
University of Huddersfield Repository

Ammari, Faisal Tawfiq

Securing Financial XML Transactions Using Intelligent Fuzzy Classification Techniques

Original Citation

Ammari, Faisal Tawfiq (2013) Securing Financial XML Transactions Using Intelligent Fuzzy
Classification Techniques. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/19506/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Securing Financial XML Transactions Using

Intelligent Fuzzy Classification Techniques

A Smart Fuzzy-based Model for Financial XML Transactions Security

using XML Encryption

By

Faisal Tawfiq Ammari

Submitted for the degree of Doctor of Philosophy

School of Computing and Engineering

University of Huddersfield

October 2013

 1

SECURING FINANCIAL XML TRANSACTIONS USING

INTELLIGENT FUZZY CLASSIFICATION METHODS

By

Faisal Tawfiq Ammari

ABSTRACT

Keywords: XML, financial transactions, fuzzy logic, fuzzy XML, XML

security, XML encryption, financial transactions, banking

The eXtensible Markup Language (XML) has been widely adopted in many financial

institutions in their daily transactions; this adoption was due to the flexible nature of

XML providing a common syntax for systems messaging in general and in financial

messaging in specific. Excessive use of XML in financial transactions messaging

created an aligned interest in security protocols integrated into XML solutions in order

to protect exchanged XML messages in an efficient yet powerful mechanism.

However, financial institutions (i.e. banks) perform large volume of transactions on

daily basis which require securing XML messages on large scale. Securing large

volume of messages will result performance and resource issues. Therefore, an

approach is needed to secure specified portions of an XML document, syntax and

processing rules for representing secured parts.

In this research we have developed a smart approach for securing financial XML

transactions using effective and intelligent fuzzy classification techniques. Our

approach defines the process of classifying XML content using a set of fuzzy variables.

Upon fuzzy classification phase, a unique value is assigned to a defined attribute named

"Importance Level". Assigned value indicates the data sensitivity for each XML tag.

This thesis also defines the process of securing classified financial XML message

content by performing element-wise XML encryption on selected parts defined in fuzzy

classification phase. Element-wise encryption is performed using symmetric encryption

using AES algorithm with different key sizes. Key size of 128-bit is being used on tags

 2

classified with "Medium" importance level; a key size of 256-bit is being used on tags

classified with "High" importance level.

An implementation has been performed on a real-life environment using online banking

system in Jordan Ahli Bank one of the leading banks in Jordan to demonstrate its

flexibility, feasibility, and efficiency. Our experimental results of the system verified

tangible enhancements in encryption efficiency, processing-time reduction, and

resulting XML message sizes.

Finally, our proposed system was designed, developed, and evaluated using a live data

extracted from an internet banking service in one of the leading banks in Jordan. The

results obtained from our experiments are promising, showing that our model can

provide an effective yet resilient support for financial systems to secure exchanged

financial XML messages.

 3

ACKNOWLEDGMENT

―I can do all things through him who strengthens me‖. First of all, I would like to thank

Christ, who made me believe in myself to complete this work and reach this important

stage of my life to fulfil my dream.

I would like to express my appreciation to my supervisor, Professor Joan Lu, for her

continuous guidance and great support through this journey. She showed a great

dedication and commitment providing a provisional and exceptional support and

encouragement to shed the light through my research.

Great appreciations go to Dr. Maher Aburrous for being a real support guiding me

through this research. I am really grateful for all his paid efforts and support.

Finally, my gratitude goes to the University of Huddersfield, providing the opportunity

to pursue my dream and complete my degree.

 4

DEDICATION

To my beautiful wife, my partner, love of my life (Salam), who never stopped dripping

the love from her heart to mine, who never stopped encouraging me, and who never

stopped lighting my way through the journey towards success.

To my wonderful parents (Tawfiq and Amal), who never stopped believing in me, who

never stopped supporting and loving me, and who never stopped drawing the smile on

my face all the time during my long journey.

To My beloved Brothers (Tariq, Salem, Sultan, Waleed), who never stopped being by

my side, who never stopped pushing me when needed, and who never stopped believing

in me.

To my Friends and Relatives, thank you all.

 5

List of Acronyms and Abbreviations

AES Advanced Encryption Standard

AI Artificial Intelligence

API Application Program Interfaces

CBA Classification based on Association Rule

COG Centre of Gravity

DES Data Encryption Standard

DOM Document Object Model

DRM Digital Rights Management

DSD Document Structure Description

DTD Document Type Definition

FL Fuzzy Logic

IDE Integrated development environment

IDEA International Data Encryption Algorithm

KDC Key Distribution Centre

KEK Key Encryption Key

kNN k-nearest Neighbour Classification

LLSF Linear Least Squares Fit Mapping

OASIS Organization for the Advancement of Structured Information

Standards

PAP Policy Access Point

PDP Policy Decision Point

PEP Policy Enforcement Point

 6

PKI Public Key Infrastructure

SAML Security Assertion Markup Language

SAX Simple Application Interface for XML

SVMs Support Vector Machines

SXMS Secure XML Management System

TEK Traffic Encryption Key

TTP Trusted Third Party

UML Unified Modelling Language

URI Uniform Resource Identifier

X-KISS XML Key Information Service Specification

X-KRSS XML Key Registration Service Specification

XAC XML access control

XACML XML Access Control Mark-up Language

XEnc XML Encryption Syntax and Processing

XKMS XML key management specification

XML eXtensible Markup Language

XNI Xerces Native Interface

XSL eXtensible Stylesheet Language

XSLT XSL Transformations

W3C World Wide Web Consortium

 7

Contents

Abstract…………………………………………………………………………….. 1

Acknowledgement…………………………………………………………………. 3

Dedication…………………………………………..……………………………… 4

List of Acronyms and Abbreviations…………………………………………….. 5

Contents…………………………………………..………………………………... 7

List of Figures……………………………………………………….……………... 12

List of Tables……………………………………………………………….……… 16

List of Publications………………………………………………………………… 17

Chapter 1 Introduction………………………………………………….……. 18

1.1 Overview……………………………………………………………… 18

1.2 Research Motivation………………………………………………….. 21

1.3 Aims & Objectives……………………………………………………. 22

1.4 Research Contribution………………….………………….…………. 23

1.5 Outline of the Thesis………………………………………………….. 25

Chapter 2 Research Background…………………………………….. 27

2.1 Introduction…………………………………………………………… 27

2.2 XML Model…………………………………………………………... 27

 2.2.1 Well-formed XML...…………………………………….……. 29

 2.2.2 XML Components...………………………………..….……… 30

2.3 XML Schema Languages...…………………………………………… 31

 8

 2.3.1 Document Type Definition (DTD)………………….………... 32

 2.3.2 XML Schema………………………………………….……… 32

 2.3.3 RELAX NG………………………………………….……….. 33

 2.3.4 Document Structure Description (DSD)……………………… 34

 2.3.5 Schematron…………………………………………………… 34

2.4 XML API…………………………………………………….……….. 34

 2.4.1 DOM Parser…………………………………………………... 35

 2.4.2 SAX Parser……………………………………….…………… 35

 2.4.3 Java API for XML……………………………………………. 35

2.5 Cryptographic Algorithms for confidentiality.……….………...…….. 36

 2.5.1 Encryption Mechanism……………………………….………. 36

 2.5.2 Symmetric Cryptography……………………………………... 37

 2.5.2 Asymmetric Cryptography……………………………………. 40

2.6 XML Security Models ……………………………………………….. 41

 2.6.1 XML Signature……………………………………………….. 42

 2.6.2 XML Encryption……………………………………………… 45

 2.6.2.1 Encryption for Multiple Recipients…………………. 49

 2.6.2.2 Serialization of XML for XML Encryption…………. 50

 2.6.2.3 Example of XML Encryption……………………….. 51

 2.6.2.4 Example Implementations of XML Encryption…….. 52

 2.6.2.5 Issues Regarding Attribute Values……………….….. 53

 2.6.3 XML Key Management………………………………………. 54

 2.6.4 Security Assertion Markup Language (SAML)………………. 56

 2.6.5 XML Extensible Access Control Markup Language

(XACML)……………………………………………………………..

57

2.7 Text Categorization………………………………………………........ 58

2.8 Fuzzy Logic Model…………………………………………………… 59

 9

 2.8.1 Fuzzy Sets and Crisp Sets…………………………………….. 60

 2.8.2 Fuzzy Inference Process……………………………………… 61

2.9 Chapter Summary…………………………………………………….. 63

Chapter 3 Literature Review………………………………………… 64

3.1 Introduction…………………………………………………………… 64

3.2 XML Encryption Models... 64

3.3 Fuzzy XML Modelling………………….. 71

3.4 Chapter Summary……………………………………….……………. 77

Chapter 4 Intelligent Fuzzy-Based Financial XML Security Model 79

4.1 Introduction…………………………………………………………… 79

4.2 Proposed Model for Securing XML Financial Documents................... 80

 4.2.1 Model Requirements………………………………….……… 81

 4.2.2 System Architecture and Design…………………….……….. 82

4.3 Fuzzy Classification Methodology …………………………….…….. 87

 4.3.1 Fuzzify Input Stage…………………………………….…….. 88

 4.3.2 Rule Evaluation Stage……………………………….……….. 90

 4.3.3 Aggregation of the Rule Output Stage……………….………. 90

 4.3.4 Defuzzification Stage………………………………………… 90

4.4 Fuzzy Classification Model ………………………….………………. 91

4.5 Fuzzy Rule Base and Layers Categorization ……….………………... 93

 4.5.1 Rule Base for Layer 1 …………………………….…………. 93

 4.5.2 Rule Base for Layer 2 …………………………….…………. 94

 4.5.3 Rule Base for Layer 3 ………………………….……………. 96

 10

4.6 Encryption Model ……………………………………………………. 97

 4.6.1 Element-wise Encryption……………………………………. 97

 4.6.1.1 Element-wise Encryption Standard…………… 98

 4.6.1.2 Design Consideration…………………………. 101

 4.6.1.3 XML Message Schemas……………………… 102

 4.6.2 Diffie–Hellman key exchange………………………………. 104

 4.6.2.1 D-H Process………………………….……….. 104

4.7 Message Utilization…………………………………………...……… 107

4.8 Chapter Summary …………………………………………...……….. 107

Chapter 5 SXMS Model Implementation and Testing……………... 109

5.1 Introduction…………………………………………………………… 109

5.2 Development Architecture and Used Tools ………………………….. 109

 5.2.1 Used Tools…………………………………………………… 109

 5.2.2 Development Architecture…………………………………… 110

5.3 System Implementation ……………………………………………… 112

 5.3.1 SXMS Implementation Requirements …………….………... 112

 5.3.2 SXMS Implementation Process …………………….………. 113

5.4 Testing Strategy …………………………………………….….…….. 115

 5.4.1 Testing SXMS Behaviour……………………….…………… 116

 5.4.2 Testing SXMS‘s Functionality…………………….……….... 118

 5.4.2.1 White-box Testing…………………….…….... 118

 5.4.2.2 Black-box Testing………………….….…….... 119

5.5 Testing Validation….………………………………………….……… 120

5.6 Testing Environment ………………………………………….……… 121

5.7 Testing Data Preparation ……………………………………..………. 121

 11

5.8 Fuzzy Classification and Encryption Testing ……………….……….. 123

 5.8.1 Testing Fuzzy Classification ……………………..………..... 123

 5.8.2 Testing XML Encryption ………………………..………….. 128

5.9 Chapter Summary…………………………………………….………. 130

Chapter 6 Performance Evaluation - Implementation to Secure

Financial XML Messages using Intelligent Fuzzy-Based

Techniques…………………………………………………

131

6.1 Introduction………………………………………………………….... 131

6.2 SXMS Performance Evaluation ……………………………………… 132

 6.2.1 Evaluation Method…………………………………………… 132

 6.2.2 Evaluation Preparations……………………………………… 132

 6.2.3 Evaluation Stages……………………………….…….……… 133

6.3 Screenshots, Source Codes, and Pseudo Code Examples …….…..….. 146

 6.3.1 Screenshot Examples………………………………….……... 146

 6.3.2 Source Codes Examples……………………………..……….. 148

 6.3.3 Pseudo Codes Examples………………………..……………. 152

6.4 Chapter Summary………………………………………….................. 153

Chapter 7 Conclusions and Future Work…………………………… 155

7.1 Conclusions…………………………………………………….……... 155

7.2 Future Work…………………………………………………………... 159

References …………………………………………………………… 162

Appendix A: Rules for Layer 1, Layer 2, and Layer 3………………… 169

Appendix B: Sample extracted data used in experiments……….…….. 176

Appendix C: Sample XML messages and sample DTDs……………… 182

 12

List of Figures

Figure 2.1: Sample of a well-formed XML message …………………………….….. 30

Figure 2.2: DTD Example …………………………………………….……………... 32

Figure 2.3: A RELAX NG Schema example ………………………………………... 33

Figure 2.4: A generic encryption system ……………………………………………. 36

Figure 2.5: Symmetric cryptographic cycle …………………………………………. 37

Figure 2.6: Asymmetric cryptographic cycle ……………………............................... 40

Figure 2.7: XML Signature structure …………………... 43

Figure 2.8: Enveloped, detached, and enveloping signatures ……………………...... 44

Figure 2.9: XML Encryption structure ………………………………….…………… 46

Figure 2.10: <EncryptedData> element and components …………….......................... 47

Figure 2.11: <EncryptedKey> element and components …………………..…………. 47

Figure 2.12: W3C Encryption possibilities (modes)……………………...…………… 48

Figure 2.13: Encrypting the encrypted content for multiple recipients (super-

encryption)…………..

49

Figure 2.14: Sample XML financial message …………………………..…………….. 51

Figure 2.15: Sample XML financial message after partial W3C encryption ….……… 52

Figure 2.16: The alt attribute (to be encrypted) of a video element ………….…….…. 53

Figure 2.17: Output of encrypting the alt attribute of the video element …….…..…… 53

Figure 2.18: Obtaining a validated public key by sender B for sender A …………….. 55

Figure 2.19: SAML assertion elements …………………………………..…………… 56

Figure 2.20: XACML components………………………………………..…………… 57

Figure 2.21: Characteristic function of a crisp set………………………………......…. 60

 13

Figure 2.22: Characteristic function of a fuzzy set ……………………………...……. 61

Figure 2.23: Fuzzy inference process ……………………………………….………… 62

Figure 4.1: Main system components ………………………………………………... 83

Figure 4.2: Fuzzy Inference System …………………………………………………. 88

Figure 4.3: Input variable for transaction amount factor ………………………..…… 89

Figure 4.4: Output variable and ranges ……………………………………………… 91

Figure 4.5: Classification Architecture of the importance level fuzzy mode (TAG

Classification)…………………………………………………………….

92

Figure 4.6: Layer 1 system structure (inputs and outputs)…………………………… 94

Figure 4.7: Surface structure in a three-dimensional view for layer 1……………….. 94

Figure 4.8: Layer 2 system structure (inputs and output)……...................................... 95

Figure 4.9: Surface structure in a three-dimensional view for layer 2….……………. 96

Figure 4.10: Layer 3 system structure (inputs and output)……...................................... 97

Figure 4.11: Surface structure in a three-dimensional view for layer 3……….………. 97

Figure 4.12: Encryption module architecture and design ……………………………... 98

Figure 4.13: Classified message for element-wise encryption………………………… 100

Figure 4.14: XML message after element-wise encryption on selected parts…………. 101

Figure 4.15: XML Schema for core encryption ………………………………………. 103

Figure 4.16: XML schema for EncryptionInfos element……………………...………. 103

Figure 4.17: XML schema for KeyValue element…………………………………….. 103

Figure 4.18: XML schema for the ContentEncryptionMethod element……….……… 103

Figure 4.19: XML schema for the Reference element ……………………….….……. 104

Figure 4.20: XML schema for the EncryptedContent element……………….……….. 104

Figure 4.21: Key exchange using the DH method…………………………….………. 106

Figure 4.22: DH key agreement schema………………………………………………. 106

 14

Figure 4.23: Message utilization………………………………………………………. 107

Figure 5.1: Model development architecture…………………………………...……. 112

Figure 5.2: Process for XML data fuzzy classification………………………………. 113

Figure 5.3: Process for XML data encryption…………………………………..……. 115

Figure 5.4: Model behaviour states……………………………………….………….. 116

Figure 5.5: Sample data captured from the first set…………………….……………. 122

Figure 5.6: Sample data captured from the second set………………………………. 122

Figure 5.7: Set of fuzzy rules for layer 1…………………………………..…………. 125

Figure 5.8: Surface view for layer 1…………………………………………………. 126

Figure 5.9: Fuzzy classification chart for sample implementation……..….………… 127

Figure 5.10: Sample XML message after fuzzy classification phase………….………. 128

Figure 5.11: Sample XML message after encryption phase……………………….….. 129

Figure 6.1: Fuzzification stage (IF-THEN operators)………………………………... 133

Figure 6.2: Comparison chart between SXMS and W3C model using 128-bit key…. 136

Figure 6.3: File size comparison between SXMS and W3C model using 128-bit…… 137

Figure 6.4: Performance comparison between SXMS and XML using 256-bit……... 139

Figure 6.5: File Size comparison between SXMS and XML using 256-bit key……... 139

Figure 6.6: Final performance comparison between SXMS and W3C models……… 140

Figure 6.7: Final file size comparison between SXMS and W3C models…………… 140

Figure 6.8: Performance comparison between SXMS and W3C Standard using

AES-128 Key……………………….…………………………………….

142

Figure 6.9: File size comparison between SXMS and W3C Standard using AES-

128 Key……………………….……………………………………...

143

Figure 6.10: Comparison between SXMS and W3C Standard using AES-256

Key………………………………………………………………………..

144

 15

Figure 6.11: File size comparison between SXMS and W3C model using 256-bit

key……………………….……………………….…………………

145

Figure 6.12: comparison between SXMS and W3C Standard using different keys 145

Figure 6.13: File size comparison between SXMS and W3C Standard using

different Keys……………………………………………………...…

146

Figure 6.14: SXMS Main application interface…………………………………… 147

Figure 6.15 Main application result files after encryption process……………….. 147

 16

List of Tables

Table 3.1: XML Encryption Approaches ………………………….…………….. 69

Table 4.1: Components and layers of XML message content ………..……...…... 92

Table 4.2: Rule base 1 for the account segment layer – layer 1……………...…... 93

Table 4.3: Rule base 1 for the details segment layer – layer 2…………………… 95

Table 4.4: Rule base 1 for the environment segment layer – layer 3…………….. 96

Table 5.1: Minimum hardware requirements to run main tools………….………. 113

Table 5.2: Testing Factors……………………..…... 120

Table 5.3: Sample of data classified for Layer 1…... 123

Table 5.4: Sample of data classified for Layer 2…………………..……….…….. 124

Table 5.5: Sample of data classified for Layer 3……………………………….… 124

Table 5.6: Fuzzy Classification table for first sample implementation ….………. 127

Table 6.1: Stage 1 Sets detail……………………………………………………... 134

Table 6.2: Performance evaluation for stage 1 …………………………………... 134

Table 6.3: Processing time and resulting file sizes using SXMS and W3C-128

Model…………………………………………………………………..

135

Table 6.4: Processing time table using SXMS and W3C-256 Model (Full

Encryption)…………………………………………………………….

138

Table 6.5: Performance evaluation for stage 2…………………………………… 140

Table 6.6: Processing time table using SXMS and W3C-128 Model (Partial

Encryption)…………………………………………………………….

141

Table 6.7: Processing time table using SXMS and W3C-256 Model (Partial

Encryption)…………………………………………………………….

143

 17

List of Publications

Journal Papers

1. Ammari, F., Lu, J., Aburrous, M., "Intelligent Banking XML Encryption using

Effective Fuzzy Classification", Book Chapter - Emerging Trends in

Information and Communication Technologies Security, ISBN 9780124114746

(Print), Elsevier, September-October 2013.

2. Ammari, F., Lu, J., Aburrous, M., ―Enhanced XML Encryption Using

Classification mining techniques for e-Banking transactions‖, (Submitted)

Conference Papers

1. Ammari, F., Lu, J., "Improved Banking XML Transaction Encryption Using

Tag Fuzzy Classification," Proceeding of International Conference on

Computer Applications Technology, Sousse, Tunisia, January 20-22 2013.

2. Ammari, F., Lu, J., Aburrous, M., ―Intelligent XML Tag Classification

Techniques for XML Encryption Improvement‖, Proceeding of the 3rd IEEE

International Conference on Privacy, Security, Risk and Trust, MIT, Boston,

USA October 9-11, 2011.

3. Ammari, F., Lu, J., Aburrous, M., " Advanced XML Security: Framework for

Building Secure XML Management System (SXMS)", Proceeding of the 7
th

International Conference on New Generations (ITNG), Las Vegas, USA, April,

Page(s): 120 – 125, 2010

 18

Chapter 1

Introduction

1.1 Overview

eXtensible Markup Language (XML) (Bray, Paoli, Sperberg-McQueen, Maler, &

Yergeau, 2008) has been widely adopted in many financial institutions in their daily

transactions; this adoption has been due to the flexible nature of XML in providing a

common syntax for systems messaging in general and for financial messaging in

particular. Excessive use of XML in financial transactions messaging has created an

aligned interest in security protocols integrated into XML solutions in order to protect

exchanged XML messages by using an efficient yet powerful mechanism. There have

been several approaches proposed by researchers to secure XML messages and there is

a comprehensive collection of related works.

XML is designed based on text format and has a tree structure. It is natural that data

integrity, data authentication, information confidentiality, and other security benefits

 19

should be applied to entire XML data or portions of XML data. XML security solutions

should provide a high level of security to ensure the confidentiality of information

represented using the XML format. XML security must be integrated with XML data

features and characteristics to keep the flexible nature of XML while integrating

essential security technologies.

Due to the sensitive nature of financial transactions that use XML as their main

messaging protocol, a security requirement should be fulfilled to protect exchanged

XML messages by using a dynamic and efficient mechanism. The security mechanism

should encrypt portions of XML data rather than whole messages, e.g. element-wise

encryption should be used to protect sensitive parts within the XML message.

The specifications related to XML security published by W3C define the basic

framework and rules that can be utilized across applications. The basic idea for XML

security is to perform data encryption on XML messages whereby XML data

confidentiality is achieved to ensure that the XML data structure, data content, and

other sensitive information in XML data may only be accessed by legitimate parties.

Confidentiality is generally associated with encryption mechanisms or access control

technologies. XML key management (Hallam-Baker & Mysore, 2005) provides the

basic key requirements for XML data confidentiality .

However, on a daily basis, financial institutions (i.e. banks) perform large volumes of

transactions that require XML encryption on a large scale. Encrypting large volumes of

messages in full will result in performance and resource issues. Therefore, an approach

is needed to encrypt defined parts within the XML document, to identify syntax for

representing encrypted portions, and to identify the processing rules for decrypting

those portions. W3C XML encryption has a feature called element-wise encryption,

 20

which is the process of encrypting parts of an XML document. The encryption process

can be applied to more than one element in a given XML document; each is contained

in another element. The element might enclose sub-elements, attributes, texts, or a mix

of all mentioned items. The remaining parts of the document should remain intact as

plaintext.

To avoid any performance or resource issues, a mechanism should be considered to

choose which parts of the XML document should be encrypted on the fly, whereby the

parts are selected based on smart criteria for detecting sensitive information within an

XML document .

The fuzzy logic (FL) (L.A. Zadeh, 1965) approach can be used to distinguish sensitive

parts within each XML document. FL provides an easy way to reach to a definite

conclusion based upon noisy, vague, imprecise, ambiguous, or missing information.

FL's approach for controlling problems imitates how a person would make a quick

decision. FL includes a rule-based ‗IF X AND Y, THEN Z‘ approach for solving a

control problem, rather than attempting to design a system in mathematical way. The

FL model is relying on an operator‘s experience rather than their technical

understanding of the system.

The FL approach is quantified based on a combination of historical data and expert

input. FL has been used in many fields especially in computer information systems, and

computer science to combine expert input with computer models for a large scale of

applications. The main advantage of the fuzzy approach is that it can process

imprecisely defined variables and variables which mathematical relationships cannot

define their corresponding relationships. FL has the ability to integrate expert human

knowledge and judgement to define the variables and corresponding relationships. By

integrating expert human judgement we get more realistic model (Mahant, 2004)

 21

1.2 Research Motivation

Many businesses and financial institutions use XML in their basic transaction

messaging, due to its flexible nature and structure. A solid security approach is required

to ensure safe and trustworthy transactions either within the same institution or between

different institutions (business to business). XML security specifications published by

W3C have addressed XML encryption (Imamura, Dillaway, & Simon, 2002). XML

encryption is mainly used to ensure XML data confidentiality and authenticity.

However, institutions that deal with large volumes of transactions on a daily basis

require a flexible and solid mechanism to process XML messages that performs

element-wise encryption in a timely and efficient manner .

Encrypting sensitive information only within the XML document is a complicated issue

to analyse; it needs to take into consideration the process of encrypting different

portions within the XML document every time the message is transmitted. This is

complex to analyse because the classification requires set of factors to consider.

Despite there are handful of applications available to secure XML messages, there are

no known solutions that utilize fuzzy classification techniques in detecting sensitive

information within each XML document.

The motivation behind our research is to create an effective, powerful, and intelligent

model to classify XML messages by detecting sensitive information within XML

documents, in order to perform element-wise encryption on selected parts .

We have conducted a quantitative methodology in our research, and it explores fuzzy

XML classification systems. The technique uses FL to process XML data features and

patterns, for extracting the message‘s fuzzy classification rules into the data miner, and

 22

then for applying element-wise encryption algorithms on selected portions extracted

from XML data features and patterns. The proposed XML security model combines

fuzzy techniques for the purpose of automating the fuzzy rules. The automation process

is completed by extracting the set of fuzzy rules that are going to be deployed inside the

fuzzy inference engine. Therefore, a set of IF-THEN rules are constructed using these

fuzzy rules. The IF-THEN rules reflect the relations between different transaction

characteristics and patterns and their associations with one another. These rules can then

be used for the final stage, which uses element-wise encryption with different key sizes

based on the importance levels assigned .

Our previous expertise in the banking and financial sector in Jordan shed the light on

the importance of securing business and financial transactions based on XML. Many

researches and case studies have been reviewed and evaluated in order to find a robust

and flexible solution that can be used with ease and efficiency.

1.3 Aims & Objectives

Our prime aim is to build a system that secure financial XML messages that uses FL to

classify XML content to perform XML encryption, in order to provide necessary data

confidentiality for classified portions within an XML document. This mechanism

enhances the performance of encrypting XML documents on high-volume transactions.

In order to reach this aim, there are several objectives:

Our objectives can be summarized with the following points:

1. Conduct a literature review to illustrate the current and existing approaches

concerning XML security, fuzzy XML models, and XML data confidentiality.

 23

2. Build a resilient, intelligent, dynamic, and secure XML messaging system that

uses artificial intelligence and FL to fetch and classify sensitive information

within XML documents. The outcome system has to be adaptive, flexible, and

efficient.

3. Illustrate feasibility and adaptability after analysing a large number of actual

transaction datasets fetched over period of time reflecting internet banking

transactions, phone banking transactions, and mobile banking transactions.

4. Present the applicability of applying an FL expert system in order to classify and

find out importance levels within XML documents. Fuzzy rules are being used

for and driven by human expert knowledge on creating flexible and secure XML

messaging systems.

5. Provide a solution that improves existing XML encryption approaches and

illustrates a performance improvement over well-known XML encryption

models, like W3C XML Encryption Recommendations. We illustrate the

enhancements and processing improvements by securing only the necessary

parts with high importance levels within XML documents.

We have implemented a quantitative research methodology to enable us achieving all

above objectives, taking into consideration experimental studies, case analysis, data

collection, testing, evaluation, and comparing final results.

1.4 Research Contribution

This research will contribute to the fields of XML security, fuzzy XML in general,

XML encryption, and fuzzification, specifically in the following areas:

1. A robust XML security model has been introduced performing element-wise

encryption to encrypt critical and sensitive parts within XML documents that are

 24

used in business and financial institutions. This technique encrypts XML

documents efficiently by encrypting only the sensitive parts within each XML

document by using a set of fuzzy variables. Significant processing time

improvements have been recorded against a well-known approach (W3C XML

Encryption Recommendations).

