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Abstract

This paper presents a meta-algorithm for the computation of
preferred labellings, based on the general recursive schema
for argumentation semantics called SCC-Recursiveness. The
idea is to recursively decompose a framework so as to com-
pute semantics labellings on restricted sub-frameworks, in or-
der to reduce the computational effort. The meta-algorithm
can be instantiated with a specific “base algorithm”, applied
to the base case of the recursion, which can be obtained
by generalizing existing algorithms in order to compute la-
bellings in restricted sub-frameworks. We devise for this pur-
pose a generalization of a SAT-based algorithm, and pro-
vide an empirical investigation to show the significant im-
provement of performances obtained by exploiting the SCC-
recursive schema.

Introduction
Dung’s theory of abstract argumentation (Dung 1995) is a
unifying framework able to encompass a large variety of
specific formalisms in the areas of nonmonotonic reason-
ing, logic programming and computational argumentation.
It is based on the notion of argumentation framework (AF ),
consisting of a set of arguments and an attack relation be-
tween them. Different argumentation semantics introduce in
a declarative way the criteria to determine which arguments
emerge as justified from the conflict, by identifying a num-
ber of extensions, i.e. sets of arguments that can “survive
the conflict together”. In (Dung 1995) four “traditional” se-
mantics were introduced, namely complete, grounded, sta-
ble, and preferred semantics. For an introduction on alterna-
tive semantics, see (Baroni, Caminada, and Giacomin 2011).

The main computational problems in abstract argumen-
tation include decision and construction problems, and turn

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

out to be computationally intractable for most of argumenta-
tion semantics (Dunne and Wooldridge 2009). In this paper
we focus on the extension enumeration problem, i.e. con-
structing all extensions prescribed for a given AF : its solu-
tion provides complete information concerning the justifica-
tion status of arguments and subsumes the solutions to the
other problems.

On the practical side, few results are available on the de-
velopment of efficient algorithms for abstract argumentation
and their empirical assessment. In particular, in (Cerutti et
al. 2013; 2014) a SAT-based approach has been proposed to
solve the extension enumeration problem for preferred se-
mantics. Preferred semantics represents the main contribu-
tion in Dung’s theory, as it allows multiple extensions (dif-
ferently from grounded semantics), the existence of exten-
sions is always guaranteed (differently from stable seman-
tics), and no extension is a proper subset of another exten-
sion (differently from complete semantics). The proposed
approach basically performs a search in the space of com-
plete extensions to enumerate the maximal ones, exploit-
ing a SAT solver to identify the relevant search states. In
(Cerutti et al. 2014) it has been shown to be competitive
w.r.t. other state-of-the-art systems including ASPARTIX
(Egly, Alice Gaggl, and Woltran 2010), ASPARTIX-META
(Dvořák et al. 2011) and the system presented in (Nofal,
Dunne, and Atkinson 2012). A limitation of this approach
is that it is always applied to the AF as a whole, without
dividing the enumeration problem into a number of simpler
sub-problems.

In this paper, we aim at showing (i) an approach for di-
viding the problem of enumerating the preferred extensions
into sub-problems, and (ii) that such an approach reduces
the overall computational effort. In particular, we rely on
the SCC-recursive schema, first introduced in (Baroni, Gi-
acomin, and Guida 2005), which is a semantics definition
schema where extensions are defined at the level of the



sub-frameworks identified by the strongly connected com-
ponents. It is worth to mention that the focus of this paper is
on preferred semantics, but the devised meta-algorithm can
be instantiated with various specific “base algorithms” and
applied to a variety of semantics.

The paper is organised as follows. After recallling some
necessary background in the first section, the SCC-recursive
schema is reviewed in the next one. Then the parametric
meta-algorithm is presented, and the generalization of the
SAT-based algorithm of (Cerutti et al. 2014) is described.
Next section describes the test setting and comments the
experimental results, while the last section provides a final
discussion and concludes the paper. Proofs are omitted or
sketched due to space limitations.

Background
An argumentation framework (Dung 1995) consists of a set
of arguments1 and a binary attack relation between them.

Definition 1. An argumentation framework (AF ) is a pair
Γ = 〈A,R〉 whereA is a set of arguments andR ⊆ A×A.
We say that b attacks a iff 〈b, a〉 ∈ R, also denoted as b→ a.
The set of attackers of an argument a will be denoted as
a− , {b : b → a}, the set of arguments attacked by a will
be denoted as a+ , {b : a → b}. We also extend these
notations to sets of arguments, i.e. given E ⊆ A, E− , {b |
∃a ∈ E, b→ a} and E+ , {b | ∃a ∈ E, a→ b}.

An argument a without attackers, i.e. such that a− = ∅,
is said initial. Moreover, each argumentation framework has
an associated directed graph where the vertices are the argu-
ments, and the edges are the attacks.

The basic properties of conflict–freeness, acceptability,
and admissibility of a set of arguments are fundamental for
the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:
• a set S ⊆ A is a conflict–free set of Γ if @ a, b ∈ S s.t.

a→ b;
• an argument a ∈ A is acceptable with respect to a set
S ⊆ A of Γ if ∀b ∈ A s.t. b→ a, ∃ c ∈ S s.t. c→ b;

• a set S ⊆ A is an admissible set of Γ if S is a conflict–free
set of Γ and every element of S is acceptable with respect
to S of Γ.

An argumentation semantics σ prescribes for any AF Γ a
set of extensions, denoted as Eσ(Γ), namely a set of sets of
arguments satisfying the conditions dictated by σ. Here we
need to recall the definitions of complete (denoted as CO),
grounded (denoted as GR) and preferred (denoted as PR)
semantics only.

