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ABSTRACT 

The effect of helium implantation fluences in French nuclear borosilicate glass on He bubble 

nucleation and growth  mechanisms was characterised using in-situ TEM experiments. Observations of 

implanted glass at 143K indicate that a helium concentration of around 3 at.% is required to nucleate a 

significant density of nanosized bubbles. He bubble growth is observed for He concentration higher than 

the estimated number of helium host (> 4 at.%). These results highlight the large capacity of the glassy 

network for incorporating helium atoms. 
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In France, fission products and minor actinides (MA) resulting from the reprocessing of spent 

nuclear fuel from PWR reactors are immobilized in a borosilicate matrix (known as R7T7) by vitrification. 

During storage, helium accumulation from alpha decay of MA will occur over time in glass. For example, 

the helium concentration in the glass after around 10 000 years of disposal will be around 0.03 at.% 

neglecting helium diffusion. In a glass package with an external environment substantially free of helium, 

the helium content could exceed the equilibrium concentration. As a result, helium atoms may aggregate 

into small clusters or bubbles that could reduce the helium mobility and induce local mechanical stress. In 

this context, mechanisms of helium bubble formation and growth have to be studied in order to determine 

whether helium bubbles can be formed under glass disposal conditions.  

In oxide glasses, helium is incorporated in the glassy matrix through the glass free volume (1). 

Helium nucleation and growth mechanisms can be studied by two approaches: by performing thermal 

treatment on helium infused glasses or by generating helium by non-equilibrium methods such as 

implantation, irradiation in nuclear reactor using the 
10

B(n,α)
7
Li reaction or by doping the glass with short 

half-life actinides such as 
244

Cm or 
238

Pu. By using the infusion method associated with a thermal 

treatment, Fares et al. have studied the conditions of helium bubble formation in a SON68 borosilicate 

glass free of radiation damage simulating the French “R7T7” nuclear waste containment glass (2). He has 

observed micro bubble nucleation at a concentration of 0.003 at.% as soon as the glass temperature 

reaches the glass vitreous transition temperature (TG), i.e. when the glass viscosity decreases sufficiently 

to allow glass deformation. However, one previous work performed by Faile et al. on infused simple 

borosilicate glasses has exhibited bubble nucleation below TG for higher helium content (1 at.%) (3), 

suggesting that a synergy between temperature and helium content could favour helium bubble formation. 

Moreover, the literature data concerning helium bubble formation under non-equilibrium generation 

methods show some discrepancies. Two studies on borosilicate glass irradiated with helium generated by 

the 
10

B(n,α)
7
Li reaction have highlighted the bubble nucleation for irradiation temperatures below 503K 
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(4) and at 1023K (5). However no bubble greater than 10 nm (spatial resolution limit) was observed for an 

irradiation temperature lower than 343K in similar glass (6). Concerning the actinide-doped glasses, two 

works can be cited. Inagaki et al. have observed by SEM some pores of around 0.2 µm diameter in a Cm-

doped glass of type R7T7 at a helium content of around 0.3 at.%  (7). On the contrary,
 
no pores or bubbles 

greater than 10 nm were observed in a SON68 curium-doped glass after the same level of alpha decay 

(and thus helium content (8)). The conclusions of helium implantation experiments in glasses are also 

contradictory. Three studies mention the possibility of bubble formation without annealing for helium 

concentrations of around 2 at.% (9). On the other hand, for higher helium content (3-4 at.%) another study 

did not reveal any bubbles (10), either by TEM or by SAXS. Finally, very recently Bes et al. have 

performed the first in-situ TEM helium implantation in SON68 glass and observed the nucleation of 

nanometer-sized bubbles at 143K at a local helium concentration of around 0.1 at.% (11). This disparity of 

results in the literature could be linked to several factors such as the synergetic effect of temperature, 

radiation damage and helium content. Moreover due to the high helium diffusivity (D = 10.2 ± 1.8 x 10
-18

 

m
2
.s

-1
 at room temperature (11)) it is vitally important to be very careful during each step of the 

experimental process (storage conditions, implantation and irradiation temperature ...). Thus in-situ 

experiments appear to be the best way to determine the nucleation and growth mechanisms of helium 

bubbles. In the present work, we have studied the effect of implantation fluence on bubble evolution using 

in-situ TEM investigations. 