2. An efficient and secure XML model has been created to reduce encrypted XML

file sizes, due to the fact that only essential parts within each XML document

are encrypted, leaving other nodes intact without encryption. Reduce file sizes

will reduced bandwidth used on large scale.

3. A fuzzy classification engine has been created to determine which parts within

each XML document require encryption. The fuzzification engine works by

assigning an importance level to each tag within the XML document. The

importance level value is set by the engine for later encryption processing; the

importance level is assigned using one of three values (high, medium, or low).

The fuzzification process itself is based on fuzzy logic, which uses a

combination of human expert knowledge and a set of IF-THEN operators.

4. A resilient XML encryption system has been created whereby future

enhancements can be achieved without the need to redesign the whole system.

The encryption standards and algorithms used within the system are flexible and

can be changed when needed; different encryption algorithms can be used to

replace existing algorithms either to improve performance or to add more

security.

5. A set of XML fuzzy classification characteristics has been created that were

fetched from actual financial XML transactions. There are ten main

characteristics that were created by using a hybrid of personal expertise, onsite

 25

financial analysts, a set of questionnaires, and a set of surveys. These ten

characteristics define the classification criteria we will use in our fuzzy

classification stage.

6. A desktop application has been designed and developed to test and validate our

proposed model. Application developed based on reliability, feasibility, and

extraction process of the mechanism. The application was programmed using

the Java programming language.

1.5 Outline of the Thesis

Here to present a brief outline of the thesis:

In Chapter 2, the research background is discussed. XML models are included, XML

application program interfaces, XML schema languages, cryptographic algorithms for

data confidentiality, XML security models (with XML encryption standards described),

text categorization, and FL models and design.

In Chapter 3, the literature review is presented. The contents of the literature review

mainly focus on existing ideas and solutions related to XML encryption. It looks at the

existing models, theories, and schemes of XML encryption for ensuring XML data

confidentiality. Existing fuzzy XML techniques and models are also addressed to cover

all aspects of our research.

In Chapter 4, a full description is given and introduced of a novel model for securing

financial XML documents by encrypting specific portions within the documents.

Selection is performed based on the XML fuzzification phase to determine which parts

are to be encrypted and what types of encryption algorithm and key are to be deployed.

We call our model SXMS, which stands for secure XML management system. This

 26

description includes the main model design, concepts, and workflow that are used in

this model .

An illustration of the system design and architecture and the tools used for

implementing the system of the SXMS model is also given. A theoretical execution

based on the case study is also offered. This section presents the classes for encrypting

and decrypting XML messages based on the importance level assigned, as well as the

process of building the final XML document by deploying the needed XML encryption

with different key sizes based on XML data sensitivity for each XML portion .

In Chapter 5, a detailed system implementation has been described. Development

architecture and used tools have been introduced to elaborate on how the system

implemented. Used testing strategy, testing behaviour, testing data, and testing

functionality have been introduced as well. Testing validation against W3C XML

Recommendations (Imamura et al., 2002) has been presented to present SXMS

advantage. Finally an independent testing for the major modules, fuzzy classification

stage, and XML encryption has been illustrated.

In Chapter 6, the full performance evaluation stages are discussed. The evaluation

stages are presented to give a clear idea of the mechanism we followed in our

evaluation, presenting the basic components that we used in our evaluation and

judgements. Finally, we provide screenshots of the developed application and samples

of the source code used to develop this application .

In Chapter 7, an overview of the thesis along with a discussion of future research

directions are presented.

 27

Chapter 2

Research Background

2.1 Introduction

In this chapter we introduce the XML model with all its detailed components, and then

we briefly introduce the XML language and its structure. Cryptographic algorithms and

types are presented. The XML security model is presented as well. Specifically, we

present XML digital signatures, XML Encryption, XML key management, SAML, and

XACML security models. We then present the information retrieval mechanism in

general and XML fuzzy classification specifically. Finally, we introduce the fuzzy logic

model in details.

2.2 XML Model

EXtensible Markup Language (XML) was first announced in 1998 (W3C, 1998). This

proposed markup language became the standard for data exchange and representation

among many online and offline applications, providing the flexibility of exchanging

different digital content among applications. An XML document is formed in a

hierarchical structure with the ability to define its element contents, define tags, create

 28

nested document structures, and build document types by specifying a set of regular

expression patterns (XML Schema or Document Type Definitions (DTD)). An XML

document incorporates structure and data in one entity. Therefore, XML data is semi-

structured data (S. Abiteboul, 1996).

The solid set of XML characteristics created an interest in building effective solutions

to support the following advantages:

 Extensibility: New fields and tags can be created when they are needed. There

are no fixed set of fields.

 Self-description: This feature allows any XML field to process an unlimited

number of attributes.

 Readability: XML is easy for humans or machines to read and understand. This

feature facilitates the usage of XML by different applications and users.

 Simplicity: XML code is easy to understand; also, it can be easily processed and

deployed in different practices. Updating the existing XML Schema is an easy

and straightforward operation.

 Supports multilingual documents and Unicode: This is important for the

internationalization of applications.

 Interoperability: There is the ability to use XML documents in any industry

without the need to make changes to the data itself. XML is treated as an

independent unit from both the machine and software levels.

 Portability: An XML document has the ability to represent different data types,

such as ordinary text and binary files (images, videos, and sounds).

However, there are some drawbacks in XML, which include:

 29

 Syntax redundancy: This can affect human readability and system efficiency,

and this can result in higher storage requirements and resource usage.

Bandwidth limitations can prevent XML being deployed in certain applications.

 A number of vague, unneeded features within XML: Efforts were made to create

"Minimal XML", which led to the discovery that there was no consensus on

which features were in fact obscure or unnecessary.

 A wide range of data types are not supported in the basic parsing requirements:

Some additional work might be required to process the desired data in the XML

document.

 A significant overhead for various uses of XML: This mainly applies where

resources may be limited. This might happen because of the parser‘s limitations

in recursing arbitrarily nested data structures or the missing feature of

performing additional checking and validation for improperly formatted syntax

or data.

 Security concerns: These may arise when XML input is fed from unknown or

untrusted sources

 Difficulty in modelling overlapping data structures: This requires extra effort.

2.2.1 Well-formed XML

A well-formed XML document is one which corresponds to the XML 1.0 (Bray, Paoli,

Sperberg-McQueen, Maler, & Yergeau, 2007) grammar specified by W3C. It has just

one root element, which is known as the document element. Each starting element tag

must have a corresponding closing tag. Each element ought to be nested within one

another. Nesting rules with defined labels enable information to be represented by XML

hierarchically. Figure 2.1 illustrates a sample of a well-formed XML message.

 30

Figure 2.1: Sample of a well-formed XML message

2.2.2 XML Components

An XML document consists of elements that represent a piece of information. More

specific information can be found in nested elements, such as character data, attributes,

and entity references. These elements are marked up by the tags in a specific document.

Between the start tag and end tag of an element there is the element content, presented

as text content.

1. Elements: Elements start with an opening tag (<t>) and end with an ending tag

(</t>). Everything between the starting and ending tags is called the element

content. Each element has an element name (e), which should follow the

following rules:

- The element name should not start with "XML" or "xml".

- The element name is case sensitive.

- The element name starts with a character or an underscore.

- The element name consists of characters, numerals, underscores, and tabs.

2. Attributes: Attributes are information that can provide more information about

the element and often define an instance of an element. Attributes have a name

 31

defined. For example, <book name="Learn C++ in 24 days"> is a book element

with an attribute name that has the value "Learn C++ in 24 days".

3. Comments: Comments can be placed anywhere inside the XML document for

further explanation or description. Comments are not part of the main document

and can be used by using the start tag (<!—) and the end tag (-->).

4. XML declaration: An XML declaration supplies the XML processor with

information such as encoding, version, and any other information related to the

document. A declaration can be defined with a start tag (<?xml) and an end tag

(?>).

5. Processing Instructions (PIs): PIs may occur anywhere in the XML document.

Their main purpose is to carry specific instructions to the application. A PI is

represented within the document in the form of : <?Target instructions for

command?>.

6. CDATA sections: Using CDATA will tell the XML parser that there is no

markup in the characters during the time of processing. Sections can be defined

by using: <! [CDATA]!>.

2.3 XML Schema Languages

XML schema languages, like XML Schema (D. C. Fallside & Walmsley, 2004), DTDs,

DSDs (M\oller, 2005), Schematron (Jelliffe, 2006), and RELAX NG (Makoto, Walsh,

& McRae, 2001), are used to certify XML documents. The reason for

certifying/validating a document is to verify whether the XML document conforms to a

set of structural and content rules expressed in one of many schema languages. The

validation procedure happens on at least four primary levels (Ray, 2003):

1. Structure: Relates to the placement and use of markup elements and attributes.

 32

2. Data typing: Relates to the set of numbers, dates, and texts (patterns of character

data).

3. Integrity: Relates to the linkage between resources and corresponding nodes.

4. Business rules: Relates to collections of tests such as spelling checks, checksum

results, etc.

2.3.1 Document Type Definition (DTD)

The Document Type Definition (DTD) (Hunter, Cagle, Dix, & Cable, 2001) is a set of

rules that define the hierarchical structure of any XML document. The XML parser

utilizes these rules to determine whether the XML document is valid or not. The DTD

consists of four basic parts: elements, attributes, tags, and entities. A declared element

specifies the name of the element and the valid content. Tags are used to indicate

elements. Attributes are used to provide additional details about an element and can be

used to describe element properties as well. Entities are the variables that can be reused

within the document. Figure 2.2 illustrates a sample DTD example.

Figure 2.2: A DTD Example

2.3.2 XML Schema

XML Schema (Hunter et al., 2001) is a DTD alternative that is based on XML. Users

can exploit XML Schema to represent an XML document structure. An XML Schema

Definition (XSD) is regarded as XML Schema language.

 33

XML Schemas can take the place of DTDs in most web applications. XML Schemas

are written in XML and are present in well-formed XML documents. XML Schemas

support data types such as string, date and time, and integers. XML Schemas can be

used to construct complex data types as well.

2.3.3 RELAX NG

RELAX NG is a schema language for XML developed by ISO/IEC JTC1/SC34/WG1

(Makoto et al., 2001). RELAX NG is based on two languages. The first language is the

Tree Regular Expressions for XML (TREX) designed by James Clark (Clark, 2001); the

second language is the Regular Language description for XML (RELAX) designed by

Murata Makoto (Makoto, 2002). The primary idea of RELAX NG consists of patterns

that are formed to widen the range of the idea of the content model. In RELAX NG, a

pattern is an expression of elements, text nodes, and attributes. The definitions of data

types may be utilized for constraining the sets of values of text nodes and attributes.

Figure 2.3 demonstrates an example of a RELAX NG Schema.

Figure 2.3: A RELAX NG Schema example

 34

2.3.4 Document Structure Description (DSD)

A Document Structure Description is a schema language developed by combined efforts

from BRICS and AT&T Labs (Klarlund, Møller, & Schwartzbach, 2000; M\oller,

2005). Constraints form the basic concept of a DSD. A restraint is used to define the

content of an element, corresponding attributes, and its particular context. A pair

consisting of an element name and a restraint forms the definition of an element.

Element content is constrained by means of a content expression, which is a regular

expression over element definitions. To force constraints on the context of an element,

context patterns are used.

2.3.5 Schematron

Schematron is schema language based on rules developed by Rick Jelliffe at the

Academia Sinica Computing Centre (ASCC) (Jelliffe, 2006). The main functionality of

Schematron is to perform co-constraints checking in XML instance documents. A

sequence of rules is defined by a Schematron document, which is grouped in a logical

way in pattern elements. A context attribute is included within each rule and used by an

XPath pattern to determine the elements to which the rule applies. Within each rule, a

sequence of reports and elements are specified with a testing attribute, which considered

an XPath expression. This expression is evaluated to a value of Boolean type for each

node within the context.

2.4 XML API

Application Program Interfaces (APIs) are used by many programming languages to

access XML document information without the need to create and write a parser in the

specific used language.

 35

2.4.1 DOM Parser

The DOM (Document Object Model) parser is utilized as a hierarchical object model to

get XML document information (Hégaret, Whitmer, & Wood, 2005). The whole XML

document's information is being read by DOM parser, and establishes the corresponding

DOM object tree of nodes. The construction is being performed in main memory. This

XML parser is appropriate for small to medium XML documents that may fit in

memory. DOM can be utilized in document-centric document whereby the sequence of

elements within the document is essential. The sequence of elements is preserved due to

direct read from the document. It has multiple functions for traversing XML trees and

other relevant functions like (insert, delete, and access nodes).

2.4.2 SAX Parser

The Simple Application Interface for XML (SAX) parser provides accessibility to XML

information as a series of events. For every open tag, closing tag, and every #PCDATA

and CDATA section, SAX activates an event. These events along with the

corresponding sequences need to be interpreted by the document handler. SAX is

suitable for medium to large XML documents; this is because there is no need to parse

XML documents in main memory first. SAX is suitable for structured XML documents

as well, as the sequence for elements not essential.

2.4.3 Java API for XML

The Java programming language (and some other languages) provides different types of

XML Application Programming Interfaces (APIs), such as SAX, DOM, and XSLT

(Mclaughlin & Edelson, 2006; Violleau, 2001; Williams, 2009), in order to process

XML documents by means of writing a computer program using several programming

 36

languages. SAX (Simple API for XML) scans the XML document sequentially and

throws up events that the programmer can handle. These events are thrown up by the

parser when it detects the start document and end document tags, as well as the start

element tag, including a list of all its attributes, end elements, and characters. The

programmer should write suitable code for each event to process an entire XML

document. Since each event occurs only once for each element, all the required work

needed to process the document should be done in one cycle.

2.5 Cryptographic Algorithms for Confidentiality

2.5.1 Encryption Mechanism

The encryption mechanism is the process of transforming plaintext into ciphertext and

vice versa. Plaintext is readable content that needs rendering to be unreadable.

Ciphertext is encrypted plaintext in which no semantic content is available. An

encryption mechanism transforms plaintext into ciphertext. A decryption mechanism

transforms ciphertext back into plaintext. In order to be able to re-use a particular

algorithm in many systems, the algorithm is parameterized by a key. Figure 2.4

illustrates encryption mechanisms.

Figure 2.4: A generic encryption system

 37

Key: ―A sequence of symbols that controls the operations of encryption and

decryption.‖

As illustrated in Figure 2.4, to encrypt plaintext (P), the encryption algorithm (E) is

parameterized with a confidentiality encryption key (K). Ciphertext (C) is decrypted

using the confidentiality decryption key ().

Encrypting plaintext (P) under the key (K) produces ciphertext (C) and is denoted

as . The decryption of C under the key reproduces the plaintext P and is

denoted as .

Cryptography uses two different types of encryption systems: symmetric encryption

systems and asymmetric encryption systems.

2.5.2 Symmetric Cryptography

Symmetric encryption system: This type of encryption system is based on symmetric

cryptographic techniques that use one secret key for both the encryption and decryption

algorithms.

Symmetric cryptographic technique: This cryptographic technique uses a shared

secret key. Symmetric encryption systems have the property that both the encryption

key and the decryption key have the same value.

Figure 2.5: Symmetric cryptographic cycle

 38

Secret Key: ―A key that is used with a symmetric cryptographic algorithm.

Possession of a secret key is restricted (usually to two entities)‖ (ISO10181-1). The

secret key can be generated in various ways:

 by the encrypting entity (encryptor) illustrated in figure 2.5;

 by the decryptor;

 by a trusted third party (TTP), like a key distribution centre (KDC); or

 It can be derived from parameters in a key agreement protocol that is performed

by both the encryptor and the decryptor.

If the key is not computed using a key agreement protocol, the key must be transported

through a secure channel that is protected in terms of confidentiality and integrity.

Additionally, the recipient(s) of the secret key must know the source of the key, i.e. data

origin authentication for the transported key is necessary.

The ciphertext itself can be transported through an unprotected channel.

Symmetric cryptographic algorithm: ―An algorithm for performing encryption or the

corresponding algorithm for performing decryption in which the same key is required

for both encryption and decryption‖ (ISO10181-1).

Algorithms that perform symmetric encryption are grouped into two classes:

1. Block ciphers

2. Stream ciphers

A block cipher processes blocks of plaintext to create blocks of ciphertext. A block is a

string of n bits; such a block cipher is called an n-bit block cipher. Typical algorithms

that are used in today‘s systems include:

 AES (Advanced Encryption Standard)

 39

 3DES (Triple DES (Data Encryption Standard), also known as TDEA: Triple

Data Encryption Algorithm)

 IDEA (International Data Encryption Algorithm)

 Various other block ciphers, like the other AES candidates (e.g. Blowfish or

RC6).

The plaintext bit sequence is segmented into n-bit blocks, as the block cipher needs n bit

as its input. To allow cases where the input length is not a multiple of n bit, a padding

mechanism is usually used with a block cipher. The padding algorithm defines an

unambiguous way in which each plaintext is extended to a length of a multiple of n bit.

This is done even if the length of the plaintext is already a multiple of n bit. So, if a

padding mechanism is used, the length of the ciphertext is larger than the length of the

plaintext. After decrypting with the block cipher, the padded bits are removed from the

decrypted data.

The mechanisms closely related to block ciphers are modes of operation. Modes define

how the inputs and outputs of consecutive block cipher operations are combined. This is

done to ensure that the same plaintext block results in different ciphertext blocks

throughout the ciphertext stream and to chain the blocks together to prevent substitution

attacks .

A stream cipher combines a sequence of plaintext symbols with a sequence of

keystream symbols, one symbol at a time, using an invertible function (for single bits as

a symbol, the function is usually an exclusive bit or a between-keystream bit and a

plaintext bit). Typical stream cipher algorithms include RC4 and A5, which are n-bit

block ciphers that operate in a specific mode to create a key symbol stream.

 40

2.5.3 Asymmetric Cryptography

Asymmetric encryption system: ―Encryption system based on asymmetric

cryptographic techniques whose public transformation is used for encipherment and

whose private transformation is used for decipherment‖ (ISO/IEC9798-1, 1997).

Asymmetric cryptographic technique: ―Cryptographic technique that uses two related

transformations, a public transformation (defined by the public key) and a private

transformation (defined by the private key). The two transformations have the property

that, given the public transformation, it is computationally infeasible to derive the

private transformation‖ (ISO/IEC11770).

In an asymmetric encryption system, the encryption key K (also called the public key)

and the decryption key K^(-1) (also called the private key) have distinct values, but

these values have a mathematical relationship that is defined by the underlying

cryptographic algorithm, as illustrated in figure 2.6

Figure 2.6: Asymmetric cryptographic cycle

Private Key: ―A key that is used with an asymmetric cryptographic algorithm and

whose possession is restricted (usually to only one entity)‖ (I.-T. X. I. 10181-1, 1996).

Public Key: ―A key that is used with an asymmetric cryptographic algorithm and that

can be made publicly available‖ (I.-T. R. X. I. I. 10181-1, 1996).

 41

A key pair consists of a public and the corresponding private key. The generation of a

key pair can be performed by different parties:

 The key pair can be generated by the decryptor. In this case, the decryptor can

publish the public key in a directory service or directly send the public key to

the encryptor. This case is shown in figure 2.6. Note that the channel for

transporting the public key does not have to be protected in terms of

confidentiality.

 The key pair can be generated by a trusted third party. In this case, the private

key must be transmitted to the decryptor via a channel that is protected in terms

of confidentiality.

The private key must be protected by the decryptor. Regardless of which entity

undertakes the key pair generation, the public key must be made available to the

encryptor. The encryptor must be confident that the public key belongs to the decryptor.

This can be achieved using digital certificates (if a trusted third party is available) or by

transport through integrity-protected channels with data origin authentication enabled.

Asymmetric cryptographic algorithm: The most commonly used asymmetric

encryption algorithm is the RSA algorithm, named after its inventors (Rivest, Shamir, &

Adleman, 1978). The RSA algorithm is based on the difficulty of factoring large

integers.

2.6 XML Security Models

XML security standards present the major processing rules for the fulfilment of security

requirements. Basically, XML security standards use traditional cryptographic protocols

and security standards, all combined with XML technologies. The XML security

 42

standards include XML Encryption (Imamura et al., 2002) to provide confidentiality,

XML digital signatures (Bartel, Boyer, Fox, LaMacchia, & Simon, 2002) to cover

integrity, XML key management (XKMS) (Hallam-Baker & Mysore, 2005) to provide

public key registration and validation, XML Access Control Mark-up Language

(XACML) (GODIK & MOSES, 2002) for stating authorization rules, and security

assertion markup language -SAML (OASIS, 2002) to cover authentication and attribute

assertions.

An XML security model needs to support the following:

1. A robust authorization mechanism whereby it can control accessibility to

content and structure.

2. Ability to reuse existing security and cryptographic technologies when needed.

3. The ability to enforce security policies efficiently without the need to look up

the underlying document.

4. Schema information, characterizing exactly those elements accessible to each

type of user.

2.6.1 XML Signature

XML Signature was first introduced by (Bartel et al., 2002), XML Signature defines a

standard format to represent digital signatures in XML, it provides a method for

efficiently employing digital signatures to XML resources. However, XML Signature

may also be utilized to sign binary resources like videos, images, and sound files.

Several resources within XML can be covered by one signature, whether it is a whole

document, part of a document, or a binary document.

W3C has established related specifications that are required when the actual XML

Signature is deployed. These specifications are:

 43

1. Exclusive XML Canonicalization Version 1.0, published by W3C (JOHN

BOYER, EASTLAKE, & REAGLE, 2002).

2. Canonical XML Version 1.0, published by W3C Recommendation (J. Boyer,

2001).

3. XML Signature XPath Filter 2.0, published by W3C Recommendations (J.

Boyer, Hughes, & Reagle, 2003).

The above specifications led W3C to publish a second edition (Bartel, Boyer, Fox,

LaMacchia, & Simon, 2008). Figure 2.7 represents the XML Signature element‘s basic

structure.

Figure 2.7: XML Signature structure

As illustrated in figure 2.7, the structure of XML Signature starts from the

<ds:Signature> element at the top of the document. The root element <ds:Signature>

contains four main sub-elements, which are: <ds:SignedInfo>, <ds:SignatureValue>,

<ds:KeyInfo>, and <ds:Object>. The element <ds:SignedInfo> includes references to

the applied algorithms used in XML Signature generation, the hash value, and the target

 44

in the XML data (Weerasinghe, Elmufti, Rajarajan, & Rakocevic, 2006). Signature

results are stored in the element <ds:SignatureValue>; element <ds:KeyInfo> contains

the public key information that is used when the XML Signature is verified. The

element <ds:Reference> within the element <ds:SignedInfo> is connected with each

resource; A Uniform Resource Identifier (URI) identifies all resources. A digest of the

referenced resource is included in the <ds:Reference> element. The <ds:SignedInfo>

element can contain multiple <ds:Reference> elements. The element <ds:SignedInfo>

contains references to the resources being signed. Therefore, an XML signature might

be enveloping, enveloped, or detached taking into consideration each referenced

resource. Figure 2.8 illustrates enveloped, detached, and enveloping signatures.

Figure 2.8: Enveloped, detached, and enveloping signatures

If the Signature element is within the referenced XML resource, then we call this

signature an enveloped signature. If the signature references a resource that is separate

from the Signature element, then we call this signature a detached signature. Finally if

the signature references a resource that is contained within the Signature element, then

we call this signature an enveloping signature. When the signature is enveloping, an

instance of the object element is used to contain the resource.

As the Signature element of an enveloped signature is actually located within the XML

document being signed, an enveloped signature transform is defined. This transform

removes the entire Signature element from the digest calculation, so that the Signature

 45

element is not included in the digest of the XML resource being signed. Otherwise it

would not be possible to calculate the correct digest, considering that the resource (from

which the digest is to be calculated) would be subject to change when adding the digest

to the Signature element. XML Encryption also uses <ds:KeyInfo> element, this

element is defined by XML Signature. The <ds:KeyInfo> element is extended by XML

Encryption with an <EncryptedKey> element, which might support the transport for a

symmetric/secret key. The <KeyInfo> element is used by the XML Key Management

Specification as well.

2.6.2 XML Encryption

XML Encryption was first released by W3C as a proposed recommendation (Eastlake &

Reagle, 2002; Imamura et al., 2002), providing encryption for different sizes of units.

The units may be a whole XML document, an element within a document, XML

element content, or an attribute.

XML Encryption is an encryption technology that is optimized for XML data. A format

is provided for using the XML processing rules in encryption and decryption processes.

XML Encryption can be performed partially, which encrypts selected tags within the

XML document, or multiple times, which enables the data to be encrypted multiple

times. XML can be used to facilitate resolving XML data eavesdropping.

Generally, an XML element containing encrypted XML information can act as a

container for the encrypted data, keys, or both. XML Encryption is able to encrypt the

whole XML document and is also capable of encrypting parts of the XML document

(Geuer-Pollmann, 2002). The inclusion of encrypted content can be as a reference via

the transform machine or can be included in the container. Key management is offered

by XML Encryption to facilitate the symmetric wrapping of the private keys being used,

private key transportation, and key agreements using a Diffie-Hellman key (Diffie &

 46

Hellman, 1976) exchange. By using the XML Encryption standard, we gain a number of

benefits, including:

 An XML element can act as a container for encrypted data, as a container for

encrypted key material, or as a container for both. However, in order to act like a

container, the XML element should contain XML Encryption information.

 User data can be encrypted by using XML Encryption, like:

- Full XML documents (Geuer-Pollmann, 2002)

- Single elements inside an XML document

- The content of an element inside an XML document

- Arbitrary binary content outside of an XML document

 The ability to allow direct inclusion of the encrypted content in the container.

 The ability to de-reference the encrypted content via the URI / transforms

mechanism.

 XML Encryption offers key management facilities for:

- The symmetric wrapping of secret keys.

- Key transport of secret keys.

- Key agreement using a Diffie-Hellman key.

Figure 2.9: XML Encryption structure

Figure 2.9 illustrates the structure of XML Encryption provided by W3C. Data objects

are encapsulated within a defined encryption element called <EncryptedData>. This

 47

element contains essential sub-elements that describe how the data is encrypted; the first

sub-element is <EncryptionMethod>, which determines which encryption algorithm is

used within the XML message. The second sub-element is <EncryptedKey>, which is

used to transport encryption keys between the sender and receiver; it can also be used

individually in a separate XML message. <KeyInfo> is the third sub-element and is used

to specify the associated keying material. Another major element is <CipherData>, a

mandatory element that provides the encrypted data. It must contain the encrypted octet

sequence of the base64 encoded text of the <CipherValue> element. Another way is by

providing a reference to an external location that contains an encrypted octet sequence

location via another element called <CipherReference>. Figure 2.10 and figure 2.11

represent both the <EncryptedData> element and the <EncryptedKey> element with all

their sub-elements.

Figure 2.10: <EncryptedData> element and components

Figure 2.11: <EncryptedKey> element and components

 48

The W3C XML Encryption Recommendation allows two different granularity levels:

encryption of full sub-trees whereby a single element and all its descendants are

encrypted, and encryption of sequences of sub-trees whereby a sub-tree can be a single

node or a mixed sequence (comments, elements, text, and processing instructions).

Figure 2.12: W3C Encryption possibilities (modes)

 Drawing A in figure 2.12 presents the encryption of a sub-tree rooted by the

element ‗X‘. The element and all its descendants are encrypted into a single

<EncryptedData> element.

 Drawing B in figure 2.12 presents the encryption of the content of element ‗X‘.

All children of the element and their respective descendants are encrypted into a

single <EncryptedData> element.

 Drawing C in figure 2.12 presents sub-tree encryption applied three times to

each child of element ‗X‘. Each sub-tree rooted by a child node of element ‗X‘

is encrypted into a separate <EncryptedData> element.

 Drawing D in figure 2.12 presents a way to use content encryption: two

subsequent sub-trees are grouped together and are encrypted together.

 The decryption in drawings A and C leads to single elements. The octets resulting after

the decryption in drawings B and D are not directly parseable but must be wrapped in a

start tag / end tag combination.

 49

2.6.2.1 Encryption for Multiple Recipients

1- Encrypting the same content: There are different ways to encrypt any resource

intended for multiple recipients. The basic case is where all recipients have the privilege

to see the same portion of the document, which means the content is encrypted only

once, whereas the content encryption key is encrypted multiple times (once for each

recipient). The document should include a single <EncryptedData> element for the

encrypted content and an <EncryptedKey> element for each recipient, which includes

the content encryption key encrypted under the recipient‘s key.

