University of Huddersfield Repository

Wei, Nasha, Ball, Andrew and Gu, Fengshou

A Study of Alternative Fuels Potential Effects on the Combustion Engines using acoustic emission

Original Citation

This version is available at http://eprints.hud.ac.uk/19413/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Introduction

The limit of mineral fuel motivates researchers into finding alternative energy sources for diesel engines. However, the impacts of long-term use of the alternative fuels on the reliability and service life of CI engine have not yet been fully understood.

Some of alternative fuels have different properties from the normal diesel, which may influence the performance of engine, mainly in processes of piston lubrication, valve seal and combustion.

The recent studies shows that processes of piston lubrication, valve seal and combustion will generate acoustic emission (AE) signals, offering the potential to monitor operating conditions.

In this study, using four types of fuels (Fischer-Tropsch fuel, methanol-diesel blended fuel, emulsified diesel and standard diesel), the condition changes of CI engine have been investigated by AE techniques.

Testing Facilities and Methods

<table>
<thead>
<tr>
<th>Tab 1 The parameters of the 4100BZL engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacture/model</td>
</tr>
<tr>
<td>Engine type</td>
</tr>
<tr>
<td>Number of cylinders</td>
</tr>
<tr>
<td>Combustion system</td>
</tr>
<tr>
<td>Bore/stroke</td>
</tr>
<tr>
<td>Displacement volume</td>
</tr>
<tr>
<td>Compression ratio</td>
</tr>
<tr>
<td>Cylinder liners</td>
</tr>
<tr>
<td>Start of fuel injection</td>
</tr>
<tr>
<td>Rated power</td>
</tr>
<tr>
<td>Max torque</td>
</tr>
</tbody>
</table>

Fig. 4 RMS of acoustic emission signals under different operating conditions

Figure 4 shows the behaviour of AE RMS values for a engine cycle under different speed and loads for the baseline diesel. The AE RMS values in the middle of piston stroke is enhanced while the high burst around TDC is suppressed significantly. A clear increase of AE energy can be seen as the speed increases. As shown in the Fig. 5, methanol fuel produces a clearly higher average AE energy for nearly all operating conditions.

CONCLUSION

- The methanol diesel has the worst impact on the engine running state.
- It has little difference between diesel and other two fuel in AE signals.