rotor broken bars even when the induction machine is rotating at a very low level of shaft 

load (no-load condition). However, it is a dubious claim because the bispectrum slices show 

unconvincing peaks at the sidebands even under the load of 25%. In addition, the bispectrum 

estimation is obtained by using only four averages, which is certainly not enough to obtain a reliable 

estimation from the statistical point of view.  

On the other hand, an earlier study by the authors[5] on using motor current signals for the diagnosis 

of different faults, has in reciprocating compressors, revealed that by suppressing random noise with a 

new data processing method, named as modulation signal bispectrum (MSB) which is an extension of 

CB for analysing modulation signals particularly, has resulted in more accurate diagnosis than that of 

power spectrum(PS). This shows that MSB is an effective method used to detect and quantify 

sidebands in current signals through its high performance of noise suppression. The application of 

MSB is fully supported by the signal model developed in the paper. Following the success of using 



MSB for reciprocating compressors, the method has been further improved so that the MSB slice 

which excludes carrier amplitudes is developed to achieve a fast calculation of MSB and to compare it 

directly with PS, which has led to good results in detecting and diagnosing different faults from multi- 

stage gearboxes and electrical motors [6-9]. However, these applications rely on the combination of 

the sideband product obtained from the MSB. It has not been tried to separate the product explicitly 

into their individual components which are usually required for BRB severity diagnosis [10-18].  

To use MSB for obtaining more accurate results in diagnosing BRB, this paper develops a new MSB 

based sideband amplitude estimator (MSB-SE) that allows the amplitudes at lower and higher 

sidebands of sfs)21(   to be estimated individually and the BRB current component to be decoupled 

from motor current signals with inevitable noise and interferences. Following this introduction, the 

contents in this paper have further five sections. Section 2 derives the signal model due to BRB to 

include phase components to pave a theoretical base for applying MSB analysis. Section 3 extends 

MSB analysis so that the new MSB-SE is developed to accurately predict the amplitude of sidebands 

for predicting the number of BRB with a higher accuracy. Section 4 details experimental facilities and 

methods to evaluate these new methods. Section 5 presents the results and discussion. Finally section 

6 gives the key conclusions drawn in this study. 

2 MOTOR CURRENT SIGNAL MODEL FOR A FAULTY ROTOR 

A signal model for BRB has been presented in [10,11] to explain the roots of sideband components at 

sfs)21(  . By following the developing process of the model, this section extends the model to 

include phase effects, which provide a foundation for applying MSB to motor current signals and 

developing a reliable way for sideband extraction. 

2.1 Current signal under healthy conditions 

When a motor drive is operating under healthy conditions, the ideal electromagnetic relationship of the 

driving motor can be examined in just one of the three phases, for example phase A, for an easier 

understanding of the effect due to asymmetric rotor fault such as a broken rotor bar. By neglecting the 

higher order harmonics and inherent errors and referring to supply voltage signal, the current signal in 

phase A for a healthy motor drive can be expressed as 

)2cos(2 IsA tfIi          (1) 

Correspondingly, the magnetic flux in the motor stator is 

)2cos(2   tfsA        (2) 

The electrical torque produced by the interaction between the current and flux can be expressed as 



)sin(3   IIPT
       (3) 

where I  and   denote the root mean squared (RMS) amplitudes of the supply current and the linkage 

flux respectively, I  and   are the phases of the current and flux respectively referring to supply 

voltage, sf  is the fundamental frequency of electrical supply and P  is the number of pole pairs. 

