University of Huddersfield Repository

Barlow, Roger, Cywinski, R., Edgecock, R. and Toafer, Adina

PIP: a compact recirculating accelerator for medical isotopes

Original Citation

This version is available at http://eprints.hud.ac.uk/20320/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
A small low-energy nsFFAG concept that uses a re-cycling beam and internal target to produce medical isotopes. It can also produce neutrons for security scanning and other purposes.

Medical isotopes – PET and SPECT

For making medical isotopes, for imaging or for treatment, low energy accelerators have advantages over high energy accelerators, and reactors. Isotopes can be produced locally, on demand, rather than delivered from some remote distribution centre.

Medical isotope production cross sections have respectably high peaks, but they are narrow. Medical isotopes – PET and SPECT

Targets: thick versus thin.

Particles lose energy in the target and regain it from the RF system. Nevertheless the emittance can become large, and the wide acceptance of an FFAG is needed.

ERIT shows the way

PIP-4

Is this a cyclotron or an nsFFAG?

At first sight this looks like a cyclotron. There are no obvious counterparts, as you expect in an FFAG. But this is deceptive. The radial field variation is enormous. The red curve in the figure shows how the magnetic field at the centre of the magnet increases from 0.07 to 1T from the inner to the outer radius. The field in sector optimisation does vary, but only by a few percent. The high gradient is characteristic of an FFAG.

The blue curve shows the field variation along the radius 30 mm off the symmetry axis. The falls, due to edge scalloping, providing the alternating gradient.

These alternating gradients provide strong focusing, making this, we would argue, an FFAG.

PIP-14

At first sight similar to PIP-4, PIP-14 orbits have a much higher field/no-field ratio. The radial field variation is so large that the field/no-field ratio is constant (field profiles at 0, 0.1, 0.2, 0.3 and 0.4 radians are shown).

Conclusion

Despite their similar appearance, PIP-14 and PIP-4 have significant differences in behaviour. This is expected as it tells us there is a lot of scope for optimisation.

More studies (including OPAL and COSY infinity) are under way.