Definition 3. Given an AF Γ = 〈A,R〉:
• a set S ⊆ A is a complete extension of Γ, i.e. S ∈
ECO(Γ), iff S is admissible and ∀a ∈ A s.t. a is accept-
able w.r.t. S, a ∈ S;

1In this paper we consider only finite sets of arguments: see
(Baroni et al. 2013) for a discussion on infinite sets of arguments.

• a set S ⊆ A is the grounded extension of Γ, i.e. S ∈
EGR(Γ), iff S is the minimal (w.r.t. set inclusion) complete
extension of Γ. Its existence and uniqueness have been
proved in (Dung, Mancarella, and Toni 2006);

• a set S ⊆ A is a preferred extension of Γ, i.e. S ∈
EPR(Γ), iff S is a maximal (w.r.t. set inclusion) complete
extension of Γ.
It can be noted that each extension S implicitly defines

a three-valued labelling of arguments: an argument a is la-
belled in iff a ∈ S; is labelled out iff ∃ b ∈ S s.t.
b → a; is labelled undec if neither of the above con-
ditions holds. In the light of this correspondence, argu-
mentation semantics can be equivalently defined in terms
of labellings rather than of extensions (Caminada 2006;
Baroni, Caminada, and Giacomin 2011). For technical rea-
sons, we introduce the notion of labelling both for argumen-
tation frameworks and for arbitrary sets of arguments.
Definition 4. Given a set of arguments S, a labelling of S
is a total function Lab : S −→ {in, out, undec}. The set
of all labellings of S is denoted as LS . Given an AF Γ =
〈A,R〉, a labelling of Γ is a labelling of A. The set of all
labellings of Γ is denoted as L(Γ).

In particular, complete labellings can be defined as fol-
lows.
Definition 5. Let Γ = 〈A,R〉 be an argumentation frame-
work. A labelling Lab ∈ L(Γ) is a complete labelling of Γ
iff it satisfies the following conditions for any a ∈ A:
• Lab(a) = in⇔ ∀b ∈ a−Lab(b) = out;
• Lab(a) = out⇔ ∃b ∈ a− : Lab(b) = in;

The grounded and preferred labelling can then be defined
on the basis of complete labellings.
Definition 6. Let Γ = 〈A,R〉 be an argumentation frame-
work. A labelling Lab ∈ L(Γ) is the grounded labelling of
Γ if it is the complete labelling of Γ minimizing the set of ar-
guments labelled in, and it is a preferred labelling of Γ if it
is a complete labelling of Γ maximizing the set of arguments
labelled in.

In order to show the connection between extensions
and labellings, let us recall the definition of the func-
tion Ext2Lab, returning the labelling corresponding to a
conflict–free set of arguments S.
Definition 7. Given an AF Γ = 〈A,R〉 and a conflict–
free set S ⊆ A, the corresponding labelling Ext2Lab(S) is
defined as Ext2Lab(S) ≡ Lab, where
• Lab(a) = in⇔ a ∈ S
• Lab(a) = out⇔ ∃ b ∈ S s.t. b→ a
• Lab(a) = undec⇔ a /∈ S ∧ @ b ∈ S s.t. b→ a

(Caminada 2006) shows that there is a bijective corre-
spondence between the complete, grounded, preferred ex-
tensions and the complete, grounded, preferred labellings,
respectively.
Proposition 1. Given an an AF Γ = 〈A,R〉, Lab is a
complete (grounded, preferred) labelling of Γ if and only if
there is a complete (grounded, preferred) extension S of Γ
such that Lab = Ext2Lab(S).



The set of complete labellings of Γ is denoted as LCO(Γ),
the set of preferred labellings as LPR(Γ), while LGR(Γ)
denotes the set including the grounded labelling.

SCC-Recursiveness Revisited
In (Baroni and Giacomin 2004) it has been recognised that
each argumentation framework can be partitioned into a
set of sub-frameworks in such a way that most common
argumentation semantics (originally defined at the global
level) can be equivalently defined at the level of these sub-
frameworks. In particular, an extension-based semantics def-
inition schema has been introduced, called SCC (strongly
connected component)-recursiveness, based on the graph-
theoretical notion of SCCs i.e. the equivalence classes in-
duced by the path equivalence (i.e. mutual reachability) re-
lation between the nodes of the associated graph of an argu-
mentation framework (given the direct correspondence be-
tween each AF and its associated graph, in the following
we will equivalently refer to both of them as AF ).

Definition 8. Given anAF Γ = 〈A,R〉, the binary relation
of path-equivalence between nodes, denoted as PEΓ ⊆ A×
A, is defined as follows:

• ∀a ∈ A, 〈a, a〉 ∈ PEΓ;
• ∀a, b ∈ A, a 6= b, 〈a, b〉 ∈ PEΓ iff there is a path from a

to b and vice versa.

Two main features of the SCC-recursive schema are worth
remarking.

First, the SCC-recursive schema exploits the partial or-
der of SCCs induced by the attack relation and can be re-
garded as a constructive procedure to incrementally build ex-
tensions following such partial order. At the beginning, the
extensions of the frameworks restricted to the initial SCCs
(i.e. those not receiving attacks from others) are computed
and combined together. Then each SCC which is attacked
only from initial SCCs is considered, and for each extension
E already obtained, the extensions of such a SCC are locally
computed and merged with E. The process is then applied
to all SCCs following their partial order, until no remaining
SCCs are left to process.

A second feature is that the schema, as the name suggests,
is recursive. In particular, for every SCC considered in the
above procedure, the local computation is performed as fol-
lows. First, all arguments attacked by the extension selected
in the previous SCCs are suppressed. Then, the procedure
is recursively applied to the remaining part of the SCC. The
base of the recursion is reached when there is one SCC only:
in this case, a base function BF is called. Such a function
receives as input an argumentation framework Γ = 〈A,R〉
and a set C ⊆ A: Γ is a sub-framework of the original AF
Γ′ = 〈A′,R′〉, and C contains the arguments that are “ex-
ternally accepted” (i.e. their attackers in A′ \A are attacked
by the part of the extension constructed so far).