2- Super Encryption: When recipients are allowed to see different portions of a

document, then there is a way to encrypt content for multiple recipients. Figure 2.13

illustrates the process of encrypting encrypted content multiple times.

Figure 2.13: Encrypting the encrypted content for multiple recipients (super-encryption)

The process of encrypting parts of an XML tree leads to the substitution of the existing

plaintext structure with the appropriate XML Encryption element <EncryptedData>.

Super-encryption applies when the <EncryptedData> element or its ancestors are

encrypted.

As illustrated in figure 2.13, the element ‗T‘ sub-tree is encrypted under a key B for a

recipient B. After the first step, the element ‗S‘ sub-tree is encrypted under key A for

 50

both recipients A and B. Keys A and B are processed by recipient B. Key A is

processed only by recipient A. After the two encryption steps, the main document

contains the ‗R‘ element and two unencrypted notes along with the <EncryptedData>

element, which has the encrypted element ‗S‘ and its descendants. Both recipients A

and B can decrypt the outer <EncryptedData> element because they have key A. The

decrypted element ‗S‘ contains the inner <EncryptedData> element.

The inner <EncryptedData> element can only by decrypted by recipient B because

recipient B is the only one who possesses key B. There is a part in the document where

recipient A is aware that he is not able to decrypt it. Recipient A can make an estimation

of how large the plaintext (undecrypted) portion is. This estimation is based on the

number of octets of the undecryptable ciphertext. Recipient B has both content

decryption keys A and B and performs the decryption in two stages: decrypting the

<EncryptedData> element containing ‗T‘ is performed after decrypting the

<EncryptedData> element that contains the ‗S‘ plaintext.

After performing the decryption process, the document is decrypted in full and is

available to recipient B. Recipient B acknowledges that super-encryption of the

innermost <EncryptedData> is done in order to prevent other users accessing the inner

information.

2.6.2.2 Serialization of XML for XML Encryption

Usually, symmetric encryption algorithms such as DES and AES are used for

encrypting large amounts of data. Symmetric encryption algorithms transform a

plaintext octet string into a ciphertext octet string and vice versa. Due to the tree-

structured nature of XML, it must be converted into an octet string prior the encryption

 51

process, and then converted back from an octet string into a tree-based structure after

the decryption process.

In order to encrypt portions of a given XML document, the application selects balanced

portions of XML and serializes them into a UTF-8 encoded octet sequence.

Namespace nodes and associated attributes in the XML namespace need to be taken

care of: moving encrypted data into a different context can lead to inconsistent results

after the decryption process. Such issues happen if the decrypted plaintext uses

namespace prefixes without defining them.

2.6.2.3 Example of XML Encryption

Figure 2.14 illustrates a sample XML message fetched from a real production

environment. Considering the plaintext shown in figure 2.14, this represents a financial

transaction containing public information about the transaction (payee name and branch

code) and sensitive information (payee account).

Figure 2.14: Sample XML financial message

Parts of the XML message shown in figure 2.14 will be encrypted. Figure 2.15

illustrates the sample XML message after deploying XML encryption on the selected

tag <From_Account>, which denotes the full account number of the payee.

 52

Figure 2.15: Sample XML financial message after partial W3C encryption

The <Transaction> element was substituted by an <EncryptedData> element of type

element. The <EncryptedData> element contains the <CipherData> element, which

uses a <CipherValue> element to save the encrypted <Transaction> element and all its

descendants.

2.6.2.4 Example Implementations of XML Encryption

One of the most well-known implementations of XML encryption is XEnc (Imamura et

al., 2002). XEnc is a stream-based prototype implementation that uses the Xerces

Native Interface (XNI) of Xerces2. The implementation using XNI API achieves a

reduction in processing time of 0.27%–26% for XML documents encryption that have

sizes larger than 2KB and 34-88% reduction in decryption of XML documents of any

size. Despite the reduced processing time, the issue has been raised as to whether XNI

SAX API capable of parsing decrypted data efficiently.

XEnc uses DOM in many if not most of the implmentations, rather than using SAX

API. preferring DOM than SAX as DOM because that DOM has the ability to parse

decrypted data in an efficient way. However, Implementing DOM cost more time and

space compared to SAX API due to XML document being parsed in memory.

 53

2.6.2.5 Issues Regarding Attribute Values

XEnc uses element-wise encryption as a security mechanism, which secures both

elements and content. Despite the flexible nature of XEnc. However, it is impossible to

handle attribute encryption due to the XML Encryption Syntax and Processing rules.

There are two solutions proposed by Simon (Ed, 2000), who first uncovered this issue.

It is assumed that the alt attribute of the video element in figure 2.16 will be encrypted.

Figure 2.16: The alt attribute (to be encrypted) of a video element

The first solution was proposed to replace the targeted attribute that needs encryption

with the <EncryptedDataManifest> attribute and adding other encryption details within

the element. The output of this solution is illustrated in figure 2.17.

Figure 2.17: Output of encrypting the alt attribute of the video element

The second solution was proposed to transform the attribute into elements by using

XSLT to be used for encryption. However, this proposed solution is inefficient because

the decrypted needs to be transformed back into attributes. Transformation is needed to

validate the document against its XML Schema (if there is one).

 54

2.6.3 XML Key Management

XKMS stands for XML Key Management Specification. XKMS Version 1.0 was first

submitted to the W3C in 2001 (Phillip M & Ford, 2001). XKMS Version 2.0 was

proposed and published in 2005 by Hallam-Baker (Hallam-Baker & Mysore, 2005).

The main objective of XKMS is to provide a way to implement a Public Key

Infrastructure (PKI) in web services and applications (King, 2003). XKMS has been

developed to facilitate PKI handling, providing a simplified interface through which the

application can pass. XKMS simplifies PKI handling by moving the complexity of

dealing with the PKI from the application to the XKMS service itself. The application is

thus protected from primary complexities (O'Neill, 2003).

In both cases, X-KRSS provides mechanisms for authenticating clients. X-KISS defines

two main services: locate service and validate service. <KeyInfo> element provides the

data format that is needed for communicating key information; this element is defined

by XML Encryption. Thus, it will facilitate the utilization of XKMS together with XML

Encryption and XML Signature.

XKMS consist of two parts. The first part is called X-KRSS, which stands for XML

Key Registration Service Specification. The second part is called X-KISS, which stands

for XML Key Information Service Specification. X-KRSS defines the services for the

processes of registering, revoking, recovering, and reissuing keys. The client or

provided service can perform the process of new public keys registration. If the client

generates the key pair, then the client is required to provide or present the authenticity

of their owning the private key to be able to register for public key. Regardless of

whether the client or the provided service generates the key pair, KRSS provides

mechanisms to authenticate clients. There are two services defined by X-KISS: locate

service and validate service. The locate service allows a client to fetch information

 55

about a public key or it allow a client to fetch a public key. The validate service allows

a client to fetch information about a public key or it allow a client to fetch a public key

but it confirms that the information returned matches specific validation rules. The

<KeyInfo> element defined by XML Encryption is used to provide the data format that

is used to communicate key information.

Figure 2.18 illustrates how XKMS operates in steps. In figure 2.18, sender B target is to

submit the encrypted document to sender A using the public key in possession. Though,

sender B does not have sender A's public key. Although sender A has the public key

registered using XKMS service, within the sender A's domain there is no trust

relationship established between sender B and the XKMS service. This can be resolved

by sender B contacting the validate service within sender B‘s domain, requesting a

public key for sender A to be used in the encryption process. This request might be

forwarded by the validate service to the locate service within sender A's domain.

Validate service will validate the response within its own domain; validation process is

performed before the sender B has the response returned.

Figure 2.18: Obtaining a validated public key by sender B for sender A

 56

2.6.4 Security Assertion Markup Language (SAML)

SAML stands for Security Assertion Markup Language (Cantor, Kemp, Philpott, &

Maler, 2005). SAML defines the representation of security assertions within XML

documents. An assertion process is a set of pre-defined statements, created by an

assertion authority, which a relying party may trust. Figure 2.19 represents the assertion

process, whereby the required assertion is identified by the issuer element. There are

three statement types defined by SAML: authorization, authentication, and attribute

statements. The same abstract type derives the three statement types, from which any

additional statement types may be derived as well. Any number of statements can be

included in a SAML assertion. In cases where the assertion has all three assertion types,

it is necessary to indicate the subject type to which assertion type can be applied, in

order to utilize the subject element. Subjects‘ confirmation methods can be specified by

the subject element. Such methods can be used to ensure that the message origin is

exactly from the subject identified in the assertion. There are many methods for subject

confirmation (Hughes et al., 2005). Usually, the message is signed by the subject and by

using a private key associated with the assertion. Signing the message can be performed

by other applications‘ specific procedures.

Figure 2.19: SAML assertion elements

 57

2.6.5 XML Extensible Access Control Markup Language (XACML)

XACML stands for Extensible Access Control Markup Language and is an open

standard XML-based language designed to explain the security policies and access

privileges to data and information for digital rights management (DRM), web services,

and enterprise security applications. XACML was first introduced by OASIS

(Organization for the Advancement of Structured Information Standards) in 2003

(Godik & Moses, 2003). The main objective of XACML is to set a basic standard for

access control through XML language.

XACML can work in conjunction with SAML, whereby a rule engine with policies

expressed in XACML can compare such information with established criteria to

ascertain user rights.

Figure 2.20 illustrates the basic components of XACML. As seen in figure 2.20, the

policy enforcement point and the policy decision point can be shared with SAML.

Figure 2.20: XACML components

An access request arrives for authorization at the Policy Enforcement Point (PEP). An

XACML request is created by the PEP and submitted to the Policy Decision Point

 58

(PDP), which then evaluates all incoming requests and sends it back with responses

(either accepted or denied).

A decision is made by the PDP after evaluating the relevant policies and the rules

within them. Not all policies are evaluated; only relevant policies are picked up for the

evaluation process, which depends on the policy target.

The Policy Access Point (PAP) is used by the PDP to fetch all policies, write policies

and policy sets, and to ensure the policies are available to the PDP. In order to retrieve

the attribute values associated with the subject, resources, or the environment, the PDP

may invoke the Policy Information Point (PIP). The PEP fulfils the needed

requirements once the authorization decision arrived at by the PDP either permits or

denies access.

2.7 Text Categorization

Text categorization is the process of assigning text documents to a predefined set of

categories/classes. There are two main phases involved in the categorization process:

the training phase and the fuzzification phase. In the training phase, sets of documents

belonging to each category are used to create representations of the categories. The

classification phase compares the representations resulting from the training phase with

a new document in order to assign a new document to one or more category. Many

algorithms that can be used to perform the process of text categorization, including k-

nearest neighbour classification (kNN) (Guo, Wang, Bell, Bi, & Greer, 2006), support

vector machines (SVMs) (Brank, Grobelnik, Milic-Frayling, & Mladenic, 2003), neural

networks (Ng, Goh, & Low, 1997), linear least squares fit mapping (LLSF) (Yang &

Chute, 1993), the vector space method (Gauch, Madrid, Induri, Ravindran, &

Chadlavada, 2004), and naïve Bayes classification (NB) (McCallum & Nigam, 1998).

 59

(Yang & Liu, 1999) conducted a performance comparison of all these classification

systems and found that SVMs and kNN significantly outperform all other classifiers.

2.8 Fuzzy Logic Model

Fuzzy logic (FL) was first introduced by (L.A. Zadeh, 1965). Fuzzy logic is based on

multi-value logic, which allows intermediate values to be defined between conventional

evaluations in the form of Yes/No, True/False, etc. Different concepts like ―very short‖

or ―rather slow‖ can be formulated in mathematical notations and processed by

computers, in order to apply a more human-like way of thinking (L. A. Zadeh, 1984).

FL provides a powerful method to reach a certain conclusion that is based on vague,

uncertain, or noisy information. In order to make faster decisions, FL provides a

mechanism to control problems. FL provides the ability to integrate rule-based approach

(consist of IF X and Y THEN Z rules) to solving control problems.

The FL approach provides essential information to assist financial decision makers in

effectively measuring and identifying sensitive information, essential parts and

important figures within financial transactions, more so than the existing qualitative

approaches. This is because, using FL, the degree of importance within each financial

transaction is quantified based on a combination of financial historical data and input by

experts.

Over the years, FL has been used to integrate expert input into computer models for a

large scope of applications in different categories. The main advantage of the fuzzy

methodology is that it enables the processing of ambiguously defined variables and

variables whose relationships cannot be defined by any mathematical relationships. In

order to define those variables along their relationships, fuzzy logic can incorporate

expert human judgement for that purpose.

 60

2.8.1 Fuzzy Sets and Crisp Sets

The fuzzy subset is the basic concept of fuzzy systems. In mathematics, we call it a

crisp set. Figure 2.21 illustrates the characteristic function of a crisp set.

Figure 2.21: Characteristic function of a crisp set

In figure 2.21, the elements that have been assigned the number 1 can be interpreted as

the elements that are in set A, whereas the elements that have been assigned the number

0 are the elements that are not in set A. This concept lacks flexibility for some

applications. The upper range is difficult to define. So, the upper range is set to 0.2.

Thus, we get B as a crisp interval defined as following: (B= [0, 0, 2]). However, this

means that a value of 0.21 is not considered low while a value of 0.20 is considered

low. To construct the set B in a more natural way is by relaxing the strict separation

between low and not low. This can be achieved by allowing more flexible rules like

"fairly low" rather than allowing only the crisp decisions. A fuzzy set will enable us to

define such a notion.

The intention is to utilize fuzzy sets to be able to make computers more 'intelligent'.

And so, the idea above needs to be coded more formally. A straight method to

generalize this concept would be to enable more values between 0 and 1. Actually,

infinitely many choices could be permitted between the bounds 1 and 0, specifically the

unit interval I = [0, 1]. A gradual membership is reflected by all other values to establish

 61

B. This really is proven in figure 2.22. The membership function is a graphical

representation of the magnitude of contribution of every input signal. It associates a

weighting with all of the inputs which are processed, identifies functional overlap

between inputs, and ultimately determines an output result. The rules utilize the input

membership values as weighting factors to ascertain their influence in the fuzzy output

sets of the final output conclusion.

The membership function, functioning in this instance in the fuzzy set of interferometric

coherence g, returns a value between 0.0 and 1.0. It's significant to indicate the

distinction between probability and fuzzy logic. Both operate over exactly the same

numeric range and have similar values: 0.0 represents non-membership (or False) and

1.0 represents full membership (or True). However, there's a distinction to be made

between the two statements. The probabilistic approach yields the natural language

statement, "There is a 50% likelihood that g is low", as the fuzzy language corresponds

to "g's degree of membership within the set of low interferometric coherence is 0.50."

The semantic difference is critical: the first view supposes that g is or isn't low; the

chance to know which set it is in is only 50%. Fuzzy terminology assumes that g is

"more or less" low or, corresponds to the value of 0.50.

Figure 2.22: Characteristic function of a fuzzy set

2.8.2 Fuzzy Inference Process

FL can allow the use of degrees of truth in order to calculate results. FL techniques

allow one to represent concepts that could be considered to be in more than one

 62

category. which means the representation of overlapping and partial membership in sets

or categories is allowed (Bridges & Vaughn, 2001). There are four main steps involved

in the FL inference process (Cox, 2001b), which are:

 Step 1 (Fuzzification): Taking the crisp input X and input Y, the process

determines the degree to which these inputs belong to and where they fit in the

fuzzy set.

 Step 2 (Rule Evaluation): Taking the fuzzy inputs, the qualified fuzzy rules are

applied. Fuzzy operators (AND / OR) are used in case of any uncertainty to get a

single value. The outcome value is called a ―Truth Value‖, which will be applied

to the membership function for rule evaluation.

 Step 3 (Aggregation of the Rule Outputs): The outputs of all the rules are

unified. Scaled rules are combined into a single fuzzy set for each variable.

 Step 4 (Transforming the Fuzzy Output into a Crisp Output): The output should

have a clear, crisp value and it will be assigned to each tag classified.

Figure 2.23: Fuzzy inference process

 63

Figure 2.23 illustrates the FL inference process, showing the four major steps required

to perform the FL inference lifecycle.

Fuzzy logic is needed because of the ability that FL has to accept vaguely defined data.

It has the ability to model non-linear functions of arbitrary complexity and can build on

the experience of experts.

2.9 Chapter Summary

This chapter introduces the XML model and its basic components and the schema

languages involved. This chapter also introduces the main XML security techniques that

are utilized in XML security specifications. The XML security specifications published

by W3C and OASIS are the core of XML security technology, such as XML

Encryption. XML Encryption makes XML data confidential and it ensures this using

XML Encryption technology.

Text categorization has been discussed as well to describe the classification methods for

the text documents and their associated algorithms to categorize data into relevant

categories properly.

Finally, fuzzy logic has been introduced to explain the methodology we are using in this

research to identify how we will classify XML content and find the importance level for

each tag included within the XML document.

 64

Chapter 3

Literature Review

3.1 Introduction

This chapter analyses the most important XML encryption models. Models are the key

factor inspiring and supporting this research. Classifying XML messages using fuzzy

logic (FL) is the other key part of this research and is also discussed and analysed in this

chapter. We explore existing XML encryption models and a list of the related works.

3.2 XML Encryption Models

Companies and financial institutions adopted XML as a standard in their data

communication and exchanges among different platforms due to its independency,

flexibility, and ability to enable custom structures and creations. XML documents are

exchanged via variant communication mediums, which in some cases have weak

security measurements; they may use unsecured channels or may even be hacked by an

unknown party. XML documents are well known to be verbose, which make them

readable by machines and humans as well. Any plaintext editor should be enough to

read, modify, or change the contents to cause real damage.

 65

Therefore, some XML encryption models have been proposed and published to ensure

the confidentiality of transferred XML messages and to make sure they reach their

destinations without any issues.

(W3C, 2001) first published the XML Encryption Standard (XEnc) by describing the

syntax needed to represent encrypted XML data and the process of encrypting and

decrypting XML data. Data confidentiality is achieved by the XML encryption by

hiding sensitive information so that it can only be understood by targeted recipients.

The XEnc structure syntax is defined by using XML Schema.

Element-wise encryption is the security provided by XEnc, where elements and content

are integrated with each other. Due to the flexible and extensible nature, the XEnc

standard can be used and processed by XML tools. However, it is impossible to expand

their capability handling attribute encryption due to the current XML Encryption Syntax

and Processing rules.

(Maruyama & Imamura, 2000), (E & B, 2000), and (Takeshi & Hiroshi, 2000) have

worked on XML element-wise encryption, which supports W3C in delivering a

candidate specification for XML encryption (Imamura et al., 2002). The candidate

specification specifies a process for encrypting data and representing the result of the

encryption process in XML. Data might be in different format, for example it could be

arbitrary data, XML elements, or XML element content.

The encrypted data element is called <EncryptedData>. This element identifies the

format of the encrypted data; the identification does not include user's ability to identify

how the XML document is encrypted. It is impossible to handle attribute encryption due

to the <EncryptedData> element's syntax.

 66

(Ed, 2001) explained the attribute encryption as following: Elements and attributes are

identified by XML for information structuring and applications that uses attributes in a

frequent basis. Author urged the support of attributes encryption unless it is impossible

to support.

(Steve, 2001) explained the difficulty of redesigning a legacy application and XML

vocabularies in cases of existing attributes containing data. Such redesigning can be

onerous when there are pre-existing XML data and applications. The main goal is to

find a simple yet effective way of handling the encryption of attribute data.

(D. Fallside, 2001) presented some negative sides of attribute encryption that might

trigger issues. The first possible issue is that the encrypted XML document cannot be

validated against the original XML schema. This will result amending the original

schema so that it can identify particular encrypted elements. Briefly, assuming an XML

document (X) with its schema (S) defining both structure of the document and content.

Next, the encrypted document (Xs) will not follow (S), because it is impossible to

present XML encryption without schema changes during the encryption process, as

described in (Blair, 2001) and (Ed, 2001).

Without attribute encryption in XML, sensitive data cannot be stored securely in the

attributes of XML documents. Also, we have to tell the users to redesign their legacy

XML documents if they wish to apply XML encryption to them. We consider that the

only acceptable reason for not including attribute encryption in XML is if it is

impractical or impossible to do so. After much discussion about the requirements,

complexities, and alternatives of attribute encryption, the working group decided to

proceed under the requirement of element encryption while remaining open to further

comment, experimentation, and specification of attribute-encryption proposals or

 67

alternatives that satisfy the requirement to encrypt sensitive attribute values (Joseph,

2001). (Ed, 2001) also mentioned the possibility of leaving out attribute encryption until

version 2.0 of XML encryption.

(Geuer-Pollmann, 2002) proposed an encryption approach called pool encryption: the

approach has the ability to remove sensitive information from the resulting file. Each

XML document is parsed into a DOM tree for encryption purposes. DOM tree nodes

are labelled, the corresponding node has the position information attached to it. Each

node is individually encrypted whereby it has an encryption key specified for each

node. These nodes are removed later from their unique position located in the source

document and placed into a pool of encrypted notes.

The pool of nodes can be stored either in different documents or in the source

document; the choice will depend on the pre-defined security requirements. A unique

node key is assigned to each node. The node keys are grouped into a pool of node keys

to ease nodes management. The sender identifies the decryption competences of the

different users by assuring that the recipient has the pool of node keys. The more keys

the pool receives, the more nodes it can decrypt. The recipient will only be able to view

parts within encrypted document taking into consideration the corresponding pool of

node keys. This is because the pool is encrypted with the recipient‘s key before it is

submitted to the recipient. Any node that does not match keys will be hidden and the

recipient will not be able to view it. The individual nodes which have the bundled

original position information uses this information during decryption process in order to

restore any specific node back to its original position within the XML document. The

pool encryption method is able to remove confidential information from the document;

this method is also able to hide both the size and the existence of encrypted content. By

performing this method, it prevents information leakage to unauthorized users to access

 68

the document. However, there are number of disadvantages related to this method due

to the change in the size of the encrypted document to prevent any traffic analysis

attack. Disadvantages defined as following:

 The encrypted document size is changed due to the pool of node keys.

 Increase in encrypted document size due to added position information.

 For each node, the encryption process and decryption process are executed

separately.

 Each node has to have a unique node key generated.

 The original position information has to be attached to particular individual

nodes.

 At the contrary of the ordinary encryption/decryption processes, the process of

reassembling and flattening nodes requires intensive resource usage.

The above disadvantages cause high memory usage, large storage requirements, high

bandwidth consumption, and high processor power consumption.

(Rosario, 2001) introduced the concept of XML access control (XAC), which is a

server-side access control whereby a trusted access control processor allows security

policies and procedures to be established based on policies. XAC presents a way to

control the access of users to specific portions of a full XML document that is stored on

a server.

XAC encrypts an XML element with the ability to exclude its descendants. This

specific feature of XAC gives an advantage over XEnc because XEnc requires the

encryption of a full sub-tree.

XAC pruning process refers to the authorization of a user and in the next step it

removes elements labelled with "deny (-)" from the tree.

 69

Thus, it declines the requesting user from reading sensitive information and also it

prevents the user from gaining information about any existing sensitive content. In

brief, only elements with "permit (+)" labels remains in the resulting file. The pruning

process is executed online at the same time the client issues a query (similar to SQL

query). It is similar to XEnc but without encryption after pruning process. However, a

form of additional security is needed (like SSL) to transmit the document in a secure

mode to users.

However, XAC restricts the user‘s access to a document. Some of the techniques used:

mandatory access control, rule-based access control, access control list, discretionary

access control, role-based access control, and lattice-based access control.

Table 3.1 illustrates the three main XML encryption approaches with their advantages

and disadvantages.

Table 3.1: XML Encryption Approaches

Approach Advantages Disadvantages

W3C XML

Encryption

Standard (2001)

 Only users that know

the key can decrypt and

read the message. Each

recipient can only

decrypt the parts of a

message that are

intended for them; they

are unable to decrypt the

rest.

 EncryptedData is an

XML element that

replaces the data to be

encrypted. The

EncryptedData and the

 Unable to handle

attribute encryption.

 Leaves descendants

visible.

 Needs style sheets.

 New recipients cannot

be added without re-

encrypting the content.

 Neither of DTD nor

schema definition is

encrypted, both are

exposed to "plaintext

attack". Therefore,

there is a risk of

 70

EncryptedKey are

composed of other sub-

elements, such as the

encryption method, key

information, and cipher

value.

 The entire XML

message or only some

parts can be encrypted.

 If both the sender and

the receiver have not

exchanged the keys

previously, the key can

be sent in the message

encrypted using a public

key system.

information leakage.

XML Pool

Encryption

(Christian Geuer-

Pollmann – 2002)

 Uses a secure, complete

sub-tree.

 Has the ability to secure

attribute values.

 A new recipient can be

added without re-

encrypting the content.

 The original position

information has to be

attached to particular

individual nodes.

 The encrypted

document size is

changed due to the pool

of node keys.

 For each node, the

encryption process and

decryption process are

executed separately.

 Each node has to have

 71

a unique node key

generated.

 Increase in encrypted

document size due to

added position

information.

 At the contrary of the

ordinary

encryption/decryption

processes, the process

of reassembling and

flattening nodes

requires intensive

resource usage.

XML Access

Control (XAC)

(Ricardo Rosario –

2001)

 Involves the automation

of encryption/access

decisions.

 Attribute encryption is

possible.

 Needs additional

transport security.

 Needs trustworthy

servers.

3.3 Fuzzy XML Modelling

Over the years, fuzzy systems have been used successfully in many fields to handle the

imprecise and uncertain information that is commonly found in real-world applications,

such as business and financial systems, data mining, and decision-making systems.

(L.A. Zadeh, 1965) addressed the representation of fuzzy information with fuzzy set

theory. Fuzzy set theory has been successfully identified as a working technique to

model imprecise and uncertain data and it has been introduced into many application

areas, such as business intelligence (Petrovic, Roy, & Petrovic, 1999; R. R. Yager,

2000; Ronald R. Yager & Pasi, 2001) and database, semantic web, and information

 72

systems (Galindo, 2008; Klir & Yuan, 1995; Lukasiewicz & Straccia, 2008; Ortega,

2008; Smets, 1996).

XML is not able to represent and process vague and unclear data. Currently, less

research has been done on modelling and querying imperfect XML data. XML

documents with incomplete information have been researched by (Serge Abiteboul,

Segoufin, & Vianu, 2006) and probabilistic data has been researched by (Nierman &

Jagadish, 2002). (Lee & Fanjiang, 2003) developed a fuzzy-object-oriented modelling

technique based on the XML language to model requirement specifications and

incorporated the notion of stereotypes to facilitate the modelling of imprecise

requirements.

(Gaurav & Alhajj, 2006) presented an approach to integrate fuzziness with XML. They

base their approach on identifying possible entities in XML that might have fuzzy

values. Their approach based on analysing XML document structure to identify which

parts within the document that can be handled using fuzziness. They then specified the

appropriate mechanism to integrate fuzziness. Their approach focused on XML being a

structured (logical and physical) and well-formed language. They were interested in the

logical structure as a key issue, defining the content (data) of an XML document. Then,

they identified different parts of an element that can have fuzzy data. there are five

items that might have fuzzy data: 1) simple elements ―text only‖; 2) complex or empty

elements - the attribute value "val"; 3) complex element -only the element "val" and

occurrence of <subElmt> within <elmt>; 4) complex or text only elements - attribute

value "val" & "text"; 5) complex and mixed elements - attribute value "val", element

content "text", and the occurrence of <subElmt> within <elmt>. This means that the

elements content ―text‖, the attribute value "val", and the <subElmt> of an <elmt>

might be fuzzy entities within an XML document. this is declared from their evaluation

 73

of including the attribute "val", fuzzy data, and element content "text" as they are

similar in nature and are all equivalent, as opposed to the <subElmt> of an <elmt>.

Therefore, there are two main categories of entities in an XML document that might be

fuzzy: the first category is when having an element content "text", or the attribute value

"val", and the sub-element <subElmt> of an element <elmt>.

However, their approach does not tackle the production of nested, fuzzy XML schema

or the provision of techniques to make vague queries on a vague XML document.