2.2 Current signal under broken rotor bar 

If there is a fault on the rotor such as a broken rotor bar, there will be an additional current component, 

denoted as, fi  in the stator winding due to interaction between the main magnetic fields between 

stator and rotor [10,11]. Supposing that the additional current is a sinusoidal wave with a frequency

sF sff 2  for the case of BRB, an associated current wave with a BRB amplitude FI  and phase 

angle F , referring to the supply voltage, can be expressed as  

)2cos(2 FFFf tfIi         (4) 

Correspondingly, an oscillatory electric torque due to its interaction with the fundamental flux can be 

derived using electric torque equation )Im( *
Fe IPT


  as 

]2sin[3 FFF tfIPT          (5) 

which causes the motor rotor to produce a corresponding angular speed oscillation due to 

TP
dt

d
J  )/(   and hence angular displacement oscillation is  
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where J is the inertia of the rotor system of the motor. This angular oscillation modulates the phase of 

the linkage flux in Eqn. (2) and yields 
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The derivative of the first term of the flux is the fundamental electromotive force (EMF), while the 

derivative of the other two terms produces two new EMFs:  
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If the equivalent winding impedance at supply frequency is Zez   and assuming that it changes 

with frequency shifts relative to the supply frequency, the impedances at the two sideband components 

are )()( ZlZeZZz ll
   and )()( ZrZeZZz rr

  , which means that the modulus of 

impedance increases with the increase in frequency and the phase decreases with frequency. These 

EMFs will lead to new motor currents as follows: 
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  (9) 

The difference between lZ  and rZ  becomes larger with the increase in loads due to the increase in 

slip and so do the two phases. In addition, for higher order harmonics, these effects will be more 

significant. So this change is kept in this study to explain the asymmetric sidebands in the spectrum 

when large frequency shifts are examined for rotor misalignments, which is approximately a 50% 

difference relative to the fundamental, rather than not taken into account as in [11, 12].  

Combining Eqn. (4) with Eqn. (9) yields the final current signal under rotor faulty conditions:  
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where )/()21(2 ZZfsI sFl    and )/()21(2 ZZfsI sFr    are the modulus of 

sideband components due to speed oscillations which are caused originally by BRB currents in Eqn. 



(4). It shows that the current signal of the faulty case exhibits three new additional components, 

compared with that of a normal operation. Two of these are the lower sideband components at the 

same frequency, but with different phases, and the other is the upper sideband component with a phase 

different from the previous two. To see the possible connection of these components Eqn. (10) can be 

expressed using phase shift relationships: )sin()2/cos(    and )cos()cos(    
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Furthermore, the two lower sidebands in Eqn.(11) can be combined to yield  

])(2cos[)sin(22 22   FFsZlZFlFFlFl tffIIIIi  (12) 

where the amplitude of lower sideband in RMS value is 

)sin(222
ZlZFlFFlFL IIIII        (13) 

the phase angle is 
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It shows that the lower sideband amplitude appearing in PS is combined from two different types of 

underlying physical processes. Alternatively, the BRB current interferes with the current component 

due to speed oscillation.  

Substituting Eqn. (12) into F
Ai  in Eqn. (11) yields a more concise expression of the current signal for 

asymmetrical rotor faults: 
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From the above derivation and discussion it can be concluded that: 

1) The BRB leads to additional current components which will be the lower and upper sideband 

components at sfs)21(   shown in the spectrum of motor current signal. 



2) The amplitudes of these sidebands are influenced by rotor inertia, load variation, power factor 

and machine impedance. Especially, the amplitude of the original BRB current fi  shown at the 

lower sideband interferes with that due to speed oscillations. This means that the interference 

needs to be eliminated to obtain the amplitude of fi for accurate and reliable prediction of fault 

severity.  

3) The phases of sidebands are not only related to the same factors as their amplitude, but also the 

phase variation of the fault current. However, it will be shown in Section 3 that an appropriate 

phase combination between sidebands and the carrier of fundamental supply can eliminate the 

phase variation in order to achieve reliable and accurate sideband estimation. 

