Different Signal Processing Techniques for Predicting the Condition of Journal Bearings

Original Citation

This version is available at http://eprints.hud.ac.uk/19403/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Different Signal Processing Techniques for Predicting the Condition of Journal Bearings

Osama Hassin, PhD Student, 1st year
Supervised by: Prof. A. Ball
Co-Supervised: Dr. F. Gu
Computing and Engineering, Systems Engineering Centre for Efficiency & Performance Engineering (CEPE)

ABSTRACT

- Journal bearings are used to support shafts.
- Vibration condition monitoring is to detect, diagnose and prognoses faults [1].
- Show the differences between the time domain, frequency domain and time-frequency analysis (STFT) of Journal bearing vibration signal.

THEORETICAL BACKGROUND

- Time domain analysis gives the behaviour of the signal over time which allows predictions and regression models for the signal [2].
- Frequency-domain data are obtained by converting time-domain data using a mathematical technique referred to as Fast Fourier Transform (FFT) [2].
- Time-frequency analysis is short-time Fourier Transform (STFT) investigates waveform signals in both time and frequency domain at same time [2].

STFT \((t', u) = \int f(t) \cdot W(t - t') \cdot e^{-2\pi i u t} dt \)

Window should be narrow enough to make sure that the portion of the signal falling within the window is stationary.

Results and Discussion

- The time domain and frequency domain of journal bearings at high speed, high radial load and low viscosity oil

Conclusions

- Time-frequency not only presents the frequency content of the signal but also shows when it occurs.
- STFT Narrow window means good time resolution, poor frequency resolution.
- STFT wide window means good frequency resolution, poor time resolution.

References