(Ma & Yan, 2007) introduced a fuzzy XML data model to manage fuzzy data in XML,

based on possibility distribution theory, by first identifying the multiple granularity of

data fuzziness in UML and XML. A fuzzy UML data model and a fuzzy XML data

model that address all types of fuzziness were developed. Further, the author developed

the formal conversions from the fuzzy UML model to the fuzzy XML model, as well as

the formal mapping from the fuzzy XML model to fuzzy relational databases. It is noted

that the fuzzy extension of XML in the author‘s model only focuses on XML DTD,

because it has traditionally been the most common method for describing the structure

of XML instance documents. However, XML DTD lacks enough expressive power to

describe highly structured data properly, and XML Schema provides a much richer set

of structures, types, and constraints for describing data.

(Tseng, Khamisy, & Vu, 2005) presented an XML methodology to represent fuzzy

systems for facilitating collaborations in fuzzy applications and design. DTD and XML

Schema are proposed to define fuzzy systems in general. One fuzzy system can be

represented in different formats understood by different applications using the concept

of XSLT style sheets. As an example, they represent a given fuzzy system in XML and

transform it into comprehensible formats for Matlab and FuzzyJess applications.

 74

(Tseng et al., 2005) methodological components consist of: a) an input base that

consists of a collection of inputs (linguistic variables) containing terms and membership

functions; b) a membership function repository that contains all the membership

functions used to describe the fuzzy system; c) an inference engine that defines all

operators used to perform inferencing; d) an operator repository that contains all the

operators (―And‖, ―Or‖, ―Aggregations‖) used to describe the fuzzy system; e) a rule

base that is a collection of fuzzy IF-THEN rules; f) defuzzification, which translates

fuzzy set output values into crisp values; and g) an output base that consists of a

collection of outputs (each being a linguistic variable data type).

On the lower side of their methodology, (Tseng et al., 2005) proposed fuzzy system

data types that consist of: linguistic variables, linguistic terms, membership functions,

operators, and rules. They then proposed a DTD as a kind of schema to describe fuzzy

systems in XML; one DTD is defined per component and main data type. Fuzzy system

schema can also be used to define fuzzy systems in XML; they define an individual

XSD for each major component.

However, Tseng did not pay much attention to the design of reverse style sheets to

transform fuzzy system descriptions in given software into an XML document that is

compliant with their proposed XML schema.

(Turowski & Weng, 2002) introduced a formal syntax for the important fuzzy data

types that are used to store fuzzy information. They defined appropriate DTDs as they

show how fuzzy information, whose description is based on these DTDs, can be

exchanged between application systems by using XML. As a result, they introduced a

better approach for business applications integration using fuzzy approaches to business

application systems. This allows better collaboration with application systems and

development tools that use fuzzy approaches. Their approach focuses on encapsulating

 75

fuzzy information, and any related fuzzy data that describes fuzzy information in XML

tags is named according to a standardized term set. By performing encapsulation, the

messages that contain fuzzy information from other application systems get a meaning

and can subsequently be processed. They defined a DTD as defining constraints on the

logical structures of XML documents.

(Zhang, Ma, & Yan, 2013) proposed an approach along with an automated tool called

FXML2FOnto for constructing fuzzy ontologies from fuzzy XML models. They also

investigated how constructive fuzzy ontologies may be useful for improving some fuzzy

XML applications (i.e. reasoning in fuzzy XML models). They first proposed a

definition of fuzzy XML models that includes the XML document structure‘s fuzzy

DTDs and the XML document content‘s fuzzy XML documents. Based on this

definition, they proposed an approach to constructing fuzzy OWL DL ontologies from

fuzzy XML models.

They used two key steps to construct the fuzzy OWL DL: first, transforming the fuzzy

DTD into a fuzzy ontology at the structure level; second, transforming the fuzzy XML

document into a fuzzy ontology at the instance level. They gave proof of the correctness

of the transformation by providing a detailed construction example. Following the

proposed approach, they implemented a prototype tool called FXML2FOnto, which

automatically constructs fuzzy OWL DL ontologies from fuzzy XML models.

In the final stage of their approach, they reduced reasoning in fuzzy XML models to

reasoning in fuzzy OWL DL ontologies, so that by using existing fuzzy ontologies‘

reasoning, the reasoning of fuzzy XML models can be automatically checked. The

reasoning results may provide several simple optimization steps in answering queries

over a fuzzy XML document base. By using this approach, it is possible to improve

some fuzzy XML business and financial applications.

 76

(Herrera-Viedma, Peis, Morales-del-Castillo, Alonso, & Anaya, 2007) proposed an

evaluation model for websites that are based on XML documents that are user centred

and based on a fuzzy linguistic approach. The evaluation model consists of two

components: an evaluation scheme that contains the evaluation criteria to be considered

in the website quality evaluation; and a computing method of linguistic quality ratings.

In the evaluation scheme phase, they analysed the information quality of websites from

the information user‘s perspective, considering the following: a) different quality

approaches to information quality; b) generating quality ratings on websites provided by

evaluators; c) not including an excessive number of quality dimensions to avoid

conflicting users; and d) analysing websites that store information in multiple types of

documents structured in XML format (i.e. scientific articles). Based on these

considerations, they defined a user-centric evaluation scheme of websites that

anticipates four quality categories with the following evaluation dimensions: 1) intrinsic

quality of websites; 2) contextual quality of websites; 3) representational quality of

websites; and 4) accessibility quality of websites. The second component in their model

is a computing method of linguistic quality rating that is used to evaluate the

information quality of websites that are based on XML documents. Linguistic ratings

are obtained from the linguistic evaluation judgements provided by a non-determined

number of web visitors. After a visitor has used an XML document stored in a website,

they are invited to complete a quality evaluation questionnaire as per the quality

dimensions created in the evaluation scheme.

Ratings of the linguistic quality are obtained by performing an aggregation function of

the linguistic evaluation judgements by means of the LWA and LOWA operators,

which are a linguistic family of OWA operators (R. R. Yager, 1988). These operators

are used to allow inclusion of the concept of a ―fuzzy majority‖ (Herrera, Herrera-

 77

Viedma, & Verdegay, 1996) in the computation of the rankings. The ―fuzzy majority‖ is

represented by the linguistic quantifier that is used to compute the weighting vector of

the OWA operator.

However, their model has the following limitations. First, it uses little information about

web users; the model is designed to compute quality ratings only. Therefore, the

performance could be improved if user profiles are used in the computation process of

quality ratings. Second, it is a user-dependent model, so the quality of the websites can

be evaluated only if users‘ perceptions can be gathered.

3.4 Chapter Summary

In this chapter, we have presented various approaches to XML encryption standards. It

discussed the capabilities, functions, and mainly primary criteria of the XML

Encryption Standard.

During the study of existing approaches, various issues have been addressed, such as

super encryption, attribute value encryption, and other security issues. XML encryption

models have been compared with one another. Implementations are considered as well

for a few of the models.

W3C may have to reconsider attribute value encryption, because it's not supported by

the present XML Encryption Standard. If not, confidential information should be stored

inside an element, consequently deprecating the use of attributes.

We have evaluated the W3C XML Encryption Syntax and Processing rules. The

security offered by XEnc is element-wise encryption, content and comprising elements.

It may be utilized together with XML Signature. Its flexibility and extensibility enables

XEnc to be processed and used by XML family tools. However, it is impossible to

extend the capability of the current XML Encryption Syntax and Processing rules to

 78

handle attribute encryption. We have also discussed XML access control (XAC) and

made a comparison with XEnc: attribute encryption is possible in XAC. As its

descendants can be excluded by the encryption of an element, XAC has greater

flexibility over XEnc. This isn't permitted in XEnc as it requires the encryption of a

complete sub-tree. However, XAC restricts the user‘s access to a document using

several techniques, such as: discretionary access control, mandatory access control,

role-based access control, rule-based access control, and lattice-based access control.

Pool encryption has also been reviewed as one of the encryption models that are used to

encrypt XML documents. XML pool encryption has the capacity of removing sensitive

content from the encrypted XML document. However, this model introduces a number

of disadvantages, like the increase in the size of the encrypted document due to added

position information. Such disadvantages lead to high storage, high bandwidth and

memory requirements, and high processor power consumption.

Additionally, we have reviewed a number of fuzzy XML models and studies. Some of

the studies tried to encapsulate fuzzy system descriptions in common elements that can

be used to represent any fuzzy system. Some models proposed a DTD/XML schema to

describe fuzzy systems in XML. Also, we have introduced studies presenting fuzzy

XML data models that can be used to manage fuzzy data in XML, based on possibility

distribution theory. Some models presented an approach to incorporating fuzziness in

XML by identifying the possible entities in XML that might have fuzzy values.

Potential entities that can handle fuzziness are identified by analyzing the XML

document structure to incorporate fuzziness.

 79

Chapter 4

Intelligent Fuzzy-Based Financial XML Security

Model

4.1 Introduction

This chapter proposes a secure XML management model named SXMS. The model

consists of two major parts. Each part has a discrete scope acting as an independent unit

and forming an essential part of the whole system. Content is classified using a set of

fuzzy classification techniques and encrypted using an element-wise encryption on

selected parts within each XML message. This chapter also describes the combination

of the model with XML message requirements and specifications.

The proposed model has been designed based on two major phases, each with a discrete

scope acting as an independent unit and forming an essential part of the whole system.

Phase one of the proposed model involves performing a set of fuzzy classification

techniques on the targeted XML messages. The fuzzy classification process is designed

mainly to decide the similarity between the different standards within the same

message. Basically the main target is to classify XML content to find out which parts

are essential to have a specific security standards deployed. Upon fuzzy classification, a

new value is generated and assigned to an existing XML tag. The XML tag named

"Importance Level" will be used as an identifier for the next phase. The ―Importance

 80

Level‖ tag presents a value which is used to identify the sensitivity level for the

carrying tag and corresponding nodes. Phase two involves applying element-wise

encryption to different parts within each XML message. Encryption could be for the

whole message or elements of an XML message. The ―Importance Level‖ value

assigned in phase one is also used to decide which type of encryption and key size is to

be deployed. Element-wise encryption is based on W3C‘s recommendation (Maruyama

& Imamura, 2000).

4.2 Proposed Model for Securing XML Financial Documents

This work presents a novel approach to securing XML financial messages by using a

combination of fuzzy classification techniques and element-wise encryption. Main

reason behind choosing FL technology for our classification stages is the ability of FL

system to combine human expertise into computer-assisted decision making, facilitating

more human-like decisions. FL is used in our proposed model to characterize XML

message content sensitivity factors as fuzzy variables within each XML message, which

determines the sensitivity level within the XML message to perform security measures

on selected parts. The importance level rate for pre-selected nodes is a key factor to

determine which encryption algorithm and keys are to be deployed. The importance

level values are interpreted as "High", "Medium" or "Low".

During the fuzzification phase, element-wise encryption is performed on selected parts

defined in the previous phase. Encryption type and key size is selected based on the

―Importance Level‖ value. AES symmetric encryption with a 256-bit key size is

deployed on tags with an "Importance Level" classified with a "High" value, and AES

symmetric encryption with a 128-bit key size is deployed on tags with an "Importance

 81

Level" classified with a "Medium" value. Tags with a "Low" value are forwarded to the

message assembler without performing any kind of encryption.

4.2.1 Model Requirements

The system is designed to achieve a set of goals ensuring secure and efficient exchange

of XML banking messages. The following requirements are needed to form the system

core:

1) Messaging interface: Defines the syntax and semantics for the outgoing financial

XML messages and ensures that our model understands them fully.

2) XML parser: Deciphers incoming XML messages to ensure they are fully

understood prior to further processing.

3) Valid XML message: Submitted messages should be valid in terms of message

structure whereby it represents the schema defined in the originating channel.

4) Stamped XML message: The first security layer which identifies that the

incoming XML message is valid and from a trusted source. The stamp is added

in the message header ensuring the originating channel, date of transmission,

and service ID are all presented in a pre-defined sequence.

5) Communication Port: A dedicated communication port needs to be used in our

XML submission, which is different from the one used in service messaging.

6) XML fuzzy classification characteristics: The 10 characteristics that define each

transaction, each item should be available in the XML message; this will allow

our system to build the classification criteria using our fuzzy classification

phase.

 82

7) Encryption algorithm: An encryption algorithm is needed to perform element-

wise encryption. The AES encryption standard is being used in our model; we

have chosen AES encryption over other algorithms for the following reasons:

 Fast deployment for encryption/decryption processes in both software

and hardware.

 AES uses three key sizes: 128, 192, and 256 bits.

 Advanced Encryption Standard not only assures security but also

improves the performance in a variety of settings such as smartcards, and

hardware implementations.

 Currently there is no known non-brute-force direct attack against AES.

 However, this can be replaced with other symmetric encryption

standards.

8) Encryption Key Management: The encryption keys that are going to be used in

our encryption phase must be managed.

9) D-H Key Exchange: The ―public-key‖ or ―asymmetric‖ cryptographic keys must

be utilized.

10) Message assembler: To assemble different XML parts coming from different

stages, encrypted or forwarded parts should be received and combined in one

final message.

4.2.2 System Architecture and Design

Based on system requirements, the system architecture is illustrated in Figure 4.1.

Major system components are described in details in figure 4.1. System modules act as

 83

independent units whereby each unit can act as separate system; modules are combined

to form SXMS

Figure 4.1: Main system components

As illustrated in Figure 4.1, the system architecture core is built based on two main

modules forming the system core:

A. Fuzzy Classification Module: In our fuzzy classification module, we categorized 10

transaction characteristics into three different layers according to their type. The

characteristics were chosen after exploring different experts‘ opinions and backgrounds,

reviewing financial analysis tools, reviewing technical reports, researching different

online and offline financial systems conducted within the financial institution, and

performing a set of internal surveys among banking group heads. We categorized these

10 transaction characteristics extracted from the XML message into three layers

 84

(Account Segment, Details Segment, and Environment Segment). Grouping will

facilitate and simplify the process of fuzzy classification.

This phase performed a set of intelligent fuzzy classification techniques to assign a new

value to an existing tag within each XML message. We called the tag ―Importance

Level‖, and the main idea is distinguish which parts of the XML message is to be

encrypted using element-wise AES asymmetric encryption, and which parts are to be

forwarded directly to the message assembler without further processing. The key size

for AES encryption is dependent on the ―Importance Level‖ value assigned in this

stage. The 10 characters are defined as follows:

1) Transaction Amount: Financial institutions set pre-defined transaction limits.

The limits allow users to perform transactions with specified limits on a daily

basis. The range of transaction limits is defined based on the local policy within

each institution. Banks normally treat the transaction amount as an alert to any

critical transaction; the amount is used in most banks to measure the weight of

the total transaction performed. Source, destination, and amount all combine to

act as an alert which is already pre-defined based on the bank's policy. Large

transaction amounts will affect the importance of the transaction itself, which

can be used in our model as a measurement item in our importance-level

evaluation.

2) Transaction Currency: There is a well-defined list of allowed currencies

that can be used online or offline. Each currency has its own set of risk

variables depending on usage and importance. Foreign currency uses

exchange rates, operational interference, and market value for the

transaction the moment occurred. Banks treat each FX transaction with high

importance, because it involves buying and selling with bank's rate. We

 85

have used this factor in our importance evaluation.

3) Account Type: Accounts are segmented within each institution.

Segmentation is performed to enable application of a set of internal rules on

selected segments. Each segment has its own value and weight, for example

corporate account segments are listed with high importance and priority

because most of the transactions involve large volumes which can benefit

the bank for each transaction. We used this factor due to its role in deciding

the importance level for the whole transaction.

4) Transaction Notes: Exceptions are placed upon unusual activity on a

specific account, and such exceptions will raise a flag in any transaction

being processed to handle the exception before the process is completed.

Having a flagged transaction will raise the importance level and trigger an

alert to monitor that specific transaction due to its importance; we have used

this factor to measure the importance level in terms of a transaction‘s critical

weight.

5) Profile ID: A unique identifier for the destination account owner, the value

is set during the system integration and profile creation process. Companies

or individuals with custom profile IDs have a high potential to be monitored

for transactions, and monitoring is based on the transaction amount after

classifying each profile ID whereby a range of IDs are listed in the high

importance zone, all after deploying a bank's methods and procedures.

6) Account Tries: How many times the account is used in the system; more

usage means more trust whereby the history of the account is known and

trusted. A historical log is kept and evaluated on a regular basis to confirm

 86

trusted accounts and suspicious ones. The evaluation will result in a set of

important ranges of trusted accounts to be used in the transaction evaluation

and setting the importance level.

7) Incorrect Password Tries: The number of times users try to enter the

password incorrectly to complete the financial transaction. This factor adds

a slight level of importance to each transaction, with a high rate of incorrect

tries giving an indication of high importance.

8) Time Spent on the Service: The time spent navigating the service before

performing the transaction. The time range is set based on the bank‘s policy,

taking into consideration peak hours. This factor considers technical factors

to measure the importance level of the transaction which is based on non-

financial elements.

9) Daily Transactions: How many transactions are performed before the

financial transaction is carried out. The number of daily transactions puts a

weight on the overall importance level for the transaction itself, whereby the

number of transactions to be performed is set based on the bank's policy

within the allowed ranges.

10) Transaction Time: The financial day is categorized in three periods: peak

period, normal hours, and dead zone. Periods are defined separately by the

financial institution based on local policy and the historical transactions

range. Each period has its own value which adds a level of importance and

how the occurrence of any transaction is affected by the time of occurrence.

Ranges are set to weigh an importance level when the transaction is

performed.

 87

B. Encryption Module: This module operates by performing an element-wise

encryption using the AES encryption algorithm. Element-wise encryption is performed

on selected portions of an XML document and their corresponding nodes defined

previously in the fuzzy classification module. The encryption process can be applied to

any number of elements whereby it is encoded using base64. Two key sizes are being

used in this module, a 256-bit key and a 128-bit key, and usage depends on the

―Importance Level‖ tag value classified earlier. Attributes with a value of ―High‖ are

encrypted using a 256-bit key size, attributes with a value of ―Medium‖ are encrypted

using a 128-bit key size, and finally the attributes with a value of ―Low‖ are forwarded

directly to the message composition stage without performing any kind of encryption.

C. Message Assembly Module: This module is responsible for gathering all pieces

together, all in sequence of arrival. Encrypted and non-encrypted parts are being

assembled for final submission to the message destination channel.

In chapter 5 we will test and evaluate above components. While we design the system,

we took in consideration the following points:

 Ability to test against main requirements, each requirement should be tested

with ease.

 System should be structured and well-defined. System code should be

readable and easy to understand.

 Ability to reuse components, system design should be reusable.

4.3 Fuzzy Classification Methodology

Methodology main technique involves the fuzzification of input variables based on 10

characteristics extracted from the XML message, Figure 4.2 illustrates the whole fuzzy

 88

classification process and internal stages, rule evaluation, aggregation of the rule

outputs, and defuzzification phases are displayed.

Figure 4.2: Fuzzy Inference System

The fuzzy inference system involves four phases. A comprehensive description for each

phase will be explained in order to understand main functionality behind each phase.

Connection between each phase is described as well.

4.3.1 Fuzzify Input Stage

The first step is to take the inputs extracted from the 10 characteristics within each

XML message and determine the degree to which they belong to each of the appropriate

fuzzy sets via membership functions. The input is always a crisp numerical value

limited to the universe of discourse of the input variable (in our case it is an interval

between 0 and 10) and the output is a fuzzy degree of membership in the qualifying

linguistic set (interval between 0 and 1). Fuzzification of the input amounts to a

function evaluation. A decision mechanism for identifying importance-level values

within each XML message will be provided.

 89

We built this stage on three rules, and each of the rules depends on resolving the inputs

into a number of different fuzzy linguistic sets: the factor is non-sensitive, the factor is

normal, and the factor is sensitive. Before the rules can be evaluated, the inputs must be

fuzzified according to each of these linguistic sets. For example, the transaction amount

can range from "Non-sensitive" to "Sensitive" with other values being taken into

account. The degree of membership decides the degree of belongingness of the values

of variables to any class. We have designed a membership function for each

transaction‘s characteristic indicator, which clearly defines how each input is mapped to

a membership value between [0, 1]. Linguistic values are assigned to each transaction

factor as non-sensitive, normal, and sensitive and for the final layer rate as High,

Medium, and Low . Figure 4.3 represents an example of the linguistic descriptors used

to illustrate one of the key transaction characteristics, transaction amount, with a plot of

the fuzzy membership functions. The range of possible values for the corresponding key

importance characteristic (Non-Sensitive, Normal, and Sensitive) is represented in x-

axis. The linguistic descriptor represents the degree to which a value for the importance

level characteristic and it is represented in y-axis.

Figure 4.3: Input variable for transaction amount factor

Transaction Amount (Non-Sensitive, Normal, Sensitive)

Linguistic Variable: Transaction Amount value

Linguistic Value Range (in Numbers)

 90

Sensitive [2000, 2500, 3000, 3000]

Normal [1500, 2000, 2500]

Non-Sensitive [0, 0, 1500, 2000]

4.3.2 Rule Evaluation Stage

The second step is to take the fuzzified inputs and apply them to the antecedents of the

fuzzy rules. If a given fuzzy rule has multiple antecedents, the fuzzy operator (AND or

OR) is used to obtain a single number that represents the result of the antecedent

evaluation. This number (truth value) is applied to the consequence membership

function. Then we specify how the importance level probability is different as a

function of the main importance level characteristic factors. A set of fuzzy rules are

represented in form of (IF-THEN) statements and provided by experts; these statements

connect to the importance level probability of different levels of importance

characteristic factors based on previous experience.

4.3.3 Aggregation of the Rule Output Stage

This is the process of unification of the outputs of all the rules. It means we take the

membership functions of all rules‘ consequents previously scaled and then combine

them in one single fuzzy set. The list of scaled resulting membership functions is

considered the aggregation process input, one fuzzy set for each output variable

considered as an output.

4.3.4 Defuzzification Stage

This is the last step in the fuzzy inference model; the final output has to be a crisp

number. The input for the defuzzification process is the aggregate output fuzzy set and

the output is a number. We have conducted the Centroid technique in the

defuzzification stage (Sugeno, 1985). This technique helps us to find the point where a

vertical line would hit the aggregate set into two equal masses. The final output is the

 91

importance level rate which is defined in fuzzy sets (―High‖, ―Medium‖, and ―Low‖).

Figure 4.4 illustrates the final output ranges.

Linguistic Variable: Importance Level

Linguistic Value Range (In Numbers)

High [6, 8, 10, 10]

Medium [3, 5, 7]

Low [0, 0, 2, 4]

High: if the importance level of the tag is considered ―High‖, this will impact upon the

overall transaction within the XML message.

Medium: this might affect the overall transaction rate in some way; the content could be

important for further attention.

Low: with a low importance level, no impact is to be considered in the XML

transaction.

Figure 4.4: Output variable and ranges

4.4 Fuzzy Classification Model

In our fuzzy classification model, we categorize the 10 transaction field characteristics

into three different layers (Transaction Layer, Details Layer, and Environment Layer)

based on their nature among overall transaction type whereby each element within the

layer has its own importance measures. To improve the final importance level rate

 92

(fuzzy output), we have conducted a layering process for these features. Table 4.1

illustrates the grouping mechanism and layering details based on XML message

content.

Table 4.1: XML message content components and layers

Components Sequence Layer Name Layer

Transaction Amount 1
Account

Segment
Layer 1 Transaction Currency 2

Account Type 3

Components Sequence Layer Name Layer

Account Tries 4

Details

Segment
Layer 2

Transaction Notes 5

Profile ID 6

Incorrect Password Tries 7

Components Sequence Layer Name Layer

Daily Transactions 8
Environment

Segment
Layer 3 Transaction Time 9

Time Spent on Service 10

Figure 4.5 illustrates architecture design of the fuzzy inference classification model. As

seen in the figure, each layer has an output which indicated that the tag rate that

depends on the evaluation (fuzzy outputs) of the layer components.

Figure 4.5: Classification Architecture of the importance level fuzzy mode (TAG

Classification)

 93

Our fuzzy classification model is performed based on three layers: Transaction Layer,

Details Layer, and Environment Layer. Each layer has a set of components that are

distributed based on the component nature and usage; the total number of components is

10 and they are distributed among the three layers as follows: transaction amount,

transaction currency, and account type are fitted in layer 1 (account segment layer);

account tries, transaction notes, profile ID, and incorrect password tries are fitted in

layer 2 (details segment layer); and finally, the daily transactions, transaction time, and

time spent on site are fitted in layer 3 (environment segment layer).

4.5 Fuzzy Rule Base and Layers Categorization

4.5.1 Rule Base for Layer 1

The rule base for layer 1 has three inputs and one output. The rule has all the "IF-

THEN" conditions of the system. For each entry of the rule base, each component is

assumed to be one of the three values and each criterion has three components. This

means that rule base 1 contains 27 entries (33). The output of rule base 1 is one of the

importance level fuzzy sets (High, Medium, or Low) representing the account segment

layer importance level. Table 4.2 illustrates a sample structure along with sample entries

of rule base 1 for layer 1.

Table 4.2: Rule base 1 for the account segment layer – layer 1

Transaction

Amount

Transaction

Currency
Account Type

Account Layer

Importance Level

Rate

Non-Sensitive Non-Sensitive Non-Sensitive Low

Non-Sensitive Non-Sensitive Normal Low

Non-Sensitive Sensitive Non-Sensitive Low

Normal Normal Normal Medium

Normal Non-Sensitive Sensitive Medium

Normal Sensitive Normal Medium

Sensitive Non-Sensitive Sensitive High

Sensitive Non-Sensitive Non-Sensitive Low

Sensitive Sensitive Non-Sensitive High

 94

The system structure for the account segment layer is the result of joining the

three basic components (transaction amount, transaction currency, and account

type), which generates the layer importance level. Figure 4.6 and Figure 4.7

illustrate the structure of the system and the three-dimensional surface structure,

respectively. MATLAB R2010R has been used in the process.

Figure 4.6: Layer 1 system structure (inputs and outputs)

Figure 4.7: Surface structure in a three-dimensional view for layer 1

4.5.2 Rule Base for Layer 2

The rule base for layer 2 has four inputs and one output. The rule has all the "IF-THEN"

conditions of the system. For each entry of the rule base, each component is assumed to

be one of the three values and each criterion has four components. This means the rule

base for layer 2 contains 81 entries (34).

 95

The output of rule base is one of the importance level fuzzy sets (High, Medium, or

Low) representing the details segment layer importance level. Table 4.3 illustrates a

sample structure along with sample entries of rule base for layer 2.

Table 4.3: Rule base 1 for the details segment layer – layer 2

Transaction

Notes
Profile ID Account Tries

Incorrect

Password Tries

Details Layer

Importance

Level Rate

Non-Sensitive Sensitive Sensitive Sensitive High

Non-Sensitive Normal Sensitive Sensitive High

Non-Sensitive Sensitive Non-Sensitive Non-Sensitive Medium

Normal Sensitive Non-Sensitive Normal Medium

Normal Sensitive Normal Non-Sensitive Medium

Normal Non-Sensitive Normal Non-Sensitive Low

Sensitive Sensitive Non-Sensitive Non-Sensitive Medium

Sensitive Non-Sensitive Non-Sensitive Non-Sensitive Medium

Sensitive Non-Sensitive Non-Sensitive Sensitive High

The details segment layer system structure is the result of joining the four basic

components (transaction notes, profile ID, account tries, and incorrect password tries),

which generates the layer importance level. Figure 4.8 and Figure 4.9 illustrate the

structure of the system and three-dimensional surface structure, respectively. MATLAB

R2010R has been used in the process.

Figure 4.8: Layer 2 system structure (inputs and output)

 96

Figure 4.9: Surface structure in a three-dimensional view for layer 2

4.5.3 Rule Base for Layer 3

The rule base for layer 3 has three inputs and one output. All of the "IF-THEN"

conditions of the system reside within the rule. Each component of each entry of the

rule base is assumed to have one of the three values. This means the rule base has 27

entries (3³). The rule base output is one of the importance level fuzzy sets (High,

Medium, or Low) representing the environment segment layer importance level. Table

4.4 illustrates a sample structure and sample entries of the rule base for layer 3.