Glass samples were prepared from SON68 cylindrical rods at CEA (Marcoule, France). The glass 

chemical compositions are described in Ref. (12). Three foils with a 100 nm thickness were prepared for 

TEM observations using Focused Ion Beam (FIB) lift-off technique. TEM with in-situ ion implantation 

was performed using 6 keV He
+
 ions with an ion beam flux up to 7.7 × 10

13
 ions cm

–2
.s

-1
 in the 

Microscope and Ion Accelerator for Materials Investigations (MIAMI) facility at the University of 

Huddersfield. A low implantation temperature (143K) was chosen to minimise any sample heating and 
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thus helium diffusion. Specimens were implanted successively at increasing fluences in the range of  0.1 

to 23 x 10
16

 He.cm
-2

 corresponding to the peak concentration  (at the projected range, Rp, of the 

implantanted ion distribution) varying from 0.1 to 23 at.% according to SRIM calculation (13). TEM 

observations were achieved using a JEOL JEM-2000FX TEM operating at 80 keV. Images were captured 

using a Gatan ORIUS SC200 camera at all fluence steps with the electron beam switched off during the 

implantation process in order to minimize any electron-induced glass radiation damage (11). 

After implantation at 2.8 x 10
16

 He.cm
-2 

(2.8 at.% at Rp), structures of around several nm size with 

brighter contrast in underfocused images are observed, suggesting helium bubble nucleation. Due to the 

resolution limit under these observation conditions, we cannot exclude the presence of smaller bubbles 

(around 1-2 nm) at lower implantation fluences. The bubbles appear clearer at an implantation fluence of 

4.4 x 10
16

 He.cm
-2 

as shown by the bubbles within the dotted circles in Fig. 1.a. The bubble morphology is 

circular with a radius of around 3 ± 1 nm. Their density is low except in some area where small bubbles 

are grouped along lines (arrow in Fig. 1.b). It is likely that these bubbles lines are due to a variation of the 

lamella thickness or of local stress that could favour helium bubble nucleation. At fluences between 4.4 

and 9 x 10
16

 He.cm
-2

, the bubbles first nucleated at low concentration remain at the same position and 

grow without a significant change of shape. The analysis of sequential images also highlights the presence 

of new bubbles with smaller sizes in areas previously free of bubbles. From a fluence of 9 x 10
16

 He.cm
-2

, 

the distance between two neighbouring bubbles already formed becomes lower than 10 nm for most of the 

observed area inducing a modification of bubble morphology. Fig. 2 presents the bubble evolution from 

fluences of 9 to 23 x 10
16

 He.cm
-2

. Observations reveal an increase of bubble density from 9 to 14 x 10
16

 

He.cm
-2

. As indicated by the dark circle on the micrographs (Fig. 2.b-d), once nucleated the bubbles 

remain on fixed sites and continue to grow by accumulation of implanted helium. Then when two bubbles 

are close enough bubble coalescence occurs inducing an evolution of the shape from circular to elongated 

bubbles as observed in the area illustrated by the dark arrow (Fig. 2.a-d). The smaller bubbles disappear in 
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favour of a bigger one. Fig. 2 also shows the presence of smaller bubbles which have formed above or the 

below the larger ones, the additional brightness being due to the superposition of the small and large 

bubbles.  

Fig. 3 shows the bubble radius distributions for the samples implanted at 9, 14, 18 and 23 x 10
16

 

He.cm
-2

. 850 to 250 bubbles were counted for respectively the 9 and 23 x 10
16

 He.cm
-2 

implanted fluence. 

Only circular bubbles have been taking into account. At 9 x 10
16

 He.cm
-2 

a broadening of the size 

distribution occurs. The population of smaller bubbles (3 ± 1 nm) seen at lower concentration is still 

present but bubbles with bigger radius (around 8 nm) are also present. At higher fluences the mean size 

and the width of the bubble distribution increase with helium content. This broadening is due to bubble 

coalescence as observed in Fig.2. 