2.3 BRB fault current amplitude decoupling  

To determine fault severity i.e. the number of BRB, the BRB current amplitude needs to be decoupled 

from the interference. For the first harmonic component at frequency sfs)21(  , the shift in frequency 

is relatively small with respect to the fundamental frequency. So the changes of impedance at the 

lower and upper sideband are close to each other and with a small change in amplitude. This means 

that the amplitudes of two sidebands due to speed oscillation will be equal and the changes of 

impedance Z can be neglected to follow the assumption made in [11, 12]. Thus the amplitude of the 

lower sideband FlI  in Eqn.(13) due to speed oscillation can be approximated by the upper sideband 

FrI  and the amplitude of lower sideband in Eqn.(13) due to BRB can be repressed as: 

)sin(222
ZFrFFrFLb IIIII       (16) 

With a known amplitude of the lower sideband and upper sideband from spectrum analysis, the power 

factor calculated from current measured at operating load and the power factor at rated current 

obtained from motor nameplates, the BRB current amplitude FI  can be estimated by solving the 

following quadratic equation: 

0)sin(2 222  LbFrFZFrF IIIII        (17) 

In this way the interference of the speed oscillation can be decupled in the lower sideband, allowing 

fault severity to be obtained more correctly. However, reported works in the literature have not 

performed this key decoupling step in estimating the number of BRB [12-17], which is one of the 

main reasons that results in either overestimated or underestimated numbers of BRB. 

3 Sideband Estimation using Modulation Signal Bispectrum 



Section 2 shows that the current sideband components can be estimated using spectrum analysis. 

However, the amplitudes from conventional power spectrum include the additive random noise which 

is inevitable in measurement systems and motor operating process. To suppress noise, this section 

develops a new sideband amplitude estimator based on MSB analysis.  

3.1 Modulation signal bispectrum (MSB) 

For a discrete time current signal )(tx  its Discrete Fourier Transform (DFT) )( fX  is defined as: 







t

tjetxfX 2)()(        (18) 

and the second-order measure of power spectrum (PS) of )(tx  can be estimated by the formula: 

)]()([)( * fXfXEfP         (19) 

where )(* fX  is the complex conjugate of )( 1fX  and ][E is the statistical expectation. The power 

spectrum is the popular method for current signal analysis because it can be calculated by fast Fourier 

transform(FFT). However, it contains only amplitude information of individual component f  and 

ignores the effects of signal phases, leading to random noise inclusion. Extending this definition to the 

measures of order three gives rise to the estimation of CB: 

)]()()([),( 212121 ffXfXfXEffB        (20) 

CB of Eqn.(20) allows phase information between different component to be taken into account and 

shows unique performance in examining the presence of possible quadratic phase coupling (QPC) 

from the harmonically related frequency components of 21, ff  and 21 ff  . However, it neglects the 

possibility that the occurrence of 21 ff  , the lower sideband in PS, may be also due to the nonlinear 

relationship between the two components of 1f  and 2f . Because of this, it is not adequate to describe 

modulation signals such as the motor current signal in Eqn. (15). To improve the performance of CB 

in characterising the motor current signals, this study uses a modulation signal bispectrum (MSB) 

which has been investigated extensively by the authors in [5-9]: 

)]()()()([),( 2
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2
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121221 fXfXffXffXEffBMS      (21) 

Unlike the CB in Eqn.(20), this definition takes into account both )( 21 ff   and )( 21 ff   

concurrently for characterizing the nonlinear coupling in modulation signals. It shows that a bispectral 

peak will be presented clearly at bifrequency ),( 21 ffBMS  if )( 21 ff  and )( 21 ff   are both due to 



nonlinear coupling between 1f  and 2f . This is more accurate and effective in representing the 

modulation signals. 

The overall phase of MSB in Eqn. (21) is 

)()()()(),( 22121221 ffffffffMS  
     (22) 

when two components 1f  and 2f  are coupled, their phases are related by 
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By substituting (23) into (22) the total phase of MSB will be zero and its amplitude will be the product 

of the four magnitudes, which is the maximum of the complex product. Therefore, a bispectral peak 

will appear at ),( 21 ff . Eqn. (21) now includes both )( 21 ff   and )( 21 ff   simultaneously for 

measuring the nonlinearity of modulation signals. If )( 21 ff   and )( 21 ff   are both due to 

nonlinear effect between 1f  and 2f  a bispectral peak will appear at bifrequency ),( 21 ff . This is 

more accurate and apparent in representing the sideband characteristics of modulation signals.  