The following definitions introduce the SCC-recursive
schema in its original extension-based form (Baroni, Gia-
comin, and Guida 2005).

First, let us recall the definition of restriction of an AF Γ
to a set of arguments I , in symbol Γ↓I .

Definition 9. Given an argumentation framework Γ =
〈A,R〉 and a set I ⊆ A, the restriction of Γ to I is defined
as Γ↓I ≡ (A ∩ I,R∩ (I × I)).

Then, Definition 10 introduces the function GF(Γ, C)
which recursively computes the semantics extensions on the
basis of the SCCs of Γ. Let us denote as SCCΓ the set in-
cluding the SCCs of an argumentation framework Γ.
Definition 10. A given argumentation semantics σ is SCC-
recursive if for any argumentation framework Γ = 〈A,R〉,
Eσ(Γ) = GF(Γ,A) ⊆ 2A. For any Γ = 〈A,R〉 and for any
set C ⊆ A, E ∈ GF(Γ, C) if and only if
• E ∈ BFσ(Γ, C) if |SCCΓ| = 1

• ∀S ∈ SCCΓ (E ∩ S) ∈ GF(Γ↓S\(E\S)+ , UΓ(S,E) ∩C)
otherwise

where
• BFσ(Γ, C) is a function, called base function, that, given

an argumentation framework Γ = 〈A,R〉 such that
|SCCΓ| = 1 and a set C ⊆ A, gives a subset of 2A

• UΓ(S,E) = {a ∈ S\(E\S)+ | ∀b ∈ (a−\S), b ∈ E+}
As shown below, this schema is based on the notions of

admissible set, complete, grounded, preferred extension of
an AF in a set of arguments.
Definition 11. Given an AF Γ = 〈A,R〉 and a set C ⊆ A,
a set E ⊆ A is:
• an admissible set of Γ in C if and only if E is an admissi-

ble set of Γ and E ⊆ C
• a complete extension of Γ in C if and only if E is an ad-

missible set of Γ in C, and every argument α ∈ C which
is acceptable with respect to E belongs to E

• the grounded extension of Γ in C if and only if it is the
least (with respect to set inclusion) complete extension of
Γ in C

• a preferred extension of Γ in C if and only if it is a max-
imal (with respect to set inclusion) complete extension of
Γ in C.
The existence and uniqueness of the grounded exten-

sion in C, as well as the existence of at least a preferred
extension in C, have been proved in (Baroni, Giacomin,
and Guida 2005). The set of admissible sets in C is de-
noted as EAD(Γ, C), the set of complete extensions in
C as ECO(Γ, C), the set of preferred extensions in C as
EPR(Γ, C), while EGR(Γ, C) denotes the set including the
grounded extension in C.

(Baroni, Giacomin, and Guida 2005) proves that
GF(Γ, C), as defined in Def. 10, returns Eσ(Γ, C) (with
σ ∈ {CO,GR,PR}), provided that BFσ(Γ, C) returns the
complete, grounded, and preferred extensions in C, respec-
tively. The correctness of the schema then follows from the
fact that, according to Definition 11, Eσ(Γ,A) = Eσ(Γ).

A Parametric Meta-Algorithm to Enumerate
Preferred Labellings

In this section, we develop a “meta-algorithm” based on the
SCC-recursive schema for the computation of preferred la-
bellings. We use the term meta-algorithm since it is paramet-
ric w.r.t. an algorithm B-PR to compute the base function



Algorithm 1 Enumerating the preferred labellings of anAF
PREF(Γ)

1: Input: Γ = 〈A,R〉
2: Output: Ep ∈ 2L(Γ)

3: return R-PREF(Γ,A)

BFPR, without committing on the way B-PR performs its
computation.

The meta-algorithm consists of Algorithms 1 and 2. It
represents an implementation of the SCC-recursive schema
with two main improvements. First, the schema has been
adapted to the labelling-based approach: the following defi-
nition introduces the labelling-based counterpart of the com-
plete, grounded and preferred extension in C.
Definition 12. Given an AF Γ = 〈A,R〉 and a set C ⊆ A,
a labelling Lab ∈ L(Γ) is a complete (grounded, preferred)
labelling of Γ in C if there is a complete (grounded, pre-
ferred) extension S of Γ in C such that Lab = Ext2Lab(S).
The set of complete and preferred labellings of Γ in C are
denoted as LCO(Γ, C) and LPR(Γ, C), respectively, and
the set including the grounded labelling of Γ in C is denoted
as LGR(Γ, C).

Finally, a pre-processing step computing the grounded la-
belling Lab∗ in C is performed. The labellings of the whole
argumentation framework can then be obtained by extending
Lab∗, on the basis to the following result.
Proposition 2. Let 〈A,R〉 be an argumentation frame-
work and let C ⊆ A a set of arguments. Considering the
grounded labelling Lab∗ of Γ in C and the set U including
the undec-labelled arguments according to Lab∗, it holds
that LPR(Γ, C) = {Lab∗ ∪ E | E ∈ LPR(Γ↓U , C ∩ U)}.
Sketch of proof. This extends the known result (Baroni,
Caminada, and Giacomin 2011) that the grounded extension
is a subset of the intersections of preferred extensions.

Let us turn to the description of the meta-algorithm. The
function PREF (Algorithm 1) receives as input an argumen-
tation framework Γ = 〈A,R〉 and returns the set of pre-
ferred labellings of Γ. This is simply achieved by invok-
ing (at line 3) R-PREF(Γ,A), where the function R-PREF
(GF in Def. 10) receives as input an argumentation frame-
work Γ = 〈A,R〉 and a set C ⊆ A, and computes the set
LPR(Γ, C), i.e. the set of preferred labellings of Γ in C.