Table 4.4: Rule base 1 for the environment segment layer – layer 3

Time on Site
Daily

Transactions

Transaction

Time

Environment

Layer

Importance Level

Rate

Non-Sensitive Normal Sensitive High

Non-Sensitive Sensitive Sensitive High

Non-Sensitive Sensitive Normal Medium

Normal Non-Sensitive Normal Medium

Normal Sensitive Non-Sensitive Medium

Normal Non-Sensitive Non-Sensitive Low

Sensitive Normal Sensitive High

Sensitive Sensitive Sensitive High

Sensitive Non-Sensitive Sensitive High

The system structure for the environment segment layer is the result of joining the three

basic components (Time on Service, Daily Transactions, and Transaction Time), which

 97

generates the layer importance level. Figure 4.10 and Figure 4.11 illustrate the structure

of the system and the three-dimensional surface structure. MATLAB R2010R has been

used in the process.

Figure 4.10: Layer 3 system structure (inputs and output)

Figure 4.11: Surface structure in a three-dimensional view for layer 3

4.6 Encryption Model

4.6.1 Element-wise Encryption

In the previous step, we conducted fuzzy classification techniques on the XML

messages in order to classify the included tags. The main idea of the process is to

distinguish between the sensitive parts that require the deployment of security measures

and the other parts that need no processing. Therefore the second phase in our model is

 98

to apply element-wise encryption on the classified parts within each XML message.

Element-wise encryption was first introduced by (Maruyama & Imamura, 2000). Figure

4.12 illustrates the system structure when deploying element-wise encryption on

selected parts.

Figure 4.12: Encryption module architecture and design

As displayed in Figure 4.12, the tags with an importance level of ―High‖ or ―Medium‖

are being encrypted using different keys depending on the importance level value, and

tags with an importance level of ―Low‖ are being forwarded without any need of

encryption.

4.6.1.1 Element-wise Encryption Standard

In order to deploy element-wise encryption on selected parts within XML message, the

following list of requirements need to be fulfilled first:

 99

1. Element-wise confidentiality: Elements within the XML document should be

able to be encrypted. Elements might enclose different types; the remaining

parts of the XML document should remain in plaintext.

2. The encrypted document should be well-formed: the resulting document (after

encryption has been deployed on the selected parts) has to be a well-formed

XML document. Encryption can be nested within the document.

3. The same set of basic information items must be exactly provided as the original

document (when decrypting an encrypted document). Comments can be ignored.

CDATA and entity references sections are not preserved.

4. Independence from encryption algorithm: symmetric and asymmetric encryption

must be supported, whereby the encrypted elements syntax should be isolated

from the encryption algorithm used.

5. Flexible key delivery mechanism: Two main key exchanges should be

supported, the first is the certificate-based key exchange (encryption key is

embedded in the syntax) and the second is the out-of-band key exchange (no key

elements are embedded in the syntax).

6. Content independency: the outer text should not play a role in decrypting the

encrypted parts. For instance, the character encoding for the outer context might

be changed without affecting the encrypted document content.

7. Verification and validation by receiver: the incoming decrypted XML document

should be validated by the receiver.

8. Intermediary validation: this refers to the ability of an intermediary to validate

the encrypted document without the decryption keys and without the need to

decrypt the element. No need to validate the included content models, but the

validation of any outer text.

 100

9. Content model confidentiality: it should be feasible to maintain the content

model of the encrypted data confidential. By knowing the content model of the

element, there is a good chance to have an idea of which element to attack (if the

XML document has multiple encrypted elements).

Figure 4.13 illustrates a sample XML message after the fuzzy classification phase is

performed, showing the ―Importance Level‖ attribute values.

Figure 4.13: Classified XML message to be encrypted using element-wise encryption

Figure 4.14 illustrates the same XML message after element-wise encryption is

deployed. The tag attribute marked with a ―Low‖ importance level will have no

encryption deployed, while the tags with an ―Importance Level‖ value of ―High‖ or

―Medium‖ will be encrypted using the AES encryption algorithm.

 101

Figure 4.14: XML message after deploying element-wise encryption on selected parts

4.6.1.2 Design Consideration

All of the fuzzy rules employed in our fuzzy classification model were obtained based

on our banking and financial expertise, combined with financial experts knowledge and

supported by a set of experimental stages empowered by real life examples. Next we

will show all fuzzy rules for all XML content characteristics.

1. Element serialization: XML documents (with sub-elements) need to be

converted into a byte sequence before encryption because the AES encryption

algorithm (which is used in our model to encrypt the selected tags) treats the

inputs as a byte sequence. Our conversion tries to minimize the loss of any non-

essential information during the encryption process, like DOCTYPE declaration,

use of namespace prefixes, and character encoding of the document. In our

encryption phase we preserve the XML information set during the serialization

operation by using canonical XML (W3C, BOYER, EASTLAKE, & REAGLE,

 102

2002). We use C14N because of the implementation language independency.

Encryption and decryption processes can be achieved in normal ways once the

element is converted into byte array.

2. Packaging encrypted elements in XML: when inserting the encrypted elements

(binary data) into an XML document, Base64 is used as a text encoding method.

Additionally, it is necessary to attach additional information for the decryption

process like initialization vector, encryption algorithm, and keys. Usage of an

existing cryptographic message would alleviate the burden of having security

flaws.

The cryptographic message format that is used in S/MIME (PKCS7/CMS)

considered one of the most popular formats. In S/MIME, the encrypted process

is performed by packing the cipher text alongside related information in a single

MIME entity (media type should be application/pkcs7-mime). It can be included

in an XML document in one of the standard ways to embed MIME objects.

Child nodes related to the parent tag are also encrypted using the same level of

encryption. Child tags‘ behaviour is taken from the parent "Importance Level" value. In

Figure 4.14, tags (Transaction Amount, Currency, and Account Type) are encrypted

using AES encryption with a 128-bit key size as per their parent "Account" layer.

Basically we inherit the encryption behaviour from parent to child as per our

categorization process.

4.6.1.3 XML Message Schemas

Syntax: Schema for XML core encryption, Figures 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20

illustrate XML schema for core encryption and other sub elements.

 103

Syntax: Schema for XML core encryption

Figure 4.15: XML Schema for core encryption

Syntax: Schema for the EncryptionInfos Element

Figure 4.16: XML schema for EncryptionInfos element

Syntax: Schema for the KeyValue Element

Figure 4.17: XML schema for KeyValue element

Syntax: Schema for the ContentEncryptionMethod Element

Figure 4.18: XML schema for the ContentEncryptionMethod element

 104

Syntax: Schema for the Reference Element

Figure 4.19: XML schema for the Reference element

Syntax: Schema for the EncryptedContent Element

Figure 4.20: XML schema for the EncryptedContent element

4.6.2 Diffie–Hellman key exchange

The DH Algorithm, first introduced by (Diffie & Hellman, 1976), was the first system

to utilize "Public-key" cryptographic keys. We used the DH system because of its

ability to manage public keys easily. As we use symmetric encryption "AES" with

different key sizes, both sides of the communication must have identical keys. Securing

the submitted keys has been an issue, so we use our model (symmetric-based encryption

system) to encrypt the XML documents and DH system (asymmetric-based system) to

encrypt the symmetric keys for distribution. In brief, we use the DH algorithm for

public key exchange.

4.6.2.1 D-H Process:

We use Diffie-Hellman to secure exchanged keys, not the actual content which is

already encrypted using our element-wise encryption module. To achieve the efficient

exchange, we create a shared secret key, which we call "Key Encryption Key - KEK",

 105

between the two entities (the sending channel and the receiving channel). Later the

shared secret key encrypts the symmetric key for secure submission. The resulting

symmetric key is called the traffic encryption key (TEK) for the data encryption key

(DEK). This means KEK secures the delivery of TEK, while TEK provides the secure

delivery of the XML document itself.

The process starts just after the generation of private keys by each side (sending and

receiving channels). Each side then generates a public key, which is derived from the

private key because both keys are mathematically linked. Then the two entities (sender

channel and receiver channel) exchange their public keys. Each side now has its own

private key and the other entity public key.

During the key exchange process, the DH protocol generates "shared secret" keys that

are identical and shared by both entities. A set of mathematical operations are

performed against the sender's private key and the receiver's public key which generate

a value. The reverse process (performing mathematical operations against the sender's

public key and the receiver's private key) is performed to generate another value. The

two values should be identical. The combination of the two values is called the "Shared

Secret" which encrypts the information between the two entities. In our model, the

shared secret of the Diffie-Hellman protocol encrypts a symmetric key for our AES

encryption algorithm, transmits it securely, and the distant end decrypts it with the

shared secret. Figure 4.21 shows how the DH process operates. The sender is the one

who actually generates and transmits the symmetric key in most cases. However, it can

be handled by both sender and receiver.

 106

Figure 4.21: Key exchange using the DH method

As seen in figure 4.21, we require two large numbers, one prime (P), and (G),

which is a primitive root of (P). P should be at least 512 bits. In stage 2 we

compute public values for both sender and receiver (A, B) using:

 Where X is the generated number by sender in stage 1

 Where Y is the generated number by receiver in stage 1

Now we compute the shared and secret keys by applying:

Ka = B
x
 (mod p) Where Ka is the secret key for sender

Kb = A
y
 (mod p) Where Kb is the secret key for receiver

Figure 4.22 represents the DH key agreement schema.

 107

4.7 Message Utilization

Message security is the main concern to be handled in our model. However,

deploying our framework will enable us to utilize outgoing messages and save

resources by reducing outgoing messages. Figure 4.23 illustrates how the outgoing

messages are utilized whereby only essential parts are being secured; other parts are

just forwarded to the message assembler without the need for any type of

processing.

Figure 4.23: Message utilization

Once the utilization process is completed, messages are ready for final submission

to the selected destination.

4.8 Chapter Summary

A novel approach for securing financial XML messages using intelligent mining

fuzzy classification techniques has been proposed. This approach will secure

financial XML messages using element-wise XML encryption, fuzzy classification

techniques that allow us to classify XML messages on the fly without the need to

define a set of rules prior to the process.

 108

Mining fuzzy classification techniques have been used to evaluate and measure the

data sensitivity level within each XML message to find a degree of sensitivity for

each tag in the XML message. The mining fuzzy classification process allowed us

to assign a value to a new attribute added to the parent XML nodes. A value is

determined by applying a set of fuzzy classification processes based on Mamdani

inference (Mamdani & Assilian, 1975). A new value has been used to determine

which type of encryption algorithm is being performed on selected tags, allowing us

to secure only the needed parts within each message rather than encrypting the

whole message. XML encryption is based on W3C XML recommendations. Nodes

that are assigned an importance level value of "High" will be encrypted using the

AES encryption algorithm with a 256-bit key size to ensure maximum security.

Nodes that are assigned an importance level value of "Medium" will be encrypted

using the AES encryption algorithm with a 128-bit key size. An implementation

was performed on a real-life environment using online banking systems to

demonstrate its flexibility, feasibility, and functionality. There are many possible

directions for future work which will be discussed in Chapter 5.

 109

Chapter 5

SXMS Model Implementation and Testing

5.1 Introduction

Chapter 5 presents the main system components, system functionalities, and

implementation tools that have been used to evaluate our secure XML management

model. We also illustrate the detailed testing of SXMS model in general and the testing

of the main parts of the SXMS model in specific. The testing strategy will involve

testing each stage on its own. Additionally, we present the XML sample set extracted

from our collected financial messages which have been used in our testing and

evaluation stages. Finally, we summarize and conclude the chapter.

5.2 Development Architecture and Used Tools

5.2.1 Used Tools

System designed to achieve set of goals ensuring secure and efficient exchange of XML

financial messages among different systems. Following measures are key factors in

system design:

1- Technical Computing (MATLAB R2010a): Since we are performing fuzzy

classification, we require a high-performance language for technical computing.

It has the capability to integrate computation, visualization, and plotting of

 110

functions and data. Also it allows interfacing with other applications written in

other programming languages such as Java, C, and C++. In our case we require

the integration with our Java application that is used to encrypt classified

documents. Solutions are presented in an easy to understand and familiar

mathematical notation.

2- Stylus Studio 2011 XML Enterprise Suite: Dealing with XML documents is the

core of our model, since the files are in XML format we require an easy way to

edit and manipulate XML files, XML schemas, and DTD codes. This tool

allows us to check the validity of XML files, XML well-formedness checking,

and parsing as well. Also we require the ability to edit XML schemas, DTD with

inline capability.

3- Netbeans IDE 7.0: Our fuzzy classification module is built using Java J2EE,

Netbeans Integrated development environment (IDE) is a platform framework

for Java applications. The NetBeans Platform is a reusable framework for

simplifying the development of Java Swing desktop applications. The NetBeans

IDE bundle for Java SE contains what is needed to start developing NetBeans

plugins and NetBeans Platform based applications.

4- Microsoft Office Excel is used as a graphical and chart presentation, as we will

compare models and present results in graphical presentation. Excel allows us to

have a clear and easy to understand presentation with measures presented on the

graph.

5.2.2 Development Architecture

Our proposed secure XML management system has the ability to extract all of the 10

transaction characteristics and patterns for each XML transaction. Our fuzzy

classification module main functionality is to classify XML messages based on these

 111

characteristics and by deploying Mamdani fuzzy system. Once classified, the fuzzy

classification module will assign a value to the "Importance Level" tag within the

messages. Classified messages are being processed by our encryption module to

perform element-wise encryption on selected classified parts.

System design includes three primary parts all of which signifies a crucial element of

the requirements need. Those parts are:

 Parsing incoming XML messages: to check for validity and well-formedness by

using XML Sax parser. In case of any issues, messages should be handled by

error handler component for either return an error code or halt the operation.

 Classifying valid XML messages: fuzzy classification is done by using the

fuzzification of input variables that is based on 10 characteristics extracted from

the XML message.

 Routing messages: messages are being routed either to final message assembler

or to the XML encryption phase.

 Encrypting incoming messages where "Importance Level" tag is labelled with

"High" or "Medium": Tags with "Importance Level" set to "High" are being

encrypted using 256-bit key, tags with "Importance Level" set to "Medium" are

being encrypted using 128-bit key.

 Private Key Exchange: using Diffie-Hellman private key exchange to exchange

keys between sender and receiver.

In this chapter, a set of testing and evaluation for the above listed components will be

performed. During our design and development we took the following measures into

consideration:

 112

Reusability: ability to reuse included components or the system in complete.

Testability: ability to test the system against requirements.

Structured: ability to read code and structure easily.

Figure 5.1 presents the development architecture and design.

Figure 5.1: Model development architecture

5.3 System Implementation

5.3.1 SXMS Implementation Requirements

Table 5.1 represents the minimum software and hardware requirements needed for

NetBeans IDE 7.0 and Stylus Studio 2011 XML Enterprise Suite to perform system

testing and implementation.

 113

Table 5.1: Minimum hardware requirements to run main tools

Operating System Microsoft Windows 7 – Ultimate edition, 64-bit / SP1

Environment Java Development Kit JDK v7.0

Processor PC / Intel based technology 2.0 MHz or faster

processors

Memory 512 MB of RAM

Disk Space 750 MB of free disk space

Display 1280x 768 px

Drive DVD Drive

5.3.2 SXMS Implementation Process

Based on approaches in Chapter 4, SXMS fuzzy classification module generates on-the-

fly fuzzy classification value; this value is assigned to the Importance Level attribute in

each XML message. The major steps for the fuzzy classification module are shown in

Figure 5.2.

Figure 5.2: Process for XML data fuzzy classification

 114

Step 1: This is the process of generating membership values for a fuzzy variable using

membership functions. The first step is to take the crisp inputs from the 10

characteristics which stamp the importance level and determine the degree to which

these inputs belong to each appropriate fuzzy set.

Step 2: The fuzzified inputs are applied to the antecedents of the fuzzy rules. Since the

fuzzy rule has multiple antecedents, the fuzzy operator (AND or OR) is used to obtain a

single number that represents the result of the antecedent evaluation.

Step 3: This is the process of unification of the outputs of all the rules. In other words,

we are combining the membership functions of all the rules‘ consequents previously

scaled into single fuzzy sets (output). Thus, input of the aggregation process is the list

of scaled consequent membership functions, and the output is one fuzzy set for each

output variable.

Step 4: This is the last step in the fuzzy inference process, where a fuzzy output of a

fuzzy inference system is transformed into a crisp output. The input for the

defuzzification process is the aggregate output fuzzy set where the output is a number.

Centroid technique (Cox, 2001a) has been used to complete this step.

The encryption process starts just after the fuzzy classification phase, Figure 5.3

illustrate the encryption process deployment which consists of three steps.

 115

Figure 5.3: Process for XML data encryption

Step 1: This is the process of reading the value of the crisp output. Crisp output is the

XML tag named ―Importance Level‖ classified in the previous fuzzy classification

process; output has one of the values (Low, Medium, and High).

Step 2: This process involves performing AES encryption on the coming XML Tags

has an ―Importance Level‖ value of ―Medium‖ or ―High‖. Values set to ―Medium‖ will

be encrypted using AES-128 bit key, values set to ―High‖ will be encrypted with 256-

bit key.

Step 3: This process involves redirecting message content that need no further

processing into message aggregator for final message assembly.

5.4 Testing Strategy

For the purposes of testing SXMS complete model, the testing strategies are to be

identified first. The next sections describe the performance testing strategy used and

then the functional testing strategies.

 116

5.4.1 Testing SXMS Behaviour

First we defined the state diagram in order to describe the behavioural activities of

SXMS. State Figure 5.2 illustrates the behaviour state.

Testing Strategy

F
u

n
c
ti

o
n

F
u

n
c
ti

o
n

Phase

Phase B Phase C Phase DPhase A

Phase EPhase FPhase GPhase H

Phase I

Figure 5.4: Model behaviour states

Phase-A: This phase is the GUI of the designed model. It represents the

starting phase in order to deal with all the other phases. This phase has two

outputs:

Out-1: to form an XML document, go to phase-B.

Out-2: to handle invalid XML document, go to phase-F.

Phase-B: This phase represents the process of parsing incoming XML

documents. It has two outputs:

Out-4: to classify valid XML message, go to phase-C.

Out-5: to re-construct invalid XML message, go to phase-F.

Phase-C: This phase represents the process of classifying incoming XML

messages using Mamdani fuzzy inference system and it has three

outputs:

 117

Out-6: Classified tags whereby Importance Level assigned value set to

―High‖, go to phase-D.

Out-7: Classified tags whereby Importance Level assigned value set to

―Medium‖, go to phase-E.

Out-8: Classified tags whereby Importance Level assigned value set to

―Low‖, go to phase-G.

Phase-D: This phase represents the process of encrypting XML tags

marked with ―High‖ importance level using 256 -bit AES encryption

and it has two outputs:

Out-9: Encrypted tags using 256-bit key, go to phase-G.

Out-10: Generated private key, go to phase-I.

Phase-E: This phase represents the process of encrypting XML tags

marked with ―High‖ importance level using 128 -bit AES encryption

and it has two outputs:

Out-11: Encrypted tags using 128-bit key, go to phase-G.

Out-12: Generated private key, go to phase-I.

Phase-F: This phase represents the process of handling incoming error

cases from different phases and it has two outputs:

Out-13: rejected XML message, go to phase-A.

Out-14: message to be modified or re-phrased, go to phase-B.

Phase-G: This phase represents the process of aggregate and assembles

incoming XML tags from different phases for final composition and it

has one output:

Out-15: successfully assembled message, go to phase-H.

 118

Phase-H: This phase represents the process of message submission to final

and it has one output:

Out-16: Message for final submission, submitted successfully.

Phase-I: This phase represents the process of exchanging private keys

between sender and receiver and it has one output:

Out-17: Private keys for receiver.

5.4.2 Testing SXMS’s Functionality

White-box and Black-box testing (IEEE, 1990) have been conducted to test the

functionality of SXMS. The following describes both white-box and black-box testing

steps:

5.4.2.1 White-box Testing

For our white-box testing strategy, all subroutines in our system were tested carefully

by checking every statement written. Therefore, different types of XML documents

were tested to guarantee all decisions, loops, nested loops, paths, and data structure

have been tested. To facilitate the testing for better tracking our testing strategy, we

have divided SXMS into two main sub-systems: XML Classifier, and XML Encryptor.

Later we have divided each sub-system into smaller units to follow the unit testing. We

have used white-box testing for the following types:

1- Unit testing (IEEE, 1990): In this testing we performed white-box testing on

each unit and associated sub-units. Test cases have been written to make sure the

coding is deployed correctly for further integration. We have performed this

testing in an accurate way as we eliminated more than 60% of system bugs

during this testing.

 119

2- Integration Testing: in this testing we tested and evaluated the interaction

between units and sub-units, interfaces between the different units are examined

carefully based on test cases created earlier, some of the test cases can be used

as black-box test cases as well.

3- Regression testing: we have performed a selective retesting of a set of

components, sub-components, or the whole system. testing have been deployed

to make sure that modifications have not caused a major effects on system

behaviour, also to make sure that the system still complies with the requirements

we defined (IEEE, 1990).

5.4.2.2 Black-box Testing

Although black-box testing is performed when the system is intended to be published or

distributed, we performed the black-box testing to determine whether or not the system

does what it supposed to do based on the functional requirements we defined. In our test

we attempts to find errors and issues in external behaviour in the following categories

(Pressman, 2009): (1) incorrect or missing functionality; (2) interface errors; (3) errors

in data structures used by interfaces; (4)behaviour or performance errors; and (5)

initialization and termination errors.

In our black-box testing a different specialist performed the testing knowing main

functionality of system but without knowing all details. The following types are the

black-box testing strategy types we adopted:

Integration testing: same as white-box integration testing but without knowing internal

procedures and lifecycle. Testers performed their testing based on system functionality

following provided work flow. Verification has been made that different units work

together without issues and they are integrated into a larger code base.

 120

Functional and system testing: we examined the high-level designs. Our functional

testing involved ensuring that the functionality specified in the requirement

specification works as it meant to be. System testing involves measuring the system in

many different environments to ensure the program works in typical financial

environments with different types of operating systems.

Acceptance testing: testing was made based on end-user expectations of the

functionality. Such testing is performed to decide whether or not the system satisfies the

acceptance criteria. Test cases were pre-specified and given to the testing team.

5.5 Testing Validation

In this research, we have assembled a testing framework whereby it can evaluate the

encryption part of our model against the well-known W3C Encryption standard (W3C,

2001). To evaluate the effectiveness of our fuzzy XML encryption model, we have used

this framework as measuring tool. We have selected data set from one of the electronic

channels, which is the internet banking service in Jordan Ahli Bank (one of the leading

banks in Jordan). The main goal of our testing against W3C Encryption standard is to

prove the effectiveness of using SXMS model as a secure XML management tool for

financial messages. Table 5.2 illustrates the factors we use in our testing and evaluation.

Table 5.2: Testing Factors

Module Testing Factors

SXMS – Fuzzy Classification Model

 Efficiency classifying XML

messaging

 Functionality test

SXMS – XML Encryption

 Improve encryption processing

time

 File size reduction for encrypted

files

 121

5.6 Testing Environment

All experiment tests are performed on a PC (Intel core i5) 2.3 GHz CPU, 6.00 GB

RAM, running Windows 7 Ultimate 64-bit operating system. NetBeans IDE 7.0 is used

to implement SXMS model, and Stylus Studio 2011 XML Enterprise Suite is used as an

XML editor and validator.

5.7 Testing Data Preparation

We have used two sets of data in our implementation and testing: A sample of 1,000

financial XML messages and a sample of 1,500 financial XML messages representing

an internet banking service, messages extracted from Jordan Ahli Bank (JAB, 2013),

one of the leading banks in Jordan. Sample has been taken for a period of seven months

extracted randomly; we choose Jordan Ahli Bank as a source of our sample since the

information is accessible due to our working nature within the bank and concerned

departments. The extracted sample contain massive amount of historical transactions

reflecting our need to test the model. Sample has the transaction amount recorded,

transaction time, logged IP address, account tries, and other details used to build our

fuzzy classification layers.

The collected dataset of 2,500 XML messages presenting the periods: three months

(starting January 2010 until March 2010) for the first sample, and four months (April

2010 until August 2010) for the second sample of data. Both samples covered the 10

fuzzy classification characteristics we defined in our model. We have collected our

samples on CD's in XML format; we arranged the documents and renamed each file to

reflect the sample name and date of the transactions.

 122

Figure 5.5: Sample data captured from the first set

Figure 5.6: Sample data captured from the second set

As seen in figure 5.5, and figure 5.6, the two sample sets contain large amount of data

extracted from the transaction files and arranged in two separate files. Each file has

number of columns presenting the raw value that is captured during the transaction.

However, we only used the 10 characteristics defined earlier to be used in our fuzzy

classification stage.

 123

5.8 Fuzzy Classification and Encryption Testing

5.8.1 Testing Fuzzy Classification

We have developed two implementations of the fuzzy classification model. The first

implementation is using the first set of XML transactions presenting the internet

banking service. We have selected internet banking service because it uses XML as the

main messaging for data exchange between back-end host and the front-end. System

has been deployed as a middleware connected to the application backend. Few

customizations have been placed to match XML message structure; mapping took place

as well for final message fuzzy classification .

Phase 1: First implementation conducted using a sample of 1,000 records; Records

have been selected randomly presenting various transaction types like money transfers,

fund transfer, and wire transfer for a period of seven months. System classified sample

messages into three layers depending on 10 characteristics described in chapter 4. A

sample of the structure and the records of the rule base for layer 1 are shown in Table

5.3. System main structure for layer 1 is the combination of Transaction Amount,

Transaction Currency, and account type. The rule base contains (3³) which are 27

entries and the output of this rule base is one of the Importance Level attribute fuzzy

sets (High, Medium, Low) for layer 1.

Table 5.3: Sample of data classified for Layer 1

Transaction

Amount

Transaction

Currency
Account Type

Account Layer

Importance Level

Rate

Non-Sensitive Non-Sensitive Non-Sensitive Low

Non-Sensitive Non-Sensitive Normal Low

Non-Sensitive Sensitive Non-Sensitive Low

Normal Normal Sensitive Medium

Normal Normal Normal Medium

Sensitive Non-Sensitive Sensitive High

Sensitive Non-Sensitive Non-Sensitive Low

Sensitive Sensitive Non-Sensitive High

 124

Same implementation sample has been conducted, a sample of the structure and the

records of the rule base for layer 2 are shown in Table 5.4. System main structure

for layer 2 is the combination of Transaction Notes, Profile ID, Account Tries, and

Incorrect Password Tries. The rule base contains (3
4
) which are 81 entries and the

output of this rule base is one of the Importance Level attribute fuzzy sets (High,

Medium, Low) for layer 2.

Table 5.4: Sample of data classified for Layer 2

Transaction

Notes
Profile ID Account Tries

Incorrect

Password Tries

Details Layer

Importance

Level

Non-Sensitive Normal Non-Sensitive Normal Low

Non-Sensitive Normal Sensitive Sensitive High

Non-Sensitive Sensitive Sensitive Sensitive High

Normal Sensitive Normal Sensitive High

Normal Sensitive Non-Sensitive Sensitive Medium

Normal Sensitive Non-Sensitive Non-Sensitive Medium

Sensitive Non-Sensitive Normal Non-Sensitive Low

Sensitive Sensitive Sensitive Non-Sensitive Medium

Sensitive Non-Sensitive Non-Sensitive Non-Sensitive Medium

Same implementation sample has been conducted, a sample of the structure and the

records of the rule base for layer 3 are shown in Table 5.5. System main structure

for layer 3 is the combination of Time on Service, Daily Transactions, and

Transaction Time. The rule base contains (3
3
) which are 27 entries and the output of

this rule base is one of the Importance Level attribute fuzzy sets (High, Medium,

Low) for layer 3.

Table 5.5: Sample of data classified for Layer 3

Time on

Service

Daily

Transactions
Transaction Time

Environment Layer

Importance Level Rate

Non-Sensitive Normal Sensitive High

Non-Sensitive Non-Sensitive Sensitive Medium

Normal Non-Sensitive Normal Medium

Normal Sensitive Non-Sensitive Medium

Sensitive Normal Sensitive High

Sensitive Sensitive Sensitive High

Sensitive Non-Sensitive Sensitive High

 125

The aggregated surface of the rule evaluation is defuzzified using the Mamdani

method to find the Centre of Gravity (COG). Centroid defuzzification technique

shown in Equation (1) can be expressed as:

dxx

dxxx
COG

i

i

)(

)(

 Equation (1)

µi(x): Aggregated membership function.

x: Output variable.