With this definition, the MSB phase of BRB current signals presented in Eqn.(15) can be obtained as  
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Eqn.(24) shows that the MSB phase of current signals relates only to the machine parameters 

including the impedance phase ZrZ    and fault amplitude induced phase  , but not fault phase 

F  and magnetic flux phase  . This means that the phase of MSB will be a constant when the 

motor is operating under steady conditions. In other words, MSB is independent of the angular 

position of the motor rotor or the start point of a signal segment acquired. This will allow sufficient 

averages in MSB estimation to be performed using a data set collected or framed at any time through a 

Welch method. The average in turn will suppress random noise and non-modulating components to 

obtain a reliable estimation of MSB and of the hidden modulating signal. 

It is worth noting that the phase of CB applied to signals expressed in Eqn. (15) is not independent of 

signal segments used. This means that an average process in estimating CB will lead to an uncertain 

result. Instead, it will change with segment sequences used, in an extreme case, CB magnitude will be 



close to zeroes if the phases of data segments are distributed uniformly between 0 and 2 . Therefore, 

CB is not suitable for analyzing motor current signals.  

In the case when the fault is due to pure speed oscillation, such as a misaligned shaft and rotor 

eccentricity, the MSB phase is simplified by excluding the second term in Eqn. (11) as  

  ZlZrsFMS ff -),(       (24a) 

i.e. the phase will be closer to  . Especially, when the impedance phase changes are in the sample 

amplitude, the MSB phase will be a constant value of  , showing that the modulation due to pure 

speed oscillation is close to the phase modulation process.  

3.2 Sideband estimator using MSB 

Because a motor current signal with electrical and mechanical faults contains a series of sideband 

components which appear mainly around the supply component, a bispectrum slice at the supply 

frequency will be sufficient to characterize these sidebands for fault detection and diagnosis. By 

setting 2f  in Eqn. (21) into a constant frequency value such as the fundamental 502  sff Hz, an 

MSB slice at supply frequency can be expressed as: 

         ][, **
111 sssssMS fXfXffXffXEffB      (25) 

In fault diagnosis it is the amplitude of the sideband or modulator that is useful for both detection and 

diagnosis. However, the magnitude of  sMS ffB ,1  from Eqn. (21) or (25) is a combination of 

sideband and supply components. The diagnostic results will be influenced by the amplitude at supply 

frequency, or the results are too sensitive to load conditions.  

Considering that the amplitude of supply frequency is predominant in current signals and it can be 

identified easily in the frequency domain, an MSB slice based sideband estimator, abbreviated as 

MSB-SE, can be introduced as  

              |]|/||/[, **
111 sssssss

SE
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to quantify the combined effect of sidebands only, but not the carrier at the supply frequency. Because 

the magnitude of 	X∗ሺ ௦݂ሻ/|Xሺ ௦݂ሻ| is unity, in the form of magnitude-phase, the sideband estimator is 

      ]|||[|, ),(
111

1 sMS ffj
sss

SE
MS effXffXEffB      (27) 

showing that the phase information of sf  is still taken into account in the estimation process and 

hence the noise suppression property is well maintained by MSB-SE. 



Eqn. (26) and (27) show that the magnitude of MBS-SE peaks is determined purely by the magnitude 

product of sideband components. It means that the product of two symmetrical sidebands 

    |||| 11 ffXffX ss   is equal to either     |||| 11 ffXffX ss   or 

    |||| 11 ffXffX ss   in the PS expression of Eqn. (19) provided that the two sidebands have the 

same amplitude and the signal is noise free. This shows that the unit of MSB-SE has the same unit as 

that of PS and hence they can be compared easily.  

However, the amplitude from Eqn. (26) or (27) is obtained by including phase effects which highlights 

components with the same phases, and suppress any components with phase inconsistency such as 

random noise. On the other hand, the sideband amplitude from PS includes noise influences because 

the estimation of power spectrum does not take into account phase information. Therefore, it will have 

the relation in Eqn.(28) provided that the amplitudes of lower and upper sidebands are the same in a 

pure modulation signal such as those from AM and PM processes . 

      |]||[|, 111 ffXffXPSffB sss
SE
MS       (28) 

For the current signals of Eqn.(15), the relationship of Eqn.(28) may not be true because the two 

sidebands are not symmetric or have amplitude differences. Nevertheless, Eqn.(28) can be a reference 

for checking the degree of asymmetry and the correctness of the estimation process.  