Algorithm 2 implements the function R-PREF. First, a
pre-processing step which computes the grounded labelling
in C is executed at line 3 by means of the call (Lab, U) =
GROUNDED(Γ, C).

The procedure GROUNDED (Alg. 3) receives as input
an argumentation framework Γ = 〈A,R〉 and a set C ⊆ A,
and returnsLab andU :Lab is the restriction of the grounded
labelling to the arguments that are in or out-labelled; U is
the set including the remaining (undec-labelled) arguments.
The GROUNDED procedure iteratively labels in each argu-
ment a ∈ C which either is initial, or receives attacks from
arguments labelled out, and then labels out each argument
attacked by a.

Algorithm 2 Enumerating the preferred labellings in a set C
of an AF
R-PREF(Γ, C)

1: Input: Γ = 〈A,R〉, C ⊆ A
2: Output: Ep ∈ 2L(Γ)

3: (Lab, U) = GROUNDED(Γ, C)
4: Ep := {Lab}
5: Γ = Γ↓U
6: (S1, . . . , Sn) := SCCSSEQ(Γ)
7: for i ∈ {1, . . . , n} do
8: E′p := ∅
9: for Lab ∈ Ep do

10: (O, I) := BOUNDCOND(Γ, Si,Lab)
11: if I = ∅ then
12: Lab = Lab∪{(a, out) | a ∈ O}∪{(a, undec) |

a ∈ Si \O}
13: E′p = E′p ∪ {Lab}
14: else
15: if O = ∅ then
16: E∗ = B-PR(Γ↓Si

, I ∩ C)
17: else
18: Lab = Lab ∪ {(a, out) | a ∈ O}
19: E∗ = R-PREF(Γ↓Si\O, I ∩ C)
20: end if
21: E′p = E′p ∪ (Lab⊗ E∗)
22: end if
23: end for
24: Ep := E′p
25: end for
26: return Ep

After the computation of Lab and U , Alg. 2 initialises
the variable Ep to {Lab} at line 4. Ep stores the set of la-
bellings that are incrementally constructed. Then the com-
putation proceeds by considering the argumentation frame-
work Γ↓U (line 5).

At line 6 the strongly connected components of the ar-
gumentation framework are identified. We assume that an
algorithm is available, denoted as SCCSSEQ, which re-
ceives as input an argumentation framework Γ and returns
as output a sequence (S1, . . . , Sn) including the strongly
connected components of Γ in a topological order, i.e. if
∃a ∈ Si,b ∈ Sj such that a → b then i ≤ j. This can
be done in linear time under the number of attacks (Cormen
et al. 2009, p. 617).

The incremental construction of the preferred labellings
is performed by the outer loop (lines 7-25), which iter-
atively selects the i-th SCC. At the beginning of the it-
eration, Ep includes the partial labellings constructed for
S1 ∪ . . . ∪ Si−1.Then the inner loop is entered, which ex-
tends any labelling Lab ∈ Ep to Si (lines 9-23) storing
the labellings thus obtained in E′p (initialised at line 8). At
line 10 variable O is set to include arguments of Si that
are attacked by “outside” in-labelled arguments according
to Lab, and variable I is set to include arguments of Si
that are only attacked by “outside” out-labelled arguments.
Formally, BOUNDCOND(Γ, Si,Lab) returns (O, I) where



Algorithm 3 Determining the grounded labelling of an AF
in a set C
GROUNDED(Γ, C)

1: Input: Γ = 〈A,R〉, C ⊆ A
2: Output: (Lab, U) : U ⊆ A,Lab ∈ LA\U
3: Lab := ∅
4: U := A
5: repeat
6: initialfound := ⊥
7: for a ∈ C do
8: if {b ∈ U | b→ a} = ∅ then
9: initialfound := >

10: Lab := Lab ∪ {(a, in)}
11: U := U \ a
12: C := C \ a
13: for b ∈ (U ∩ a+) do
14: Lab := Lab ∪ {(b, out)}
15: U := U \ b
16: C := C \ b
17: end for
18: end if
19: end for
20: until (initialfound)
21: return(Lab, U)

O = {a ∈ Si | ∃b ∈ S ∩ a− : Lab(b) = in} and
I = {a ∈ Si | ∀ b ∈ S ∩ a−,Lab(b) = out}, with
S ≡ S1 ∪ . . . ∪ Si−1.

If I = ∅ then no argument of Si can be labelled in, in
particular each argument in O is labelled out and each ar-
guments in Si \ O is labelled undec. Accordingly, Lab is
extended with such a labelling (line 12) and included in E′p
(line 13). Then a new iteration of the loop is entered to pro-
cess a new labelling Lab ∈ Ep (if any).

Otherwise, two cases are considered. If O = ∅ then there
are no arguments to suppress from Si, thus the base case of
the recursion applies. This is a small improvement w.r.t. Def.
10 which allows to avoid an unnecessary recursive step. In
the base case, the preferred labellings of Γ↓Si

in Si ∩ C are
computed by means of the algorithm B-PR, and assigned to
E∗ (line 16). If O 6= ∅ then each argument in O is labelled
out, and the R-PREF procedure is recursively invoked on
Γ↓Si\O and I ∩ C (line 19). In both cases, line 21 extends
the labelling Lab to cover the whole component Si — by
combining it with all labelling of E∗ — and update E′p. In-
deed, Lab⊗E∗ denotes the set {Lab∪Lab∗ | Lab∗ ∈ E∗}.