Figure 5.7 illustrate the set of fuzzy rules extracted from layer 1 using MATLAB

R2010a, rules are based on a set of IF-THEN statements describing the effect of

each factor in layer 1 on overall layer importance level. Figure 5.3 shows the

surface view for layer 1 as well.

After deploying the fuzzy classification methodology on the three layers using

MATLAB R2010a, we then have a list of classified tags with an importance level

attribute defined and assigned.

Figure 5.7: Set of fuzzy rules for layer 1

 126

Figure 5.8: Surface view for layer 1

The fuzzy classification phase successfully processed the selected sample of 1,000

messages, The account segment layer recorded 267 out of the 1,000 sample with a

"High" importance level representing 26.7% positively qualified for high level of

encryption of key size of 256k. 62 out of 1,000 messages classified with a

―Medium‖ importance level, representing 6.2% qualified for an encryption of 128k

key size.

Finally 671 out of 1,000 classified with a ―Low‖ importance level representing

67.1% of the total skipping the encryption process to be forwarded directly to

message assembler.

Details segment layer achieved 401 occurrences out of the same 1,000 sample

messages with a ―High‖ importance level, representing 40.1% of the total positively

qualified for high level encryption of key size of 256k. 410 out of 1,000 messages

have been classified with a ―Medium‖ importance level, representing 41% qualified

for an encryption of size 128k key. The remaining 189 out of the 1,000 sample

marked with ―Low‖ importance level, representing 18.9% which require no

encryption processing.

Environment segment layer recorded 250 occurrences out of the same 1,000 sample

messages with a ―High‖ importance level, representing 25% of the total positively

 127

qualified for high level encryption of key size 256k. 421 occurrences recorded with

a ―Medium‖ importance level to be encrypted with a 128k key size. The final 329

occurrences marked with a ―Low‖ importance level to be forwarded without any

further processing. 30.6% of the occurrences average across the three layers

achieved ―High‖ importance level, 29.7% achieved ―Medium‖ importance level,

and 39.6% of the total marked ―Low‖ importance level across the three layers.

Figure 5.9: Fuzzy classification chart for sample implementation

The results clearly indicate as shown in Table 5.5 and Figure 5.10 that 26.8% of the

sample 1,000 messages have a fuzzy classification level of "high" which require

high encryption mechanism to secure the sensitive parts. 67% of the sample

messages have been marked as "low" which have been forwarded directly without

performing any encryption mechanism. The remaining 6.2% will adopt a high level

of encryption but with lower key size.

Table 5.6: Fuzzy Classification table for first sample implementation

Fuzzy Classification

Layer

―High‖

Appearances

―Medium‖

Appearance

s

Percentage

(High +

Medium)

Layer1 (Account) 267 62 32.9%

Layer 2 (Details) 401 410 81.1%

Layer 3 (Environment) 250 421 67.1%

 128

As seen in table 5.6, the highest occurrences for ―High‖ and ―Medium‖ importance

level combined is 32.9% in layer 1, which means only 32.9% of the 1,000 records

sample data require an encryption processing either using 128bit key or 256bit key,

leaving a 67.1% of the sample data to be forwarded directly to message assembler

without the need of the encryption process. In brief, instead of performing full

encryption for the whole XML message or even performing partial encryption on

pre-selected parts, we were able to produce secured, optimized, and utilized

messages, performing encryption only on needed parts selected using our fuzzy

classification techniques based on the Mamdani method.

5.8.2 Testing XML Encryption

Assigned importance level is used as an indicator for which type of encryption is

needed on corresponding node. Figure 5.10 illustrates a real XML message after

fuzzy classification phase.

Figure 5.10: Sample XML message after fuzzy classification phase

As seen in the figure, the classified XML message has the ―Importance Level‖

attribute with value depending on the fuzzy classification phase, ―Importance

 129

Level‖ attributes with a ―Medium‖ value is entitled to have an AES Encryption

using 128-bit key, ―Importance Level‖ attributes with a ―High‖ value is entitled to

have an AES Encryption using 256-bit key, Tags with no ―Importance Level‖

assigned will be forwarded to message assembler without performing any type of

encryption. Figure 5.11 presents the XML message after deploying AES encryption

on selected parts.

Figure 5.11: Sample XML message after encryption phase

As seen in Figure 5.11 only selected parts that are classified earlier are being

encrypted whereby two different keys are deployed, first is AES 128-bit key on tags

marked with ―Medium‖ ―Importance Level‖, second is AES 256-bit key on tags

marked with ―High‖ ―Importance Level‖. Tags marked with ―Low‖ or not marked

with any value will be forwarded to message assembler without performing any

type of encryption.

 130

5.9 Chapter Summary

In this chapter, extensive tests were carried out to check the performance of our model.

The model was tested against W3C XML Encryption standard. Testing took place

taking into consideration element-wise encryption and full encryption. Element-wise

encryption was performed and evaluated based on two cases, the first by encrypting a

pre-defined list of tags within each XML message and measuring the results against our

model which uses element-wise encryption on a classified list of tags, tags were

selected based on a previous step which classify the XML messages deploying fuzzy

classification techniques. The second case is by encrypting the whole messages and

comparing the results against our element-wise based encryption model. Results

showed a significant improvement in both cases presenting the superiority of our basic

concept which uses on-the-fly fuzzy classification mechanism for the final goal which is

encrypting necessary parts.

 131

Chapter 6

Performance Evaluation - Implementation to Secure

Financial XML Messages using Intelligent Fuzzy-

Based Techniques

6.1 Introduction

Chapter 6 presents the performance evaluation, evaluation methods, and actual testing

that have been performed on real data sets to properly evaluate our secure XML

management model. We also present the main application classes that have been used to

classify outgoing XML documents, encrypt classified XML documents, and forwarders

that used to aggregate message parts. Main application code which was built using Java

J2EE also presented, describes module functionality and interface. XML sample set

extracted from our collected financial messages which have been used in our testing and

evaluation stages. Finally, we summarize and conclude the chapter.

 132

6.2 SXMS Performance Evaluation

For our implementation of the secure XML management system and for performance

measurement, we have developed our own desktop application built based on Java

technology. Our application is used to perform both fuzzy classification and encryption

of XML messages. We used Java programming language (J2SE1.6) to build the main

application and user interface. Application is independent and can be used on different

operating systems.

6.2.1 Evaluation Method

Two parameters have been taken into account in the evaluation process: the processing

time that is used to encrypt the classified messages and the size of each message after

encryption process. The results are compared against the W3C Encryption standard.

 Processing Time: measure the time needed to fetch essential parts within each

XML message and then encrypt needed tags using different key sizes, the

measurement is based on the time needed from the starting point which is start

of the XML message until the closing tag. Encryption process is performed on

the whole message, selected tags, or no tags. All depending on the fuzzification

stage prior to message encryption phase.

 Processing File Size: measure the file size for each XML message, size is

calculated after the encryption process take place. Resulting file size from our

model will be compared against the file size from the W3C Encryption standard.

6.2.2 Evaluation Preparations

Prior to the encryption phase which will be comparing SXMS model with W3C XML

Encryption recommendation, we deployed the fuzzification stage whereby we classified

XML message sets that are going to be used in the evaluation stages. Fuzzification

 133

process took place to assign an importance level value to the 10 characteristics extracted

from the financial XML messages. Fuzzification stage performed by deploying set of

"IF-THEN" conditions, these conditions reflect the relations between the different

financial features and characteristics, and also it reflects the association with each other.

Relation and association with each other are used for the final importance level value.

Figure 6.1 shows a sample group of IF-THEN rules used in fuzzification process that is

used to assign an importance level attribute a value between (High, Medium, and Low).

Figure 6.1: Fuzzification stage (IF-THEN operators)

6.2.3 Evaluation Stages

We have performed our evaluation using two sets of XML messages; each set represent

a period in which the messages were extracted. Each set has number of XML messages

to test. Collected XML messages present online banking service transactions fetched

from Jordan Ahli Bank, one of the leading banks in Jordan.

We have selected to deploy full and partial encryption on selected sets of XML

messages, whereby we will deploy full encryption on first set of XML messages, and

partial encryption on the second set of XML message. The two sets have been selected

randomly taken for a period of seven months (between January 2012 until August 2012)

representing financial transactions in specific. In the first set we collected 1,000 random

XML messages presenting a period of three months taken between January 2012 and

 134

March 2012. In the second set we used 1,500 XML messages presenting a period of

four months taken between April 2012 and August 2012. Sample sets have been

collected after taking necessary approvals and authorizations from the bank‘s concerned

departments. Table 6.1 illustrates the two sets of XML messages in details.

Table 6.1: Stage 1 Sets detail

Set
Number of

XML messages

Total Root

Nodes

Total

Messages Size
Period

Encryption

Performed

1 1,000 messages 4,000 node 947 KB
3 Months

Jan 12-Mar12

Full

Encryption

2 1,500 messages 6,000 node 1380 KB
4 Months

Apr12-Aug12

Partial

Encryption

As seen in table 6.1, the first set has 1,000 XML messages with 4,000 root nodes

and total size of 947KB. The second set has 1,500 XML messages with 6,000 root

nodes and total size of 1380KB.

To ensure we are evaluating our model in a fair and comprehensive manner, we

divided our evaluation into two stages. Evaluation stages are compared against

W3C XML Encryption Recommendations. In each stage there are two experiments

performed, each experiment presents an encryption using different key sizes. In first

stage we have deployed full message encryption using W3C encryption standard

with different key sizes. In the second stage we have deployed partial encryption

using W3C encryption standard with different key sizes. Results from both stages

are compared against our model which uses element-wise encryption and mixture of

key sizes. Table 6.2 illustrates stage 1 evaluation details.

Table 6.2: Performance evaluation for stage 1

Stage
Number of XML

Messages
Model

Experiment 1

Used Key Size

Experiment 2

Used Key Size

1
1,000 Messages

(4,000 Nodes)

W3C

(Full Encryption)
128 bit 256 bit

SXMS

(Element-Wise)

 (128 bit or 256 bit or

NO Encryption)

 (128 bit or 256 bit

or NO Encryption)

 135

Stage 1: Evaluation for this stage has been conducted by performing two

experiments; first experiment deployed performing full encryption using W3C

XML encryption standard with a 128-bit key size deployed on the first set of 1,000

sample XML messages. SXMS uses the same sample of XML messages to deploy

element-wise encryption. SXMS model uses symmetric AES encryption with mixed

key values (128-bit, 256-bit), Key size used in the encryption process depends on

the importance level attribute value assigned by the fuzzification stage for selected

set of tags within each XML message. Second experiment has been conducted

performing full encryption using W3C XML encryption standard with a 256-bit key

deployed on the same 1,000 sample XML messages. SXMS uses the same sample

of XML messages to deploy element-wise encryption. Later we compared results

for both experiments against results from our model.

Table 6.3 illustrates time needed and resulting file size to encrypt the XML message

set using our model compared against W3C XML encryption model using a key

size of 128 bit encrypting each message in full.

Table 6.3: Processing time and resulting file sizes using SXMS and W3C-128

Stage 1 – Experiment 1

(Full Encryption)
Processing Time File Size

XML Message Set
SXMS

Model

W3C

128 bit

SXMS

Model

W3C

128 bit

1 XML File 0.0018 ms 0.0023 ms 1.14 KB 1.87 KB

300 XML Chunk 0.562 ms 0.702 ms 167.9 KB 263 KB

600 XML Chunk 0.873 ms 1.264 sec 342.6 KB 541.9 KB

900 XML Chunk 1.271 sec 1.825 sec 501.9 KB 799.7 KB

1,000 XML (Set 1) 1.625 sec 2.456 sec 652.4 KB 988 KB

We have encrypted the XML messages in chunks of 1, 300, 600, 900, and 1,000

messages. Our SXMS model processed the XML chunks with a significant

 136

improvement in processing time compared to W3C XML encryption model which

uses a 128-bit key size to encrypt the whole XML message.

SXMS uses a 128-bit key in the cases where the importance level attribute value

equals to ―Medium‖ and 256-bit key used when the importance level attribute value

equals to ―High‖. As seen in table 6.3, the encryption process for the whole XML

1,000 messages using W3C Encryption standard with a 128-bit key size took 2.456

seconds to complete, compared to 1.625 seconds using SXMS model. The result

reflects a 33.8% improvement in processing time for the 1,000 messages. Figure 6.2

illustrates the comparison between the two models and performance improvement

using SXMS. Table 6.3 also illustrates files size reduction encrypting XML

messages using SXMS model, table shows a significant reduction in file size,

whereby the total size of the encrypted 1,000 XML messages was 988 KB using

W3C model with a key size of 128-bit encrypting each XML message in full.

SXMS achieved smaller sizes for the same set of 1,000 encrypted XML messages

which is 652.4 KB showing a size reduction of 34% from the encrypted file size

using W3C model. Such improvement can save a significant amount of space and

bandwidth on large scale. Figure 6.2 illustrates the processing time needed to

encrypt the sample messages in the first experiment compared to our model.

Figure 6.2: Comparison chart between SXMS and W3C model using 128-bit key

 137

As seen in Figure 6.2, the x-axis present the number of XML messages being processed,

while y-axis present the processing time encrypting XML messages in seconds.

Figure 6.3 presents file size comparison for the encrypted XML messages using SXMS

and W3C XML Encryption syntax and processing model using a key size of 128-bit

performing full message encryption.

Figure 6.3: File size comparison between SXMS and W3C model using 128-bit

In the second experiment of stage 1, we deployed W3C Encryption standard to fully

encrypt the same sample of 1,000 XML messages but this time using 256-bit key size.

SXMS uses the same sample of XML messages to deploy element-wise encryption.

SXMS model uses symmetric AES encryption with mixed key values (128-bit, 256-bit),

Key size used in the encryption process depends on the importance level attribute value

assigned by the fuzzification stage for selected set of tags within each XML message.

Table 6.4 represents the time needed for each model performing the encryption process

on selected sample of messages.

 138

Table 6.4: Processing time table using SXMS and W3C-256 Model (Full

Encryption)

Stage 1 – Experiment 2

(Full Encryption)
Processing Time File Size

XML Message Set
SXMS

Model

W3C

256 bit

SXMS

Model

W3C

256 bit

1 XML File 0.0018 ms 0.0027 ms 1.14 KB 1.98 KB

300 XML Chunk 0.562 ms 0.811 ms 167.9 KB 283.4 KB

600 XML Chunk 0.873 ms 1.591 sec 342.6 KB 601 KB

900 XML Chunk 1.271 sec 2.137 sec 501.9 KB 864.8 KB

1,000 XML (Set 1) 1.625 sec 2.8 sec 652.4 KB 1112 KB

As seen in Table 6.4, the encryption process for the whole message using the W3C

Encryption standard with a 256-bit key size took 2.8 seconds to complete, compared to

1.625 seconds using SXMS model. The result reflects a 41.9% improvement in

processing time for the 1,000 messages.

Table 6.4 also illustrates files size reduction encrypting XML messages using SXMS

model, table shows a significant reduction in file size, whereby the total size of the

encrypted 1,000 XML messages was 1112 KB using W3C model with a key size of

256-bit encrypting each XML message in full. SXMS achieved smaller sizes for the

same set of 1,000 encrypted XML messages which is 652.4 KB showing a size

reduction of 41.3% from the encrypted file size using W3C model. Such improvement

can save a significant amount of space and bandwidth on large scale. Figure 6.4

illustrates the performance comparison between SXMS model and W3C encryption

standard using key size of 256-bit. Figure 6.5 presents file size comparison for the

encrypted XML messages using SXMS and W3C XML Encryption syntax and

processing model using a key size of 256-bit performing full message encryption.

 139

Figure 6.4: Performance comparison between SXMS and XML using 256-bit

Figure 6.5: File Size comparison between SXMS and XML using 256-bit key

Finally, figures 6.6, 6.7 illustrates the final performance and file size reduction

comparison between SXMS and W3C model for both experiments which uses 128-

bit key and 256-bit key performing full encrypting for each XML message in the

first message set. Figure presents a significant amount of performance improvement

using SXMS model.

 140

Figure 6.6: Final performance comparison between SXMS and W3C models

Figure 6.7: Final file size comparison between SXMS and W3C models

Table 6.5: Performance evaluation for stage 2

Stage

Number of

XML

Messages

Model
Experiment 1

Used Key Size

Experiment 2

Used Key Size

2

1,500

Messages

(6,000 Nodes)

W3C

(Partial

Encryption)
128 bit 256 bit

SXMS

(Element-Wise)

 (128 bit or 256

bit or NO

Encryption)

 (128 bit or 256

bit or NO

Encryption)

 141

Stage 2: Evaluation for this stage has been conducted by performing two

experiments; first experiment deployed performing partial encryption on a pre-

defined list of tags using W3C XML encryption standard with a 128-bit key size

deployed on the second set of 1,500 sample XML messages. SXMS uses the same

sample of XML messages to deploy element-wise encryption. SXMS model uses

symmetric AES encryption with mixed key values (128-bit, 256-bit), Key size used

in the encryption process depends on the importance level attribute value assigned

by the fuzzification stage for selected set of tags within each XML message. Second

experiment has been conducted performing partial encryption on a pre-defined list

of tags using W3C XML encryption standard with a 256-bit key deployed on the

same 1,500 sample XML messages. SXMS uses the same sample of XML messages

to deploy element-wise encryption. Later we compared results for both experiments

against results from our model.

Table 6.6 presents time needed to encrypt the sample messages using our model

compared against W3C XML encryption model using a key size of 128 bit to

encrypt part of the message for the whole set.

Table 6.6: Processing time table using SXMS and W3C-128 Model (Partial

Encryption)

Stage 2 – Experiment 1

(Partial Encryption)
Processing Time File Size

XML Message Set
SXMS

Model

W3C

128 bit

SXMS

Model

W3C

128 bit

1 XML File 0.0018 ms 0.0019 ms 1.14 KB 1.61 KB

300 XML Chunk 0.562 ms 0.578 ms 167.9 KB 244 KB

600 XML Chunk 0.873 ms 0.984 sec 342.6 KB 510.2 KB

900 XML Chunk 1.271 sec 1.422 sec 501.9 KB 740.7 KB

1,500 XML (Set 2) 1.963 sec 2.218 sec 810.1 KB 1203.6 KB

 142

As seen in Table 6.6, the encryption process for part of the message using the W3C

Encryption standard with a 128-bit key size took 2.218 seconds to complete,

compared to 1.963 seconds using SXMS model. The result reflects an 11.4%

improvement in processing time for the 1,500 messages.

Table 6.6 also illustrates files size reduction encrypting XML messages using

SXMS model, table shows a significant reduction in file size, whereby the total size

of the encrypted 1,500 XML messages was 1203.6 KB using W3C model with a

key size of 128-bit encrypting each XML message partially. SXMS achieved

smaller sizes for the same set of 1,500 encrypted XML messages which is 810.1 KB

showing a size reduction of 32.6% from the encrypted file size using W3C model.

Such improvement can save a significant amount of space and bandwidth on large

scale. Figure 6.8 illustrates the comparison between SXMS model and W3C

encryption standard using key size of 128-bit.

Figure 6.8: Performance comparison between SXMS and W3C Standard using

AES-128 Key

Figure 6.9 presents file size comparison for the encrypted XML messages using

SXMS and W3C XML Encryption syntax and processing model using a key size

of 128-bit performing partial message encryption.

 143

Figure 6.9: File size comparison between SXMS and W3C Standard using AES-

128 Key

In the second experiment of stage 2, we deployed W3C Encryption standard to

partially encrypt the XML messages to same sample of 1,500 XML messages

but this time using 256-bit key size. SXMS uses the same sample of XML

messages to deploy element-wise encryption. SXMS model uses symmetric AES

encryption with mixed key values (128-bit, 256-bit), Key size used in the

encryption process depends on the importance level attribute value assigned by

the fuzzification stage for selected set of tags within each XML message. Table

6.4 represents the time needed for each model performing the encryption process

on selected sample of messages.

Table 6.7: Processing time table using SXMS and W3C-256 Model (Partial)

Stage 2 – Experiment 2

(Partial Encryption)
Processing Time File Size

XML Message Set
SXMS

Model

W3C

256 bit

SXMS

Model

W3C

256 bit

1 XML File 0.0018 ms 0.0021 ms 1.14 KB 1.72 KB

300 XML Chunk 0.562 ms 0.687 ms 167.9 KB 269 KB

600 XML Chunk 0.873 sec 1.42 sec 342.6 KB 588.4 KB

900 XML Chunk 1.271 sec 2.026 sec 501.9 KB 813.9 KB

1,500 XML (Set 2) 1.963 sec 2.899 sec 810.1 KB 1399.6 KB

 144

As seen in Table 6.7, the encryption process for part of the message using the

W3C Encryption standard with a 256-bit key size took 2.899 seconds to

complete, compared to 1.963 seconds using SXMS model. The result reflects a

32.2% improvement in processing time for the 1,500 messages. Table 6.7 also

illustrates files size reduction encrypting XML messages using SXMS model,

table shows a significant reduction in file size, whereby the total size of the

encrypted 1,500 XML messages was 1399.6 KB using W3C model with a key

size of 256-bit encrypting parts of the XML message. SXMS achieved smaller

sizes for the same set of 1,500 encrypted XML messages which is 810.1 KB

showing a size reduction of 42.1% from the encrypted file size using W3C

model. Such improvement can save a significant amount of space and bandwidth

on large scale. Figure 6.10 illustrates the comparison between SXMS model and

W3C encryption standard using key size of 256-bit encrypting parts of the XML

message for the second sample set.

Figure 6.10: comparison between SXMS and W3C Standard using AES-256

Key

 145

Figure 6.11 presents file size comparison for the encrypted XML messages using

SXMS and W3C XML Encryption syntax and processing model using a key size

of 256-bit performing partial message encryption.

Figure 6.11: File size comparison between SXMS and W3C model using 256-bit

key

Finally, figures 6.12, 6.13 illustrate performance improvements and file size

reduction comparison between SXMS model and W3C model for both

experiments in stage 2 showing a significant amount of performance

improvement and size reduction on a large scale using SXMS model.

Figure 6.12: comparison between SXMS and W3C Standard using different keys

 146

Figure 6.13: file size comparison between SXMS and W3C Standard using

different keys

We have presented evidence that implementing element-wise encryption based

on the fuzzy classification techniques to encrypt only necessary parts within

XML messages can improve performance of the encryption process, and can

reduce encrypted file sizes which eventually will save space and bandwidth on a

large scale.

6.3 Screenshots, Source Codes, and Pseudo Code Examples

6.3.1 Screenshot Examples

Figure 6.14 and Figure 6.15 demonstrates screenshots of our application that is used in

our testing and evaluation. Our intelligent model checked all extracted 10 characteristics

within each XML message. Then using the fuzzification approach adopted by our main

application, for the final importance level assigned for each tag, we have associated and

classified all patterns with each other. Then we used our element-wise encryption

embedded within the application to perform encryption using mixed keys depending on

importance level value assigned by the fuzzification stage. The usage of AES

encryption with a specific key value depends on the importance level assigned.

 147

Whereby, tags assigned the value ―High‖ will be encrypted and their descendants using

AES encryption with a key value of 256-bit, tags assigned with ―Medium‖ will be

encrypted using a key value of 128-bit. Finally tags with ―Low‖ importance level will

be forwarded to message assembly without any encryption performed.

Figure 6.14: SXMS Main application interface

Figure 6.15: Main application result files after encryption process

 148

6.3.2 Source Codes Examples

In this section we represent some source code examples used in our application.

 Main application source code (Java):

 new Thread(new Runnable(){
 public void run(){
 File dir = new File(settings.srcDir);
 File[] xmls = dir.listFiles();
 progress.setMaximum(xmls.length);
 progress.setValue(0);
 ArrayList<Object[]> times = new ArrayList<Object[]>(); //It will store xml
name and time take for encryption or decryption.

 for(File xmlName : xmls){
 Date timeStampStart = new Date(); //Starting time of
encryption/decryption.
 progress.setValue(progress.getValue()+1);
 String fileName = xmlName.getPath();
 String xml = "";
 try {
 xml = getXmlString(new File(fileName)); //Getting xml string from
a xml file.
 } catch (Exception ex) {
 javax.swing.JOptionPane.showMessageDialog(null,"Error while
opening input xml file!!");
 return;
 }
 String tagName = settings.tagName;
 String attName = settings.priorityAttribute;

 ArrayList<Data> datas = Data.parseXml(xml, tagName, attName);
//Getting list of data which need to be encrytped or decrypted.
 for(Data data : datas){
 //Checking for key code.
 int keycode = 128;
 if(data.priority.equals(settings.aes256)) keycode = 256;
 else if(data.priority.equals(settings.aes128))keycode = 128;
 else {
 //If key code does not match it will simply ignore it.
 //javax.swing.JOptionPane.showMessageDialog(this, "Key code
does not match. Skipping "+data.startIndex+" To "+data.endIndex);
 data.data2=data.data;
 continue;
 }

 if(radioEncrypt.isSelected()){
 byte[] cipherBytes=null;
 try {
 cipherBytes = AES.encrypt(data.data, settings.password,
keycode); //Getting Encrypted data.
 } catch (Exception ex) {
 javax.swing.JOptionPane.showMessageDialog(null,"Error at the
time of encryption"+ex.toString());
 continue;
 }
 data.data2= "\r\n<EncryptedData
Type='http://www.w3.org/2001/04/xmlenc#Element'
xmlns='http://www.w3.org/2001/04/xmlenc#'> \r\n" +
 "<CipherData>\r\n<CipherValue>" + new
sun.misc.BASE64Encoder().encode(cipherBytes) +
 "</CipherValue>\r\n</CipherData>\r\n</EncryptedData>\r\n";
 }else{
 try {

 149

 //Getting decrypted data.
 byte[] decoded =AES.decrypt(new
sun.misc.BASE64Decoder().decodeBuffer(data.getCipherData()), settings.password,
keycode);
 data.data2 = new String(decoded);
 } catch (Exception ex) {
 javax.swing.JOptionPane.showMessageDialog(null,"Error at the
time of decryption"+ex.toString());
 return;
 }
 }
 }

 int startIndex = 0;
 String newXml = "";
 //Recreating the xml after encryption or decryption.
 for(Data data : datas){
 newXml += xml.substring(startIndex, data.startIndex);
 newXml += data.data2;
 startIndex=data.endIndex;
 }
 newXml += xml.substring(startIndex);
 //Saving the new file to the destination folder.
 try {
 String dstFile = settings.dstDir+"\\"+xmlName.getName();
 PrintWriter pw = new PrintWriter(dstFile);
 pw.print(newXml);
 pw.flush();
 pw.close();
 } catch (FileNotFoundException ex) {
 javax.swing.JOptionPane.showMessageDialog(null,"Error when writing
final xml!!\n"+ex.toString());
 }

 //Storing the orginal file into archive folder.
 String archName = settings.arcDir+"\\"+ xmlName.getName();
 while(!xmlName.renameTo(new File(archName))){
 archName=archName.substring(0, archName.length()-4)+"_"+".xml";
 }
 //Processing ending time.
 Date timeStampEnd = new Date();
 long timeTook = timeStampEnd.getTime()-timeStampStart.getTime();
//Calculating time took for the process.
 times.add(new Object[]{xmlName.getName(),timeTook});

 }
 javax.swing.JOptionPane.showMessageDialog(null,"Done");

 //Showing time took for each file and total time.
 if(times.size()>0){
 int n = JOptionPane.showConfirmDialog(null, "Do you like to save time
stat?","AESEncrypt",JOptionPane.YES_NO_OPTION);
 if(n==JOptionPane.YES_OPTION){
 final JFileChooser fc = new JFileChooser();
 int returnVal = fc.showSaveDialog(null);
 if (returnVal == JFileChooser.APPROVE_OPTION) {
 File file = fc.getSelectedFile();
 try {
 PrintWriter pw = new PrintWriter(file.getPath());
 pw.println("FILE NAME\t\t\t\tTIME TOOK\r\n---------\t\t\t\t---------
\r\n");
 long total=0;
 for(Object[] obj: times){
 String fileName = (String)obj[0];
 long time = (Long)obj[1];
 total += time;
 pw.println(fileName+"\t\t\t\t"+time);

 150

 }
 pw.println("---------\t\t\t\t---------\r\nTotal Time\t\t\t\t"+total+" or
"+(total/1000)+"."+(total%1000)+" Sec");
 pw.flush();
 pw.close();
 javax.swing.JOptionPane.showMessageDialog(null,"Done");
 } catch (FileNotFoundException ex) {}
 }
 }
 }

 btnContinue.setEnabled(true);
 radioEncrypt.setEnabled(true);
 radioDecrypt.setEnabled(true);
 }
 }).start();
 }

In the above code, we started by initializing the components that will be used in our

process, at first we initialize the counter to check-up the processing speed needed

for the whole process. Then reading XML files form incoming XML documents by

getXMLString() function. Then we execute the parsing step to know which parts to

be encrypted by calling Data.parseXml() function, later we define which key value

to be used upon reading key string value. After deploying the encryption process for

selected parts, we read the encrypted values by executing AES.encrypt(data.data,

settings.password, keycode); function. Final stage is by assembling the message

(with encrypted parts and forwarded parts) which requires file re-creation.