In addition, MSB-SE can also have its coherence function. According to [5] and Eqn.(26), MSB-SE 

coherence can be obtained by 
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to confirm the coupling effects between sidebands and carrier and to check the degree of random noise 

influence, which allows confirmation of the existence of SMS-SE peaks for the detection of 

modulation process in noise measurements. 

3.3 Sideband Amplitude Estimator based on MSB-SE 

To reconstruct the amplitude of sidebands for more general cases when the two sidebands are not 

symmetric, the amplitude relationship between PS and MSB-SE embedded in Eqn. (26) can be used to 

give a more accurate estimation of the sideband amplitude with minimal noise influence. Assuming 

that the random noise has the same amplitude in the frequency bands around the carrier component, an 

estimation of sideband amplitudes LX̂  and UX̂  with minimal noise can be expressed through PS as 

 LL XX̂  and  UU XX̂      (30) 



where LX  and UX  are the root mean squared (RMS) amplitude of the lower and upper sidebands 

from PS estimation, and   is the noise amplitude which can be calculated based on the amplitude 

relationship of Eqn. (26) between PS and MSB-SE: 

 ssf
SE
MSUL ffBXX

s
,))(( 2     (31) 

i.e. solving the following quadratic equation for the noise amplitude    

  0,)( 2
2  ssf

SE
MSULUL ffBXXXX

s
   (32) 

In this way, the estimated amplitude of sidebands will include minimal noise influences and produce a 

more accurate estimation of BRB severity.  

4 TEST SETUP 

To evaluate the current signal model and the performance of MSB-SE in diagnosing BRB of induction 

motors, an induction motor rig was used to acquire current data sets from four induction motors with 

the same specification, but three different degrees of BRB severity and a baseline motor. In the 

meantime these motors were also tested under different load conditions to evaluate the load 

dependency of the method.  

4.1 Test facility 

Fig. 1 shows the schematic of the test facilities employed to examine motor rotor faults. The system 

consists of an induction motor, variable speed controller, supporting bearings, couplings and DC 

generator as a load. The tested induction motor is a three-phase induction motor with rated output 

power of 4 kW at speed of 1420 rpm (two-pole pairs), 28 rotor bars and 36 stator slots, as detailed in 

Table 1.  

 
Fig. 1 Schematic of the induction motor test facility 

 



4.2 Fault simulation 

Three BRB cases with different BRB severities and one baseline case were tested with four motors of 

identical specification under the same operating conditions. As illustrated in Figure 2, the first BRB 

case is a motor with half BRB which was created by drilling a hole into one of the 28 bars up to the 

half depth of a bar. The second is one complete bar breakage created by drilling the hole to the full 

depth of the bar. And the third is two continuous bar breakage which was induced by drilling two bars 

side by side to their full depth as shown in Figure 2 (b). These three fault cases were induced in three 

different motors with the same specifications as shown in Table 1 and they were tested to have close 

baseline signatures before the faults were created on their rotors.  

 

 

(a) Rotor with one bar breakage 
 

(b) Rotor with two bar breakage 

Fig. 2 illustrative photos for BRB faults simulated 
 

Table 1 Induction Motor Specification 

Rated voltage (Δ/Y) 230/400 V 

Rated current (Δ/Y) 15.9/9.2 A 

Motor power 4 kW 

Number of phases 3 

Number of poles 4 poles/phase 

Supply frequency 50 Hz 

Motor rated speed 1420 rpm 

Number of stator slots 36 

Number of rotor bars 28 

Power factor 0.8 

 



4.3 Data acquisition 

Electrical current signals of the testing motor in three phases were measured by a hall-effect sensor 

with a linear frequency response from DC to 4kHz and measurement range 0 to 50A, which allows the 

content in a wide frequency range, especially around the supply fundamental of 50Hz, to be measured 

accurately. A shaft encoder mounted at the free end of the motor was used to measure motor speed and 

hence the slip changes for confirming the sideband frequency obtained by spectrum analysis. 