After the inner loop is exited, i.e. when all labellings ofEp
have been considered, the obtained labellings E′p are those
covering S1, . . . , Si, thusEp is set toE′p at line 24. After the
outer loop is exited all strongly connected components have
been processed, thus Ep is returned as the set of preferred
labellings in C (line 26).

The following theorem shows that Algorithm 2 (and thus
Algorithm 1) is correct

Theorem 1. Given an AF Γ = 〈A,R〉 and a set C ⊆ A,
Algorithm 1 returns Ep = LPR(Γ, C).

A SAT-Based Approach for the Base Case
R-PREF (Alg. 2) relies on an external algorithm (B-PR) for
enumerating the preferred labellings of Γ in a set of argu-
mentsC. In order to empirically prove the improvements ob-
tained using Alg. 2, in this section we discuss a specific im-
plementation of B-PR generalizing the approach of (Cerutti
et al. 2014).

The proposed algorithm performs a search in the space of
complete extensions in C, in order to maximise the set of
in arguments (cf. Definitions 12 and 11). Each step of the
search process requires to encode in a propositional formula
the constraints corresponding to complete labellings of an
AF in C, with opportune modifications due to the search
process. Then, a SAT solver checks whether the formula is
satisfiable, i.e. there exists a truth assignment of the variables
such that the formula evaluates to >, and if this is the case
returns such an assignment.

As a first step to identify the encoding, here we provide
the definition of complete labelling of Γ in C in a more al-
gorithmic way than Definition 12.

Definition 13. Let 〈A,R〉 be an argumentation framework
and C ⊆ A be a set of arguments. A total function Lab :
A 7→ {in, out, undec} is a complete labelling of Γ in C iff
it satisfies the following conditions for any a ∈ C:

L1
C: Lab(a) = in⇔ ∀b ∈ a−Lab(b) = out;
L2
C: Lab(a) = out⇔ ∃b ∈ (a− ∩ C) : Lab(b) = in;
L3
C: Lab(a) = undec ⇔ ∀b ∈ (a− ∩ C),Lab(b) 6=

in ∧ ∃c ∈ a− : Lab(c) = undec;

and the following conditions for any a ∈ (A \ C):

L1
A\C: Lab(a) = out⇔ ∃b ∈ (a− ∩C) : Lab(b) = in;

L2
A\C: Lab(a) = undec ⇔ ∀b ∈ (a− ∩ C),Lab(b) 6=

in.

The following proposition shows that Definition 13 actu-
ally identifies the complete labellings in C as introduced in
Definition 12.

Proposition 3. Given an an AF Γ = 〈A,R〉 and a set
C ⊆ A, Lab satisfies the conditions of Definition 13 if and
only if there is a complete extension S of Γ in C such that
Lab = Ext2Lab(S).

Sketch of proof. The proof generalizes (Cerutti et al. 2014,
Proposition 2), to take into account the parameter C.

The Complete Labelling Formula of Γ in C
Given an AF Γ = 〈A,R〉 and a set C ⊆ A, we are inter-
ested in identifying a boolean formula in conjunctive nor-
mal form (as required by the SAT solver), called complete
labelling formula of Γ in C and denoted as ΠΓ,C , such that
the satisfying assignments of the formula are in one-to-one
correspondence with the complete labellings of Γ in C.

To this purpose, we have to introduce some notation. Let
φ be a bijection φ : {1, . . . , |A|} 7→ A (the inverse map will
be denoted as φ−1): φ is an indexing of A. Argument φ(i)
will be sometimes referred to as argument i for brevity. For
each argument i we define three boolean variables, Ii, Oi,



and Ui, with the intended meaning that Ii is > when argu-
ment i is labelled in, ⊥ otherwise (and analogously Oi and
Ui correspond to labels out and undec). Formally, given
Γ = 〈A,R〉 we define the corresponding set of variables as
V(Γ) , ∪i∈φ−1(A){Ii, Oi, Ui}.

The following definition expresses the constraints of Def-
inition 5 in terms of the variables V(Γ).

Definition 14. Given an AF Γ = 〈A,R〉 with |A| = k and
a set C ⊆ A, let φ : {1, . . . , k} 7→ A be an indexing of A.
The ENCall encoding defined on the variables in V(Γ) is
given by the conjunction of the formulae listed below:

∧
i∈φ−1(C)

(
(Ii ∨Oi ∨ Ui) ∧ (¬Ii ∨ ¬Oi)∧

(¬Ii ∨ ¬Ui) ∧ (¬Oi ∨ ¬Ui)
) (1)

∧
i∈φ−1(C)

Ii ∨
 ∨
{j|φ(j)→φ(i)}

(¬Oj)

 (2)

∧
i∈φ−1(C)

 ∧
{j|φ(j)→φ(i)}

¬Ii ∨Oj

 (3)

∧
i∈φ−1(C)

 ∧
{j∈φ−1(C)|φ(j)→φ(i)}

¬Ij ∨Oi

 (4)

∧
i∈φ−1(C)

¬Oi ∨
 ∨
{j∈φ−1(C)|φ(j)→φ(i)}

Ij

 (5)

∧
i∈φ−1(C)

( ∧
{k|φ(k)→φ(i)}

(
Ui ∨ ¬Uk∨( ∨

{j∈φ−1(C)|φ(j)→φ(i)}

Ij

))) (6)

∧
i∈φ−1(C)

(( ∧
{j∈φ−1(C)|φ(j)→φ(i)}

(¬Ui ∨ ¬Ij)
)
∧

(
¬Ui ∨

( ∨
{k|φ(k)→φ(i)}

Uk

))) (7)

∧
i∈φ−1(A\C)

(
¬Ii ∧ (Oi ∨ Ui) ∧ (¬Oi ∨ ¬Ui)

)
(8)

∧
i∈φ−1(A\C)

 ∧
{j∈φ−1(C)|φ(j)→φ(i)}

¬Ij ∨Oi

 (9)