Encryption time is calculated by initiating the variable timeStampStart of Date()

type and running cross the application to start the counter, later another variable

initiated at end of the encryption process called timeStampEnd which reads the time

at the finishing stage.

 Parse XML Code:

public String getXmlString(File xml) throws Exception{
 String fileContent = "";
 try {
 BufferedReader reader = new java.io.BufferedReader(new
java.io.FileReader(xml.getPath()));
 String row = reader.readLine();
 while(row!=null){
 fileContent+=row+"\r\n";
 row = reader.readLine();
 }

 151

 reader.close();
 } catch (IOException ex) {
 throw ex;
 }
 return fileContent;
 }

In the above class, we parse XML messages by using XPath function.

getXMLString() is used to read the file by getting full file path and then read it line

by line. Function returns file content to be used later in the encryption process.

 Read Encrypted XML Data

public String getCipherData(){
 String retVal="";
 Pattern p =
Pattern.compile("<([\\s]*)CipherValue([^>]*)>([\\w\\W]*?)<([\\s]*)/([\\s]*)CipherValue([\\s
]*)>");
 Matcher m = p.matcher(data);
 while(m.find()){
 retVal = m.group();
 int s = retVal.indexOf(">")+1;
 int e = retVal.lastIndexOf("<");
 retVal=retVal.substring(s, e).trim();
 }

 return retVal;
 }
}

In the above class, we read encrypted data by using GetCipherData() function

which gets the base64-encoded data representing the encrypted form of the plaintext

data.

 AES Encryption Class (Encryption):

public class AES {

 /**
 * Encrypt a string using AES Encryption.
 *
 * @param data String data to be encrypted.
 * @param pass Password for symmetric encryption.
 * @param encryptSize 128 or 256 .
 */
 public static byte[] encrypt(String data, String pass, int encryptSize) throws
Exception{
 try{
 byte[] keyBytes = getPassBytes(pass, encryptSize);
 byte[] input = data.getBytes();
 SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, key);

 152

 byte[] cipherText = cipher.doFinal(input);

 return cipherText;
 }catch (Exception ex) {
 throw ex;
 }
 }

In the AES encryption class, the cipher object is initialized. The initialization is

done in cipher.init (Cipher.ENCRYPT_MODE, key); method. The first parameter

determines the operation mode of the cipher. As we want to encrypt a file, we use

the ENCRYPT_MODE. The second parameter is the secret key which should be

used for encryption.

 AES Decryption Class:
public static byte[] decrypt(byte[] data, String pass, int encryptSize) throws Exception{
 try{
 byte[] keyBytes = getPassBytes(pass, encryptSize);
 byte[] input = data;//data.getBytes();
 SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.DECRYPT_MODE, key);
 byte[] cipherText = cipher.doFinal(input);

 return cipherText;
 }catch (Exception ex) {
 throw ex;
 }
 }

In the AES decryption class, we start the decryption process based on the incoming

message. Function calls the data string, encryption size and assign read ciphered data to

a variable. Then we use the same cipher as for encryption, but we initialize it for

decryption with the previously generated secret key.

6.3.3 Pseudo Codes Examples

Below are some important pseudo examples for extracting importance level value for

the fuzzy classification phase in our system implementation.

 153

 Read XML Tag “Importance Level”:

Value XML_Tag_Value = “Importance Level”
Number_Of_Tags;
Get Parsed_XML_Message;
Get XML_Tag_Value;

While count <= Number_Of_Tags
Check XML_Tag_Value
 If XML_Tag_Value = “High”
 Encryption_Algorithm = “AES”
 Encryption_Key = “256”
Do_Encryption_Function1 for the XML Tag: XML_Tag_Value AND Childs
 If XML_Tag_Value = “Medium”
 Encryption_Algorithm = “AES”
 Encryption_Key = “128”
Do_Encryption_Function2 for the XML Tag: XML_Tag_Value AND Childs
 If XML_Tag_Value = “Low” OR XML_Tag_Value = “”
 Encryption_Algorithm = “”
 Encryption_Key = “”
Do_Message_Forward_Function for the XML Tag: XML_Tag_Value AND Childs

6.4 Chapter Summary

In this chapter, extensive tests were carried out to check the performance of SXMS

model and file size reduction. The basic idea of testing is to measure the encryption

processing time and resulting file sizes. SXMS model was tested against W3C XML

Encryption standard. Testing took place taking into consideration element-wise

encryption and full encryption. Element-wise encryption was performed and evaluated

based on two cases, the first by encrypting a pre-defined list of tags within each XML

message and measuring the results against SXMS model which uses element-wise

encryption on a fuzzified list of tags, tags were selected based on a previous step which

classify XML messages deploying fuzzification techniques. The second case performed

by encrypting the whole messages and comparing the results against our element-wise

based encryption model. Results showed a significant improvement in both cases

presenting the superiority of our basic concept which uses on-the-fly fuzzy

classification mechanism encrypting only critical information within XML messages.

 154

The other achievement is the encrypted file size reduction, whereby deploying SXMS

produced smaller file sizes post the encryption process which saves both time and

bandwidth on a large scale.

 155

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have characterized an intelligent and secure XML management system

has been proposed for securing financial XML messages. System has been designed to

secure the essential parts within the financial XML messages. Fuzzy logic has been

used to provide an efficient technique for creating an intelligent model to fetch the

important parts within each XML message, which involves selecting the important parts

and assigning them an attribute value called the importance level. An element-wise

encryption model is used to encrypt selected parts from the fuzzy classification phase;

encryption uses different key sizes during the encryption process depending on the

importance level value. Set of experiments have been deployed to analyse different

transaction features and patterns, with all corresponding relations. Experiments result

presented the need for deploying a secure yet efficient system to handle exchanged

messages in business applications in general and in financial applications in particular.

The importance is not only in securing the transactions but in securing them in an

 156

efficient and robust way. The SXMS model covered the concept of providing an

efficient yet robust security mechanism for exchanging XML messages.

Phase one of SXMS uses a fuzzy-logic-based model to detect the important parts within

XML messages. The fuzzy logic model we have proposed consisted of the main four

stages (fuzzification stage, rule evaluation stage, aggregation stage, and finally

defuzzification stage). Financial XML message features are characterized as fuzzy

variables with specific fuzzy sets. For the purpose of final calculation of the XML

importance level attribute value, the fuzzy rules are processed by the operations

performed by fuzzy set into the inference engine.

We showed in our experiments that securing only the needed parts within each XML

message is an effective mechanism to use on a large scale. In our results, we were able

to achieve a significant improvement in encryption processing speed. In our first

experiment, we achieved a 33.8% improvement in processing time for our sample

messages. Using same sample messages, we were able to reduce file sizes for encrypted

XML messages. A significant size reduction of 34% achieved using our model

compared to encrypted XML messages using W3C Encryption.

In our second experiment on the same data sample, we were able to achieve

improvement in encryption processing time whereby we reached 41.9% improvement

using different key size. File size reduction is achieved as well hitting 41.3%

improvement in our second experiment using same data sample.

We have conducted an additional two experiments using a different data sample consist

of 1,500 messages. Using the same key size our model achieved 11.4% improvement in

processing time and 32.6% in file size reduction.

 157

Using same sample set of data but with different key size, we were able to achieve

another improvement in encryption processing time marking 32.2% faster to encrypt the

same sample and a 42.1% file size reduction for resulted encrypted files.

A desktop application has been developed and implemented. This application has

extracted all the XML message features. Verification of the extracted features has been

plugged into the model to identify importance level values effectively. An element-wise

encryption module has been integrated into the solution to perform element-wise

encryption effectively on the selected parts. The importance level attributes within each

XML message that have values of ―High‖ or ―Medium‖ are then processed. Different

key sizes are used depending on the importance level value.

The results from our evaluation stages and testing stages illustrated that our proposed

solution outperformed the existing XML security solutions. Our solution outperformed

these existing models in terms of efficiency, accuracy, and the speed of importance

level detection, using fuzzy classification techniques.

We have presented a comparative performance of proposed system in order to illustrate

the capabilities through testing stages.

Potential contributions can be deduced from our research that could enhance overall

model deployment in different niches and fields. The following are the main

contributions and achievements described in detail:

1. Significant improvement in processing time performing either element-wise

encryption or full encryption, an average improvement in encryption processing

time of 22.6% achieved compared to W3C Encryption model using the same key

size. An average 34.5% improvement also achieved using different key size.

 158

2. Significant file size reduction achieved, an average file deduction of 33.3%

achieved compared to W3C Encryption model using the same key size, and a 41.2%

size reduction achieved using different key size.

3. The ten features and patterns that characterize financial XML messages were

extracted in a successful way and distributed in three main layers, depending on the

transaction attribute nature.

4. A resilient, secure, and intelligent XML model has been proposed. The mechanism

uses fuzzy logic to process the features of XML messages. The model performs

element-wise encryption on selected parts with attribute values set to ―High‖ or

―Medium‖.

5. A desktop application has been designed and developed to test and validate our

proposed model. The testing was done to prove the reliability, feasibility, and

extraction process of the mechanism. The application has been developed using Java

programming language; our application successfully extracted the critical and

important parts within two chunks of sample messages. The two samples reflected

1,000 and 1,500 XML messages.

6. The SXMS model was built with flexibility taken into consideration. The system

was designed to handle future enhancements and modifications, so researchers

would be able to make core changes either at the fuzzy classification stage or at the

encryption stage. Such core changes could include changing the fuzzy classification

technique and how it is used; this could be used in conjunction with data mining and

classification techniques, or could even be completely replaced with well-known

classifiers like decision trees (Quinlan, 1979, 1986, 1998) or Classification based on

association (CBA) (Liu, Hsu, & Ma, 1998). Core changes could also include

changing the encryption algorithm and used keys: the AES encryption could be

 159

replaced with DES or triple DES encryption, if the researchers could prove this

change‘s feasibility. The flexibility of our model leaves a wide range of space for

enhancements and new contributions.

7.2 Future Work

A secure XML management system has been introduced for handling the exchanging of

XML messages in a secure and efficient way. Our proposed solution is based on two

main phases: the first phase involves fetching the important parts within XML messages

by implementing a fuzzy based classification technique. This technique uses an

intelligent fuzzy methodology based on a layered structure to collect and analyse all of

the XML message features and patterns. The second phase involves adopting an

element-wise encryption mechanism that uses different key sizes to encrypt the parts

selected in the previous stage. The level of encryption used on the selected parts

depends on the attribute values assigned in the fuzzy classification stage: if the attribute

value for an importance level tag is set to ―High‖, AES encryption with a key value of

256 bits is used. A key value of 128 bits is used in the case of a ―Medium‖ attribute

value. Finally, tags with no attribute values assigned or those set to ―Low‖ are

forwarded without deploying any type of encryption.

This kind of intelligent and supervised machine learning technique provides a large

amount of room and potential for future improvements and enhancements.

Each unit in our SXMS model acts independently as a separate system. This flexible

nature allows and motivates future work and enhancements. Despite the significant

improvement on the processing time and file size reduction, the proposed system has

some limitations in term of automating the whole process, especially rule evaluation

 160

stage whereby we need to inject the expert knowledge manually during fuzzification

stage. The following points describe the future work that could be achieved to improve

system functionality and automation of certain areas:

Fuzzy classification phase: We can employ supervised machine learning for fuzzy rule

generation process automation. By performing this automation we can reduce the

human expert involvement with high potential to increase fuzzy classification phase

performance. This could be achieved by generating classification rules using well-

known classifiers. For example, we could use PRISM (Cendrowska, 1987), C4.5

Decision Tree (Quinlan, 1996), Ripper (Cohen, 1995), Classification based on

association (CBA) (Liu et al., 1998), k-nearest neighbour classification (kNN) (Guo et

al., 2006), support vector machines (SVM) (Brank et al., 2003), naïve bayes

classification (McCallum & Nigam, 1998), neural networks (NN) (Ng et al., 1997),

linear least squares fit mapping (Yang & Chute, 1993), or the vector space method

(Gauch et al., 2004). These association classification rules could be shared with a fuzzy

logic inference engine to provide importance level extraction in an efficient way.

Encryption phase: We could utilize a different encryption scheme; asymmetric

algorithms could be deployed. We have deployed symmetric encryption due to its

efficiency and processing time; it outperforms asymmetric encryption algorithms.

However, we could change the symmetric encryption algorithm to something different

like DES, triple DES, or blowfish encryption. Researchers will be able to test and

measure the performance for any replaced encryption algorithm. Also, usage of the

encryption keys could be change to reflect different key sizes for each importance level

assigned. For example, we could assign an encryption key size of 192 bits instead of

256 bits for the importance level ―High‖ value.

 161

There is also the ability to add the concept of XML classification instead of fuzzy

classification or associative classification. XML classification focuses on structure

similarity rather than content. We could use the classification technique using

hierarchical taxonomies proposed by (Fuhr & Weikum, 2002), or we could use the well-

known classifier called XRules proposed by (Zaki & Aggarwal, 2003), which focuses

on the structural classification of XML documents. We also might consider a hybrid

combination of content and structural classification as proposed by (Denoyer &

Gallinari, 2004), which is based on a generative Bayesian classifier.

Finally, regarding the ability to generalize the Fuzzy-based Model for Financial XML

Transactions Security adoption, we can expand our work in fuzzy classification phase

to enable XML message parsing without the need to create a pre-defined structure. By

performing this kind of improvement, we will be able to adopt the model with ease and

without the need to create a pre-defined structure for message extraction. Successful

adoption of this generalization enables commercial packaging for broader use in

commercial and financial areas.

 162

References

10181-1, I.-T. R. X. I. I. (1996). Information technology — Security Frameworks in

Open Systems: Overview.

10181-1, I.-T. X. I. (1996). Information technology — Security Frameworks in Open

Systems: Overview.

Abiteboul, S. (1996). Querying Semi-Structured Data: Stanford InfoLab.

Abiteboul, S., Segoufin, L., & Vianu, V. (2006). Representing and querying XML with

incomplete information. ACM Trans. Database Syst., 31(1), 208-254. doi:

10.1145/1132863.1132869

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., & Simon, E. (2002). XML-Signature

Syntax and Processing: W3C Recommendation.

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., & Simon, E. (2008). XML signature

syntax and processing (second edition).

Blair, D. (2001). Re: attribute encryption (from XML encryption mailing list).

Boyer, J. (2001). Canonical XML Version 1.0: RFC Editor.

BOYER, J., EASTLAKE, D. E., & REAGLE, J. (2002). Exclusive XML

Canonicalization, Version 1.0. Retrieved from

http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

Boyer, J., Hughes, M., & Reagle, J. (2003). XML-Signature XPath Filter 2.0: RFC

Editor.

Brank, J., Grobelnik, M., Milic-Frayling, N., & Mladenic, D. (2003). Training text

classifiers with SVM on very few positive examples.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2007).

Extensible Markup Language (XML) 1.0 (Fourth Edition). Retrieved from

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008).

Extensible Markup Language (XML) 1.0 (Fifth Edition). Retrieved from

http://www.w3.org/TR/REC-xml/

Bridges, S. M., & Vaughn, R. B. (2001). Fuzzy Data Mining And Genetic Algorithms

Applied To Intrusion Detection. Paper presented at the 23rd National

Information Systems Security Conference.

Cantor, S., Kemp, J., Philpott, R., & Maler, E. (2005). Assertions and Protocols for the

OASIS Security Assertion Markup Language (SAML) v2.0. Retrieved from

http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/REC-xml/

 163

Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules. International

Journal of Man-Machine Studies, 27(4), 349-370. doi:

http://dx.doi.org/10.1016/S0020-7373(87)80003-2

Clark, J. (2001). TREX - Tree Regular Expressions for XML.

Cohen, W. W. (1995). Fast Effective Rule Induction In Proceedings of the Twelfth

International Conference on Machine Learning (pp. 115-123): Morgan

Kaufmann.

Cox, E. (2001a). Fuzzy logic and the measures of certainty in eCommerce expert

systems. PC AI, 15(3), 16-22.

Cox, E. (2001b). Fuzzy Logic and the Measures of Certainty in eCommerce Expert

Systems. Scianta Intelligence.

Denoyer, L., & Gallinari, P. (2004). Bayesian network model for semi-structured

document classification. Inf. Process. Manage., 40(5), 807-827. doi:

10.1016/j.ipm.2004.04.009

Diffie, W., & Hellman, M. E. (1976). New directions in cryptography. Information

Theory, IEEE Transactions on, 22(6), 644-654. doi: 10.1109/tit.1976.1055638

E, S., & B, L. (2000). XML encryption strawman proposal. Retrieved from

http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html

Eastlake, D., & Reagle, J. (2002). XML Encryption Syntax and Processing.

Ed, S. (2000). XML Encryption: Issues Regarding Attribute Values and Referenced.

Retrieved from http://www.w3.org/Encryption/2001/Minutes/0103-

Boston/simon-attribute-encryption.html

Ed, S. (2001). Re: attribute encryption, schema validation, role of XSLT, scope of XML

encryption document (from XML encryption mailing list).

Fallside, D. (2001). XML schema part 0: primer.W3C recommendation.

Fallside, D. C., & Walmsley, P. (2004). XML Schema Part 0: Primer Second Edition.

W3C Recommendation.

Fuhr, N., & Weikum, G. (2002). Classification and Intelligent Search on Information in

XML. Bulletin of the IEEE Technical Committee on Data Engineering, 25, 51-

58.

Galindo, J. (2008). Handbook of Research on Fuzzy Information Processing in

Databases: Information Science Reference - Imprint of: IGI Publishing.

Gauch, S., Madrid, J. M., Induri, S., Ravindran, D., & Chadlavada, S. (2004).

KeyConcept: A Conceptual Search Engine: University of Kansas.

http://dx.doi.org/10.1016/S0020-7373(87)80003-2
http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html
http://www.w3.org/Encryption/2001/Minutes/0103-Boston/simon-attribute-encryption.html
http://www.w3.org/Encryption/2001/Minutes/0103-Boston/simon-attribute-encryption.html

 164

Gaurav, A., & Alhajj, R. (2006). Incorporating fuzziness in XML and mapping fuzzy

relational data into fuzzy XML. Paper presented at the Proceedings of the 2006

ACM symposium on Applied computing, Dijon, France.

Geuer-Pollmann, C. (2002). XML pool encryption. Paper presented at the Proceedings

of the 2002 ACM workshop on XML security, Fairfax, VA.

GODIK, S., & MOSES, T. (2002). XACML 1.0 - The OASIS extensible Access

Control Markup Language (XACML). Retrieved from http://www.oasis-

open.org/committees/xacml/

http://www.oasis-open.org/committees/xacml/repository/cs-xacml-core-01.doc

Godik, S., & Moses, T. (2003). eXtensible Access Control Markup Language

(XACML) Version 1.0. Retrieved from http://www.oasis-

open.org/committees/xacml/repository/

Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2006). Using kNN model for

automatic text categorization. Soft Computing, 10(5), 423-430. doi:

10.1007/s00500-005-0503-y

Hallam-Baker, P., & Mysore, S. H. (2005). XML Key Management Specification

(XKMS 2.0) Retrieved June, 2010, from http://www.w3.org/TR/xkms2/

Hégaret, P. L., Whitmer, R., & Wood, L. (2005). Document Object Model (DOM)

Retrieved from http://www.w3.org/DOM/

Herrera-Viedma, E., Peis, E., Morales-del-Castillo, J. M., Alonso, S., & Anaya, K.

(2007). A fuzzy linguistic model to evaluate the quality of Web sites that store

XML documents. International Journal of Approximate Reasoning, 46(1), 226-

253. doi: http://dx.doi.org/10.1016/j.ijar.2006.12.010

Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1996). Direct approach processes in

group decision making using linguistic OWA operators. Fuzzy Sets and Systems,

79(2), 175-190. doi: http://dx.doi.org/10.1016/0165-0114(95)00162-X

Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra, P., Philpott, R., & Maler, E.

(2005). Profiles for the OASIS Security Assertion Markup Language (SAML)

V2.0. Retrieved from

Hunter, D., Cagle, K., Dix, C., & Cable, D. (2001). Beginning XML 2nd edition (2nd

ed.): Wrox Press.

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.12-1990, 1-84. doi: 10.1109/ieeestd.1990.101064

Imamura, T., Dillaway, B., & Simon, E. (2002). XML Encryption Syntax and

Processing.

ISO10181-1, I.-T. X. Information technology — Security Frameworks in Open

Systems: Overview.

http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/repository/cs-xacml-core-01.doc
http://www.oasis-open.org/committees/xacml/repository/
http://www.oasis-open.org/committees/xacml/repository/
http://www.w3.org/TR/xkms2/
http://www.w3.org/DOM/
http://dx.doi.org/10.1016/j.ijar.2006.12.010
http://dx.doi.org/10.1016/0165-0114(95)00162-X

 165

ISO/IEC9798-1. (1997). Information technology — Security techniques — Entity

authentication — Part 1: General.

ISO/IEC11770. Information technology — Security techniques — Key management.

Retrieved from

JAB. (2013). Jordan Ahli Bank, from http://www.ahli.com/

Jelliffe, R. (2006). Resource Directory (RDDL) for Schematron 1.5. Retrieved June

2010, from http://xml.ascc.net/schematron/

Joseph, R. (2001). XML Encryption Requirements Retrieved November, 2011, from

http://www.w3.org/TR/xml-encryption-req

http://www.w3.org/Encryption/2001/Drafts/xml-encryption-req

King, S. (2003). Threats and Solutions to Web Services Security. Network Security,

2003(9), 8-11. doi: http://dx.doi.org/10.1016/S1353-4858(03)00907-3

Klarlund, N., Møller, A., & Schwartzbach, M. I. (2000). DSD: A Schema Language for

XML. Paper presented at the Workshop on Formal Methods in Software

Practice, Portland, Oregon. http://www.brics.dk/DSD/dsd.html

Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications:

Prentice-Hall, Inc.

Lee, J., & Fanjiang, Y.-y. (2003). Modeling imprecise requirements with XML.

Information & Software Technology, 45(7), 445-460. doi: 10.1016/s0950-

5849(03)00015-6

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating Classification and Association Rule

Mining (pp. 80-86).

Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in

description logics for the Semantic Web. Web Semant., 6(4), 291-308. doi:

10.1016/j.websem.2008.04.001

M\oller, A. (2005, December). Document Structure Description 2.0

Ma, Z. M., & Yan, L. (2007). Fuzzy XML data modeling with the UML and relational

data models. Data Knowl. Eng., 63(3), 972-996. doi:

10.1016/j.datak.2007.06.003

Mahant, N. (2004). Risk Assessment is Fuzzy Business—Fuzzy Logic Provides the

Way to Assess Off-site Risk from Industrial Installations. Bechtel, Australia:

Risk 2004.

Makoto, M. (2002). RELAX (Regular Language description for XML) Retrieved June

2010, from http://www.xml.gr.jp/relax/

Makoto, M., Walsh, N., & McRae, M. (2001). TREX and RELAX Unified as RELAX

NG, a Lightweight XML Language Validation Specification.

http://www.ahli.com/
http://xml.ascc.net/schematron/
http://www.w3.org/TR/xml-encryption-req
http://www.w3.org/Encryption/2001/Drafts/xml-encryption-req
http://dx.doi.org/10.1016/S1353-4858(03)00907-3
http://www.brics.dk/DSD/dsd.html
http://www.xml.gr.jp/relax/

 166

Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a

fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-

13. doi: http://dx.doi.org/10.1016/S0020-7373(75)80002-2

Maruyama, H., & Imamura, T. (2000). Element-Wise XML Encryption Retrieved

February 2008, from http://lists.w3.org/Archives/Public/xml-

encryption/2000Apr/att-0005/01-xmlenc

McCallum, A., & Nigam, K. (1998). A comparison of event models for Naive Bayes

text classification

Mclaughlin, B., & Edelson, J. (2006). Java and XML Third Edition: O'Reilly.

Ng, H. T., Goh, W. B., & Low, K. L. (1997). Feature selection, perceptron learning, and

a usability case study for text categorization. SIGIR Forum, 31(SI), 67-73. doi:

10.1145/278459.258537

Nierman, A., & Jagadish, H. V. (2002). ProTDB: Probabilistic data in XML In

Proceedings of the 28th VLDB Conference (pp. 646-657): Springer.

O'Neill, M. (2003). Web Services Security (1 ed.): McGraw-Hill Osborne Media.

OASIS, S. S. T. C. o. (2002). Oasis security services (saml) Retrieved October 2010,

from http://www.oasis-open.org/committees/security/

Ortega, F. B. (2008). Managing Vagueness in Ontologies. PhD PhD Dissertation,

University of Granada, Spain.

Petrovic, D., Roy, R., & Petrovic, R. (1999). Supply chain modelling using fuzzy sets.

International Journal of Production Economics, 59(1–3), 443-453. doi:

http://dx.doi.org/10.1016/S0925-5273(98)00109-1

Phillip M, H.-B., & Ford, W. (2001). XML Key Management Specification (XKMS).

http://www10.org/cdrom/posters/1129.pdf

Pressman, R. (2009). Software Engineering: A Practitioner's Approach (7 ed.):

McGraw-Hill.

Quinlan, J. R. (1979). Discovering rules from large collections of examples: a case

study.

Quinlan, J. R. (1986). Induction of Decision Trees. Mach. Learn., 1(1), 81-106. doi:

10.1023/a:1022643204877

Quinlan, J. R. (1996). Improved Use of Continuous Attributes in C4.5. Journal of

Artificial Intelligence Research, 4, 77-90.

Quinlan, J. R. (1998). Data Mining Tools see5 and c5.

Ray, E. T. (2003). Learning XML - creating self-describing data: cover schemas (2nd

ed.): O'Reilly.

http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://lists.w3.org/Archives/Public/xml-encryption/2000Apr/att-0005/01-xmlenc
http://lists.w3.org/Archives/Public/xml-encryption/2000Apr/att-0005/01-xmlenc
http://www.oasis-open.org/committees/security/
http://dx.doi.org/10.1016/S0925-5273(98)00109-1
http://www10.org/cdrom/posters/1129.pdf

 167

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 21(2), 120-126. doi:

10.1145/359340.359342

Rosario, R. (2001). Secure XML An Overview of XML Encryption.

Smets, P. (1996). Imperfect Information: Imprecision and Uncertainty Uncertainty

Management in Information Systems (pp. 225-254).

Steve, W. (2001). Re: attribute encryption (from XML encryption mailing list).

Sugeno, M. (1985). An introductory survey of fuzzy control. Information Sciences, 36,

59-83.

Takeshi, I., & Hiroshi, M. (2000). Specification of element-wise XML encryption.

Retrieved from http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/att-

0005/01-xmlenc-spec.html

Tseng, C., Khamisy, W., & Vu, T. (2005). Universal fuzzy system representation with

XML. Computer Standards & Interfaces, 28(2), 218-230. doi:

http://dx.doi.org/10.1016/j.csi.2004.11.005

Turowski, K., & Weng, U. (2002). Representing and processing fuzzy information —

an XML-based approach. Knowledge-Based Systems, 15(1–2), 67-75. doi:

http://dx.doi.org/10.1016/S0950-7051(01)00122-8

Violleau, T. (2001). Java Technology and XML. Retrieved from

W3C. (1998). Extensible Markup Language Retrieved October 2009, from

http://www.w3.org/TR/1998/REC-xml-19980210

W3C. (2001). XML Encryption Syntax and Processing.

W3C, BOYER, J., EASTLAKE, D. E., & REAGLE, J. (2002). Exclusive XML

Canonicalization, Version 1.0 Retrieved April 2011, from

http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

Weerasinghe, D., Elmufti, K., Rajarajan, M., & Rakocevic, V. (2006, Nov. 29 2006-

Dec. 1 2006). XML Security based Access Control for Healthcare Information in

Mobile Environment. Paper presented at the Pervasive Health Conference and

Workshops, 2006.