To examine the influence of the operating condition on fault diagnosis performance, electrical current 

signals were measured under an increment load cycle from 0%, 25%, 50% to 75% of the full operating 

load at the rated motor speed. In addition, to perform a sufficient number of averages in MSB 

estimation and obtain reliable results, the data acquisition was carried out at least three times for the 

same motor under test through three independent tests each of which repeat the load cycle at the rated 

speed. 

All of the measurements were sampled simultaneously with a high speed data acquisition system at a 

sampling rate of 96 kHz per channel. This high rate ensures that the speed obtained by the encoder is 

of sufficient accuracy for slip estimation. The system has a data resolution of 24bits. With this high 

dynamic data range the small components due to modulation and the large components at supply 

frequency can be measured concurrently. Moreover, a data length of 20 seconds was acquired for each 

acquisition in order to achieve a good average in calculating MSB while maintaining sufficient 

frequency resolution. 

5 RESULTS AND DISCUSSION 

For evaluation of the signal model and data analysis methods, the datasets of current signals for the 

baseline and three BRB cases were processed to obtain their corresponding MSBs respectively. The 

segment size for DFT calculation was set to be 768000 points, attaining a frequency resolution of 

0.125Hz for differentiating the small frequency change under low load . A Hanning data window was 

applied to the data segment to minimize the sidelopes of DFT. In addition, a 40% overlap between 

segments was used and the number of average was set to more than 100 for effective noise and 

interference suppression. A single Matlab function was developed to calculate PS, CB and MSB 

simultaneously according to Eqns.(19), (20) and (21) respectively, which allowed their performance to 

be compared under the same conditions. With the same calculating parameters the PS and MSB-SE 

were also calculated for direct comparison. 



5.1 Characteristics of MSB 

Figure 3 presents typical MSB results under two broken bars. As it can be seen in Figure 3(a) MSB 

shows two distinctive peaks at bifrequency (2.25,50)Hz and (24.4,50)Hz in the bispectrum domain. 

Clearly, the first one is relating to the ssf2  and can be relied on to detect and diagnose BRB without 

doubt, whereas the second one is relating to rotor speed due to the speed oscillation created by 

inherent misalignments. Besides, these two peaks are also distinctive in MSB coherence in Figure 

4(c), confirming that they stem from modulation processes between ssf2 and sf , and rf  and sf  

respectively and that these modulations have good signal to noise ratio. 

 
Figure 3 Characteristics of MSB and CB for a two broken bar case under 50% load 

 

On the other hand, the CB in Figure 3(b) shows a single peak at bifrequency (50, 50)Hz. This 

frequency does not show any connections to BRB at ssf2 . Moreover, CB coherence in Figure 3(d) is 

predominated by background noise in the whole domain of interest. It means that the peak at 

(50,50)Hz is not from real nonlinear coupling, but is due to the very high amplitudes at 50Hz in the 

original signal. 

To examine further the characteristics of MSB, the behaviour of peaks and their associated phases 

during the average process in estimating MSB and CB are presented in Figure 4. As can be seen, the 



two peaks are from MSB becoming stable as the number of averages increases. In particular, the peak 

amplitude at ssf2  is nearly stable after a number of averages equal to 60, whereas the amplitude 

relating to rf  still shows noticeable fluctuation after 60 averages due to its lower signal to noise ratio 

(SNR). Thus it can be acceptable to estimate MSB with about 100 averages. 

Especially, the instantaneous phases shown in Figure 4(d), obtained at each data segment, show that 

these two MSB components exhibit relatively small fluctuation over different segments, indicating 

that they are independent of data segments used. In contrast, the phase for the peak at (50,50)Hz from 

CB shows significantly larger changes between data segments, which leads to the averaged amplitude 

becoming smaller with the increase of the average number, as shown in Figure 4(c).  