∧
i∈φ−1(A\C)

¬Oi ∨
 ∨
{j∈φ−1(C)|φ(j)→φ(i)}

Ij

 (10)

∧
i∈φ−1(A\C)

Ui ∨
 ∨
{j∈φ−1(C)|φ(j)→φ(i)}

Ij

 (11)

∧
i∈φ−1(A\C)

 ∧
{j∈φ−1(C)|φ(j)→φ(i)}

¬Ui ∨ ¬Ij

 (12)

Formulas (1) and (8) encode the fact that Lab is a total
function. The other formulas are in direct correspondence
with the conditions of Definition 13:
• formulas (2) and (3) encode L1

C ;
• formulas (4) and (5) encode L2

C ;
• formulas (6) and (7) encode L3

C ;
• formulas (9) and (10) encode L1

A\C ;

• formulas (11) and (12) encode L2
A\C .

The following proposition shows that ENCall is a com-
plete labelling formula of Γ in C, i.e. every satisfying as-
signment of the ENCall encoding corresponds to a com-
plete extension in C, and vice versa. For ease of notation, if
a variable is not assigned to > then it is ⊥.
Proposition 4. Let 〈A,R〉 be an argumentation framework
and C ⊆ A be a set of arguments. If Lab is a complete la-
belling of Γ in C, then the assignment ΦV(Γ) ≡ {(Ii,>) |
Lab(φ(i)) = in} ∪ {(Oi,>) | Lab(φ(i)) = out} ∪
{(Ui,>) | Lab(φ(i)) = undec} satisfies the ENCall en-
coding of Definition 14. Conversely, if ΦV(Γ) is a satisfy-
ing assignment of the ENCall encoding, then the labelling
Lab ≡ {(a, in) | Iφ−1(a) ∈ ΦV(Γ)} ∪ {(b, out) | Oφ−1(b) ∈
ΦV(Γ)} ∪ {(c, undec) | Uφ−1(c) ∈ ΦV(Γ)} is a complete
labelling of Γ in C.

Sketch of proof. The result derives from Proposition 3 by
transforming logical implications in AND/OR.

Several syntactically different encodings can be devised
which, while being logically equivalent, can significantly
affect the performance of the overall process (Cerutti et
al. 2014). The following proposition shows the 20 non re-
dundant encodings (i.e. it is not possible to drop out some
clauses so as to obtain a simpler logically equivalent encod-
ing) equivalent to ENCall.
Proposition 5. Let 〈A,R〉 be an argumentation framework
and C ⊆ A be a set of arguments. Referring to the formulae
listed in Definition 14, let us define the following formulae
(for the arguments in C):

Ca1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5)

Cb1 : (1) ∧ (4) ∧ (5) ∧ (6) ∧ (7)

Cc1 : (1) ∧ (2) ∧ (3) ∧ (6) ∧ (7)



C2 : (1) ∧ (3) ∧ (5) ∧ (7)

C3 : (1) ∧ (2) ∧ (4) ∧ (6)

as well as the following ones (for the arguments in A \ C):
NCa1 : (8) ∧ (9) ∧ (10)

NCb1 : (8) ∧ (11) ∧ (12)

NC2 : (8) ∧ (10) ∧ (12)

NC3 : (8) ∧ (9) ∧ (11)

Any encoding of the form C ∧ NC , where
C ∈ {Ca1 , Cb1, Cc1, C2, C3} and NC ∈
{NCa1 , NCb1, NC2, NC3}, is equivalent to ENCall,
i.e. it has the same satisfying assignments of the variables
in V(Γ).

Sketch of proof. The proof exploits the fact that Lab is a to-
tal function and shows that the conditions in C ∧NC entail
those included in ENCall.

Corollary 1. Let 〈A,R〉 be an argumentation framework
and C ⊆ A be a set of arguments. Any encoding of the form
C ∧NC (see Proposition 5) is a complete labelling formula
of Γ in C.

The SAT basepref Algorithm
We are now able to describe the proposed procedure to im-
plement B-PR. The procedure, called SAT basepref, resorts
to five external functions: SS, I-ARGS, O-ARGS, U-ARGS
and LAB. SS is a SAT solver able to prove unsatisfiability
too: it accepts as input a CNF formula and returns a variable
assignment satisfying the formula if it exists, ε otherwise.
All the other functions accept as input a variable assign-
ment concerning V(Γ): I-ARGS returns the corresponding
set of arguments labelled as in, O-ARGS returns the cor-
responding set of arguments labelled as out, U-ARGS re-
turns the corresponding set of arguments labelled as undec,
while LAB returns the labelling corresponding to the input
variable assignment. Moreover, INCC denotes the clause∨
i∈φ−1(C) Ii.
The SAT basepref procedure (Alg. 4) initialises, at line 3,

the variable Ep which stores the generated labellings. Then
cnf is initialized to ΠΓ,C ∧ INCC : ΠΓ,C is a complete la-
belling formula of Γ in C, e.g. one of the equivalent en-
codings shown in Proposition 5, while INCC restricts the
search process to a non empty labelling (this is non restric-
tive due to the check of line 34). The search process is car-
ried out by two nested repeat-until loops. Roughly, the in-
ner loop (lines 8–24) resembles a depth-first search which,
starting from a non-empty complete labelling inC, produces
a sequence of complete labellings in C strictly ordered by
set inclusion. When the sequence can no more be extended,
its last element corresponds to a complete labelling in C
maximizing the set of in-labelled arguments, namely to a
preferred labelling. The outer loop (lines 5–33) drives the
search: it ensures, through proper settings of the variables,
that the inner loop is entered with different initial conditions,
so that all preferred labellings in C are found.