From TEM investigations we have observed nanosized bubble nucleation at a helium concentration 

of 2.8 at.% (Fig. 1). It appears that a concentration around 100 times higher than the estimated helium 

content in the glass after around 10 000 years of disposal (0.03 at.%) is required to give rise to significant 

numbers of helium bubbles. In addition neither bubble diffusion nor re-solution of the helium was 

observed at low implantation temperature (143K). In the literature, Bes et al. observed the formation of 

low density helium bubbles with a radius of 1-2 nm in SON68 glass after helium implantation at lower 

concentration (0.1 at.%) (11). In our case, the resolution limit associated with the observation conditions 

(including the thickness of our FIB lamella) prevented the detection of bubbles with a radii smaller than 1 

nm. However, the bubbles sizes determined are quite similar for the two in-situ studies at helium 

concentration of 0.1 and 2.8 at.%. As the implantation temperature and the glass composition are 

comparable, this indicates that the bubble size does not evolve significantly with the implantation fluence 

up to a helium concentration of around 3-4 at.%. However at a higher helium content (> 3-4 at.%) the 

bubble size increases (Fig. 3). This evolution can be correlated with the helium solubility in the glass. 

Indeed, a density of helium host sites (Ns) in SON68 glass of around 2.2 ± 0.6 x 10
27 

at.m
-3

 (~3 at.%) was 
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determined using two experimental approaches: by pressurized helium infusion at different temperatures 

and by 
3
He implantation at several fluences (12). This Ns value corresponds in our case to a helium 

implantation fluence of 3 x 10
16

 He.cm
-2

 (3 at.%). This value fluence is close to the limiting fluence 

ranging from 2.8 to 4.4 x 10
16

 He.cm
-2

 where bubble growth clearly occurs. It suggests that for helium 

concentrations higher than Ns all host sites are occupied. Thus with increasing fluence helium atoms are 

unable to find any empty host sites and so accumulate inside bubbles inducing glass structure deformation 

and thus bubble growth. However for concentrations smaller than Ns the cavity size does not evolve 

significantly, only the bubble density increases. The mechanisms of nanosized bubble nucleation is not 

well understood at present. However several parameters seem to be involved. Indeed even at low 

implantation fluences, the probability for helium atoms to come to rest close to a volume already occupied 

by helium atoms exists and increases with the fluence. Also molecular dynamic simulations have shown 

that larger free volumes, with sizes sufficient to contain few helium atoms, exist inside the glass structure 

(14). These volumes could act as nucleation sites for the first nanosized bubbles. In addition, during the 

implantation process, helium atoms are introduced into the glass together with displacement cascades. The 

structural reorganization of glass containing helium atoms due to a collision cascade could also favour 

bubble nucleation. Thus the synergistic effect of radiation damage and helium content needs to be clarified 

in order to determine whether the implantation damage can favour bubble nucleation at low helium 

concentration.  

This in-situ TEM He implantation study highlights the important capacity of the glassy network for 

accommodating large helium concentrations. On the one hand, high helium concentration is required (~3 

at.%) to observe a significant density of nanosized He bubbles. On the other hand, the glassy network may 

be able to accommodate very high helium concentration (23 at.%) by forming a large helium bubble 

network without fracturing the material. 
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Figure 2 
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Figure 3  
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Figure caption 

Figure 1: TEM micrographs of SON68 glass implanted at 6 keV He ions at 143K with fluences of  4.4 x 

10
16

 He.cm
-2

. The dotted circles indicate the bubble nucleation. The arrow shows a line along which small 

bubbles are grouped.  

Figure 2 : TEM micrographs of SON68 glass implanted at 6 keV He ions at 143K with fluences of (a) 9, 

(b) 14, (c) 18 and (d) 23 x 10
16

 He.cm
-2

. The arrows show bubble coalescence with increase in helium 

fluence. The dotted circle indicates the nucleation and growth of bubbles. 

Figure 3 : Distributions of bubbles radii, determined for glass implanted at 6 keV He ions at 143K with 

fluences of 9, 14, 18 and 23 x 10
16

 He.cm
-2

. 850, 750, 600 and 250 bubbles were counted for the 

distributions at fluence of 9, 14, 18 and 23 x 10
16

 He.cm
-2 

respectively. 

 

 