It is also worth noting that the phase distribution of data segments is far from the uninform assumption 

made in developing bispectrum analysis. Therefore, it is suggested that segment sizes and overlaps 

should be adjusted more than once to ensure phases are distributed differently to avoid any 

coincidental phase alignment.  

In addition, the phase of MSB peak at (24.7, 50)Hz is slightly larger than  . As discussed in Section 

3.1 this shows that this modulation is mainly caused by pure speed oscillation. However, because of 

the influences of the impedance shift it is still not a symmetric phase modulation process. For the 

similar reason, the MSB phase at bifrequency (2.25,50)Hz is much larger than  , indicating that the 

modulation is from a more complicated modulation process such as BRB expressed in Eqn. (15). 

These phase differences can be combined for differentiation of different modulation processes.  



 
Figure 4 Average process of MSB peaks for two broken bar case under 50% load 

 

Overall, this examination shows that MSB is an effective approach to extracting the small modulation 

features in motor current signals for rotor fault diagnosis. However, CM is not very suitable to do so.  

To show the capability of MSB in suppressing random noise for measured signals, a comparison is 

made between MSB and PS based on the same data sets above. Figure 5 shows an MSB-SE which is 

plotted on top of the PS by a frequency shift mirrored about 50Hz. As seen in the graph, the floor 

noise level of MSB-SE is nearly 10dB lower than that of PS in the frequency range from 0 to 10Hz. 

Because of the good noise suppression capability, the higher order harmonics of ssf2  can be resolved 

much more easily. Similarly, the components at rf and even rf2  can be identified without any 

difficulty. However, there may be a problem in identifying rf2  by PS because the peak at )2( rs ff   

is invisible due to high noise level. This demonstrates that MSB has a good noise reduction capability, 

which leads to a more accurate amplitude of the modulating components. In addition, Figure 5 also 

shows that MSB-SE produces a sparse representation of current spectrum. It makes the identification 

and extraction of fault components much easier and more reliable.  
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Figure 5 Comparison between MSB and PS for two broken bar case under 50% load 

 

Figure 6 presents peak amplitudes and phases extracted from MSB for different BRB cases and 

different load conditions. It can be seen in Figure 6(a) that the peak values at ssf2 are different when 

the load is above 25%, showing that MSB amplitudes can be a good indicator for separating different 

BRB cases. However, MSB phases are overlapping for different cases and show an almost linear trend 

decreasing with load. These agree with theoretical analysis made in Section 2 in that the phase is not 

influenced by BRB, but relating to the power factor and hence the loads. 

On the other hand, the peaks at rf  are close to each other for different BRB cases. This shows that the 

tests have been carried out with good consistency between the four motors tested which need careful 

alignment during their installations onto the test rig. In addition, there is a decreasing trend of these 

peaks with load. This is examined due to the nonlinear effects of shaft couplings. As the load increases 

the effective deformation of rubber coupling elements becomes smaller and hence produces a smaller 

speed oscillation. As shown in Section 3, its phase is almost constant over loads. However, the motor 

for the case of half bar breakage may be slightly different in its residual eccentricity which leads to its 

phase diverging slightly at high loads. 

In general, the peak values from MSB show good performance of differentiating BRB cases. 

However, its load dependent trend makes it inconvenient for BRB severity assessment. 
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Figure 6 MSB amplitude and phase at 2sfs and fr for different cases and load conditions 

 

5.2 BRB severity diagnosis 

To develop a reliable and accurate method for BRB diagnosis, many researches such as those 

reviewed in [1] and [2], have been carried out in recent years. These have resulted in a number of 

empirical formulas for estimating the BRB fault severity in terms of the number of broken bars using 

sideband component amplitudes [12-17]. In general, they used different amplitude ratios between 

sideband components and fundamental/operating ones which are extracted from conventional 

spectrum analysis including amplitude spectrum and PS. As already shown in previous sections, the 

amplitude from normal spectra such as PS may produce an overestimate of the fault because the 

amplitude includes additive noise. Therefore, to minimize the noise influence on fault severity 

prediction, the sideband amplitude estimation based on MSB is applied to the data sets.  