The following theorem shows that Algorithm 4 is correct.
Theorem 2. Given an AF Γ = 〈A,R〉 and a set C ⊆ A,
Algorithm 4 returns LPR(Γ, C).

Algorithm 4 Enumerating the preferred labellings in a set C
of a AF
SAT basepref(Γ, C)

1: Input: Γ = 〈A,R〉, C ⊆ A
2: Output: Ep ∈ 2L(Γ)

3: Ep := ∅
4: cnf := ΠΓ,C ∧ INCC
5: repeat
6: prefcand := ∅
7: cnfdf := cnf
8: repeat
9: lastcompfound := SS(cnfdf)

10: if lastcompfound ! = ε then
11: prefcand := lastcompfound
12: for a ∈ I-ARGS(lastcompfound) do
13: cnfdf := cnfdf ∧ Iφ−1(a)

14: end for
15: for a ∈ O-ARGS(lastcompfound) do
16: cnfdf := cnfdf ∧Oφ−1(a)

17: end for
18: remaining := ⊥
19: for a ∈ C ∩ U-ARGS(lastcompfound) do
20: remaining := remaining ∨ Iφ−1(a)

21: end for
22: cnfdf := cnfdf ∧ remaining
23: end if
24: until (lastcompfound ! = ε)
25: if prefcand ! = ∅ then
26: Ep := Ep ∪ {LAB(prefcand)}
27: oppsolution := ⊥
28: for a ∈ C \ I-ARGS(prefcand) do
29: oppsolution := oppsolution ∨ Iφ−1(a)

30: end for
31: cnf := cnf ∧ oppsolution
32: end if
33: until (prefcand ! = ∅)
34: if Ep = ∅ then
35: Ep = {(a, undec) | a ∈ A}
36: end if
37: return Ep

The Empirical Analysis
In this section, we present the results of a large experimen-
tal study examining the reduction of computational effort in
enumerating preferred extensions due to the application of
the proposed meta-algorithm (Alg. 1) instantiated with Alg.
4 as B-PR.

Experimental Setup

The experiments were performed on AMD Opteron
TM

2.4
Ghz, 8 Gb of RAM and Linux operating system. As in the
International Planning Competition (IPC) (Jiménez et al.
2012), a limit of 15 minutes was imposed to compute the
preferred labellings for each AF. No limit was imposed on
the RAM usage, but a run fails at saturation of the avail-
able memory. Moreover, we adopted the IPC speed score,



also borrowed from the planning community, which is de-
fined as follows. For each AF , each system gets a score of
1/(1 + log10(T/T ∗)), where T is its execution time and T ∗
the best execution time among the compared systems, or a
score of 0 if it fails in that case. Runtimes below 0.01 sec get
by default the maximal score of 1.

In order to evaluate PREF, we compared it with the imple-
mentation of the approach discussed in (Cerutti et al. 2014),
which has been proved to be competitive w.r.t other state-of-
the-art systems. In the following we refer to SCC-P as the
prototype implementing the algorithm PREF with C2 and
NC2, and SAT-P as the current version (rev. 128) of the soft-
ware presented in (Cerutti et al. 2014) with C2. We chose
to compare SCC-P not with the implementation of Alg. 4
called as PREF(Γ,A), but with SAT-P in order to give addi-
tional strength to this empirical evaluation. Both SCC-P and
SAT-P are implemented in C++ and both adopt Glucose (Au-
demard and Simon 2009; 2012) as integrated SAT solver.

We designed three experiments aimed at addressing the
following hypotheses:

I1: on Γ s.t. |SCCΓ| = 1, SCC-P performs worse than
SAT-P;

I2: there exists a value χ such that on Γ where |SCCΓ| >
χ, SCC-P performs better that SAT-P;

I3: on Γ s.t. |SCCΓ| > χ, the greater |EPR(Γ)|, the more
SAT-P performs worse than SCC-P.

To check the first hypothesis, we conducted an experiment
on 790 randomly generated AF s (Γ), s.t. |SCCΓ| = 1, vary-
ing A between 25 and 250 with a step of 25.

Coming to the second hypothesis, we randomly generated
720 AF s varying |SCCΓ| between 5 and 45 with a step of 5.
The size of the SCCs is determined by normal distributions
with means between 20 and 40 with a step of 5, and with a
fixed standard deviation of 5. We similarly varied the proba-
bility of having attacks between arguments among SCCs.

Finally, we addressed the third hypothesis conducting an
experiment on 2800 AF s randomly generated as before,
such that 50 ≤ |SCCΓ| ≤ 80 with a step of 5.

In the following we rely on the Wilcoxon Signed-Rank
Test (WSRT) in order to identify significant subset of data.

Experiments on Γ s.t. |SCCΓ| = 1

Figure 1 depicts the significant (p < 0.05) IPC values (nor-
malised to 100) for SCC-P and SAT-P when |SCCΓ| = 1
varying |A| and |EPR(Γ)|. From this, we can observe that
there is a significant statistical evidence supporting hypoth-
esis I1. It is worth to mention that when |SCCΓ| = 1, PREF
(i) identifies the presence of a single SCC, (ii) calls the B-PR
on the single computed SCC. Since B-PR is a variation (cf.
Alg. 4) of the algorithm SAT-P, the great difference of per-
formance shown in Fig. 1 suggests that refining the proto-
typical implementation we used in these experiments would
lead to better results.

Experiments on Γ s.t. 5 ≤ |SCCΓ| ≤ 45

Figure 2 summarises the results obtained in the experiment
aimed at proving hypothesis I2, about the existence of a
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Figure 1: Significant (p < 0.05) IPC values (normalised) for
SCC-P and SAT-P when |SCCΓ| = 1 varying |A|.

number χ such that on Γ with |SCCΓ| > χ, SCC-P performs
better than SAT-P.
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Figure 2: Significant (p < 0.05) IPC values (normalised) for
SCC-P and SAT-P when 5 ≤ |SCCΓ| ≤ 45 varying |SCCΓ|.

