University of Huddersfield Repository

Ren, Hongyu, Jiang, Xiang and Gao, F.

Simulation of Tri-sensor Deflectometry for Freeform and Structured Specular Surfaces

Original Citation

This version is available at http://eprints.hud.ac.uk/19408/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
1. Introduction
Freeform and structured specular surfaces have been widely used in optics, aerospace and MEMS/NEMS fields. For example figure 1 shows a multi-mirror array for James Webb Space Telescope. This typical component has 18–22 sliced mirrors of 50 nm RMS form accuracy and 5 nm Rq roughness, measurement of which recently suffers from time-consuming and complexity. Our research aim is to explore a tri-sensor deflectometry for fast measuring the form of this kind of complex surfaces.

![Fig 1 The monolithic multi-mirror arrays on the Mid-Infrared Instrument (MIRI) Spectrometer Optics for the James Webb Space Telescope](image)

2. Sensor Principle
The LCD screen controlled by a computer generates a sinusoidal fringe pattern on its rear projection screen. The CCD cameras capture the distorted fringe pattern via the detected specular surface. By analysing these distorted phase data, the slope and position information of this detected surface will be calculated.

![Fig 2 Principle of phase measurement deflectometry](image)

3. Objectives
The objectives of this project are to create a fast form measurement system and investigate its corresponding algorithms for high precision measurement. The 3D model of this device is shown in figure 3, which consists of three cameras and a LCD screen. These three cameras are fixed spatially around the detected surface.

![Fig 3 3D model of tri-sensor deflectometry](image)

4. Simulation
A horizontal and vertical sinusoidal fringe pattern acting as a LCD screen, and a under-test surface \(z = \frac{x^2}{a^2} + \frac{y^2}{b^2} \) are simulated. The fringe patterns is “seen” by three cameras via this detected surface.

- **Phase unwrapping algorithm**
 Natural, exponential and optimum frequency selection algorithms are used to unwrap the captured phase data.

![Fig 4 Phase unwrapping interface (left: vertical fringe pattern; right: horizontal)](image)

- **Integration process from each camera data**
 For each two cameras, the computed unwrapped phase can be used to obtain slope and position information. Integration of the three set of data will calculate the surface topography.

5. Results and discussion
Due to some blinds for each camera, each two cameras could only calculate a sectional information for the whole surface, while integrating the three set of data is a little time-consuming and complex.

![Fig 5 Integration simulation of tri-sensor deflectometry](image)

6. Future Work
- Set up a practical device with LCD monitor
- Deduce an integration algorithm and its optimization
- Calibration of this instrument (camera’s internal and external parameters; geometrical relation between cameras and LCD screen)
- Uncertainty analysis and errors compensation

7. Acknowledgement
The author gratefully acknowledge the supervisors and other staffs of the Centre for Precision Technologies in Huddersfield University of UK and Hebei Science and Industry University of China.