Williams, I. (2009). Beginning XSLT and XPath: Transforming XML Documents

and

Data: Wrox Press.

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in

multicriteria decisionmaking. Systems, Man and Cybernetics, IEEE

Transactions on, 18(1), 183-190. doi: 10.1109/21.87068

http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/att-0005/01-xmlenc-spec.html
http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/att-0005/01-xmlenc-spec.html
http://dx.doi.org/10.1016/j.csi.2004.11.005
http://dx.doi.org/10.1016/S0950-7051(01)00122-8
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

 168

Yager, R. R. (2000). Targeted e-commerce marketing using fuzzy intelligent agents.

Intelligent Systems and their Applications, IEEE, 15(6), 42-45. doi:

10.1109/5254.895859

Yager, R. R., & Pasi, G. (2001). Product category description for web-shopping in e-

commerce. International Journal of Intelligent Systems, 16(8), 1009-1021. doi:

10.1002/int.1046

Yang, Y., & Chute, C. G. (1993). An application of least squares fit mapping to text

information retrieval. Paper presented at the Proceedings of the 16th annual

international ACM SIGIR conference on Research and development in

information retrieval, Pittsburgh, Pennsylvania, USA.

Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. Paper

presented at the Proceedings of the 22nd annual international ACM SIGIR

conference on Research and development in information retrieval, Berkeley,

California, USA.

Zadeh, L. A. (1965). Fuzzy Sets. Information Control, 8, 338-353.

Zadeh, L. A. (1984). Making computers think like people: The term `fuzzy thinkingÂ¿

is pejorative when applied to humans, but fuzzy logic is an asset to machines in

applications from expert systems to process control. Spectrum, IEEE, 21(8), 26-

32. doi: 10.1109/mspec.1984.6370431

Zaki, M. J., & Aggarwal, C. C. (2003). XRules: an effective structural classifier for

XML data. Paper presented at the Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, Washington,

D.C.

Zhang, F., Ma, Z. M., & Yan, L. (2013). Construction of fuzzy ontologies from fuzzy

XML models. Knowledge-Based Systems, 42(0), 20-39. doi:

http://dx.doi.org/10.1016/j.knosys.2012.12.015

http://dx.doi.org/10.1016/j.knosys.2012.12.015

 169

Appendix A

Rules for Layer 1, Layer 2, and Layer 3

The complete list of rules extracted from MATLAB is listed in Appendix A. rules

represent the three layers, layer 1 which is the account segment, layer 2 which is the

details segment, and layer 3 which is environment segment. There are 135 rule

defined in this list.

Rules for Layer 1 (Account Segment)

There are 27 rules extracted from MATLAB fuzzy set, layer 1 represent account

segment.

Fuzzy Rules:

Rule 1. If (Amount is Non-Sensitive) and (Currency is Non-Sensitive) and (Account_Type is Non-

Sensitive) then (output1 is Low) (0.4)

Rule 2. If (Amount is Non-Sensitive) and (Currency is Non-Sensitive) and (Account_Type is Normal)

then (output1 is Low) (0.4)

Rule 3. If (Amount is Non-Sensitive) and (Currency is Non-Sensitive) and (Account_Type is Sensitive)

then (output1 is Medium) (0.4)

Rule 4. If (Amount is Non-Sensitive) and (Currency is Normal) and (Account_Type is Non-Sensitive)

then (output1 is Low) (0.4)

Rule 5. If (Amount is Non-Sensitive) and (Currency is Normal) and (Account_Type is Normal) then

(output1 is Medium) (0.4)

Rule 6. If (Amount is Non-Sensitive) and (Currency is Normal) and (Account_Type is Sensitive) then

(output1 is Medium) (0.4)

Rule 7. If (Amount is Non-Sensitive) and (Currency is Sensitive) and (Account_Type is Non-Sensitive)

then (output1 is Low) (0.4)

Rule 8. If (Amount is Non-Sensitive) and (Currency is Sensitive) and (Account_Type is Normal) then

(output1 is Medium) (0.4)

Rule 9. If (Amount is Non-Sensitive) and (Currency is Sensitive) and (Account_Type is Sensitive) then

(output1 is Medium) (0.4)

Rule 10. If (Amount is Normal) and (Currency is Non-Sensitive) and (Account_Type is Non-Sensitive)

then (output1 is Medium) (0.4)

Rule 11. If (Amount is Normal) and (Currency is Non-Sensitive) and (Account_Type is Normal) then

(output1 is Medium) (0.4)

Rule 12. If (Amount is Normal) and (Currency is Non-Sensitive) and (Account_Type is Sensitive) then

(output1 is High) (0.4)

Rule 13. If (Amount is Normal) and (Currency is Normal) and (Account_Type is Non-Sensitive) then

(output1 is Medium) (0.4)

Rule 14. If (Amount is Normal) and (Currency is Normal) and (Account_Type is Normal) then (output1

is Medium) (0.4)

Rule 15. If (Amount is Normal) and (Currency is Normal) and (Account_Type is Sensitive) then (output1

is High) (0.4)

 170

Rule 16. If (Amount is Normal) and (Currency is Sensitive) and (Account_Type is Non-Sensitive) then

(output1 is Medium) (0.4)

Rule 17. If (Amount is Normal) and (Currency is Sensitive) and (Account_Type is Normal) then (output1

is Medium) (0.4)

Rule 18. If (Amount is Normal) and (Currency is Sensitive) and (Account_Type is Sensitive) then

(output1 is Medium) (0.4)

Rule 19. If (Amount is Sensitive) and (Currency is Non-Sensitive) and (Account_Type is Non-Sensitive)

then (output1 is Medium) (0.4)

Rule 20. If (Amount is Sensitive) and (Currency is Non-Sensitive) and (Account_Type is Normal) then

(output1 is Medium) (0.4)

Rule 21. If (Amount is Sensitive) and (Currency is Non-Sensitive) and (Account_Type is Sensitive) then

(output1 is High) (0.4)

Rule 22. If (Amount is Sensitive) and (Currency is Normal) and (Account_Type is Non-Sensitive) then

(output1 is Medium) (0.4)

Rule 23. If (Amount is Sensitive) and (Currency is Normal) and (Account_Type is Normal) then (output1

is High) (0.4)

Rule 24. If (Amount is Sensitive) and (Currency is Normal) and (Account_Type is Sensitive) then

(output1 is High) (0.4)

Rule 25. If (Amount is Sensitive) and (Currency is Sensitive) and (Account_Type is Non-Sensitive) then

(output1 is Medium) (0.4)

Rule 26. If (Amount is Sensitive) and (Currency is Sensitive) and (Account_Type is Normal) then

(output1 is High) (0.4)

Rule 27. If (Amount is Sensitive) and (Currency is Sensitive) and (Account_Type is Sensitive) then

(output1 is High) (0.4)

Number of Rules: 27

Rules for Layer 2 (Details Segment)

There are 81 rules extracted from MATLAB fuzzy set, layer 2 represent details

segment.

Fuzzy Rules:

Rule 1. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is

Medium) (0.3)

Rule 2. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Low)

(0.3)

Rule 3. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Low) (0.3)

Rule 4. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is Medium) (0.3)

Rule 5. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 6. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Medium)

(0.3)

Rule 7. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

 171

Rule 8. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is High) (0.3)

Rule 9. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Medium) (0.3)

Rule 10. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is Low)

(0.3)

Rule 11. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium)

(0.3)

Rule 12. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Low) (0.3)

Rule 13. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is Medium) (0.3)

Rule 14. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Normal) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 15. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Low)

(0.3)

Rule 16. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is Medium)

(0.3)

Rule 17. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 18. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Medium) (0.3)

Rule 19. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is Low)

(0.3)

Rule 20. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Low)

(0.3)

Rule 21. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Low) (0.3)

Rule 22. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is Medium) (0.3)

Rule 23. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 24. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Low)

(0.3)

Rule 25. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is Medium)

(0.3)

Rule 26. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 27. If (Transaction_Notes is Non-Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Low)

(0.3)

Rule 28. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is High)

(0.3)

 172

Rule 29. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is High)

(0.3)

Rule 30. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Medium) (0.3)

Rule 31. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

Rule 32. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 33. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Medium)

(0.3)

Rule 34. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

Rule 35. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is High) (0.3)

Rule 36. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is High)

(0.3)

Rule 37. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is Medium) (0.3)

Rule 38. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 39. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Medium) (0.3)

Rule 40. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is Medium) (0.3)

Rule 41. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Normal) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 42. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Medium) (0.3)

Rule 43. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

Rule 44. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 45. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Normal) and (Password_Tries

is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Medium) (0.3)

Rule 46. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is

Medium) (0.3)

Rule 47. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Low)

(0.3)

Rule 48. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Low) (0.3)

Rule 49. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is Medium) (0.3)

Rule 50. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 51. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Medium)

(0.3)

Rule 52. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is Medium)

(0.3)

 173

Rule 53. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 54. If (Transaction_Notes is Normal) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Medium) (0.3)

Rule 55. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is High)

(0.3)

Rule 56. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is High)

(0.3)

Rule 57. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Medium) (0.3)

Rule 58. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

Rule 59. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Normal) then (output1 is High) (0.3)

Rule 60. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is High)

(0.3)

Rule 61. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

Rule 62. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is High) (0.3)

Rule 63. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is High)

(0.3)

Rule 64. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is

Medium) (0.3)

Rule 65. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium)

(0.3)

Rule 66. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Medium) (0.3)

Rule 67. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

Rule 68. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Normal) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 69. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Medium)

(0.3)

Rule 70. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

Rule 71. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is High) (0.3)

Rule 72. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Normal) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is High)

(0.3)

Rule 73. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is

Medium) (0.3)

Rule 74. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium)

(0.3)

 174

Rule 75. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Non-Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is

Low) (0.3)

Rule 76. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Sensitive) then (output1 is Medium) (0.3)

Rule 77. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 78. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Normal) and (Destination_Account_Tries is Non-Sensitive) then (output1 is Medium)

(0.3)

Rule 79. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Sensitive) then (output1 is High) (0.3)

Rule 80. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Normal) then (output1 is Medium) (0.3)

Rule 81. If (Transaction_Notes is Sensitive) and (Destination_Profile_ID is Non-Sensitive) and

(Password_Tries is Sensitive) and (Destination_Account_Tries is Non-Sensitive) then (output1 is High)

(0.3)

Number of Rules: 81

Rules for Layer 3 (Environment Segment)

There are 27 rules extracted from MATLAB fuzzy set, layer 3 represent

environment segment.

Fuzzy Rules:

Rule 1. If (Daily_Transactions is Sensitive) and (Transaction_Time is Non-Sensitive) and (Time_On_Site

is Sensitive) then (output1 is Medium) (0.3)

Rule 2. If (Daily_Transactions is Sensitive) and (Transaction_Time is Non-Sensitive) and (Time_On_Site

is Normal) then (output1 is Medium) (0.3)

Rule 3. If (Daily_Transactions is Sensitive) and (Transaction_Time is Non-Sensitive) and (Time_On_Site

is Non-Sensitive) then (output1 is Medium) (0.3)

Rule 4. If (Daily_Transactions is Sensitive) and (Transaction_Time is Normal) and (Time_On_Site is

Sensitive) then (output1 is Medium) (0.3)

Rule 5. If (Daily_Transactions is Sensitive) and (Transaction_Time is Normal) and (Time_On_Site is

Normal) then (output1 is High) (0.3)

Rule 6. If (Daily_Transactions is Sensitive) and (Transaction_Time is Normal) and (Time_On_Site is

Non-Sensitive) then (output1 is High) (0.3)

Rule 7. If (Daily_Transactions is Sensitive) and (Transaction_Time is Sensitive) and (Time_On_Site is

Sensitive) then (output1 is High) (0.3)

Rule 8. If (Daily_Transactions is Sensitive) and (Transaction_Time is Sensitive) and (Time_On_Site is

Normal) then (output1 is High) (0.3)

Rule 9. If (Daily_Transactions is Sensitive) and (Transaction_Time is Sensitive) and (Time_On_Site is

Non-Sensitive) then (output1 is High) (0.3)

Rule 10. If (Daily_Transactions is Normal) and (Transaction_Time is Non-Sensitive) and (Time_On_Site

is Sensitive) then (output1 is Low) (0.3)

Rule 11. If (Daily_Transactions is Normal) and (Transaction_Time is Non-Sensitive) and (Time_On_Site

is Normal) then (output1 is Medium) (0.3)

Rule 12. If (Daily_Transactions is Normal) and (Transaction_Time is Non-Sensitive) and (Time_On_Site

is Non-Sensitive) then (output1 is Medium) (0.3)

 175

Rule 13. If (Daily_Transactions is Normal) and (Transaction_Time is Normal) and (Time_On_Site is

Sensitive) then (output1 is Low) (0.3)

Rule 14. If (Daily_Transactions is Normal) and (Transaction_Time is Normal) and (Time_On_Site is

Normal) then (output1 is Medium) (0.3)

Rule 15. If (Daily_Transactions is Normal) and (Transaction_Time is Normal) and (Time_On_Site is

Non-Sensitive) then (output1 is High) (0.3)

Rule 16. If (Daily_Transactions is Normal) and (Transaction_Time is Sensitive) and (Time_On_Site is

Sensitive) then (output1 is Medium) (0.3)

Rule 17. If (Daily_Transactions is Normal) and (Transaction_Time is Sensitive) and (Time_On_Site is

Normal) then (output1 is Medium) (0.3)

Rule 18. If (Daily_Transactions is Normal) and (Transaction_Time is Sensitive) and (Time_On_Site is

Non-Sensitive) then (output1 is High) (0.3)

Rule 19. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Non-Sensitive) and

(Time_On_Site is Sensitive) then (output1 is Low) (0.3)

Rule 20. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Non-Sensitive) and

(Time_On_Site is Normal) then (output1 is Low) (0.3)

Rule 21. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Non-Sensitive) and

(Time_On_Site is Non-Sensitive) then (output1 is Medium) (0.3)

Rule 22. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Normal) and (Time_On_Site

is Sensitive) then (output1 is Low) (0.3)

Rule 23. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Normal) and (Time_On_Site

is Normal) then (output1 is Medium) (0.3)

Rule 24. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Normal) and (Time_On_Site

is Non-Sensitive) then (output1 is Medium) (0.3)

Rule 25. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Sensitive) and

(Time_On_Site is Sensitive) then (output1 is Medium) (0.3)

Rule 26. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Sensitive) and

(Time_On_Site is Normal) then (output1 is Medium) (0.3)

Rule 27. If (Daily_Transactions is Non-Sensitive) and (Transaction_Time is Sensitive) and

(Time_On_Site is Non-Sensitive) then (output1 is High) (0.3)

Number of Rules: 27

 176

Appendix B

Sample extracted data used in experiments

Sample of data used in our real evaluation experiments. Data is extracted from the

internet banking system used in Jordan Ahli Bank. Data reflects a specific period of

time.

 Sample extracted data for Layer 1 (before and after mapping)

Table B-1: extracted data to be processed for layer 1 (before mapping)

Account_C

urrency

TO_Account

_Currency

Transactio

n ID
Transaction

_Amount

Transaction_

Currency

Same/To

Same

Curr

02 01 123456 122.22 USD No

01 01 61520 100 JOD Yes

01 01 61653 210 JOD Yes

01 01 62559 104 JOD Yes

01 01 62612 300 JOD Yes

01 02 62706 800 JOD No

01 01 62782 50 JOD Yes

01 01 62937 7550 JOD Yes

01 01 47307 100 JOD Yes

01 01 63873 1.725 JOD Yes

01 01 72931 80 JOD Yes

01 01 73210 303 JOD Yes

01 02 73355 1455 JOD No

01 01 73891 30 JOD Yes

01 01 73925 20000 JOD Yes

01 01 74112 250 JOD Yes

01 01 74820 100 JOD Yes

01 01 75153 245 JOD Yes

03 01 75812 100 EUR No

01 01 75973 125 JOD Yes

01 01 76096 1000 JOD Yes

01 01 76175 60 JOD Yes

01 02 76286 500 JOD No

01 02 76296 450 JOD No

01 01 76350 10000 JOD Yes

01 01 77327 110 JOD Yes

 177

Table B-2: extracted data for layer 1 (after mapping)

Transaction

Amount

Transaction

Currency

Account Type Account Layer

Importance Level

Rate

Non-Sensitive Non-Sensitive Non-Sensitive Low

Non-Sensitive Non-Sensitive Normal Low

Normal Normal Sensitive Medium

Normal Normal Normal Medium

Sensitive Non-Sensitive Sensitive High

Normal Non-Sensitive Sensitive Medium

Sensitive Non-Sensitive Non-Sensitive Low

Non-Sensitive Sensitive Non-Sensitive Low

Non-Sensitive Normal Normal Low

Non-Sensitive Sensitive Non-Sensitive Low

Sensitive Sensitive Non-Sensitive High

Normal Sensitive Normal Medium

Non-Sensitive Sensitive Normal Low

Non-Sensitive Normal Non-Sensitive Low

Non-Sensitive Non-Sensitive Sensitive Low

Non-Sensitive Non-Sensitive Non-Sensitive Low

Non-Sensitive Normal Sensitive Low

Normal Sensitive Non-Sensitive Low

Non-Sensitive Non-Sensitive Non-Sensitive Low

Sensitive Non-Sensitive Non-Sensitive Low

Sensitive Sensitive Non-Sensitive High

Normal Non-Sensitive Sensitive Low

Sensitive Sensitive Normal High

Sensitive Non-Sensitive Normal Low

Sensitive Non-Sensitive Non-Sensitive Low

Normal Non-Sensitive Non-Sensitive Low

Sensitive Sensitive Non-Sensitive High

Non-Sensitive Non-Sensitive Non-Sensitive Low

Non-Sensitive Non-Sensitive Normal Low

Sensitive Sensitive Normal High

Normal Sensitive Non-Sensitive Low

Non-Sensitive Non-Sensitive Normal Low

Non-Sensitive Normal Sensitive Low

Non-Sensitive Normal Non-Sensitive Low

Sensitive Sensitive Non-Sensitive High

Sensitive Normal Normal Medium

 Sample extracted data for Layer 2 (before and after mapping)

 178

Table B-3: extracted data for layer 2 (before mapping)

Transac

tion ID
Account

_Type

Transaction_

CODE

Destination

_ProfileID

Destination_Ac

count_Tries

Incorrect_Pass

word_Tries

123456 002 00 962002 3 0

61520 001 00 962001 3 0

61653 002 00 962002 1 0

62559 001 00 962001 2 1

62612 001 00 962001 2 1

62706 001 00 962001 2 1

62782 001 00 962001 2 1

62937 002 00 962002 2 0

47307 001 00 962001 2 0

63873 001 00 962001 2 0

72931 003 02 962001 2 0

73210 001 00 962001 2 0

73355 001 00 962001 2 0

73891 001 00 962001 2 0

73925 001 00 962001 2 0

74112 001 00 962001 2 0

74820 001 00 962001 2 0

75153 001 00 962001 2 0

75812 001 00 962001 2 0

75973 001 00 962001 2 0

76096 001 00 962001 2 0

76175 001 00 962001 1 0

76286 002 00 962002 1 0

76296 002 00 962002 1 0

76350 001 00 962001 1 0

77327 001 00 962001 3 0

Table B-4: extracted data for layer 2 (after mapping)

Transaction

Notes

Profile ID Account Tries Incorrect

Password Tries

Details Layer

Importance

Level Rate

Normal Sensitive Non-Sensitive Non-Sensitive Medium

Sensitive Non-Sensitive Non-Sensitive Non-Sensitive Medium

Non- Normal Non-Sensitive Normal Low

 179

Sensitive

Non-

Sensitive

Normal Sensitive Sensitive High

Non-

Sensitive

Sensitive Sensitive Sensitive High

Normal Sensitive Non-Sensitive Non-Sensitive Medium

Normal Non-Sensitive Normal Non-Sensitive Low

Normal Non-Sensitive Normal Non-Sensitive Low

Normal Sensitive Non-Sensitive Non-Sensitive Medium

Normal Non-Sensitive Non-Sensitive Non-Sensitive Low

Non-

Sensitive

Normal Sensitive Sensitive High

Non-

Sensitive

Sensitive Non-Sensitive Non-Sensitive Medium

Sensitive Non-Sensitive Sensitive Sensitive High

Normal Sensitive Non-Sensitive Non-Sensitive Medium

Sensitive Normal Sensitive Normal High

Non-

Sensitive

Normal Sensitive Sensitive High

Non-

Sensitive

Normal Sensitive Non-Sensitive Medium

Non-

Sensitive

Non-Sensitive Sensitive Normal Medium

Sensitive Non-Sensitive Sensitive Sensitive High

Non-

Sensitive

Normal Sensitive Sensitive High

Sensitive Normal Sensitive Normal High

Sensitive Normal Sensitive Sensitive High

Non-

Sensitive

Normal Sensitive Non-Sensitive Medium

Sensitive Normal Sensitive Sensitive High

Normal Non-Sensitive Normal Sensitive Medium

Non-

Sensitive

Non-Sensitive Sensitive Normal Medium

Normal Non-Sensitive Normal Sensitive Medium

Non-

Sensitive

Normal Normal Sensitive Medium

Sensitive Sensitive Non-Sensitive Sensitive High

Non-

Sensitive

Normal Sensitive Non-Sensitive Medium

Normal Non-Sensitive Normal Non-Sensitive Low

 180

Non-

Sensitive

Normal Sensitive Sensitive High

Normal Sensitive Non-Sensitive Non-Sensitive Medium

Sensitive Sensitive Normal Normal High

Non-

Sensitive

Normal Sensitive Sensitive High

Non-

Sensitive

Normal Sensitive Sensitive High

Table B-5: extracted data for layer 3 (before mapping)

Transaction

ID
Sequence_NO Posting_Time Logged_IP

123456 01 7:07:50 128.100.22.121

61520 01 8:46:37 77.241.64.34

61653 01 9:54:20 77.245.0.12

62559 01 9:57:21 79.134.128.64

62612 01 10:05:44 79.173.192.11

62706 01 10:11:11 80.64.208.112

62782 01 10:24:06 80.90.160.93.1

62937 01 10:33:02 80.249.208.108.6

47307 01 11:47:16 81.28.112.124.1

63873 01 7:58:08 82.212.64.139.6

72931 01 9:00:46 84.18.32.155.1

73210 01 9:15:45 84.18.64.170.6

73355 01 10:07:49 86.108.0.186.1

73891 01 10:09:59 91.186.224.201.6

73925 01 10:32:11 92.62.112.217.1

74112 01 12:14:24 92.241.32.232.6

74820 01 1:05:35 94.142.32.248.1

75153 01 2:46:01 94.249.0.263.6

75812 01 3:25:49 95.140.160.75

75973 01 3:40:17 95.141.208.43

76096 01 3:54:27 95.172.192.32

76175 01 4:11:19 188.123.128.112

76286 01 4:12:27 188.123.160.90.5

76296 01 4:18:45 188.244.96.100.5

76350 01 12:19:27 188.247.64.110.5

77327 01 7:25:19 193.188.64.120.5

 181

Table B-6: extracted data for layer 3 (after mapping)

Time on Service Daily

Transactions

Transaction

Time

Environment Layer

Importance Level Rate

Sensitive Normal Sensitive High

Non-Sensitive Normal Sensitive High

Non-Sensitive Sensitive Sensitive High

Normal Non-Sensitive Normal Medium

Sensitive Non-Sensitive Sensitive High

Non-Sensitive Normal Sensitive High

Non-Sensitive Sensitive Sensitive Medium

Normal Sensitive Non-Sensitive Medium

Sensitive Non-Sensitive Sensitive High

Normal Non-Sensitive Normal Low

Non-Sensitive Non-Sensitive Sensitive Medium

Normal Sensitive Non-Sensitive Medium

Normal Non-Sensitive Normal High

Non-Sensitive Non-Sensitive Sensitive Medium

Sensitive Non-Sensitive Non-Sensitive Medium

Sensitive Normal Normal Medium

Normal Non-Sensitive Normal Medium

Non-Sensitive Normal Sensitive High

Sensitive Normal Sensitive High

Sensitive Normal Sensitive High

Non-Sensitive Sensitive Sensitive High

Non-Sensitive Sensitive Sensitive Medium

Non-Sensitive Sensitive Sensitive High

Sensitive Non-Sensitive Non-Sensitive Medium

Non-Sensitive Normal Non-Sensitive Low

Non-Sensitive Normal Sensitive Medium

Non-Sensitive Non-Sensitive Sensitive Low

Non-Sensitive Normal Sensitive High

Sensitive Normal Sensitive High

Normal Non-Sensitive Non-Sensitive Low

Non-Sensitive Non-Sensitive Sensitive Medium

Non-Sensitive Sensitive Non-Sensitive Low

Normal Non-Sensitive Normal Medium

 182

Appendix C

Sample XML messages and sample DTDs

 Sample Source XML Messages

<?xml version='1.0'?>

<Transfers>

<Transaction xmlns='http://example.org/paymentv2' ImportanceLevel="000">

 <Transaction_Notes>002</Transaction_Notes>

 <Profile_ID>92</Profile_ID>

 <AccountTries>02</AccountTries>

 <PasswordTries>01</PasswordTries>

</Transaction>

<Transaction xmlns='http://example.org/paymentv2' ImportanceLevel="000">

 <Posting_Date>2011/01/07</Posting_Date>

 <Service_ID>WWW60</Service_ID>

 <Customer_Language>E</Customer_Language>

</Transaction>

<Transaction xmlns='http://example.org/paymentv2' ImportanceLevel="002">

 <TransactionAmount>755</TransactionAmount>

 <Transaction_Currency Code='JOD'>001</Transaction_Currency>

 <Account_Type Code='001'>Individual</Account_Type>

</Transaction>

<Transaction xmlns='http://example.org/paymentv2' ImportanceLevel="001">

 <IPAddress>128.200.3.212</IPAddress>

 <From_Account>390230101401043000</From_Account>

 <To_Account>120130101155414000</To_Account>

</Transaction>

</Transfers>

 Sample Encrypted XML Messages

<?xml version='1.0'?>

<Transfers>

 183

<Transaction xmlns='http://example.org/paymentv2' ImportanceLevel="Low">

 <Transaction_Notes>002</Transaction_Notes>

 <Profile_ID>92</Profile_ID>

 <AccountTries>02</AccountTries>

 <PasswordTries>01</PasswordTries>

</Transaction>

<Transaction xmlns='http://example.org/paymentv2' ImportanceLevel="Low">

 <Posting_Date>2011/01/07</Posting_Date>

 <Service_ID>WWW60</Service_ID>

 <Customer_Language>E</Customer_Language>

</Transaction>

<Transaction xmlns='http://example.org/paymentv2' ImportanceLevel="Medium">

<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

<CipherData>

<CipherValue>i66xTe5hmF/siLFCXDPXTucE9wJZFd

pbSV3yYwN7pBZKIOTdRdD6LtOgunRVgjxKirSWpLx0yZ3l

0KoZS9B1gKOalZUjE8Sp8Al8qKgrxbfx3CR7fIdEKPdO47t6hr

swwL7lewxZnrJo5Whd2kw/XRUb

uXp268jX5dL0dlUDOEqdtgfPUXxROUetbLP1AmtO8riJWVh/

Qyd3pvVZtNOn9mo0CbclDn0UsntXHFEfst8=

</CipherValue>

</CipherData>

</EncryptedData>

</Transaction>

<Transaction xmlns='http://example.org/paymentv2' ImportanceLevel="High">

<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'

xmlns='http://www.w3.org/2001/04/xmlenc#'>

<CipherData>

<CipherValue>6N28UemsjUz4vegVtDE1wNNgNkvTvC6Pxi9k2vcHcG

IhSeH+kUIdd2IWvb/62gepoBCDhFGI+XQ9

DWGvHlebDHA7DgNjmm+D37lU1DuzsB094b8cUPZH9gCjX0VDRn

tfDTFyeiUtLUKIdH1vUi/m+ok/

pxnBFo35XheoJQFcLv21Kxz7Tzffh9ZCaqYU8HBE

</CipherValue>

</CipherData>

</EncryptedData>

</Transaction>

</Transfers>