In particular, it turns out that:
• for |SCCΓ| = 30, Md(SCC-P) = 6.43, Md(SAT-P) =

5.63, z = −2.87, p < 0.01;
• for |SCCΓ| = 35, Md(SCC-P) = 8.81, Md(SAT-P) =

8.53, z = −0.35, p = 0.73;
• for |SCCΓ| = 40, Md(SCC-P) = 10.49, Md(SAT-P) =

12.53, z = −3.56, p < 0.01;
where Md(·) indicates the median of execution times.

In other terms, when |SCCΓ| = 35, the performances of
SCC-P and SAT-P are statistically indistinguishable (p =
0.73 > 0.05). However, for |SCCΓ| > 35, Fig. 2 shows that
SCC-P performs significantly (p < 0.05) better than SAT-P.

Experiments on Γ s.t. 50 ≤ |SCCΓ| ≤ 80
Figure 3 depicts the medians of significant execution times
of SCC-P and SAT-P varying the number of computed la-
bellings. It illustrates a dependency of the execution times
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Figure 3: Significant median values for SCC-P and SAT-P
when 50 ≤ |SCCΓ| ≤ 80 varying |EPR(Γ)|, and their re-
gression to the function f(x) = a x + b: SCC-P, a = 0.43,
b = 31.33; SAT-P, a = 2.40, b = 87.53.

on the number of computed preferred labellings. Given the
linear regression of these data, it turns out that the execution
times of SAT-P grows ≈ 2 · |EPR(Γ)|, while SCC-P grows
≈ 1

2 · |EPR(Γ)|, thus supporting hypothesis I3.
Moreover, the third experiment provides additional statis-

tically significant (p < 0.05) evidence in support of hypoth-
esis I2, as Figure 3 summarises. Roughly speaking, com-
puting the increment of performance as the average of the
difference of execution times normalised on the maximum
time between SCC-P and SAT-P, we can conclude that there
is a significant increment of performances up to 56%.

Conclusions
In this paper we devised and evaluated a general parametric
algorithm in order to decompose the preferred extensions
enumeration problem into restricted subframeworks. To this
purpose, several research challenges have been tackled.

First, an efficient algorithmic implementation of the SCC-
recursive schema, originally introduced in a declarative
form, has been developed, also leading to a labelling-based
formulation. Let us notice that, recently, an approach has
been proposed in (Liao, Lei, and Dai 2013) which partially
exploits the SCC-recursive schema. In particular, while it
borrows from (Baroni, Giacomin, and Guida 2005) the idea
of decomposing the argumentation framework into its SCCs,
it does not exploit the recursion step to achieve a deeper de-
composition of the AF . Other “splitting” techniques have
been proposed in literature. In particular, in the context of
argumentation dynamics (Baumann et al. 2012) introduces
a decomposition of an argumentation framework into two
parts, while (Dvořák, Pichler, and Woltran 2012) exploits
a tree-based decomposition. A general study of decompos-
ability properties w.r.t. arbitrary partitions of an argumen-
tation framework is also presented in (Baroni et al. 2012).
Comparing different approaches for dividing an AF in sub-
frameworks represents an interesting future work.

A second contribution of the present paper is the general-
ization of the approach in (Cerutti et al. 2014) to the com-

putation of labellings in a restricted sub-framework, which
is mandatory for applying the SCC-recursive schema. As
acknowledged in (Cerutti et al. 2014), the relationship be-
tween argumentation semantics and the satisability problem
has been already considered in the literature, e.g. in (Besnard
and Doutre 2004; Dvořák et al. 2012; Arieli and Caminada
2013), where different encodings for labellings of an AF
according to several semantics have been introduced. Gen-
eralizing these proposals in order to integrate them into the
SCC-recursive schema is another challenge for future work.

Finally, an empirical investigation has been carried out to
show a statistical evidence in favour of the reduction of com-
putational effort by the exploitation of the SCC-recursive
schema. In particular, as shown in the previous section, de-
spite the fact that the current prototypical implementation
needs further refinements (cf. the results of experiments on
Γ s.t. |SCCΓ| = 1), for Γ with |SCCΓ| > χ = 35 there is
a statistical evidence showing how implementing the SCC-
recursive schema reduces the computational effort of enu-
merating the preferred labellings. Moreover, as depicted in
Fig. 3, the execution time of the SCC-recursive implementa-
tion is less sensible to the number of labellings, i.e. its execu-
tion time grows less than the non SCC-recursive implemen-
tation when the number of computed preferred labellings in-
creases. This suggests to explore an hybrid approach where,
at each recursion step, a choice is made on whether com-
puting the preferred labellings with a direct call to B-PR
or applying the SCC-recursive schema. Such choice can be
based on an heuristic to estimate the number of SCCs and la-
bellings, and can be easily implemented with an additional
step after line 5 of Alg. 2.

Several other future works are envisaged. First, we want
to strengthen the statistical evidence in favour of the SCC-
recursive schema by exploiting and comparing different en-
codings of complete labellings derived from ENCall, in-
cluding the redundant ones. Moreover, Alg. 2 can be in-
stantiated with a different B-PR algorithm, e.g. generalizing
the algorithms presented in (Egly, Alice Gaggl, and Woltran
2010; Nofal, Atkinson, and Dunne 2014; Dvořák et al. 2014)
for computing labellings in sub-frameworks.

Finally, we intend to apply the devised meta-algorithm
to stable and CF2 semantics, which directly fit the SCC-
recursive schema (Baroni, Giacomin, and Guida 2005), as
well as to semi-stable and ideal semantics by exploiting the
relationship with preferred semantics.
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