The second issue is that the decoupling of the lower sideband for the BRB fault current component has 

not been addressed explicitly in those studies. It often leads to misunderstanding in applying these 

formulae without performing the decoupling. 

Furthermore, the ratios are usually constituted by using the operating current value as the denominator 

to remove the load dependent trend in severity prediction. It seems that these relationships ignore the 

fact that the BRB fault current is also influenced by its associated speed oscillation and these 
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predictions may be just valid for rated operating conditions. Moreover, it is shown by all previous 

studies that the sfs)21(   sideband components only appear when a motor is under load. It means 

that the BRB fault current amplitude relates only to the active current value, rather than the total 

operating current. Therefore the denominator of current ratios should only include the effective current 

rather than the total operating current as suggested in [18]. 

From these understandings, this study redefines the estimation formula based on works in [14,18]. The 

current ratio  is defined as:  
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where I  is the amplitude of total operating current; oI  is no load current value which can be 

calculated using the rated power factor and current from motor nameplates, and bN  is the number of 

rotor bars. This then leads to a direct prediction of the number of BRB:  
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More specifically the prediction of the numbers of BRB can be implemented by the following four 

steps: 

1) Using Eqn.(32) in Section 3.3 to minimize noise influences and obtain the denoised 

amplitudes of both lower sideband and upper sideband; 

2) According to the power factor provided on the motor plate to obtain the reactive current value 

at no-load condition. 

3) Using Eqn.(17) to decouple the influences due to speed oscillations and obtain the amplitude 

of BRB fault current. 

4) Using Eqns.(33) and (34) to calculate the number of BRB. 

Figure 7 shows the results from sideband estimation by Step 1). As shown in the figure, the proposed 

method produces a slightly lower estimation, compared with that from PS. The difference is marginal 

at high loads and severer fault condition because of high SNR signals. However, for the incipient fault 

case of half BRB and the baseline case, the difference between MSB-SE and PS is significant because 

of more noise influence, which may lead to incorrect diagnosis by PS analysis.  

Figure 8(a) presents the results from Step 3). The values show similar characteristics to that in Figure 

7(b) and (c). But they have higher amplitudes, compared with either the lower or upper sideband. It 

demonstrates that the BRB fault current has been reduced by the interference of the sidebands due to 



associated speed oscillations. Because of the difference in fault severity estimation, using either of the 

sidebands or by their sum, would be inadequate.  

 

 
Figure 7 The estimation of sideband amplitudes through MSB-SE for different BRB cases 

 
Figure 8 The prediction of BRB current and diagnosis of BRB severity 

 

Having shown the BRB fault currents, the prediction of the numbers of BRB can be carried out and 

gives results shown in Figure 8(b). It shows that the proposed method gives very close prediction for 

the tested cases and the results are independent of load conditions, except for the no-load condition. 

Comparing the results from MSB with that from PS, it can be seen that it is difficult for PS to separate 

between the baseline and half BRB at load 25% and 50%. However, MSB-SE based results can give 
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sufficient difference between these cases because it has good noise suppression capability and hence 

outperforms PS analysis.   

6 CONCLUSION 

Faults on the rotor of electrical motors cause additional components which modulate the fundamental 

supply component and lead to a nonlinear phase current signal. In a power spectrum they exhibit as 

asymmetric sidebands around the supply frequency. To extract these components in noise signals, a 

new MSB-SE estimator can be applied to measured signals to suppress inevitable noise components 

and non-modulating components for obtaining a more accurate measure of the modulation. However, 

the conventional bispectrum is inefficient with respect to this modulation effect in current signals. 

For predicting BRB severity, sideband amplitudes at sfs)21(   from PS can be denoised using MSB-

SE based, the proposed sideband amplitude estimator and then further decoupled to obtain BRB fault 

current alone for more accurate prediction of the number of BRB.  

Experimental evaluation shows that the new estimators produce more accurate results in predicting the 

number of BRB under different load conditions and fault cases, compared with power spectrum 

analysis. Especially it can easily separate the half BRB at a load as low as 25% from baseline where 

PS would not produce a correct separation.  
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