Search:
Computing and Library Services - delivering an inspiring information environment

Electronic Properties of SnO2-Based Ceramics with Double Function of Varistor and Humidity Sensor

Glot, A.B., Sandoval-García, A.P., Gaponov, A.V., Bulpett, R, Jones, Benjamin and Jimenez-Santana, G (2009) Electronic Properties of SnO2-Based Ceramics with Double Function of Varistor and Humidity Sensor. AZojomo - Journal of Materials Online, 10. pp. 21-32. ISSN 1833-122X

[img] PDF - Published Version
Download (436kB)

Abstract

Tin dioxide based varistor ceramics SnO2-Co3O4-Nb2O5-Cr2O3-xCuO (x=0; 0.05; 0.1 and 0.5) were made and their electrical properties were studied. The highest nonlinearity coefficient and electric field (at current density 10-3 A cm-2) were obtained for 0.1 mol.% CuO addition. It was observed that low-field electrical conductivity is increased with relative humidity, therefore, materials obtained exhibit double function of varistor and humidity sensor. The highest humidity sensitivity coefficient is found for SnO2-Co3O4-Nb2O5-Cr2O3 ceramics (without CuO). Observed varistor and humidity-sensitive properties are explained in the frames of grain-boundary double Schottky barrier concept as a decrease of the barrier height with electric field or relative humidity. Using suggested simple theory and data obtained on isothermal capacitance relaxation, the energy of the grain-boundary monoenergetic trapping states were estimated. These values are less than found for activation energy of electrical conduction (as a measure of the barrier height). These observations confirm the barrier concept.

▼ Jump to Download Statistics
Item Type: Article
Uncontrolled Keywords: Electrical Conduction, Grain Boundary, Humidity Sensor, SnO2 Ceramics, Varistor
Subjects: Q Science > QC Physics
Q Science > QD Chemistry
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Schools: School of Applied Sciences
Related URLs:
References:

1. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, “A New Detector for Gaseous Components Using Semiconductive Thin Films”, Anal. Chem., 34 (1962) 1502-1503.
2. A. B. Glot, A. M. Chakk, B. K. Chernyi and A. Ya. Yakunin, “Dependence of the Electrical Conductivities of the Semiconductors ZnO-SnO2-Bi2O3 on the Temperature and Additional Heat-Treatment Procedure”, Inorganic Materials, 10(12) (1974) 1866-1868.
3. A. Ya. Yakunin, B. K. Chernyi, A. M. Chakk and A. B. Glot, “Effect of Processes of Glass Formation and Crystallization on the Volt-ampere Characteristics of the Semiconductive Ceramic ZnO-SnO2 with Additives”, Inorganic Materials, 12 (5) (1976) 803-805.
4. Z. M. Jarzebski and J. P. Marton, “Physical Properties of SnO2 Materials. II. Electrical Properties”, J. Electrochem. Soc., 123 (9) (1976) 299C-310C.
5. T. Seiyama, N. Yamazoe and H. Arai, “Ceramic Humidity Sensors”, Sens. Actuators, 4 (1983) 85-96.
6. A.B. Glot, “The Conduction of SnO2 Based Ceramics”, Inorganic Materials, 20 (10) (1984) 1522-1523.
7. J. F. McAleer, P. T. Moseley, B. C. Tofield and D. E. Williams, “Factors Affecting the Performance of SnO2 as a Gas Sensor”, in Electrical Ceramics. Brit. Ceramic Proc. (Ed. B.C.H.Steel. Stoke-on-Trent), 36 (1985) 89-105.
8. A. B. Glot and A. P. Zlobin, “The Non-Ohmic Conduction of Tin Dioxide Based Ceramics”, Inorganic Materials, 25 (2) (1989) 274-276.
9. B. M. Kulwicki, “Humidity Sensors”, J. Am. Ceram. Soc., 74 (1991) 697-708.
10. A. B. Glot, N. Yu. Proshkin and A. M. Nadzhafzade, "Electrical Properties of Tin Dioxide and Zinc Oxide Ceramics,” in Ceramics Today –Tomorrow‟s Ceramics, Materials Science Monographs, v.66C (Ed. P.Vincenzini), Elsevier, (1991) pp. 2171-2180.
11. E. Traversa, “Ceramic Sensors for Humidity Detection: the State-of-the-art and Future Developments”, Sens. Actuators B, 23 (1995) 135-156.
12. W. Gopel and K. D. Schierbaum, “SnO2 Sensors: Current Status and Future Prospects”, Sensors and Actuators B, 26 (1-3) (1995) 1-12.
13. T. S. Rantala, V. Lantto and T. T. Rantala, “Effects of Mobile Donors on Potential Distribution in Grain Contacts of Sintered Ceramic Semiconductors”, J. Appl. Phys., 79 (12) (1996) 9206-9212.
14. P. N. Santhosh, H. S. Potdar and S. K. Date, “Chemical Synthesis of a New Tin Dioxide Based (SnO2: Co, Al, Nb) Varistor”, J. Mat. Res., 12 (1997) 326-328.
15. S. A. Pianaro, P. R. Bueno, E. Longo and J. A. Varela, “Microstructure and Electrical Properties of a SnO2 Based Varistor”, Ceramics International, 25 (1999) 1-6.
16. G. D. Mahan, L.M. Levinson and H.R. Philipp, “Theory of Conduction in ZnO Varistors”, J. Appl. Phys., 50 (4) (1979) 2799-2812.
A. B. Glot, A. P. Sandoval-García, A. V. Gaponov, R. Bulpett, B. J. Jones and G. Jimenez-Santana
“Electronic Properties of SnO2-Based Ceramics with Double Function of Varistor and Humidity Sensor”
Advances in Technology of Materials and Materials Processing 10 (2009) 21-32
Archive Version. Definitive version available at http://www.azom.com/article.aspx?ArticleID=4718
p18
17. M. Egashira, Y. Shimizu, Y. Fukuyama and Y. Takao, “Hydrogen-sensitive Breakdown Voltage in the I-V Characteristics of Tin Dioxide-based Semiconductors”, Sens. Actuators B, 33 (1-3) (1996) 89-95.
18. Y. Shimizu, E. Di Bartolomeo, E. Traversa, G. Gusmano, T. Hyodo, K. Wada and M. Egashira, “Effect of Surface Modification on NO2 Sensing Properties of SnO2 Varistor-type Sensors”, Sens. Actuators B, 60 (1999) 118-124.
19. I. Skuratovsky, A. Glot, E. Di Bartolomeo, E. Traversa and R. Polini, “The Effect of Humidity on the Voltage-current Characteristic of SnO2 Based Ceramic Varistor”, J. Eur. Ceram. Soc., 24 (9) (2004) 2597-2604.
20. I. Skuratovsky, A. Glot and E. Traversa, “Modelling of the Humidity Effect on the Barrier Height in SnO2 Varistors”, Materials Science and Engineering B, 128 (1-3) (2006) 130-137.
21. A. B. Glot and I.A. Skuratovsky, “Non-Ohmic Conduction in Tin Dioxide Based Varistor Ceramics”, Materials Chemistry & Physics, 99 (2-3) (2006), 487-493.
22. A. B. Glot, “A Simple Approach to Oxide Varistor Materials”, Journal of Materials Science, 41 (17) (2006) 5709-5711.
23. A. B. Glot, “A Model of Non-Ohmic Conduction in ZnO Varistors”, Journal of Materials Science: Materials in Electronics, 17 (9) (2006) 755-765.
24. W. Wang, J. Wang, H. Chen, W. Su and G. Zang, “Electrical Nonlinearity of (Cu, Ni, Nb)-doped SnO2 Varistors System”, Materials Science and Engineering B, 99 (2003) 457-460.
25. C.Wang, J. Wang, H. Chen, W. Su, G. Zang, P. Qi and M. Zhao, “Effects of CuO on the Grain Size and Electrical Properties of SnO2-based Varistors”, Materials Science and Engineering B, 116 (2005) 54-58.
26. C. Wang, J. Wang, Y. Zhao and W. Su, “Effects of Copper Oxide on the Microstructural Morphology and Electrical Properties of Tin Oxide-based Varistor Ceramics”, J. Phys. D: Appl. Phys., 39 (2006) 1684-1689.
27. A. B. Glot, A. S. Tonkoshkur, B.K. Chernyi and A. Ya. Yakunin, “The Application of Dielectric Spectroscopy to the Study of Structure Features of Oxide Ceramics for Varistors”, Electronnaya Tehnika, Ser.5. Radiodetali i Radiocomponenty, 4 (35) (1979) 63-67.
28. J. F. Cordaro, Y. Shim and J.E. May, “Bulk Electron Traps in Zinc Oxide Varistors”, J. Appl. Phys., 60 (12) (1986) 4186-4190.
29. J. P. Gambino, W.D. Kingery, G.E. Pike, H.R. Philipp and L.M. Levinson, “Grain Boundary Electronic States in Some Simple ZnO Varistors”, J.Appl.Phys., 61 (7) (1987) 2571-2574.
30. A. B. Glot and Yu. A. Perepelitsa, “The Inhomogeneity of Low Voltage Zinc Oxide Varistors”, Electronnaya Tehnika, Ser.5. Radiodetali i Radiocomponenty, 2 (71) (1988) 35-37.
31. F. A. Shunk, “Constitution of Binary Alloys, Second Supplement”, McGraw-Hill Book Company, New York, 1969.
32. M. Batzill and U. Diebold, “The Surface and Materials Science of Tin Oxide”, Prog. Surf. Sci., 79 (2005) 47–154.

Depositing User: Ben Jones
Date Deposited: 11 Feb 2014 14:10
Last Modified: 04 Dec 2016 03:10
URI: http://eprints.hud.ac.uk/id/eprint/19567

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©