Distributional considerations in inference based condition monitoring stages: detection, diagnosis and prognosis.

Original Citation

This version is available at http://eprints.hud.ac.uk/19412/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Abstract

The major focus of condition monitoring (CM) is in its’ prognostic and fault prediction abilities, the power of which is determined by selecting appropriate analytical techniques. Making the correct distributional and theoretical assumptions is the key to model robustness and strength of inference. Likewise a condition based rather than time interval based maintenance regime enables use of optimal performance for the duration of process operation.

1. Detection

Identifying faults or deviant behaviour through variable profiling. Figures 1 and 2 show ICL to exhibit very different characteristics to the other fault cases.

Distributions exhibiting severe negative skew may be represented by the Beta distribution with suitable shape parameters p and q and upper and lower data bounds a and b or by Extreme Value Distributions. Positively skewed: Lognormal, Gamma or Weibull distributions; Exponential in extreme cases exhibiting positive outliers only.

2. Diagnosis

Having detected a deviation from the norm during operation accurate diagnosis of the source is critical. The more timely and precise the diagnosis of a fault, the greater the opportunity for planned maintenance potentially reducing the impact of disruption due to need for emergency intervention.

Kurtosis Fault

< 1.9 Loose belt

2.0<0.1 DVL

> 2.2 ICL

1.9-1.9270 Healthy

1.9270-1.95 SVL

* mid-point of healthy and SVL means.

No obvious clustering by either summary statistic or combination.

3. Prognosis

The ultimate skill of the condition monitoring process is the ability to make evidence based predictions of future behaviour based on current and past performance. Multivariate statistical analyses of historical data through monitoring deviations from expected or normal operating conditions or target values is utilised in the construction and assessment of prophetic modelling.

Data distributions.

Figure 3 Scatter plot to show the Mean and Kurtosis of first stage pressure per number segment, load 100

Figure 4 Scatter plot of mean and kurtosis for the first stage vibration measurements per number segment with load 100

Summary and future work.

Whilst partitioning the data by number segment and clustering segment means and kurtosis proved effective in determining an elementary rule for assigning to fault case through examining the first stage pressure measurements this was ineffective in the case of the vibration methods and would not be robust should a sequence of faults develop. On the other hand clustering algorithms based on the raw data would, if computationally possible, put too great a burden on resources. Future work is to focus on identifying the distributional characteristics of the data, estimation of distribution parameters (location, scale and shape), multivariate modelling and subsequent sensitivity analysis.